当前位置:文档之家› Kinetic modelling of the adsorption of nitrates

Kinetic modelling of the adsorption of nitrates

Kinetic modelling of the adsorption of nitrates
Kinetic modelling of the adsorption of nitrates

Chemical Engineering Journal125(2006)

111–117

Kinetic modelling of the adsorption of nitrates

by ion exchange resin

M.Chabani a,A.Amrane b,?,A.Bensmaili a

a Facult′e de G′e nie des Proc′e d′e s et G′e nie M′e canique,U.S.T.H.B.BP32,El Allia,Ba

b ezzouar,Algeria

b Equipe Chimie et Ing′e nierie des Proc′e d′e s-ENSCR/Universit′e de rennes1,UMR CNRS6226“Sciences chimiques de Rennes”,

ENSCR,Campus de Beaulieu,av.du G′e n′e ral Leclerc,35700Rennes,France

Received21April2006;received in revised form17July2006;accepted6August2006

Abstract

The capacity of ion exchange resins,Amberlite IRA400,for removal of nitrates from aqueous solution was investigated under different initial concentrations.The suitability of the Freundlich,Langmuir and Dubinin-Radushkevich adsorption models to the equilibrium data was investigated.The equilibrium data obtained in this study were found to follow Freundlich adsorption isotherm.The maximum sorption capacity was769.2mg/g at25?C.Reversible-?rst-order,intraparticle diffusion,?lm diffusion and Bangham models were used to?t the experimental data. The adsorption of nitrates on Amberlite IRA400resin follows reversible-?rst-order kinetics.The overall rate constants were estimated for different initial concentrations.Results of the intra-particle diffusion and the?lm diffusion models show that the?lm diffusion was the main rate-limiting step.The low correlation of data to the Bangham’s equation also con?rms that diffusion of nitrates into pores of the resin was not the only rate-controlling step.The thermodynamic constants of adsorption phenomena, H?and S?were found to be?26.122kJ/mol and?68.76J/mol in the range298–318K and+19.205kJ/mol and+68.76J/mol in the range318–343K,respectively.The negative values of the Gibbs free energy ( G)demonstrate the spontaneous nature of adsorption of nitrates onto Amberlite IRA400.

?2006Elsevier B.V.All rights reserved.

Keywords:Adsorption;Resin;Nitrates;Kinetics

1.Introduction

Several nitrogenous compounds,including ammonia,nitrite and nitrate are frequently present in drinking water[1].Nitrates can cause several environmental problems.Nitrates and phos-phates can stimule eutrophication where pollution is caused in waterways by heavy algal growth,as they are both rate-limiting nutrients for process.A high concentration of nitrate-nitrogen in drinking water leads to the production of nitrosamine,which is related to cancer,and increases the risks of diseases such as methemoglobinemia in new-born infants[2,3].

Several methods that serve to reduce nitrates in drinking water have been developed.The use of biological reactor seems to be the most promising technique in the treatment of high nitrate concentrations.However,maintaining biological processes at their optimum conditions is dif?cult,and the problems of con-

?Corresponding author.Tel.:+33223235755;fax:+33223238120.

E-mail address:abdeltif.amrane@univ-rennes1.fr(A.Amrane).tamination by dead-bacteria have to be solved to make such processes satisfactory for a safety use in drinking water treat-ment.Adsorption is a useful process for in situ treatment of underground and surface water,primarily due to it’s easy of use [3].

Adsorbent resins are considered the most promising owing to their chemical stability and ability to control surface chemistry [4].

The characteristics of adsorption behaviour are generally inferred in terms of both adsorption kinetics and equilibrium isotherms.They are also important tools to understand the adsorption mechanism,viz.the theoretical evaluation and inter-pretation of thermodynamic parameters[5,6].

The objective of this study was to investigate equilibrium and kinetic parameters for the removal of nitrates from aqueous solutions by adsorption onto an ionized adsorbent,Amberlite IRA400.The Langmuir,Freundlich and Dubinin-Radushkevich (D-R)equations were used to?t the equilibrium isotherms.Ther-modynamic parameters were also evaluated through adsorption measurements.

1385-8947/$–see front matter?2006Elsevier B.V.All rights reserved. doi:10.1016/j.cej.2006.08.014

112M.Chabani et al./Chemical Engineering Journal125(2006)111–117

Nomenclature

b Langmuir constant(cm3/mg)

C0initial concentration in solution(mg/l)

C e equilibrium concentration(mg/l)

C t concentration at time t(mg/l)

D p pore diffusion coef?cient(cm2/s)

D f?lm diffusion coef?cient(cm2/s)

E free energy of adsorption(kJ/mol)

G Gibbs free energy(kJ/mol)

H?enthalpy of adsorption(kJ/mol)

k overall rate constant of adsorption(min?1)

k1forward rate constant(min?1)

k2backward rate constant(min?1)

k d distribution constant(l/g)

k f Freundlich’s constant related to the sorption

capacity

k i intraparticle diffusion parameter(mg/g min0.5)

m mass of adsorbent(g)

n Freundlich’s constant related to the sorption

intensity of a sorbent

q the amount of nitrates adsorbed or transferred

(mg/l)

q o maximum adsorption capacity(mg/g)

q e adsorption capacity in equilibrium(mg/g)

q t amount of adsorption at time t(mg/g)

R ideal gas constant(8.314J/mol K)

R p radius of the adsorbent(cm)

S?entropy of adsorption(J/mol K)

t time(min)

t1/2time for half adsorption(min)

T temperature(K)

v volume of solution(l)

Greek letter

ε?lm thickness(cm)

2.Materials

2.1.Pre-treatment of resin

Before use,the resin was washed in distilled water to remove the adhering dirt and then dried at50?C.After drying,the resin was screened to obtain a particle size range of0.3–0.8mm.

2.2.The resin characteristics

The main characteristics of the Amberlite IRA400(Merck, Darmstadt,Germany),a macroporous anion exchange resin,are given in Table1.

2.3.Nitrate solutions

The stock solution of NO3?used in this study was prepared by dissolving an accurate quantity of KNO3in distilled water.Table1

Characteristics of Amberlite IRA400ion exchange resin

Polymer matrix Polystyrene DVB

Functional group–N+R3

Ionic form Cl?

Exchange capacity 2.6–3eq kg?1of dry mass

Appearance Yellow to golden spherical beads,translucent Effective size0.3–0.8mm

Water retention42–48%

Visual density in wet state0.66–0.73g/ml

True density in wet state 1.07–1.10g/ml

A range of dilutions,1–18mg/l,was prepared from the stock solution.

2.4.Sorption experiments

The pH of the aqueous solutions of NO3?was approximately 6.8and did not varied signi?cantly with the dilution.The effect of temperature on the sorption rate of nitrates on Amberlite IRA400was investigated by equilibrating the sorption mix-ture(800ml)containing dried resin(2g)and nitrates(15mg/l) in a temperature range298–343K.The solutions were placed in ?asks and stirred for3h.Experiments were mainly carried out without initial adjustment of the pH.Preliminary tests showed that the adsorption was complete after1h.

The concentration of residual nitrate ions was determined spectrophotometrically according to Rodier protocol[7].The sorption capacity at time t,q t(mg/g)was obtained as follows: q t=(C0?C t)

v

m(1) where C0and C t(mg/l)were the liquid-phase concentrations of solutes at the initial and a given time t,respectively,v(l)the volume of solution and m the mass resin(g).

The amount of adsorption at equilibrium,q e was given by: q e=(C0?C e)

v

m(2) C e(mg/l)was the concentration of nitrates at equilibrium.

The distribution constant k d was calculated using the follow-ing equation:

k d=Amount of nitrates in adsorbent

Amount of nitrates in solution

×

v

m

.(3) 3.Results and discussion

3.1.Adsorption isotherms

Sorption equilibrium is usually described by an isotherm equation whose parameters express the surface properties and af?nity of the sorbent,at a?xed temperature and pH[8].

