当前位置:文档之家› 直驱永磁同步风力发电机空载短路分析

直驱永磁同步风力发电机空载短路分析

直驱永磁同步风力发电机空载短路分析
直驱永磁同步风力发电机空载短路分析

永磁同步风力发电机的设计说明

哈尔滨工业大学 《交流永磁同步电机理论》课程报告题目:永磁同步风力发电机的设计 院 (系) 电气工程及其自动化 学科电气工程 授课教师 学号 研究生 二〇一四年六月

第1章小型永磁发电机的基本结构 小型风力发电机因其功率低,体积小,一般没有减速机构,多为直驱型。发电机型式多种多样,有直流发电机、电励磁交流发电机、永磁电机、开关磁阻电机等。其中永磁电机因其诸多优点而被广泛采用。 1.1小型永磁风力发电机的基本结构 按照永磁体磁化方向与转子旋转方向的相互关系,永磁发电机可分为径向式、切向式和轴向式。 (1)径向式永磁发电机径向式转子磁路结构中永磁体磁化方向与气隙磁通轴线一致且离气隙较近,漏磁系数较切向结构小,径向磁化结构中的永磁体工作于串联状态,只有一块永磁体的面积提供发电机每极气隙磁通,因此气隙磁密相对较低。这种结构具有简单、制造方便、漏磁小等优点。 径向磁场永磁发电机可分为两种:永磁体表贴式和永磁体内置式。表贴式转子结构简单、极数增加容易、永磁体都粘在转子表面上,但是,这需要高磁积能的永磁体(如钕铁硼等)来提供足够的气隙磁密。考虑到永磁体的机械强度,此种结构永磁电机高转速运行时还需转子护套。内置式转子机械强度较高,但制造工艺相对复杂,制造费用较高。 径向磁场电机用作直驱风力发电机,大多为传统的内转子设计。风力机和永磁体内转子同轴安装,这种结构的发电机定子绕组和铁心通风散热好,温度低,定子外形尺寸小;也有一些外转子设计。风力机与发电机的永磁体外转子直接耦合,定子电枢安装在静止轴上,这种结构有永磁体安装固定、转子可靠性好和转动惯量大的优点,缺点是对电枢铁心和绕组通风冷却不利,永磁体转子直径大,不易密封防护、安装和运输[1]。表贴式和径向式的结构如图1-1 a)所示。 a)径向式结构 b)切向式结构

直驱式风力发电机知识(技术研究)

是我们初中学的磁极数,一个发电机是有南北极的(货是正负极),就是指的这个,但是3相的就不是了,你可以通过数住绕组的个数来辨别是多少级数,或者说发电机的转速也可以看出来是多少级数 以50HZ为例,2级的就是3000转,4级就3000/2,1500转这样就好理解了 直驱永磁风力发电机组特点 直驱式风力发电机(Direct-driven Wind Turbine Generators),是一种由风力直接驱动发电机,亦称无齿轮风力发动机,这种发电机采用多极电机与叶轮直接连接进行驱动的方式,免去齿轮箱这一传统部件。由于齿轮箱是目前在兆瓦级风力发电机中属易过载和过早损坏率较高的部件,因此,没有齿轮箱的直驱式风力发动机,具备低风速时高效率、低噪音、高寿命、减小机组体积、降低运行维护成本等诸多优点。 直驱式(无齿轮)风力发电机始于20多年前,由于电气技术和成本等原因,发展较慢。随着近几年技术的发展,其优势才逐渐凸现。德国、美国、丹麦都是在该技术领域发展较为领先的国家,其中德国西门子公司开发的(直驱式)无齿轮同步发电机安装在世界最大的挪威风力发电场,最高效率达98%。 1997年的风机市场上出现了兼具无齿轮、变速变桨距等特征的风力发电机,这些高产能、运行维护成本低的先进机型有E-33、E-48、E-70等型号,容量从330千瓦至2兆瓦,由德国ENERCONGmbH公司制造,它们的研制始于1992年。2000年,瑞典ABB公司成功研制了3兆瓦的巨型可变速风力发电机组,其中包括永磁式转子结构的高压风力发电机Wind former,容量3兆瓦、高约70米、风扇直径约90米。2003年,在Okinawa电力公司开始运行的MWT-S2000型风力发电机,是日本三菱重工首度完全自行制造的2兆瓦级风机,采用小尺寸的变速无齿轮永磁同步电机,新型轻质叶片。 目前,国内多家企业也开始进军直驱式风力发电机领域,湘潭电机集团与日本原弘产株式会社合资组建的湖南湘电风能有限公司,2兆瓦直驱式永磁风力发电整机机组已试车成功;广西银河艾万迪斯风力发电有限公司与德国AVAVTIS公司联合推出的2.5兆瓦直驱变桨风力发电也将于2008年二季度完成样机;具有自主知识产权的新疆金凤科技股份公司、哈尔滨九州电气公司也分别研制出1.5兆瓦直驱式风力发电机。 编辑本段直驱永磁风力发电机组特点 直驱永磁风力发电机有以下几个方面优点[1]: 1.发电效率高:直驱式风力发电机组没有齿轮箱,减少了传动损耗,提高了发电效率,尤其是在低风速环境下,效果更加显著。

