当前位置:文档之家› 优化设计报告

优化设计报告

优化设计报告
优化设计报告

优化设计实验报告

无约束非线性规划问题

)

sin(1)(min 2

2

35x e

x x x x f x

-+-++=

fun='(x^5+x^3+x^2-1)/(exp(x^2)+sin(-x))'; ezplot(fun,[-2,2]);

[xopt,fopt,exitflag,output]=fminbnd(fun,-2,2) 输出: xopt =

0.2176 fopt =

-1.1312 exitflag = 1

output =

iterations: 12

funcCount: 13

algorithm: 'golden section search, parabolic interpolation' message: [1x112 char]

二维无约束非线性函数最优解

)12424()(min 2212

2211++++=x x x x x e X f x

fun='exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1)'; x0=[0,0];

options=optimset('largescale','off','display','iter','tolx',1e-8,'tolfun',1e-8);

[x,fval,exitflag,output,grad,hessian]=fminunc(fun,x0,options) f='exp(x)*(4*x^2+2*y^2+4*x*y+2*y+1)'; ezmesh(f);

First-order Iteration Func-count f(x) Step-size optimality

0 3 1 2 1 9 0.717044 0.125092 1.05 2 15 0.073904 10 1.28 3 21 0.000428524 0.430857 0.0746 4 24 0.000144084 1 0.0435 5 27 1.95236e-008 1 0.000487 6 30 6.63092e-010 1 9.82e-005 7 33 1.46436e-015 1 4.91e-008

Local minimum possible.

fminunc stopped because it cannot decrease the objective function along the current search direction.

Computing finite-difference Hessian using user-supplied objective function. x =

0.5000 -1.0000

fval =

1.4644e-015

exitflag = 5

output =

iterations: 8

funcCount: 36

stepsize: 1

firstorderopt: 4.9136e-008

algorithm: 'medium-scale: Quasi-Newton line search'

message: [1x364 char]

grad =

1.0e-007 *

-0.4914

-0.4914

hessian =

13.1946 6.5953

6.5953 6.5949

多目标线性规划问题

?????????

?

?≤+≤+-≤---≤--+=+++=48

23120

233030

..23)(min 708090100)(max 4231432142243211x x x x x x x x t s x x x f x x x x x f 已知设计变量和分目标的初值x0=[20,10,30,0],分目标的初始值f0=[10000,40],分目标的权重w=[1,2e-4]。 编写函数:

function [f]=fun_opt(x)

f(1)=-(100*x(1)+90*x(2)+80*x(3)+70*x(4)); f(2)=3*x(2)+2*x(4); 输入:、 A=[-1 -1 0 0; 0 0 -1 -1; 3 0 2 0;

0 3 0 2];

b=[-30 -30 120 80]; Aeq=[];beq=[];

lb=zeros(1,4);ub=[]; x0=[20,10,30,0]; f0=[10000,40];

w=[1 2e-4];

[xopt,fopt]=fgoalattain(@fun_opt,x0,f0,w,A,b,Aeq,beq,lb,ub) 输出:

Active inequalities (to within options.TolCon = 1e-006): lower upper ineqlin ineqnonlin 4 1 1 3 2

xopt =

17.7035 12.2965 33.4447 0

fopt =

1.0e+003 *

-5.5526 0.0369

要求设计一个内燃机用气门弹簧,工作载荷F=680N,工作行程h=16.59mm ,工作频率f r =25Hz ,要求寿命N ≥106

循环次数。弹簧丝材料采用50CrV A ,许用应力[τ]=405MPa.如下图所示弹簧的结构要求:弹簧丝直径mm d mm 95.2≤≤,弹簧外径mm D mm 6030≤≤,工作圈数63≤≤n ,支承圈数n 2=1.8(采用YI 型端部结构),弹簧指数C ≥6,弹簧压并高度λb =1.1h=18.25mm 。试在满足弹簧的强度条件、刚度条件、稳定性条件、旋绕比条件和结构尺寸边界条件等约束条件下,确定弹簧的弹簧丝直径d ,中径D 2和工作圈数n 等三个设计参数,使它重量最轻、自由高度最小和自振频率最高。

(弹簧钢的材料密度ρ=7.5*10-6kg/mm 3,循环次数N ≥103

时弹簧的曲度系数K=1.6/C 0.14

,重力加速度g=9.80665m/s 2

D D2

t

a

d

1、确定设计变量

?

???? ?

?=????? ??=n D d x x x x 2321

2、建立目标函数

1)弹簧的结构重量最轻

)8.1(10*8148.1)(322

141+=-x x x x f

2)弹簧的自由高度最小

25.18)3.1()(312++=x x x f

3)弹簧的自振频率最高(取倒数作为分目标函数,追求最小值)

132

26

1

3/10

*809.2)(x x x f x f r

--==

3、建立约束函数

6)(03)(060)(030)(05.9)(05.2)(0)/(10*659.1680)(0)/(10*56.3250)(03.525.18)3.1()(0

/6)(0

405/10*7706.2)(311310219218171632

24

15

532

215

4213312286

.21

86

.023

1≤-=≤-=≤-+=≤--=≤-=≤-=≤-=≤-=≤-++=≤-=≤-=x x g x x g x x x g x x x g x x g x x g x x x x g x x x x g x x x x g x x x g x x x g

编写M 函数如下:

function [f]=TH_dmbyh_fTS(x,L,H); p=7.5e-6;gl=9.80665;

f1=p*gl*pi^2*x(1)^2*x(2)*(x(3)+1.8)/4; f(1)=(f1-L(1))/(H(1)-L(1));

f2=x(1)*(x(3)+1.3)+18.25; f(2)=(f2-L(2))/(H(2)-L(2));

f3=2.809e-6*x(2)^2*x(3)/x(1); f(3)=(f3-L(3))/(H(3)-L(3));

function [g,ceq]=TH_dmbyh_gTS(x,L,H);