An adsorption isotherm describes the relationship between the amount of adsorbate adsorbed on the adsorbent and the con-centration of dissolved adsorbate in the liquid at equilibrium. Equations often used to describe the experimental isotherm data are those developed by Freundlich[9],by Langmuir[10]and by Dubinin-Radushkevich[11].The Freundlich and Langmuir

M.Chabani et al./Chemical Engineering Journal 125(2006)111–117113

isotherms are the most commonly used to describe the adsorp-tion characteristics of adsorbent used in water and wastewater.3.1.1.Freundlich isotherm (1906)

The empirical model can be applied to non-ideal sorption on heterogeneous surfaces as well as multilayer sorption and is expresses by the following equation:

q e =k f C 1/n

e

(4)

n and k f are the Freundlich constants.

The ?t of data to Freundlich isotherm indicates the hetero-geneity of the sorbent surface.The magnitude of the exponent 1/n gives an indication of the adequacy and capacity of the adsor-bent/adsorbate system [12].In most cases,an exponent between 1and 10shows bene?cial adsorption.The linear plot of ln q e versus ln C e (Fig.1)shows that the adsorption obeys to the Fre-undlich model.k f and n were determined from the Freundlich plot and found to be 0.982and 1.074(Fig.1),respectively.n values above 1indicate favourable adsorption.

https://www.doczj.com/doc/0d6076355.html,ngmuir isotherm (1916)

The Langmuir model is probably the best known and most widely applied sorption isotherm.It may be represented as fol-lows:

q e =q o bC e

1+bC e (5)

The Langmuir constants q o and b are related to the adsorption capacity and the energy of adsorption,respectively.

The linear plot of 1/q e versus 1/C e shows that the adsorption obeys to the Langmuir model (Fig.2),and gave the following values for q o and b ,769.2mg/g and 1.02cm 3/mg,respectively.3.1.3.Dubinin-Radushkevich (D-R)isotherm

Radushkevich [13]and Dubinin [14]have reported that the characteristic sorption curve is related to the porous structure of the sorbent.The sorption data were applied to the D-R model in order to distinguish between physical and chemical adsorption [15].The D-R equation was given by:ln q e =ln q o ?βε2

(6)

Fig.1.Linearized Freundlich isotherm (Eq.(4))for nitrates adsorption by Amberlite IRA 400;T =25?C,pH 6.8,adsorbent dose 1.25

g/l.Fig.2.Linearized Langmuir isotherm (Eq.(5))for nitrates adsorption by Amber-lite IRA 400;T =25?C,pH 6.8,adsorbent dose 1.25g/l.

where βwas the activity coef?cient related to mean sorption energy and εthe Polanyi potential given by:

ε=RT ln

1+

1

e (7)where R was the gas constant (kJ/mol K)and T the temperature (K).

The slope of the plot ln q e versus εgives β(mol 2/J 2)and the ordinate intercept yields the sorption capacity q o (mg/g).The mean sorption energy (E )is given by E =1/√?2β;for a magnitude of E between 8and 16kJ/mol,the adsorption process follows chemical ion-exchange [6,16],while values of E below 8kJ/mol characterize a physical adsorption process [17].

The plot of ln q e against ε2for nitrate ions sorption on resin is shown in Fig.3.The E value was 40.8J/mol,which corresponds to a physical adsorption.

The linear correlation coef?cients for Freundlich,Langmuir and D-R are shown in Table 2,and are always greater than 0.980.The Freundlich equation represents a better ?t of experimental data than Langmuir and D-R

equations.

Fig.3.Radushkevich-Dubinin isotherm (Eq.(6))for nitrates adsorption by Amberlite IRA 400;T =25?C,pH 6.8,adsorbent dose 1.25g/l.

114M.Chabani et al./Chemical Engineering Journal 125(2006)111–117

Table 2

Isotherm parameters collected for removal of nitrates by Amberlite IRA 400Freundlich constants k f 0.982n 1.074R 20.9951Langmuir constants q o (mg/g)769.2b (cm 3/mg) 1.02R 20.9933D-R constants q o (mg/g)76.5E (J/mol)40.8R 2

0.987

3.2.Adsorption kinetics

3.2.1.Effect of initial concentrations

Predicting the adsorption rate,in addition to the adsorbate residence time and the reactor dimensions,controlled by the system’s kinetics,are probably the most important factors in adsorption system design [18].

Preliminary experiments showed high initial rates of adsorp-tion of nitrates followed by lower rates near equilibrium.Kinet-ics of nitrates removal at 298K showed high rates during the initial 15min,and decreased thereafter until nearly constant val-ues after 40min of adsorption (Fig.4).

In batch adsorption processes the adsorbate molecules diffuse in porous adsorbent and the rate process usually depends upon t 1/2rather than the contact time,t [19,20]:q t =k i t 0.5

(8)

The plot of q t ,the amount of adsorbate adsorbed per unit weight of adsorbent versus square root of time has been com-monly used to describe an adsorption process controlled by diffusion in the adsorbent particle and consecutive diffusion in the bulk of the solution [21].Therefore,as can be observed in Fig.5,adsorption was linear and charaterized by extremely

fast

Fig.4.Time-courses of nitrates adsorption for different initial concentrations of nitric

nitrogen.

Fig.5.Effect of t 1/2on adsorption of nitrates by Amberlite IRA 400(Eq.(8)),adsorbent dose 1.25g/l,pH 6.8.

uptake.During this phase,nitrates were adsorbed within a t 1/2value of about 10min;this behaviour can be attributed to the rapid use of the most readily available adsorbing sites on the adsorbent surface.After this phase,adsorption became negligi-ble.It may be attributed to a very slow diffusion of adsorbed nitrates from the ?lm surface into the micropores,which are the less accessible sites of adsorption [20,22,23].Fig.5shows two consecutive linear steps during the adsorption of nitrates on Amberlite IRA 400,and the deviation from the straight line indicates that the pore diffusion is not the only rate-limiting step.

The slope of the linear portion from Fig.5was used to derive values for the rate parameter,k i ,for the intra-particle diffusion (Eq.(8)).The results show that intraparticle diffusion model was valid for the considered system.Kinetic parameters and correlation coef?cients obtained by the intra-particle model are given in Table 3.The values of k i increased for increasing initial concentrations.

Kinetic data can further be used to check whether pore-diffusion was the only rate-controlling step or not in the adsorp-tion system using Bangham’s equation [24–26]:

log log C 0C 0?qm =log k B m

2.303v

+a log t (9)

As observed,the model did not match experimental data

(Fig.6),showing that the diffusion in the pores of the sorbent was

Table 3

Intraparticle diffusion (Eq.(8))kinetic parameters for adsorption of nitrates on Amberlite IRA 400resin at different concentrations Concentration of nitric nitrogen (mg/l)

Intraparticle diffusion Correlation coef?cient R 2Kinetic parameters,k i (mg/g min 0.5)10.8740.5120.990 1.23.50.987 2.9150.990 3.93100.9038.75140.98211.718

0.966

15.5

M.Chabani et al./Chemical Engineering Journal125(2006)111–117

115

Fig.6.Fit of adsorption kinetics at different initial concentrations of nitric nitro-gen by means of the Bangham’s model(Eq.(9)).

not the only rate-controlling step.The correlation coef?cients given by the Bangham’s equation(Fig.6)con?rmed that the model did not?t satisfactory experimental data.Similar results were previously reported for4-CP adsorption by macroreticular resins[27]and for adsorption of4-chlorophenol by XAD-4[12].