永磁直驱式风力发电机的工作原理

你好,你的这个问题问的比较广。我大概给你阐述下,对于现在国内国外大型水平轴风力发电机组,有双 馈机和永磁直驱发电机。 永磁直驱发电机顾名思义是在传动链中不含有增速齿轮箱。 总所周知,一般发电机要并网必须满足相位、幅频、周期同步。而我国电网频率为50hz这就表示发电机要发出50hz的交流电。学过电机的都知道。转速、磁极对数、与频率是有关系的n=60f/p。 所以当极对数恒定时,发电机的转速是一定的。所以一般双馈风机的发电机额定转速为1800r/min。而叶轮转速一般在十几转每分。这就需要在叶轮与发电机之间加入增速箱。 而永磁直驱发电机是增加磁极对数从而使得电机的额定转速下降,这样就不需要增速齿轮箱,故名直驱。而齿轮箱是风力发电机组最容易出故障的部件。所以,永磁直驱的可靠性要高于双馈。 对于永磁直驱发电机的磁极部分是用钕铁硼的永磁磁极,原料为稀土。 风轮吸收风能转化为机械能通过主轴传递给发电机发电,发出的电通过全功率变流器之后过升压变压器上网。 不知道有木有解释清楚。 还有什么不清楚可以继续追问,知无不言。 风力发电机也在逐步的永磁化。采用永磁风力发电机,不仅可以提高发电机的效率,而且能在增大电机容量的同时,减少体积,并且因为发电机采用了永磁结构,省去了电刷和集电环等易耗机械部件,提高了系统的可靠性,这也是风电发电机的发展趋势之一。

风力机的直驱化也是当前的一个热点趋势。目前大多风电系统发电机与风轮 并不是直接相连,而是通过变速齿轮相连,这种机械装置不仅降低了系统的效率,增加了系统的成本,而且容易出现故障,是风力发电急需解决的瓶颈问题。直驱式风力发电机可以直接与风轮相连,增加了系统的稳定性,同时增大了电机的体积和设计制造以及控制的难度。直驱型风力发电系统是采用风轮直接驱动多极低速永磁同步发电机发电,通过功率变换电路将电能转换后并入电网,相对于双馈型发电系统,直驱式发电机采用较多的极对数,使得在转速较低时,发电机定子电压输出频率仍然比较高,完全可以在电机的额定等级下工作,并且其定子输出电压通过变流器后再和电网相接,定子频率变化并不会影响电网频率。在直驱风力发电系统中风机与发电机直接耦合,省去了传统风力发电系统中的国内难以自主生产且故障率较高的齿轮箱这一部件,减少了发电机的维护工作,并且降低了噪音。另外其不需要电励磁装置,具有重量轻、效率高、可靠性好的优点。 直驱永磁发电机与双馈异步发电机技术相比,由于不需要转子励磁,没有增速 齿轮箱,效率要比双馈发电机高出20%以上,年发电量要比同容量的双馈机型高;增 速齿轮箱故障较高,维护保养成本高,直驱永磁发电机不需要齿轮箱,易于维修保养;直驱永磁发电机采用全功率的交-直-交变频技术,与电网隔离,具有低电压穿越能力,对电网友好; 直驱永磁发电机的缺点是稀土永磁材料成本高,导致整机成本相对较高,永磁 材料在高温、震动和过电流情况下,有可能永久退磁,致使发电机整体报废,这是直驱永磁发电机的重大缺陷。