F=680;t=405;K=1.6;HD=5.3;fr=25;h=16.59;G=8e4; g(1)=8*K*F/pi*x(2)^0.86/x(1)^2.86-t; g(2)=6-x(2)/x(1);

g(3)=(x(3)+1.3)*x(1)+18.25-HD*x(2); g(4)=10*fr-3.56e5*x(1)/x(2)^2/x(3); g(5)=F-h*G/8*x(1)^4/x(2)^3/x(3); ceq=[];

输入参数如下: x0=[6.2;39;5]; lb=[2.5;27.5;3]; ub=[9;51;6]; a=zeros(6,3); a(1,1)=-1;

a(2,1)= 1;

a(3,1)=-1;a(3,2)=-1; a(4,1)= 1;a(4,2)= 1;

a(5,3)=-1;

a(6,3)= 1;

b=[-2.5;9;-30;60;-3;6]';

L=[0.9434 42.5514 1.709e-3];

for i=1:4

H=[11*L(1)-i*L(1) 11.5*L(2)-i*L(2) 13.5*L(3)-i*L(3)]; [x,fn]=fminimax('TH_dmbyh_fTS',x0,a,b,[],[],lb,ub,'TH_dmbyh_gTS', [],L,H);

for j=1:3

ff(j)=fn(j)*(H(j)-L(j))+L(j);

end

f1(i)=ff(1);f2(i)=ff(2);f3(i)=1./ff(3);

end

disp ' ******** 圆柱螺旋弹簧多目标优化设计最优解 ********'

fprintf (1,' d = %3.4f mm \n',x(1))

fprintf (1,' D2 = %3.4f mm \n',x(2))

fprintf (1,' n = %3.4f 圈 \n',x(3))

fprintf (1,' W = %3.4f N \n',ff(1))

fprintf (1,' H0 = %3.4f mm \n',ff(2))

fprintf (1,' fr = %3.4f Hz \n',1/ff(3))

g=TH_dmbyh_gTS(x,L,H);

disp ' ######## 最优点的性能约束函数值 ########'

fprintf (1,' g1* = %3.4f \n',g(1))

fprintf (1,' g2* = %3.4f \n',g(2))

fprintf (1,' g3* = %3.4f \n',g(3))

fprintf (1,' g4* = %3.4f \n',g(4))

fprintf (1,' g5* = %3.4f \n',g(5))

disp ' ======== 最优点的边界约束函数值 ========'

fprintf (1,' g6* = %3.4f \n',-b(1)-x(1))

fprintf (1,' g7* = %3.4f \n',x(1)-b(2))

fprintf (1,' g8* = %3.4f \n',-b(3)-x(2))

fprintf (1,' g9* = %3.4f \n',x(2)-b(4))

fprintf (1,' g10* = %3.4f \n',-b(5)-x(3))

fprintf (1,' g11* = %3.4f \n',x(3)-b(6))

输出结果:

Active inequalities (to within options.TolCon = 1e-006):

lower upper ineqlin ineqnonlin

3 5 1

2

8

******** 圆柱螺旋弹簧多目标优化设计最优解 ********

d = 5.6515 mm

D2 = 33.9089 mm

n = 3.0000 圈

W = 0.9434 N

H0 = 42.5514 mm

fr = 583.2604 Hz

######## 最优点的性能约束函数值 ######## g1* = -0.0000

g2* = 0.0000

g3* = -137.1656

g4* = -333.2627

g5* = -766.8830

======== 最优点的边界约束函数值 ========

g6* = -3.1515

g7* = -3.3485

g8* = -3.9089

g9* = -26.0911

g10* = 0.0000

g11* = -3.0000

优化设计技术

机械优化设计 摘要 机械优化设计是最优化技术在机械设计领域的移植和应用,其基本思想是根据机械设计的理论,方法和标准规范等建立一反映工程设计问题和符合数学规划要求的数学模型,然后采用数学规划方法和计算机计算技术自动找出设计问题的最优方案。作为一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题。优化设计为工程设计提供了一种重要的科学设计方法。因而采用这种设计方法能大大提高设计效率和设计质量。本文论述了优化设计方法的发展背景、流程,并对无约束优化及约束优化不同优化设计方法的发展情况、原理、具体方法、特点及应用范围进行了叙述。另外,选择合适的优化设计方法是解决某个具体优化设计问题的前提,而对优化设计方法进行分析、比较和评判是其关键,本文分析了优化方法的选取原则。之后对并对近年来出现的随机方向法、遗传算法、蚁群算法和模拟退火算法等新兴优化方法分别进行了介绍。本文以交通领域中建立最优交通网路为例说明了优化设计方法的应用特点。 关键词:机械优化设计;约束;特点;选取原则

目录 第一章引言 (1) 1.1优化设计的背景 (1) 1.2机械优化设计的特点 (2) 1.3优化设计的模型 (3) 1.4优化设计的流程 (4) 第二章优化设计方法的分类 (6) 2.1无约束优化设计方法 (7) 2.1.1梯度法 (7) 2.1.2牛顿型方法 (7) 2.1.3共轭梯度法 (8) 2.1.4变尺度法 (8) 2.2约束优化设计方法 (9) 2.2.1直接解法 (9) 2.2.2间接解法 (11) 2.3多目标优化方法 (13) 2.3.1主要目标法 (14) 2.3.2加权和法 (14) 第三章各类优化设计方法的特点 (15) 3.1无约束优化设计方法 (15) 3.2约束优化设计方法 (16) 3.3基因遗传算法(Genetic Algorithem,简称GA) (16) 3.4模糊优化设计方案 (17) 第四章优化方法的选择 (18) 4.1优化设计方法的评判指标 (18) 4.2优化方法的选取原则 (19) 第五章机械优化设计发展趋势 (21) 第六章 UG/PRO-E建模 (23) 参考文献 (27)