3.2.2.First-order reversible model

When a single species is considered to adsorb on a hetero-geneous surface,the adsorption of a solute from an aqueous solution follows reversible-?rst-order kinetics[28,29].The het-erogeneous equilibrium between the solute in solution and the ion exchange resin may be expressed as:

A k1

k2

B,(10)

With k1the forward reaction rate and k2the backward reaction rate constant.If C0(mg/l)was the initial concentration of nitrates and q(mg/l)the amount transferred from the liquid phase to the solid phase at a given time t,then the rate was:

d q d t =

?d(C0?q)

d t

=k(C0?q)(11)

where k(min?1)is the overall reaction rate constant.Since k1 (min?1)and k2(min?1)are the rate constants for the forward and the reverse processes,the rate can be expressed as:

d q

d t

=k1(C0?q)?k2q(12)

If X e(mg/l)represents the concentration of nitrates adsorbed at equilibrium,then at equilibrium:

k1(C0?X e)?k2X e=0,d q

d t

=(k1+k2)(X e?q)(13) after integration,The above equation can be rearranged:

ln(1?U t)=?(k1+k2)t=?kt(14) where U t=q/X e and k was the overall rate constant;U t,called the fractional attainment of equilibrium of nitrates,is given

by Fig.7.Fit of adsorption kinetics at different initial concentrations of nitric nitro-gen by means of the reversible-?rst-order model(Eq.(14)).

the following expression:

U t=

C0?C t

C0?C e(15) where C0,C t and C e were the initial nitrates concentration,its concentration at a given time t and at equilibrium,respectively. The overall constant rate k for a given concentration corre-sponded to the slope of the straight line of the plot ln(1?U t) versus t(Fig.7).The equilibrium constant and the forward and backward constant rates k1and k2were calculated using Eq.(14)and are collected in Table4.The high correlation coef?cient values,if compared to that given in the available literature[30],con?rm the applicability of the model.It could be seen that the forward rate constants for the removal of nitrates were much higher than the backward rate constants for the des-orption process(Table4).The constant rates depend on the adsorption capacity,the diffusion coef?cient,the effective mass transfer area,the hydrodynamic of the system and other physico-chemical parameters.Our?nding agreed with previous results [12].

3.2.3.Diffusion process

In order to assess the nature of the diffusion process respon-sible for adsorption of nitrates on Amberlite IRA400,attempts were made to calculate the coef?cients of the process.If?lm dif-fusion was to be the rate-determining step in the adsorption of nitrates on the surface of the resin,the value of the?lm diffusion coef?cient(D f)should be in the range10?6to10?8cm2/s.If pore diffusion was to be rate limiting,the pore diffusion coef?-cient(D p)should be in the range10?11to10?13cm2/s[31,32]. Assuming spherical geometry for the sorbent,the overall rate constant of the process can be correlated with the pore diffu-sion coef?cient and the?lm diffusion coef?cient independently according to[29]:

Pore diffusion coef?cient:

D p=0.03

R2p

t1/2

,(16)

and?lm diffusion coef?cient:

D f=0.23

R pε

1/2

q

(17)

116M.Chabani et al./Chemical Engineering Journal125(2006)111–117 Table4

Constant rates for the removal of nitrates with Amberlite IRA400resin using reversible-?rst-order model(Eq.(14))

C0(mg/l)Correlation

coef?cients,R2Overall rate constant,

k=k1+k2(min?1)

Forward rate constant,

k1(min?1)

Backward rate constant,

k2(min?1)

10.9540.0860.0680.018 20.9940.0890.0770.012 3.50.9780.1160.1070.009 50.9850.1410.1290.011 100.9800.1370.1280.008 140.9750.1650.1510.013 180.9920.1630.1460.017 where R p was the radius of the adsorbent(R p=0.045cm),εthe

?lm thickness(10?3cm)[19],q(mg/l)the amount of nitrates

adsorbed and C0the initial concentration.By considering the

appropriate data and the respective overall rate constants,pore

and?lm diffusion coef?cients for various concentrations of

nitrates were determined(Table5).It clearly appeared that

nitrates removal on Amberlite IRA400resin was controlled

by?lm diffusion since coef?cient values were in the range10?6

to10?8cm2/s.

3.3.Thermodynamic studies

The amounts of sorption of nitrates ions by Amberlite IRA

400were measured in the range temperature298–343K.Ther-

modynamic parameters were determined using the following

relation[15,33–36]:

ln k d= S?

R

?

H?

RT(18)

where k d was the distribution coef?cient, H, S,and T the enthalpy,entropy and temperature(in Kelvin),respectively,and R was the gas constant.The values of enthalpy( H)and entropy ( S)were obtained from the slope and intercept of ln(k d)versus 1/T plot.Fig.8shows two linear parts in the temperature range explored.A?rst decreasing part for a temperature range from 318to343K,and a second and increasing linear part for a tem-perature range from298to318K.Gibbs free energy( G)was calculated using the well-known equation:

G= H?T S(19) The slope was positive in the temperature range298–318K and negative in a second step,from318to343K(Fig.8).The thermodynamic parameters are collected in Table6.

Table5

Diffusion coef?cients for the removal of nitrates by Amberlite IRA400resin

C0(mg/l)Pore diffusion coef?cient,

Eq.(16)(×10?7cm2/s)Film diffusion coef?cient, Eq.(17)(×10?8cm2/s)

10.670.73 20.780.92 3.50.84 1.06 50.92 1.15 10 1.01 1.29 14 1.26 1.58 18 1.69

2.06Fig.8.Estimation of thermodynamic parameters(Eq.(18))for the adsorption of nitrates onto Amberlite IRA400.

Table6

Thermodynamic parameters for the adsorption of nitrates on Amberlite IRA400 298K308K318K318K333K343K G(kJ/mol)?5.631?4.944?4.256?2.66?3.692?4.38 H?(kJ/mol)?26.122+19.205

S?(J/mol K)?68.76+68.76

For the?rst range from298to318K,the negative value of enthalpy showed that the adsorption of nitrates was exother-mic.The negative values of adsorption entropy indicated that the adsorption process was reversible and demonstrated the sponta-neous nature of adsorption(Table6).

In the range318–343K,Gibbs free energy( G)decreased for increasing temperatures,indicating that the reaction was spontaneous and favoured by higher temperatures.The positive value of enthalpy indicated that the adsorption was endothermic. The positive value of adsorption entropy showed the irreversibil-ity of the adsorption process and favoured complexation and stability of sorption.The resultant effect of complex bonding and steric hindrance of the sorbed species probably increased the enthalpy and the entropy of the system.

4.Conclusions

These results show that Amberlite IRA400is an effective adsorbent for the removal of nitrates from aqueous solution.The

M.Chabani et al./Chemical Engineering Journal125(2006)111–117117

equilibrium between nitrates and resin was achieved in approx-imately60min,leading to96%removal of nitrates.The corre-lation coef?cient showed that Freundlich model gave a better?t of experimental data than Langmuir and Dubinin-Radushkevich models.

Adsorption kinetics was found to follow?rst order reversible model expression.The?lm diffusion was the main rate-limiting step.Temperature variations were used to evaluate enthalpy H, entropy S and Gibbs free energy G values.The negative value of G showed the spontaneous nature of adsorption.In the tem-perature range298–318K, H and S were negative,and the reaction was exothermic and reversible.From318to343K, H and S were positive,and the reaction was endothermic and irre-versible.In addition,positive S values favoured complexation and stability of sorption.

References

[1]N.¨Ozt¨u rk,T.Ennil Bektas,Nitrate removal from aqueous solution by

adsorption onto various materials,J.Hazard.Mater.B112(2004)155–162.

[2]H.Bouwer,Agricultural contamination:problems and solutions,Water

Environ.Technol.(1989)292–297.

[3]K.Mizuta,T.Matsumoto,Y.Hatate,K.Nishihara,T.Nakanishi,Removal

of nitrate-nitrogen from drinking water using bamboo powder charcoal, Bioresour.Technol.95(2004)255–257.

[4]N.I.Chubar,V.F.Samanidou,V.S.Kouts,G.G.Gallios,V.A.Kanibolotsky,

V.V.Strelko,I.Z.Zhuravlev,Adsorption of?uoride,chloride,bromide,and bromate ions on a novel ion exchanger,J.Colloid Interface Sci.291(2005) 67–74.

[5]S.J.Allen,G.Mckay,J.F.Porter,Adsorption isotherm models for basic

dye adsorption by peat in single and binary component systems,J.Colloid Interface Sci.280(2004)322–333.

[6]A.¨Ozcan,A.S.¨Ozcan,S.Tunali,T.Akar,I.Kiran,Determination of the

equilibrium,kinetic and thermodynamic parameters of adsorption of cop-per(II)ions onto seeds of Capsicum annuum,J.Hazard.Mater.B124(2005) 200–208.

[7]J.Rodier,Water Analysis,seventh ed.,Dunod,Paris,1996(in French).

[8]S.Sohn,D.Kim,Modelisation of Langmuir isotherm in solution systems-

de?nition and utilization of concentration dependent factor,Chemosphere 58(2005)115–123.

[9]H.M.F.Freundlich,¨Uber die adsorption in l¨o sungen,Zeitschrift f¨u r

Physikalische Chemie(Leipzig)57A(1906)385–470.