永磁同步风力发电系统实验指导书

永磁同步风力发电系统实验指导书 一、实验目的 1. 学习永磁同步风力发电系统的原理及其组成 2. 学习永磁同步风力发电系统并网过程及并网连续运行过程 3. 了解永磁同步风力发电系统MPPT控制方法与过程 二、实验器材 永磁同步风力发电系统V-Wind-YC、功率分析仪 三、实验内容与步骤 1. 了解整个永磁同步发电系统的组成和各个部分的主要功能(包括异步原动机、永磁同步电机、变频器、双向变流器等)。 2. 掌握永磁同步风力发电系统的并网过程和脱网过程。 (1)系统开机前准备 1)检查供电状态,2)接通控制电源,3)检查通信。 (2)启动网测变流器 在上位机主界面的“网测通讯”区域,点击“启动网测”按钮。 (3)启动风机 在上位机主界面的“变频器通讯”区域,在“给定转速”框中输入转速值,然后点击“启动风机”按钮。 (4)并网运行 在上位机主界面的“机测通讯”区域,点击“并网”按钮,并设置定子有功和定子无功。 (5)脱网 将给定定子有功和无功均设为0,并网输出功率逐渐下降,然后点击“脱网”按钮,脱网完成。 (6)停机 脱网完成后,将给定转速设为0,当风机逐渐停止后,点击“停止风机”按钮,然后点击“网测通讯”区域的“停止网测”按钮,最后关闭主电路旋钮。 3. 掌握永磁同步风力发电系统的自由并网试验。 (1)并网运行 将风机转速设为300r/min,电机转速稳定后,点击“并网”按钮。 (2)低速并网运行 电机转速为300r/min时,手动设定机侧有功功率500W至2000W,记录机侧相电流有效值、网测相电压有效值、网测相电流有效值、机侧有功和网测有功,填入表1中。

(3)额定速并网运行 电机转速设为1000r/min,手动设定机侧有功功率1000W至4000W,记录机侧相电流有效值、网测相电压有效值、网测相电流有效值、机侧有功和网测有功,填入表2中。 (4)离网 离网时,先将机侧给定有功设为0,等待实际功率降为零后,点击“离网”按钮使机侧脱网。 4. 永磁同步风力发电机最大功率跟踪实验 (1)MPPT运行 手动将给定转速设为300r/min,在电机稳定后,进行转子励磁,励磁完成后点击“并网”按钮。成功并网后点击“MPPT”按钮,“MPPT”按钮变绿,此时控制系统按风力机模拟环境运行发电,原动机根据设定的模拟风场特性运行,变流器进行MPPT最大功率跟踪运行。 (2)低速风况模拟 当风速小于12m/s,则风力场最大功率点在运行转速范围之内。此时在跟踪算法控制下,电机转速调整至最大功率点,输出功率为风机在此风速下能输出的最大功率。将基本风设为6m/s,8m/s,10m/s,记录此时电机转速和实时机侧有功功率,填入表3中。 (3)额定转速风况模拟