优化设计作业

作业 1. 阐述优化设计数学模型的三要素。写出一般形式的数学模型。 答:建立最优化问题数学模型的三要素: (1)决策变量和参数。决策变量是由数学模型的解确定的未知数。参数表示系统的控制 变量,有确定性的也有随机性的。 (2)约束或限制条件。 由于现实系统的客观物质条件限制,模型必须包括把决策变量限制在它们可行值之内的 约束条件,而这通常是用约束的数学函数形式来表示的。 (3)目标函数。 这是作为系统决策变量的一个数学函数来衡量系统的效率,即系统追求的目标。 2. 阐述设计可行域和不可行域的基本概念 答:约束对设计点在设计空间的活动范围有所限制。凡满足所有约束条件的设计点,它在设 计空间中的可能活动范围,称可行设计区域(可行域)。不能满足所有约束条件的设计空间便 是不可行设计区域(不可行域)。 3、无约束局部最优解的必要条件? 答: (1)一元函数(即单变量函数) 极值点存在的必要条件 如果函数f (x )的一阶导数f’(x )存在的话,则欲使x *为极值点的必要条件为: f’(x *)=0 但使f’(x *)=0的点并不一定部是极值点;使函数f (x )的一阶导数f’(x )=0的点称为函数f (x ) 的驻点;极值点(对存在导数的函数)必为驻点,但驻点不一定是极值点。至于驻点是否为极 值点可以通过二阶导数f’’(x )=0来判断。 (2)n 元函数在定义域内极值点X *存在的必要条件为 即对每一个变量的一阶偏导数值必须为零,或者说梯度为零(n 维零向量)。 ▽f (X*)=0是多元函数极值点存在的必要条件,而并非充分条件;满足▽f (X*)=0的 点X *称为驻点,至于驻点是否为极值点,尚须通过二阶偏导数矩阵来判断。 3. 阐述约束优化问题最优解的K-T 条件。 答:K-T 条件可阐述为: 如果X (k)是一个局部极小点,则该点的目标函数梯度▽f (X (k))可表示成该点诸约束面梯度为▽ g u (X (k))、▽h v (X (k))的如下线性组合: ()()()()0****21=????????????=?T n x X f x X f x X f X f

现代优化方法综述

1.引言 优化设计英文名是optimization design,从多种方案中选择最佳方案的设计方法。它以数学中的最优化理论为基础,以计算机为手段,根据设计所追求的性能目标,建立目标函数,在满足给定的各种约束条件下,寻求最优的设计方案。 第二次世界大战期间,在军事上首先应用了优化技术。1967年,美国的R.L.福克斯等发表了第一篇机构最优化论文。1970年,C.S.贝特勒等用几何规划解决了液体动压轴承的优化设计问题后,优化设计在机械设计中得到应用和发展。随着数学理论和电子计算机技术的进一步发展,优化设计已逐步形成为一门新兴的独立的工程学科,并在生产实践中得到了广泛的应用。通常设计方案可以用一组参数来表示,这些参数有些已经给定,有些没有给定,需要在设计中优选,称为设计变量。如何找到一组最合适的设计变量,在允许的范围内,能使所设计的产品结构最合理、性能最好、质量最高、成本最低(即技术经济指标最佳),有市场竞争能力,同时设计的时间又不要太长,这就是优化设计所要解决的问题。一般来说,优化设计有以下几个步骤:①建立数学模型。②选择最优化算法。③程序设计。 ④制定目标要求。⑤计算机自动筛选最优设计方案等。 2.数学模型 优化设计的数学模型是对优化设计工程问题的数学描述,它包含设计变量、目标函数和设计约束三个基本要素。 2.1设计变量 2.1.1基本参数 a、定义:在设计过程中进行选择变化并最终确定的各项独立参数称为设计变量。 b、说明:在设计选择过程中,这些设计变量是变量,但它们一旦被确定后,设计对象也 就完全确定了。最优化设计是研究怎样合理地优选这些设计变量的一种现代设计 方法。在设计过程中,凡根据设计要求事先给定的,不是设计变量而是设计常量。 2.1.2设计方案的表现形式 a、设计空间:由n个设计变量为坐标所组成的时空间称作设计空间。 b、设计变量的表示法 (1)坐标表示法:一维问题→一个设计变量→数轴上的一个点 二维问题→两个设计变量→平面直角坐标系上的向量 三维问题→三个设计变量→空间直角坐标系的向量

机械优化设计课程设计任务-Read知识交流

机械优化设计课程设计任务 一、目的 通过课程设计培养学生综合运用本课程及相关课程的理论解决实际问题的能力,使学生掌握在机械优化设计中建立优 化问题数学模型、选择适当优化算法编制程序解决实际问题的 方法,提高计算机的应用水平,为今后的学习和工作打好基础。 二、课程设计的基本要求 1.根据优化问题建立数学模型; 2.选择适当的优化算法; 3.编制、调试和考核程序; 4.作上机前的数据准备并进行上机计算; 5.对优化计算结果进行分析。 三、课程设计报告内容 1.优化问题的简图和已知条件; 2.建立优化问题的数学模型(设计变量、目标函数、约束条 件); 3.简单叙述所用算法的基本原理(如内、外罚函数法、POWELL 法、二次插值法、初始区间搜索等) 4.结果分析: 精度对迭代次数、结果等的影响。 5. 在编写、调试程序过程中遇到的主要问题及解决办法; 6. 请你谈谈对学习机械优化设计这门课的体会,并提出你的 意见和建议。 四、优化设计题目 (一)对称人字架的优化设计

如图1所示,在对对称人字架顶端作用一个P =294300N 的静载荷,人字架跨度B =1520mm ,人字架杆件为壁厚T = 2.5mm 的空心圆管,材料的弹性模量E =2.119×105N/mm2,许用压应力y σ=690N/mm2。设计满足强度条件和稳定性条件,在20~140mm 范围内确定圆管平均直径D ,200~1200mm 范围内确定人字架高度H ,使人字架用料最省。 图1 对称人字架 1、建立优化设计目标函数 人字架用料最省,亦即体积最小。因此将人字架的总体积达到最小作为优化目标。人字架的总体积为 V=2πDT 2 2)2/(H B + (mm 3) 优化设计中的设计变量可取为: X=[x 1 ,x 2]T =[D ,H]T 2、确定约束条件 由静力平衡和材料力学的有关公式可得 (1)强度条件