[10]https://www.doczj.com/doc/0d6076355.html,ngmuir,The constitution and fundamental properties of solids and

liquids,J.Am.Chem.Soc.38(11)(1916)2221–2295.

[11]M.M.Dubinin,E.D.Zaverina,L.V.Radushkevich,Sorbtsiyai struktura

aktivnykh uglei.I.Issledovanie adsorbtsii organicheskikh parov,Zhurnal Fizicheskoi Khimii21(11)(1947)1351–1363.

[12]M.S.Bilgili,Adsorption of4-chlorophenol from aqueous solutions by

XAD-4resin:isotherm,kinetic,and thermodynamic analysis,J.Hazard.

Mater.137(2006)157–164.

[13]L.V.Radushkevich,Potential theory of sorption and structure of carbons,

Zhurnal Fizicheskoi Khimii23(1949)1410–1420.

[14]M.M.Dubinin,Modern state of the theory of volume?lling of micropore

adsorbents during adsorption of gases and steams on carbon adsorbents, Zhurnal Fizicheskoi Khimii39(1965)1305–1317.[15]R.Donat,A.Akdogan,E.Erdem,H.Cetisli,Themodynamics of Pb2+and

Ni2+adsorption onto natural bentonite from aqueous solutions,J.Colloid Interface Sci.286(2005)43–52.

[16]F.Helffrich,Ion Exchange,McGraw Hill,New York,1962.

[17]M.S.Onyango,Y.Kojima,O.Aoyi,E.C.Bernardo,H.Matsuda,Adsorp-

tion equilibrium modelling and solution chemistry dependence of?uoride removal from water by trivalent-cation exchange zeolite F-9,J.Colloid Interface Sci.279(2004)341–350.

[18]Y.S.Ho,Review of second-order models for adsorption systems,J.Hazard.

Mater.136(2006)681–689.

[19]W.J.Weber,J.C.Morris,Adsorption Processes for Water Treatment,But-

terworth,London,1987.

[20]Q.Feng,Q.Lin,F.Gong,S.Sugita,M.Shoya,Adsorption of lead and

mercury by rice husk ash,J.Colloid Interface Sci.278(2004)1–8. [21]M.Ahmaruzzaman,D.K.Sharma,Adsorption of phenols from wastewater,

J.Colloid Interface Sci.287(2005)14–24.

[22]O.Keskinkan,M.Z.L.Goksu,M.Basibuyuk,C.F.Forster,Heavy metal

adsorption properties of a submerged aquatic plant(Ceratophyllum demer-sum),Bioresour.Technol.92(2004)197–200.

[23]https://www.doczj.com/doc/0d6076355.html,zaridis, D.D.Asouhidou,Kinetics of sorptive removal of

chromium(VI)from aqueous solutions by calcined Mg-Al-CO3hydrotal-cite,Water Res.37(2003)2875–2882.

[24]D.H.Bangham,F.P.Burt,The behaviour of gases in contact with glass

surfaces,Proc.R.Soc.Lond.Ser.A–Containing Pap.A Mathemat.Phys.

Character105(1924)481–488.

[25]I.D.Mall,V.C.Srivastava,N.K.Agarwal,Removal of orange-G and methyl

violet dyes by adsorption onto bagasse?y ash kinetic study and equilibrium isotherm analyses,Dyes Pigments69(2006)210–223.

[26]W.A.House,F.H.Denise,P.D.Armitage,Comparison of the uptake of

inorganic phosphorus to suspended and stream bed sediment,Water Res.

29(1995)767–779.

[27]R.-S.Juang,J.-Y.Shiau,Adsorption isotherms of phenols from water onto

macroreticular resins,J.Hazard.Mater.B70(1999)171–183.

[28]Y.S.Ho,G.Mckay,Pseudo-second order model for sorption processes,

Process Biochem.34(1999)451–465.

[29]A.K.Battacharya,C.Venkobachar,Removal of cadmium(II)by low cost

adsorbents,J.Environ.Eng.Div.ASCE Proc.(1984)110–122.

[30]K.V.Kumar,S.S.Ramamurthi,Adsorption of malachite green ont

Pithophora sp.a fresh water algae:Equilibrium and kinetic modelling, Process Biochem.40(2005)2865–2872.

[31]S.Rengaraj,S.H.Moon,Kinetics of adsorption of Co(II)removal from

water and wastewater by ion exchange resins,Water Res.36(2002) 1783–1793.

[32]L.D.Michelson,P.G.Gideon,E.G.Pace,L.H.Kutal,Removal of Sol-

uble Mercury from Wastewater by Complexing Techniques,Bull No.

74,US.Dept.Industry,Of?ce of Water Research and Technology, 1975.

[33]J.Berrueta,J.M.Freije,G.Adrio,J.Coca,Synergistic effect in the mixtures

of extraction of phenol from aqueous-solutions with n-butylacetate and acetophenone.Solvent extract,Ion Exchange8(1990)817–825.

[34]M.K.Purkait,S.DasGupta,S.De,Adsorption of eosin dye on activated

carbon and its surfactant based desorption,J.Environ.Manage.76(2005) 135–142.

[35]M.Ajmal,R.A.Khan Rao,M.Ali Khan,Adsorption of copper from aque-

ous solution on Brassica cumpestris(mustard oil cake),J.Hazard.Mater.

B122(2005)177–183.

[36]R.Naseem,S.S.Tahir,Removal of Pb(II)from aqueous/acidic solutions

by using bentonite as an adsorbent,Water Res.35(2001)3982–3986.

《一曲新词酒一杯、轻舟短棹西湖好、金陵城上西楼、如梦令》理解性默写、简答题及答案【部编版八上】

期末课外古诗词习题及答案【部编版八年级上册】 题型:【理解性默写】【简答题】 课外古诗词诵读 1、浣溪沙(一曲新词酒一杯)/晏殊 2、采桑子(轻舟短棹西湖好)/欧阳修 3、相见欢(金陵城上西楼)/朱敦儒 4、如梦令(常记溪亭日暮)/李清照 1、《浣溪沙一曲新词酒一杯》晏殊 【原诗】 一曲新词酒一杯,去年天气旧亭台。夕阳西下几时回?无可奈何花落去,似曾相识燕归来,小园香径独徘徊。 一、理解性默写: 1、晏殊的《浣溪沙·一曲新词酒一杯》:词人由景触情,由自然规律的变迁更替,透露出对美好景物及难以忘怀情事的流连,流露出对光阴流逝的无限惆怅的句子是:无可奈何花落去,似曾相识燕归来。小园香径独徘徊。 2、诗中着重写今日的感伤、被誉为“千古奇偶”的诗句是:无可奈何花落去,似曾相识燕归来。 3、晏殊《浣溪沙》词上片“一曲新词酒一杯,去年天气旧亭台”两句构成“新”“旧”的对比,下片构成“来”“去”对比的词句是:无可奈何花落去,似曾相识燕归来。 二、赏析简答题: 1、“无可奈何花落去,似曾相识燕归来。”一向为词评家赞赏,请简要赏析。答:任选一个角度.言之成理即可。可以从“意象”角度赏析,如“落花”这个意象写出了暮春之景表达了惜春之意,“归燕”这个意象表达旧燕归来.时光已逝,物是人非之感.可以修辞角度赏析,如对仗的工稳,音调谐婉,具有音乐美。