机械优化设计项目报告

机械装备优化设计三级项目 题目:基于MATLAB的带式输送机斜齿轮传动参数优化设计 班级:13级机械装备1班 设计人员(按贡献大小排序): 丁涛 宋潮 金渊哲

摘要: 针对带式输送机中单级圆柱齿轮减速器传动的生产实际,根据优化设计理论,以斜齿圆柱齿轮体积之和最小为优化设计目标。通过变量的选取、约束条件的确定。分析建立了优化设计数学模型.基于Matlab工具箱中非线性约束优化函数fmincon,对齿轮模数、齿数、齿宽系数、螺旋角等结构参数进行优化设计,节省了金属材料。降低了制造成本.取得了较好的优化效果。为产品的改进设计提供了理论依据。 关键词:MATLAB、带式输送机、斜齿轮、参数优化设计

前言: 机械优化设计是适应生产现代化要求发展起来的一种机械设计方法,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度的方向发展。现在用于机械优化设计的软件与方法程序较多,有些已非常成熟,只需要按照规定的格式编写目标函数和约束函数子程序即可。机械优化设计方法林林总总,但由于机械设计问题的复杂性,所以每种优化方法都有其优越性和局限性。选择合适的机械优化方法尤为重要。而MATLAB语言的优化工具箱在进行优化设计时,可自由选择算法和线性搜索策略,计算快捷高效,图形结果可视化,且其初始参数值输入简单,编程工作量小,具有明显的优越性,且应用广泛。MATLAB语言是集科学计算、数据可视化和程序设计为一体的工程应用软件。作为基础软件,它广泛应用在工程学科的计算机辅助分析、设计仿真和教学中,在行星轮系传动参数设计中,利用MATLAB 的优化工具箱的函数计算及按摩,可提高建模的准确性和计算中的数值稳定性,为设计提供了可靠的科学根据。

机械优化设计技术

学号:1310111131 姓名汪海超班级:13机制2班 机械优化设计技术 摘要:机械优化设计是一种非常重要的现代设计方法, 能从众多的设计方案中找出最佳方案, 从而大大提高设计的效率和质量。现代工程装备的复杂性使得机械优化设计变得越来越困难, 利用新的科学理论探索新的优化设计法是该研究领域的一个重要方面。在综合大量文献的基础上, 阐述机械优化设计的含义、目的及必要性, 总结机械优化设计的特点,从优化设计数学模型建立和求解算法两方面探讨现代机械优化设计的理论方法和研究现状, 并指出该领中应当进一步研究的问题和发展方向 关键词:机械;优化设计;数学模型;优化方法;智能优化 优化设计是 20世纪 60年代随计算机技术发展起来的一门新学科 , 是构成和推进现代设计方法产生与发展的重要内容。机械优化设计是综合性和实用性都很强的理论和技术 , 为机械设计提供了一种可靠、高效的科学设计方法 , 使设计者由被动地分析、校核进入主动设计 , 能节约原材料 , 降低成本 , 缩短设计周期 , 提高设计效率和水平 , 提升企业竞争力、经济效益与社会效益[ 1 - 2].国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视 , 并开展了量工作 , 其基本理论和求解手段已逐渐成熟。国内优化设计起步较晚 , 但在众多学者和科研人员的不懈努力下 , 机械优化设计发展迅猛。 1 机械优化设计研究内容 机械优化设计是一种现代、科学的设计方法 , 集思考、绘图、计算、实验于一体 , 其结果不仅“可行”, 而且“最优”。该“最优”是相对的 , 随着科技的发展以及设计条件的改变 , 最优标准也将发生变化。优化设计反映了人们对客观世界认识的深化 ,要求人们根据事物的客观规律 , 在一定的物质基础和技术条件下充分发挥人的主观能动性 , 得出最优的设计方案。 2 传统优化设计理论方法 传统优化设计方法种类很多 , 按求解方法特点分为准则优化法、线性规划法和非线性规划法。作者仅从工程应用角度对之进行归纳和整理 , 具体算法可参考其他资料。 3 现代优化设计理论方法 优化准则法对于不同类型的约束、变量、目标函数等需导出不同的优化准则 , 通用性较差 , 且多为近似最优解 ;规划法需多次迭代、重复分析 , 代价昂贵 , 效率较低 , 往往还要求目标函数和约束条件连续、可微 , 这都

机械结构优化设计作业

甘蔗收获机机械台架虚拟样机 结构优化设计 摘要:结构优化设计就是寻求满足约束条件下的最佳构建尺寸、结构形式以及材料配置方式。利用有限元方法对虚拟样机台架结构进行分析,并采用一阶方法对台架进行优化,预估出经验设计结构上的最危险点,并对结构进行改造和优化,可以保证结构综合应力在材料的许用应力范围内,对结构轻量化,合理分配材料,大大缩短研制周期,降低设计成本,为虚拟样机的创新设计可以提供一种新的设计及优化设计方法。 关键词:甘蔗收获机;优化设计;模态分析;一阶方法 引言:甘蔗作为重要经济作物在全世界范围内广泛种植,中国的种植面积在世界位居第三位,成为我国制糖,轻工,化工和能源的重要原料,对整个国民经济的发展都有重要的地位和作用。甘蔗收获包括切梢、切割、清理和装运等工序,为甘蔗生产过程中劳动强度最大,费工费时,成本最高的一个环节。在我国,甘蔗成产机械化程度低,随着人工收获成本的逐年增加,我国糖业面临着巨大的竞争压力,实现甘蔗收获机械化的要求愈加迫切。随着设计理论与设计理念的发展,对虚拟样机进行优化设计能改进凭经验设计出现的缺陷以及预估结构或机构的最危险点,从而对其进行改造和优化,对设计结果及时进行审查,并及时反馈给设计人员,实现了设计过程中的快速反馈,按照优化后的设计方案进行物理样机研制,可以避开预估的缺陷和危险点,从而使结构更趋于合理,降低了制造成本,大大缩短了设计和产品研制周期,还可以保证将错误消灭在萌芽状态。 虚拟样机技术[ 1]为这类创新产品的开发提供了强有力的手段。甘蔗收割机在工作过程中, 要经历扶蔗、砍蔗、输送、断尾以及剥叶等动作, 承受的都是动态载荷, 而结构的固有频率和振型是承受动态载荷结构设计中的重要参数, 因此本文采用通用有限元分析软件ANSYS对甘蔗收割机机架结构部件进行模态分析, 根据机架结构的低阶模态和振型, 确定对机架结构是进行动力刚度优化还是静力强度优化。 1.机架结构模型建立