2、“小园香径独徘徊”中的“独”字用得极妙,请加以赏析。 答:①对比②“独字写出了词人独处时的寂寞,伴着萧条的春色和眼前时光的流逝,生出无限的悲凉,突出了词人的凄凉寂寞之感。 3、赏析“一曲新词酒一杯,去年天气旧亭台”的妙处。 答:只身一人,新词“一曲”,清酒“一杯”,孤单冷寂,引起对往事的回忆。新——唱新词,旧——唱词喝酒的环境(旧亭台),新词旧景对比,抒发了今是昨非的惆怅情思。 2、《采桑子》欧阳修 【原诗】 轻舟短棹西湖好,绿水逶迤,芳草长堤,隐隐笙歌处处随。无风水面琉璃滑,不觉船移,微动涟漪,惊起沙禽掠岸飞。 一、理解性默写: 1、从视觉和听觉两方面描绘西湖清丽、恬静、淡远的春景的句子是:绿水逶迤,芳草长堤,隐隐笙歌处处随。 2、词中写船动惊禽,划破了湖面的平静,为这一趟悠闲之旅平添了一个兴奋点的句子是:微动涟漪,惊起沙禽掠岸飞。 3、把水面比作明净平滑的琉璃,写出风平浪静的句子是:无风水面琉璃滑。 二、赏析简答题: 1、这首词的诗眼是西湖好这一短语。 2、词的第一句在整首词中的作用是什么?上阙描写了一幅什么样的图景? 答:上阙第一句总领全篇,点明题意,直抒赞美之情。 上阙从视觉和听觉两方面描写了轻舟、绿水、芳草、长堤、乐声、歌声等意境,描绘了西湖清丽、恬静、淡远的春景。 3、词的下阙主要用了哪种表现手法描写西湖春色?抒发了诗人什么感情? 答:动静结合的手法或以动衬静。一、二句风平浪静,更以船的缓慢移动写出了“静”。三、四句写水鸟掠过堤岸,写出了“动”,而西湖愈显其幽静。写出了西湖春色的多姿多彩。表达了诗人对西湖的喜爱、赞美之情,和流连山水的愉快

部编语文八上课外古诗词诵读(二)赏析题 中考知识点《浣溪沙》《采桑子》《相见欢》《如梦令》

部编语文八上课外古诗词诵读(二)赏析题中考知识点 《浣溪沙》《采桑子》《相见欢》《如梦令》 《浣溪沙》(宋)晏殊 一曲新词酒一杯,去年天气旧亭台。夕阳西下几时回? 无可奈何花落去,似曾相识燕归来。小园香径独徘徊。 1.这首词表达了作者怎样的思想感情? 含蓄地表达了词人对时光流逝、春色飘零的怅惘、物是人非之感和孤独寂寞之情。 2.请简要分析“小园香径独徘徊”中“独”字的含义。 “独”字写出词人因怀念友人而感到抑郁伤感,表现了孤寂、失意的情怀。 3.这首词中多处用到对比的写法,请找出其中的一个例子,并简要说说这样写的好处。 例子:“新”与“旧”的对比,或“去”与“来”的对比。好处:“新”是唱新词,“旧”是饮酒唱词时的环境——旧亭台,新词旧景对比,抒发了物是人非的怅惘情思。(或“去”是花落去,“来”是燕归来,来去对比,表现了对时光逝去的惋惜之情。) 4.“无可奈何花落去,似曾相识燕归来”是千古名句,简析这两句诗好在哪里。 两句话对仗工整,音调和谐;画面生动,通过对易逝的自然春光的描写,抒发了伤春惜时,以及对青春易逝的感慨,情感浓郁,寓意深刻,发人深省。

5. 请简要分析“无可奈何花落去,似曾相识燕归来”蕴含的哲理。 生活哲理:一切必然要消逝的美好事物都无法阻止其消逝,但消逝的同时仍然有美好事物的再现,生活不会因消逝而变得一片虚无。 采桑子[宋]欧阳修 轻舟短棹西湖好,绿水逶迤,芳草长堤,隐隐笙歌处处随。 无风水面琉璃滑,不觉船移,微动涟漪,惊起沙禽掠岸飞。 1.词的上阙第一句在整首词中的作用是什么?上片描写了一幅什么样的图景?(5分) 上阙第一句总摄全篇,点明题意,直抒赞美之情。(2分)上阙从视觉和听觉两方面描写了蜿蜒曲折的绿水、长满芳草的长堤、动听的乐声和歌声,描绘了西湖清丽、恬静、淡远的春景。(3分) 2.这首词上片出现了哪些意象?描绘了一幅怎样的图景?(4分) 轻舟(短棹)、绿水、芳草、长堤等意象。描绘了一幅湖水绵延,芳草满堤,清丽活泼的春日西湖美景。 3.词的下阙主要是用了哪种表现手法描写西湖春色的?抒发了诗人的什么感情?(6分) 动静结合的手法或以动衬静(2分)一、二句风平浪静,把水面比作明净平滑的琉璃,更以船的缓慢移动写出了“静”。三、四句写涟漪微起,惊动了沙洲上的水鸟,水鸟掠过堤岸飞去,写出了“动”,而西湖愈显其幽静。动静相衬,动静结合写出了西湖春色的多姿多彩。

《一曲新词酒一杯、轻舟短棹西湖好、金陵城上西楼、如梦令》理解性默写【部编版八上】

期末课外古诗词理解性默写及答案【部编版八年级上册】 课外古诗词诵读 1、浣溪沙(一曲新词酒一杯)/晏殊 2、采桑子(轻舟短棹西湖好)/欧阳修 3、相见欢(金陵城上西楼)/朱敦儒 4、如梦令(常记溪亭日暮)/李清照 1、《浣溪沙一曲新词酒一杯》晏殊 【原诗】 一曲新词酒一杯,去年天气旧亭台。夕阳西下几时回?无可奈何花落去,似曾相识燕归来,小园香径独徘徊。 理解性默写: 1、晏殊的《浣溪沙·一曲新词酒一杯》:词人由景触情,由自然规律的变迁更替,透露出对美好景物及难以忘怀情事的流连,流露出对光阴流逝的无限惆怅的句子是:无可奈何花落去,似曾相识燕归来。小园香径独徘徊。 2、诗中着重写今日的感伤、被誉为“千古奇偶”的诗句是:无可奈何花落去,似曾相识燕归来。 3、晏殊《浣溪沙》词上片“一曲新词酒一杯,去年天气旧亭台”两句构成“新”“旧”的对比,下片构成“来”“去”对比的词句是:无可奈何花落去,似曾相识燕归来。 2、《采桑子》欧阳修 【原诗】 轻舟短棹西湖好,绿水逶迤,芳草长堤,隐隐笙歌处处随。无风水面琉璃滑,不觉船移,微动涟漪,惊起沙禽掠岸飞。 理解性默写: 1、从视觉和听觉两方面描绘西湖清丽、恬静、淡远的春景的句子是:绿水逶迤,芳草长堤,隐隐笙歌处处随。

2、词中写船动惊禽,划破了湖面的平静,为这一趟悠闲之旅平添了一个兴奋点的句子是:微动涟漪,惊起沙禽掠岸飞。 3、把水面比作明净平滑的琉璃,写出风平浪静的句子是:无风水面琉璃滑。 3、《相见欢》朱敦儒 【原诗】 金陵城上西楼,倚清秋。万里夕阳垂地大江流。中原乱,簪缨散,几时收?试倩悲风吹泪过扬州。 理解性默写: 1、象征南宋的国势日渐衰微,并为全词奠定苍凉感伤的情感基调的句子是:万里夕阳垂地大江流。 2、回忆中原沦陷,士族南逃往事,抒发了国土恐难收复的担忧、无奈、沉痛之情的句子是:中原乱,簪樱散,几时收? 3、朱敦儒的《相见欢》表现了作者渴望早日恢复中原,还于旧都的强烈愿望,同时也是对朝廷苟安旦夕,不图恢复的愤慨和抗议的诗句是:试倩悲风吹泪过扬州。 4、《如梦令》李清照 【原词】 常记溪亭日暮,沉醉不知归路。兴尽晚回舟,误入藕花深处。争渡,争渡,惊起一滩鸥鹭。 理解性默写: 1、李清照的《如梦令》:追忆郊游地点、时间及由于景色迷人而忘了归路的诗句是:常记溪亭日暮,沉醉不知归路。 2、翠绿的荷花和旭日中,嫣红的荷花,给人以凉爽幽静,清香扑鼻的感觉,诗人杨万里赞其是“接天莲叶无穷碧,映日荷花别样红”,而词人李清照却在《如梦令》中嗟叹:兴尽晚回舟,误入藕花深处。 3、写回舟迷路的句子是:兴尽晚回舟,误入藕花深处,争渡,争渡,惊起一滩鸥鹭。