机械优化设计一维搜索实验报告

《机械优化设计》 实验报告 班级: 机械设计(2)班 姓名:邓传淮 学号:0901102008

1 实验名称:一维搜索黄金分割法求最佳步长 2 实验目的:通过上机编程,理解一维搜索黄金分割法的原理,了解计算机在优化设计中的应用。 3 黄金分割法的基本原理 黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

4实验所编程序框图(1)进退发确定单峰区间的计算框图

(2)黄金分割法计算框图

5 程序源代码 (1)进退发确定单峰区间的程序源代码 #include #include #define f(x) pow(x,4)-3*pow(x,3)-5*pow(x,2)-14*x+46 main() { int k; double x,h,x1,x2,x3; double f1,f2,f3,f; double a,b; x1=0; h=1; x2=x1+h; f1=f(x1); f2=f(x2); if (f1>f2) { h=2*h; x3=x2+h; f3=f(x3);

优化设计小论文

优化设计小论文

机械优化设计 优化设计是20世纪60年代初发展起来的一门新的学科,也是一项新的设计技术。它是将数学规划理论与计算技术应用于设计领域, 按照预定的设计目标,以电子计算机及计算程序作为设计手段,寻求最优设计方案的有关参数,从而获 得较好的技术经济效益。机械的研究和应用具有悠久的历史,它伴随甚至推动了人类社会和人类文明的发展。机构学研究源远流长, 但从古到今,机构学领域主要研究三个核心问题, 即机构的构型原理与新机构的发明创造、机构分析与设 计的运动学与动力学性能评价指标、根据性能评价指标分析和设计机构。机构 是组成机械的基本单元,一般机械都是由一个或多个机构组成。对于机构的研究, 能够为发明、创造新机械提供理论、资料和经验。而对于机构的优化设计, 使 机构具有确定的几何尺寸,能够满足运动学要求, 并能实现给定的运动规律,这 些能够为某些具体的机械设计, 使机械满足某些特定的功能提供了可靠的依 据。 机械设计是机械工程的重要组成部分,是决定机械性能最主要的因素。从 工程设计基础和目标上可将设计分为:新型设计(开发性设计)、继承设计、变 型设计(基于标准型的修改)。所谓新型设计,即应用成熟的科学技术或经过实 验证明可行的新技术,设计未曾有过的新型机械,主要包括功能设计和结构设计,是机械设计发展的方向所在,然而贯穿其中的关键环节即是设计的方法和 实现的手段。人类一直都在不断探索新方法和新设计理念。从17 世纪前形成的直觉设计过渡到经验设计和传统设计,直到目前的现代设计[1],从静态、经验、手工式的‘安全寿命可行设计’方法发展到动态、科学、计算机化、自动化的 优化设计方法,已将科学领域内的实用方法论应用于工程设计中了。 机械优化设计基本思路是在保证基本机械性能的基础上,借助计算机,应 用一些精度较高的力学/ 数学规划方法进行分析计算,让某项机械设计在规定 的各种设计限制条件下,优选设计参数,使某项或几项设计指标(外观、形状、结构、重量、成本、承载能力、动力特性等)获得最优值。

华南理工大学最优化设计作业Matlab编程答案

目标函数 function f=fmin1(x)%x(1)是D外径/mm;x(2)是d内径/mm f=pi*(x(1).^2-x(2).^2)/4; 非线性约束函数 function[f,feq]=noncon(x) f=[6400-30*sqrt(x(1).^2+x(2).^2), 480000*x(1)-pi*(x(1).^4-x(2).^4)]; feq=[] 主程序 A=[-11]; b=[-3.5]; x0=[150140]; [x,fval,exitflag,output,lambda,grad,hessian]= fmincon('fmin1',x0,A,b,[],[],[],[],'noncon') 运算结果 x=152.5893149.0893 fval=829.2823 exitflag=1 output=iterations:3 funcCount:9 lssteplength:1 stepsize:2.5331e-010 algorithm:'medium-scale:SQP,Quasi-Newton,line-search' firstorderopt:9.8475e-010 constrviolation:0 message:[1x788char] lambda= lower:[2x1double] upper:[2x1double] eqlin:[0x1double] eqnonlin:[0x1double] ineqlin:236.9059 ineqnonlin:[2x1double] grad= 239.6867 -234.1889 hessian= 1.0e+006* 1.8964-1.8964 -1.8964 1.8964

合肥工业大学《机械优化设计》课程实践报告

合肥工业大学 《机械优化设计》课程实践 研究报告 班级: 学号: 姓名: 授课教师: 日期:2016年 11 月 7 日 目录 作业要求 (2)

一、λ=0.618的证明、一维搜索程序作业 (3) 1、0.618法的基本思想 (3) 2、关于0.618法中参数λ=0.618的证明 (4) 3、一维搜索程序作业 (5) 二、单位矩阵程序作业 (8) 三、注释最佳再现给定运动规律连杆机构优化设计 (10) 问题模型子程序 (10) 四、连杆机构问题+其他工程优化问题 (12) 1、连杆机构问题 (12) 2、其他工程问题: (15) 五、课程实践心得体会 (18) 作业要求 1、λ=0.618的证明、一维搜索程序作业; 2、单位矩阵程序作业;

3、注释最佳再现给定运动规律连杆机构优化设计问题模型子程序; 4、连杆机构问题 + 自行选择小型机械设计问题或其他工程优化问题; (1)分析优化对象,根据设计问题的要求,选择设计变量,确立 约束条件,建立目标函数,建立优化设计的数学模型并编制问题程序; (2)选择适当的优化方法,简述方法原理,进行优化计算; (3)进行结果分析,并加以说明。 5、写出课程实践心得体会,附列程序文本。 一、λ=0.618的证明、一维搜索程序作业 1、0.618法的基本思想 “0.618法”,又称为黄金分割法,是常用的一种一维搜索试探方法,适用于 [,]a b 区间上的任何单调函数求极小值问题。 0.618法是建立在区间消去法原理基础上的试探方法,即在搜索区间[,]a b 内适当插入两点1a 、1b ,且11a b ,如下图所示。通过比较函数值1()f a 与1()f b 的大小,应用函数的单调性,可得出以下两种情况:

结构成本优化设计的技术要点和方法终极版

一、结构成本控制的意义 控制结构成本,并不会导致结构的安全储备的降低,而是要取消 掉其中的无效成本。结构成本的降低是指通过积极化的设计,在保证 工程质量的同时去除无效的结构成本,以达到最小的投入产出比。 二、结构成本控制的管理思路及方法 结构成本控制必须贯穿整个设计和策划的全过程,包括前期论证及策划阶段的地质情况调查、规划阶段的初勘、方案阶段的结构介入、扩初阶段对结构方案的优化、施工图阶段给设计院灌输成本意识及施工图配合阶段变更、签证的管理。 (一)设计院的选择(主要指扩初设计和施工图设计阶段) 1、更应注重对设计团队的选择,而不是对设计院的选择。 2、培养能长期合作的战略伙伴,但必须不只一家。 3、分阶段进行设计成果的后评估。 4、注重专业负责人的选择。 (二)设计费的合理取值 设计费可略高于当地的平均水平值、略高于设计院的心理预期,对于调动设计院的积极性,保证设计质量行之有效。 (三)设计周期的合理确定 对于一个项目来说,设计周期越短越好,因此要在保证质量、不增加成本的前提下,尽量缩短设计周期,这就需要在决策导向上予以保证,并合理利用工序的前置和搭接时间,积极推广标准化设计;另外,要想快,创新点就要尽量少。 (四)设计过程中必须控制的关键环节 1、结构体系的确定及主要平面布置图

2、基础的选型及设计图 3、电算模型及计算系数的取值 4、地下室的布置及样板配筋图 5、标准层的布置及截面配筋图 6、结构转换层的布置及配筋层图 三、事前控制的要点 事先控制是成本管理的重中之重,并且是全过程的! (一)限额设计(合同的引入及应用) 1、限额的内容——应该是那些可控的、易离散的。如钢筋和砼的含量,停车位的面积等) 2、限额的数值——应比市场水平略低 3、限额的弹性——具体项目允许适当的调整范围 4、双赢的思想——奖罚分明 (二)必须重视和提前输入的技术原则 1、《结构设计统一技术措施》 2、《结构设计总说明》 3、《标准构造做法》 (三)施工图审查公司选择 1、沟通时机——尽早沟通达成共识,避免大的设计修改和返工。 2、沟通内容——注重在规范的边界或有争议处,如超限的判断、 裂缝宽度、短肢墙体系的定义、配筋等。 (四)对一些垄断部门——供电、供水、燃气、规划、人防、审图等,

机械优化设计实验报告浙江理工大学.docx

机械优化设计实验 报告 班级:XXXX 姓名:XX 学号:XXXXXXXXXXX

一、外推法 1、实验原理 常用的一维优化方法都是通过逐步缩小极值点所在的搜索区间来求最优解的。一般情况下,我们并不知道一元函数f(X)极大值点所处的大概位置,所以也就不知道极值点所在的具体区域。由于搜索区间范围的确定及大小直接影响着优化方法的收敛速度及计算精度。因此,一维优化的第一步应首先确定一个初始搜索区间,并且在该区间内函数有唯一的极小值存在。该区间越小越好,并且仅存在唯一极小值点。 所确定的单股区间应具有如下性质:如果在[α1,α3]区间内任取一点α2,,α1<α2<α3或α3<α2<α1,则必有f(α1)>f(α2) #include #define f(x) 3*x*x-8*x+9 //定义函数 int main() { double a0,a1,a2,a3,f1,f2,f3,h; printf(“a0=”,a0); //单谷区间起始点 scanf(“%lf”,&a0); printf(“h=”,h); //起始的步长 scanf(“%lf”,&h); a1=a0;

a2=a1+h; f1=f(a0); f2=f(a2); if(f1>f2) //判断函数值的大小,确定下降方向 { a3=a2+h; f3=f(a3); } else { h=-h; a3=a1; f3=f1; a1=a2; f1=f2; a2=a3; f2=f3; a3=a2+h; f3=f(a3); } while(f3<=f2) //当不满足上述比较时,说明下降方向反向,继续进行判断 { h=2*h; a1=a2; f1=f2; a2=a3; f2=f3; a3=a2+h; f3=f(a3);