《浣溪沙》等4首词的理解性默写

浣溪沙(晏殊) 1. 晏殊的《浣溪沙·一曲新词酒一杯》:词人由景触情,由自然规律的变迁更替,透露出对美好景物及难以忘怀情事的流连,流露出对光阴流逝的无限惆怅的句子是:无可奈何花落去,似曾相识燕归来。小园香径独徘徊。 2.诗中着重写今日的感伤、被誉为“千古奇偶”的诗句是:无可奈何花落去,似曾相识燕归来。 3.说明季节的变换,年华的交替不以人们意志为转移的客观规律的诗句是:无可奈何花落去,似曾相识燕归来。 4.抒发惜春伤时之情并给人以哲理性启迪的名句是:无可奈何花落去,似曾相识燕归来。 5.晏殊《浣溪沙》词上片“一曲新词酒一杯,去年天气旧亭台”两句构成“新”“旧”的对比,下片构成“来”“去”对比的词句是:无可奈何花落去,似曾相识燕归来。 6.追忆难忘欢聚,感叹流光易逝的句子是:一曲新词酒一杯,去年天气旧亭台。 7.表现诗人沉思形象的句子:小园香径独徘徊。 8.时光流逝,不能倒流,人们无力挽回,经常用晏殊的“无可奈何花落去,似曾相识燕归来。”这两句诗表示慨叹。 采桑子(轻舟短棹西湖好) (欧阳修) 1、从视觉和听觉两方面描绘西湖清丽、恬静、淡远的春景的句子是:绿水逶迤,芳草长堤,隐隐笙歌处处随。 2、词中写船动惊禽,划破了湖面的平静,为这一趟悠闲之旅平添了一个兴奋点的句子是:微动涟漪,惊起沙禽掠岸飞。 3、把水面比作明净平滑的琉璃,写出风平浪静的句子是:无风水面琉璃滑 相见欢(朱敦儒) 1、象征南宋的国势日渐衰微,并为全词奠定苍凉感伤的情感基调的句子是:万里夕阳垂地大江流。 2、回忆中原沦陷,士族南逃往事,抒发了国土恐难收复的担忧、无奈、沉痛之情的句子是:中原乱,簪缨散,几时收? 3、朱敦儒的《相见欢》表现了作者渴望早日恢复中原,还于旧都的强烈愿望,同时也是对朝廷苟安旦夕,不图恢复的愤慨和抗议的诗句是:试倩悲风吹泪过扬州。 如梦令(常记溪亭日暮)(李清照) 1、《如梦令》中景色迷人,乐不思“宿”的句子是:常记溪亭日暮,沉醉不知归路。 2、李清照的《如梦令》:追忆郊游地点、时间及由于景色迷人而忘了归路的诗句是:常记溪亭日暮,沉醉不知归路。 3、翠绿的荷花和旭日中,嫣红的荷花,给人以凉爽幽静,清香扑鼻的感觉,诗人杨万里赞其是“接天莲叶无穷碧,映日荷花别样红”,而词人李清照却在《如梦令》中嗟叹:兴尽晚回舟,误入藕花深处。 4、写回舟迷路的句子是:兴尽晚回舟,误入藕花深处,争渡,争渡,惊起一滩鸥鹭。

各系列专业职称资格分类一览表

附件2、《各系列专业职称资格分类一览表》 国家各系列(专业)职称资格分类一览表 各系列(专业)分类 高、中、初级专业技术资格名称 正高级 副高级 中级 初级 (助理级) 初级 (员级) 工 程 系 列 建设专业 研 究 员 级 高 级 工 程 师 高 级 工 程 师 工 程 师 助 理 工 程 师 技 术 员 机械专业 纺织专业 轻工专业 冶金专业 石油化工专业 交通水路运输 专业 交通公路运输 专业 质量技术监督 专业 水利专业 水产专业 林业专业 环境保护专业 广播电影电视 工程专业 电子信息专业 煤炭专业 地质矿产专业 水文(工程、环境)地质专业 探矿专业 物化探与遥感 专业 地质实验测试 (选矿)专业 测绘专业 采矿专业 土地专业 岩土工程专业

工艺美术专业研究员级高 级工艺美术 师 高级工艺美 术师 工艺美术 师 助理工艺 美术师 工艺美术 员 农业系列 农技专业 农业技术推 广研究员 高级农艺师农艺师 助理农艺 师 技术员畜牧(兽医) 专 业 农业技术推 广研究员 高级畜牧 (兽医)师 畜牧(兽 医)师 助理畜牧 (兽医)师 技术员农业经济专业高级农经师 农经师 (考试) 助理农经 师(考试) 农经员 (考试) 财经系列 国际商务专业 高级国际商 务师 国际商务 师(执业资 格) 助理国际商 务师 (从业资格) 外销员 (从业资 格) 经济专业 研究员级高 级经济师 高级经济师 经济师 (考试) 助理经济 师(考试) 经济员 (考试) 会计专业 研究员级高 级会计师 高级会计师 (考评结合) 会计师 (考试) 助理会计 师(考试) 会计员 (考试) 统计专业高级统计师 统计师 (考试) 助理统计 师(考试) 统计员 (考试) 审计专业 高级审计师 (考评结合) 审计师 (考试) 助理审计 师(考试) 审计员 (考试) 思想政治 工作专业 研究员级高 级政工师 高级政工师政工师 助理政工 师 教师系列高校教师(思想 政治教育专职 教师) 教授副教授讲师助教 高校教管研究 专业 研究员副研究员 助理研究 员 研究实习 员 高校实验专业高级实验师实验师 助理实验 师 实验员中专校教师高级讲师讲师助理讲师教员中专实验专业高级实验师实验师 助理实验 师 实验员技工学校教师 教授级高级 讲师 高级讲师讲师助理讲师教员技校实习指导 教师 高级实习指 导教师 一级实习 指导教师 二级实习 指导教师 三级实习 指导教师党校教师 (市级以上) 教授副教授讲师助教 党校教师(县 级) 高级讲师讲师助理讲师

最全的专业技术职称分类标准

专业技术职称分类 系 列 高 级中 级 初 级正高级副高级 高等学校 教师 教授副教授讲师助理讲师 中等专业 学校教师 高级讲师讲师助理讲师、教员 技工学校教师 高级讲师讲师助理讲师、教员高级实习指导教师 一级实习指导教 师 二级实习指导教 师、三级实习指 导教师 中学教师中学高级教师中学一级教师中学二级教师、中学三级教师 小学(幼儿园)教 师 小学高级教师 小学一级教师、 小学二级教师、 小学三级教师幼儿园高级教师 幼儿园一级教 师、幼儿园二级 教师、幼儿园三 级教师 自然科学研究人员研究员 (Z) 副研究员 (Z) 助理研究员(Z)研究实习员(Z) 社会科学研究人员研究员 (S) 副研究员 (S) 助理研究员(S)研究实习员(S) 工程技术人员教授级高 级工程师 高级工程 师 工程师 助理工程师、技 术员 实验技术人员教授级高 级实验师 高级实验 师 实验师 助理实验师、实 验员 教授级高 级农艺师 高级农艺 师 农艺师 助理农艺师、农 业技术员

农业技术人员教授级高 级兽医师 高级兽医 师 兽医师 助理兽医师、兽 医技术员 教授级高 级畜牧师 高级畜牧 师 畜牧师 助理畜牧师、畜 牧技术员 卫生技术 人员主任医师 副主任 医师 主治(主管) 医师 医师、医士主任药师 副主任 药师 主管药师药师、药士主任护师 副主任 护师 主管护师护师、护士主任技师 副主任 技师 主管技师技师、技士 经济专业人员教授级高 级经济师 高级经济 师 经济师 助理经济师、经 济员 会计专业人员教授级高 级会计师 高级会计 师 会计师 助理会计师、会 计员 审计专业人员教授级高 级审计师 高级审计 师 审计师 助理审计师、审 计员 统计专业人员教授级高 级统计师 高级统计 师 统计师 助理统计师、统 计员 新闻专业人员高级记者主任记者记者助理记者高级编辑主任编辑编辑(X)助理编辑(X) 出版专业人员编审副编审编辑(C)助理编辑(C) 技术编辑 助理技术编辑、 技术设计员 一级校对 二级校对、三级 校对 图书资料专业人员研究馆员 (T) 副研究馆 员(T) 馆员(T) 助理馆员、管理 员(T) 文物博物专业人员研究馆员 (W) 副研究馆 员(W) 馆员(W) 助理馆员、管理 员(W)