现代优化设计方法的现状和发展趋势

M ac hi neBuil di ng Auto m atio n,D ec2007,36(6):5~6,9 现代优化设计方法的现状和发展趋势 王基维1,熊伟2,李会玲1,汪振华3 (1.宁波职业技术学院,浙江宁波315800;2.湖南生物机电职业技术学院,湖南长沙410126; 3.南京理工大学,江苏南京210094) 摘要:优化设计是近年来发展起来的一门新学科,为机械设计提供了一种重要的科学设计方 法。优化设计在解决复杂设计问题时,能从众多设计方案中寻到尽可能完美或最适宜的设计 方案。对现代优化设计方法进行了概括和总结,展望了现代优化设计的发展方向和发展趋势。 关键词:优化设计;机械设计;发展趋势 中图分类号:T H122文献标识码:B文章编号:167125276(2007)0620005202 Develop ing T rend on M odern O pt im a l Design M ethods WANG J i2wei1,XI ONG W ei2,LI H u i2li ng1,WANG Zhen2hua3 (1.Ni ngbo Voca ti on Te chno l ogy C o ll e ge,N i n gbo315800,C h i na; 2.Huna n B i o l ogy Me c ha ni c a la nd E l e c tri c a lP ro f e ss i ona lTe chno l ogy C o ll ege,C ha ngsha410126,C h i na; 3.Na n ji ng Un i ve rs ity o f S c i e nc e a nd Te chno l o gy,Na n ji ng210094,C h i n a) Abstr ac t:As a new d i s c i p l i ne,o p tm i a l de s i gn p rov i de s an m i p o rtan t sc i en tifi c de s i gn m e t h od f o r e ng i nee https://www.doczj.com/doc/0510696201.html, i ng op tm i a ld es i gn, t he y can fi nd o ut a nea rl y pe rf e ct o r op tm i um des i gn s ch em e fr om l o ts o f feas i b l e ap p r o ache s.T he p ape r s um m a ri ze s t he de ve l o p i ng trend a nd d ir e cti o n o f t he m ode rn op tm i a l des i gn m e t hod s. K ey word s:op tm i a ld es i g n;m a ch i n e des i gn;de ve l o p t re nd 0引言 机械设计与制造是机械工程领域中最重要的内容,而机械设计又是机械制造的前提。优化设计(opti m a l de2 si gn)是近年来发展起来的一门新的学科,优化设计为机械设计提供了一种重要的科学设计方法,在机械设计上起着重要的作用,使得在解决复杂设计问题时,能从众多的设计方案中寻到尽可能完美的或最适宜的设计方案[1]。实践证明,在机械设计中采用优化设计方法,不仅可以减轻机械设备质量,降低材料消耗与制造成本,而且可以提高产品的品质和工作性能[2]。文中初步论述了机械优化设计方法的发展现状和趋势。 优化设计方法[3]是数学规划和计算机技术相结合的产物,它是一种将设计变量表示为产品性能指标、结构指标或运动参数指标的函数(称为目标函数),然后在产品规定的性态、几何和运动等其它条件的限制(称为约束条件)的范围内,寻找满足一个目标函数或多个目标函数最大或最小的设计变量组合的数学方法。优化设计方法已成为解决复杂设计问题的一种有效工具。 1优化设计方法及应用现状 优化设计的基础和核心是优化理论和算法。迄今为止,己有上百种优化方法提出,这里重点介绍以下几种优化方法[4,5]。 a)线性逼近法:线性逼近法SLP是将原非线性问题转化为一系列线性优化问题,通过求解线性优化问题得到原问题的近似解。根据形成线性优化的方法不同,可以得到不同的线性逼近法。常用的线性逼近法有近似规划法和割平面法; b)遗传算法[2,6,14]:遗传算法GA(genetic a l gorith m s)是一种基于生物自然选择与遗传机理的随机搜索算法。它是1962年首先由美国密执安大学的J.H.H olland教授提出、随后主要由他和他的一批学生发展起来的[7],并在1975年的专著中作了介绍,首先提出了以二进制串为基础的基因模式理论,用二进制位串来模拟生物群体的进化过程。进化结束时的二进制所对应的设计变量的值即为优化问题的解。GA方法的主要优点是具有很强的通用优化能力,它不需要导数信息,也不需要设计空间或函数的连续性条件,其优化搜索具有隐性并行性,可以多点同时在大空间中作快速搜索,因此有可能获得全局最优解。由于G A有着其他优化算法不可比拟的优点,因此,GA的应用非常广泛,取得大量研究应用成果。在结构优化设计方面的如离散结构的遗传形状优化设计[8]、悬臂扭转结构和梁结构的优化设计[9]、桁架和薄壁的结构优化问题[10]等。在文献[11]中对平面四杆机构的遗传优化设计进行了研究。文献[12]介绍了一个用于ZL40装载机的直齿圆锥齿轮差速器的优化设计问题,用GA中的实数编码进行优化求解,取群体大小为50,交叉率为0.2,变异率为0.5,经过120代的进化并经圆整后得到最优解。文献[15]中通过把机械方案设计过程看作是一个状态空间的求解问题,用遗传算法控制其搜索过程,完善了新的遗传编码体系,为了适应新的编码体系重新构建了交叉和变异等遗传操作,并利用复制、交换和变异等操作进行一次次迭代,最终自动生成一组最优的设计方案。 此外,G A还应用在函数优化、机械工程、结构优化、电工、神经网络、机器学习、自适应控制、故障诊断、系统工程调度和运输问题等诸多领域中[13]; #5 #

优化设计的概念和原理

优化设计的概念和原理 优化设计的概念和原则 概念 1前言 对于任何设计者来说,其目的都是为了制定最优的设计方案,使所设计的产品或工程设施具有最佳的性能和最低的材料消耗和制造成本,以获得最佳的经济效益和社会效益。因此,在实际设计中,科技人员往往会先提出几种不同的方案,并通过比较分析来选择最佳方案。然而,在现实中,由于资金限制,选定的候选方案的数量往往非常有限。因此,迫切需要一种科学有效的数学方法,于是“优化设计”理论应运而生。 优化设计是在计算机广泛应用的基础上发展起来的新技术。这是一种现代设计方法,它根据优化原理和方法将各种因素结合起来,在计算机上以人机合作或“自动探索”的方式进行半自动或自动设计,以选择现有工程条件下的最佳设计方案。其设计原则是优化设计:设计手段是电子计算机和计算程序;设计方法是采用最优化数学方法。本文将简要介绍优化设计中常用的概念,如设计变量、目标函数、约束条件等。 2设计变量 设计变量是独立参数,必须在设计过程的最终选择中确定它们是选择过程中的变量,但是一旦确定了变量,设计对象就完全确定了。优化设计是研究如何合理优化这些设计变量值的现代设计方法。