《浣溪沙》《采桑子》《相见欢》《如梦令》

“词”相关知识介绍 1. 词的兴起 词兴于隋唐,盛于宋代,是一种和乐歌唱、句式长短不齐的诗体,又名“长短句”、“诗余”等。 2. 词牌 “词有定格,句有定数,字有定声。”每首都有一个曲词名称,叫“词牌”。如“沁园春”、“满江红”、“西江月”等。有的作家在词牌下另标词题,如《沁园春长沙》。不同的词牌规定的各种词调和词体都有一定的字数、句数、格律。 3. 词的分类 词按字数分为小令、中调、长调。小令字数在58字以内,中调在59至90字,长调在91字以上。 词可以分上下两段,叫“片”或“阕”。不分段或者分段较多的很少。 一、赏析《浣溪沙》 1. 走近作者 晏殊(991-1055),字同叔,抚州临川城(今属江西)人,北宋政治家、文学家,是当时抚州籍第一个宰相。晏殊与其第七子晏几道,在当时北宋词坛上被称为“大晏”和“小晏”。 2. 了解背景 暮春时节,日落时分,物候的变化引发了词人对年华易逝的感伤。“无可奈何花落去,似曾相识燕归来”,词人将自然现象与人的感受巧妙结合,生发出值得玩味的情趣。 3. 鉴赏古诗 上阕:一曲新词酒一杯,去年天气旧亭台。夕阳西下几时回? 释句:听一支新曲喝一杯美酒,还是去年的天气旧日的亭台,西落的夕阳何时再回来? 明确:怀旧,感伤年华易逝。起句“一曲新词酒一杯,去年天气旧亭台。”写对酒听歌的现境。从轻快流利的语调中可以体味出,词人面对现境时,开始是怀着轻松喜悦的感情。但边听边饮,这现境却又不期然地触发对“去年”所历类似境界的追忆。词人抒发的是对美好景物情事的流连,对时光流逝的怅惘,以及对美好事物重现的微茫的希望。 下阕:无可奈何花落去,似曾相识燕归来。小园香径独徘徊。 释句:那花儿落去我也无可奈何,那归来的燕子似曾相识,在小园的花径上独自徘徊。 明确:惜春,悼念春光难留。花落、燕归虽也是眼前景,但一经与“无可奈何”、“似曾相识”相联系,它们的内涵便变得非常广泛,意境非常深刻,带有美好事物的象征意味。惋惜与欣慰的交织中,蕴含着某种生活哲理:一切必然要消逝的美好事物都无法阻止其消逝,

专业技术职称等级分类

我国专业技术职称系列级别名称 序号系列 级别名称 高级 中级 初级 正高级副高级助理级员级 1 高级教师教授副教授讲师助教 2 自然科学研究研究员副研究员助理研究员研究实习员 3 社会科学研究研究员副研究员助理研究员研究实习员 4 卫生技术主任医师 主任药师 主任护师 主任技师 副主任医师 副主任药师 副主任护师 副主任技师 主治医师 主管药师 主管护师 主管技师 医师 药师 护师 技师 医士 药士 护士 技士 5 农业技术研究员高级农艺师 高级畜牧师 高级兽医师 农艺师 畜牧师 兽医师 助理农艺师 助理畜牧师 助理兽医师 技术员 6 工程技术高级工程师 (正高级) 高级工程师工程师助理工程师技术员 7 经济高级经济师经济师助理经济师经济员 8 会计 审计 高级会计师 高级审计师 会计师 审计师 助理会计师 助理审计师 会计员 审计员 9 统计高级统计师统计师助理统计师统计员 10 中专教师高级讲师讲师助理讲师教员 11 技校教师 高级讲师 高级实习指导教师 讲师 一级实习指导教 师 助理讲师 二级实习指导教 师 教员 三级实习指导教 师 12 中学教师中学高级教师中学一级教师中学二级教师中学三级教师 13 小学教师小学高级教师小学一级教师小学二级教师小学三级教师 14 档案研究馆员副研究馆员馆员助理馆员管理员 15 文物博物 群众文化 研究馆员副研究馆员馆员助理馆员管理员 16 图书资料研究馆员副研究馆员馆员助理馆员管理员 17 翻译译审副译审翻译助理翻译 18 律师一级律师二级律师三级律师四级律师律师助理 19 公证员一级公证员二级公证员三级公证员四级公证员公证员助理 20 新闻高级记者 高级编辑 主任记者 主任编辑 记者 编辑 助理记者 助理编辑 21 播音播音指导主任播音员一级播音员二级播音员三级播音员 22 出版编审副编审 编辑 技术编辑 一级校对 助理编辑 技术助理编辑 二级校对 技术设计员 三级校对 23 体育教练国家级教练高级教练一级教练二级教练三级教练 24 船舶 高级船长 高级轮机长 高级电机员 高级机务员 船长 大副 大管轮 电机员等 二副 二管轮 二级电机员等 三副 三管轮等 25 艺术一级演员等 二级演员 主任舞台技师 三级演员 舞台技师等 四级演员 舞台技术员等 26 工艺美术高级工艺美术师工艺美术师助理工艺美术师工艺美术员 27 试验高级试验师试验师助理试验师试验员 28 海关高级关务监督关务监督助理关务监督关务员 29 飞行一级飞行员二级飞行员三级飞行员四级飞行员

各系列专业技术职称一览表73628

各系列专业技术职称一览表 序号系列 专业技术职务 高级 中 级 初级正高 级 副高 级 助理 级 员 级 1高等学校教师教授副教授讲师助教 2中等专业学校教 师 高级讲师讲师助理讲师教员 3中小学(幼儿 园)教师 中学高级教师 中学一级教 师 中学二级教师中学三级教师小学中的中学高级教师 小学高级教 师 小学一级 教师 小学二级 教师 小学三级 教师 幼儿园高级 教师 幼儿园一级 教师 幼儿园二级 教师 幼儿园三级 教师 4技工学校教师 高级讲师讲师助理讲师教员 高级实习指导教师 一级实 习指导教师 二级实习指导教 师 三级实习指导 教师 5自然科学研究 人员研究员 副研究 员 助理研 究员 研究实习员 6社会科学研究 人员研究员 副研究 员 助理研 究员 研究实习员 7实验人员高级实验师实验师助理实验师实验员 8工程技术人员 教授级 高级工 程师 高级工 程师 工程师助理工程师技术员高级建筑师建筑师助理建筑师技术员高级城市规划师 城市规 划师 助理城市规划师技术员 9经济专业人员 高级经济师经济师助理经济师经济员高级农业经济师 农业经 济师 助理农业经济师农业经济员 1 0卫生技术人员主任医 师 副主任 医师 主治医 师 医师医士主任药 师 副主任 药师 主管药 师 药师药士主任护 师 副主任 护师 主管护 师 护师护士主任技 师 副主任 技师 主管技 师 技师技士 附 件4

2 3律师专业人员 一级律 师 二级律 师 三级律 师 四级律师律师助理 2 4公证专业人员 一级公 证员 二级公 证员 三级公 证员 四级公证员公证员助理 2 5群众文化系统 研究馆 员 副研究 馆员 馆员助理馆员管理员 2 6 职工教育系统高级讲师讲师助理讲师教员 2 7党校系统 教授副教授讲师助理讲师教员 高级讲师讲师助理讲师教员 2 8档案系列 研究馆 员 副研究 馆员 馆员助理馆员管理员 2 9文学创作系列 文学创作 一级 文学创作 二级 文学创作 三级 文学创作四级

词二首《相见欢》、《浣溪沙》教案

审核人:赵黎明 预习提示 1、让学生自主查阅资料或者上网,了解词人李煜、晏殊的生平; 2、让学生反复读,读出感情,初步感知内容; 3、试着体会内涵,尤其是名句的揣摩。 [教学目标] 1、了解词人李煜、晏殊的生平; 2、领会并赏析这两首词,达到熟读成诵。 [教学重点] 1、领略词的意境,体会词人的感情。 2、准确背诵这两首词。 [课时安排] 一课时 [教学过程] 《浣溪沙》晏殊 1、作者简介 晏殊(911-1055),北宋词人。字同叔,抚州临川(今属江西)人。景德中赐同进士出身。庆历中官至集贤殿大学士、同中书门下平章事兼淑密使。谥元献。 其词擅长小令,多表现诗酒生活和悠闲情致,语言婉丽,颇受南唐冯延已的影响。《浣溪沙》中“无可奉告花落去,似曾相似燕归来”二句,传诵颇广。原有集,已散佚,仅存《珠玉词》及清人所辑《晏元献遗文》。又编有类书《类要》,今存残本。(《辞海》1989年版) 2、朗读指导 教师范读,学生反复诵读,读第一句用轻松的语调,第二句用沉思的口吻,第三句用疑问的语把留恋企盼之情传达出来,第四句用降调把无可奈何的心情读出来,第五句用怀疑思考的语气来读,第六句用低沉缓慢的语调来读。