机械设计中常用的独立参数包括结构的整体构型尺寸、部件的几何尺寸和材料的机械物理性能等。在这些参数中,根据设计要求可以预先给出的不是设计变量,而是设计常数。最简单的设计变量是元件尺寸,例如杆元件的长度、横截面积、弯曲元件的惯性矩、板元件的厚度等。 3目标函数 目标函数是设计中要达到的目标在优化设计中,所追求的设计目标(最优指标)可以用设计变量的函数来表示。这个过程被称为建立目标函数。一般目标函数表示为 f(x)=f(xl,xZ,?,x) 此功能代表设计的最重要特征,如设计组件的性能、质量或体积以及成本。最常见的情况是使用质量作为一个函数,因为质量的大小是最容易量化的价值度量。尽管费用具有更大的实际重要性,但通常需要有足够的数据来构成费用的目标函数。目标函数是设计变量的标量函数。优化设计的过程就是优化设计变量,使目标函数达到最优值或找到目标函数的最小值(或最大值)的过程。在实际工程设计过程中,经常会遇到多目标函数的某些目标之间存在矛盾,这就要求设计者正确处理各目标函数之间的关系目前,对这类多目标函数优化问题的研究还没有单目标函数的研究成熟。有时一个目标函数可以用来表示几个期望目标的加权和,多目标问题可以转化为单目标问题来求解。4约束 设计变量是优化设计中的基本参数。目标函数取决于设计变量。在

优化设计报告

(课程实践报告封面模版) 合肥工业大学 《机械优化设计》课程实践 研究报告 班级:机设六班 学号: 姓名:李继鑫 授课老师:王卫荣 日期: 2013年 5 月 7 日

(一)一维搜索 min f(x)=]10,0[]2,0[]32)2[(*cos *π???+-x d x c 注:其中c 、d 为待定系数,用于确定选择的函数是哪一个。 C 语言程序段如下: #include #include #define p 3.14 float fun(float x,float c,float d); void main(void) { float a0,a1,a2,r,a,b; float y1=0.0000,y2=0.0000,u; float c,d; u=0.618; printf("input[a,b]and r:a= b= r= "); scanf("%f%f%f",&a,&b,&r); printf("choose only ONE function number c=1 0 or d=0 1\n"); scanf("%f%f",&c,&d); if(c==1) d=0; else c=0,d=1; a1=b-u*(b-a),y1=fun(a1,c,d);

a2=a+u*(b-a),y2=fun(a2,c,d); do { if(y1>=y2) { a=a1; a1=a2,y1=y2; a2=a+u*(b-a),y2=fun(a2,c,d); } else { b=a2; a2=a1,y2=y1; a1=b-u*(b-a),y1=fun(a1,c,d); } }while(fabs((b-a)/b)>r && fabs((y2-y1)/y2)>r); a0=0.5*(a+b); printf("The best result a0=%f\n",a0); } /******function editting********/ float fun(float x,float c,float d) {

机械优化设计方法概述

机械优化设计方法概述 摘要 机械优化设计是最优化技术在机械设计领域的移植和应用,其基本思想是根据机械设计的理论,方法和标准规范等建立一反映工程设计问题和符合数学规划要求的数学模型,然后采用数学规划方法和计算机计算技术自动找出设计问题的最优方案。作为一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题。优化设计为工程设计提供了一种重要的科学设计方法。因而采用这种设计方法能大大提高设计效率和设计质量。本文论述了优化设计方法的发展背景、流程,并对无约束优化及约束优化不同优化设计方法的发展情况、原理、具体方法、特点及应用范围进行了叙述。 关键词:机械优化设计;约束;特点;选取原则 Mechanical optimization design is optimized technology in the field of mechanical design and application of transplantation, its basic idea is based on mechanical design theory, methods and standards to establish a reflect problems in engineering design and meet the requirements of the mathematical programming model, and then applying the mathematical programming method and computer technology to find out the design problem of the optimal scheme of automatic. As a new subject, which is based on the theory of mathematical programming and computer program design basis, by numerical calculation, from the large number of design so as to improve or the most suitable design, so that the desired economic index optimal, it can successfully solve the analysis and other methods are difficult to deal with complex problem. Optimization design and provides an important scientific design method. So using this design method can greatly improve the design efficiency and design quality. This paper discusses the optimized design method of the background, development process, and to the unconstrained and constrained optimization of different optimal design method for the development, principle, methods, characteristics and scope of application are described. Key words: mechanical design optimization; constraint; characteristics; selection principle.

现代设计理论及方法优化设计实验报告

西安交通大学实验报告 课程名称:现代设计理论与方法实验名称:优化设计上机实验 学院:实验日期: 班级:姓名:学号: 一、实验要求 1. 采用MA TLAB等编程语言,编写优化程序,计算优化结果; 2. 完成大作业书面报告,对每个题目进行分析建模,包括: ①设计变量的选择; ②优化目标函数的确定; ③约束条件的确定。 二、优化分析 1. 镗刀杆(销轴)结构参数优化 ①设计变量的选择 题目要求“试在满足强度、刚度条件下,设计一个用料最省的方案”,即在满足性能要求的前提下,使设计方案的质量(体积)最小。 最直接的思路为,控制长度L和直径d最小。而根据条件分析,亦可通过改变截面形状(改变轮廓形状、使截面空心等)、改变不同L处截面形状等复杂的空间质量分布模式等,来到达最优的目的。 为便于分析,此处选择设计变量为刀杆直径d、长度L(实际可直接取最小值)为设计变量。 ②优化目标函数的确定 刀杆用料最省,即体积最小: V=1 4 πd2L→min 设 x1=d,x2=L 则目标函数为 min f X=V=1 πd2l= 1 πx12x2=0.785x12x2

③约束条件的确定 根据材料力学知识,应有: σmax<σ τmax<τ f max0 c>0

相关主题
文本预览
相关文档 最新文档