(教师范读,学生反复诵读,评论,示范,纠正,读到最好为止。) 3、诗词赏析 这首词蕴涵了哪些人生哲理?(学生分组讨论,体会,感悟) 讨论明确: (1)“一曲新词酒一杯,去年天气旧亭台。夕阳西下几时回?” 词人怀着喜悦、轻松的心情,带着潇洒安闲的意态对酒听歌,但在边听边饮时,不期而然地触发了对“去年”所历类似境界的追忆,于是产生一种岁月流逝、时光不再的感慨。“夕阳西下几时回?”这一问句就把作者的思考扩展到整个人生,对人生进行了哲理性的沉思。意蕴大体与“年年岁岁花相似,岁岁年年人不同”相似,但表达方式要委婉含蓄得多。 (2)“无可奈何花落去,似曾相识燕归来。” 对花的凋落,春的消逝,时光的流逝,虽惋惜留恋也无济于事,但翩翩归来的燕子象征着美好的事物,令人欣慰。 在惋惜与欣慰的交织中,蕴涵着某种生活哲理:一切必然要消逝的美好事物都无法阻止其消逝,但在消逝的同时,仍会有美好的事物出现,生活不会因消逝而变得一片虚无;只不过这种事物毕竟不等于美好事物原封不动的重现,它只是“似曾相识”罢了。因此,在有所慰藉的同时又不觉感到一丝惆怅。 这两句将景物和人事紧密联系在一起,景中寓情,赋中有比,更加委婉含蓄地书写了这种伤别怀旧之情。 (3)“小园香径独徘徊。” 在人生旅途中,在惋惜、欣慰,惆怅之余,我们是否应像词人一样独自沉思一番,反省一番,憧憬一番呢? 此词之所以脍炙人口,广为传诵,其根本的原因在于情中有思。词中似乎于无意间描写司空见惯的现象,却有哲理的意味,启迪人们从更高层次思索宇宙人 《相见欢》李煜 1、作者介绍:李煜(937-978),五代时南唐国主。字重光,初名从嘉,号钟隐,世称李后主。宋兵破金陵,出降,后被毒死。能诗文、音乐、书画。尤以词著名。前期作品大都描写宫廷享乐生活,风格清丽。后期则抒写对昔日生活的怀念,吟叹身世,表现了浓厚的感伤情绪;形象鲜明,语言生动,在题材与已经上也突破了晚唐五代词一些艳情为主的窠臼。

各专业技术职称等级表

专业技术职称等级表 系列 高级 中级初级正高级副高级 高等学校 教师 教授副教授讲师助理讲师 中等专业 学校教师 高级讲师讲师助理讲师、教员 技工学校教师 高级讲师讲师助理讲师、教员 高级实习指导教师 一级实习 指导教师 二级实习指导教师、三级 实习指导教师 中学教师中学高级教师 中学一级 教师中学二级教师、中学三级 教师 小学(幼儿园)教师小学高级 教师 小学一级教师、小学二级 教师、小学三级教师幼儿园高 级教师 幼儿园一级教师、幼儿园 二级教师、幼儿园三级教 师 自然科学 研究人员研究员(Z) 副研究员 (Z) 助理研究 员(Z) 研究实习员(Z) 社会科学 研究人员研究员(S) 副研究员 (S) 助理研究 员(S) 研究实习员(S) 工程技术人员教授级高 级工程师 高级工程 师 工程师助理工程师、技术员 实验技术人员教授级高 级实验师 高级实验 师 实验师助理实验师、实验员

农业技术人员教授级高 级农艺师 高级农艺 师 农艺师 助理农艺师、农业技术员 教授级高 级兽医师 高级兽医 师 兽医师 助理兽医师、兽医技术员 教授级高 级畜牧师 高级畜牧 师 畜牧师 助理畜牧师、畜牧技术员 卫生技术人员主任医师副主任医 师 主治(主 管)医师 医师、医士主任药师副主任药 师 主管药师药师、药士主任护师副主任护 师 主管护师护师、护士主任技师副主任技 师 主管技师技师、技士 经济专业人员教授级高 级经济师 高级经济 师 经济师助理经济师、经济员 会计专业人员教授级高 级会计师 高级会计 师 会计师助理会计师、会计员 审计专业人员教授级高 级审计师 高级审计 师 审计师助理审计师、审计员 统计专业人员教授级高 级统计师 高级统计 师 统计师助理统计师、统计员

部编版八年级语文课外古诗词诵读理解赏析题(浣溪沙四首)

部编版八年级语文上册课外古诗词诵读理解赏析题 浣溪沙 2018-12-21 一、理解默写。 1.全词思绪都围绕“独”字来抒写。词人精心选择了西坠的夕阳,飘落的花瓣、重归的燕子以及徘徊于小园的诗人,构成幅优美的画面,把自然的春光和人的青春年华很自然地结合在一起,表达了感时伤春的情怀,这是运用了以景传情、情景交融的表现手法。 2.词中构成“新”与“旧”对比的句子是: “一曲新词—杯,去年天气旧亭台。” 3.朱自清在散文《匆匆》中写道:“燕子去了,有再来的时候,杨柳枯了,有再青的时候;桃花谢了,有再开的时候”,《浣溪沙》中也有表达类似感慨的词句: 无可奈何花落去,似曾相识燕归来。 4.《浣溪沙》中,词人由景触情,由自然规律的变迁更替,透露出对美好被景物流连,流露出对光阴流逝的无限惆怅的句子是: 无可奈何花落去,似曾相识燕归来。 5.《浣溪沙》中表现作者怅然若失的句子是: 小园香径独徘徊 6.《院溪沙》中被后人传唱引用来表达思人之情的千古名句是: 夕阳西下几时回? 7.《浣溪沙)》中着重写今日的感伤、被誉为“千古奇偶”的诗句是: 无可奈何花落去,似曾相识燕归来。

8.《浣溪沙》中揭示季节的变换、年华的逝去不以人们意志为转移的客观规律的诗句是: 无可奈何落去,似曾相识燕归来。 二、阅读理解。 1.“无可奈何花落去,似曾相识燕归来”两句告诉我们什么样的生活哲理? 答:一切必然要消逝的美好事物都无法阻止其消逝,但在消逝的同时仍然有美好事物的出现。生活不会因消逝而变得一片虚无,只不过这种重现不等于事物原封不动地重现,它只是“似曾相识“罢了。 2.“一曲新词酒一杯,去年天气旧亭台”两句运用了对比手法。 3.“无可奈何花落去,似曾相识燕归来”两句历来为词家赞赏,请简要赏析。 示例一:这两句对仗工整,音调和谐、有音乐美,画面生动。 示例二:通过“落花”这个意象写出了暮春之景,表达了惜春之意:“归燕”这个意象表达旧燕归来,时光已逝、物是人非之感。 示例三:对仗工整,音调和谐,画面生动,通过对易逝的自然春光的描写,抒发了对青春易逝的感慨,感情浓郁,寓意深刻,发人深省,揭示了人生易逝,轮回无穷的人生哲理,因而成为千古传诵的名句(千古奇偶)。 4.“小园香径独排徊”中的“独”字用得妙,请加以赏析。 “独”字写出了词人独处时的寂寞、伴着萧条的春色和眼前的时光,生出无限的悲凉、突出了词人的凄凉寂寞之感。 5.“夕阳西下几时回?”一句寓情于景,试简要分析此句抒发了什么样的感情? 抒发了词人惜春伤时的惆怅和寂寞,叹惜年华将逝的情思。

相关主题
文本预览
相关文档 最新文档