直驱风力发电机分类

直驱风力发电机分类 直驱式风力发电机组在我国是一种新型的产品,但在国外已经发展了很长时间。目前我国在直驱式风机中系统的研究相对传统机型较少,但开发直驱式风力发电机组也是我国日后风机制造的趋势之一。 直驱永磁风力发电机取消了沉重的增速齿轮箱,发电机轴直接连接到叶轮轴上,转子的转速随风速而改变,其交流电的频率也随之变化,经过置于地面的大功率电力电子变换器,将频率不定的交流电整流成直流电,再逆变成与电网同频率的交流电输出。另外一些无齿轮箱直驱风力发电机,沿用低速多极永磁发电机,并使用一台全功率变频器将频率变化的风电送入电网。直接驱动式风力发电机组由于没有齿轮箱,零部件数量相对传统风电机组要少得多。 我国主要的直驱型风力发电机组采用水平轴、三叶片、上风向、变桨距调节、直接驱动、永磁同步发电机并网的总体设计方案,相对于传统的异步发电机组其优点如下:(1)由于传动系统部件的减少,提高了风力发电机组的可靠性和可利用率; (2)永磁发电技术及变速恒频技术的采用提高了风电机组的效率; (3)机械传动部件的减少降低了风力发电机组的噪音; (4)可靠性的提高降低了风力发电机组的运行维护成本; (5)机械传动部件的减少降低了机械损失,提高了整机效率; (6)利用变速恒频技术,可以进行无功补偿; (7)由于减少了部件数量,使整机的生产周期大大缩短。

永磁式硅整流风力发电机设计 小型永磁式硅整流风力发电机,由于采用了永磁体励磁,省去了碳刷、滑环及励磁绕组,避免了碳刷与滑环引起的火花放电,且工艺简单、维护方便、效率较高。但由于永磁式发电机的磁场无法人工调节,在电机制成之后,输出电压随风速(转速)的变化而波动。而其所带负载—蓄电池及用电设备则要求供电电压恒定不变。当供电电压较低时,对蓄电池无法充电,用电设备无法长期工作,而当电压超过额定值较多时,则会造成蓄电池的过充损伤,降低使用寿命,严重的可能烧坏用电设备。图1表示风力发电机输出电压对12V灯泡发光强度及使用寿命的关系特性。 图1端电压相对光通量和使用寿命的关系

直驱式永磁同步风力发电机组的建模与仿真

张 梅等:直驱式永磁同步风力发电机组的建模与仿真第6期新能源 直驱式永磁同步风力发电机组的建模与仿真 张 梅1,何国庆2,赵海翔2,张靠社1 (1.西安理工大学电力工程系,陕西西安 710048;2.中国电力科学研究院,北京 100192) 摘要:阐述基于直驱式永磁同步风力发电机组(D-PMSG)的工作原理,在电力系统分析软件DIgSILENT/ PowerFactory中建立了D-PMSG及其控制系统的仿真模型,结合某实际地区电网进行仿真分析。仿真结果 验证了所建模型的正确性和控制策略的可行性。关键词:风力发电;永磁同步发电机;解耦控制中图分类号:TM315 文献标识码:A 文章编号:1004-9649(2008)06-0079-06 中国电力ELECTRICPOWER 第41卷第6期2008 年6月Vol.41,No.6 Jun.2008收稿日期:2008-03-05作者简介:张 梅(1981-),女,陕西西安人,硕士研究生,从事电力系统分析和风力发电研究。E-mail:zhangmei@epri.ac.cn 0引言 风力发电是一种很有潜力的可再生能源,10多 年来得到了快速的发展。目前主流变速风力发电机组有2种:双馈感应风力发电机组和直驱永磁同步风电机组。国内外对基于双馈感应发电机(doubly fedinductiongenerators,DFIG)的变速风力发电技术 的研究很多,已经发展得很成熟。关于直驱永磁同步风力发电机组(D-PMSG)的研究则相对较少,但其以效率高、噪声小、发电机结构简单和维护工作量小等特点,在风力发电领域受到了越来越多的 重视。 目前,对于D-PMSG的建模与仿真是研究的热点。一些文献研究了D-PMSG的建模问题,但比较简单,如文献[1-2]中给出了变频器系统的控制框图,但没有详细论述其解耦控制的原理。文献[3]建立了包括风力机模型、传动系统模型和发电机模型的D-PMSG数学模型, 并提出了桨距角及发电机 转速的控制策略,但忽略了网侧变频器的影响。文献[4-7]采用不同的控制策略,对经由不可控整流和可控逆变电路构成的变频器并网的D-PMSG系统进行了研究, 实现了最大风能跟踪控制及并网 有功和无功功率的解耦控制。文献[8]研究了D- PMSG的桨叶控制及相应的功率和转速的变化过 程。文献[9]建立了基于MTLAB/SIMULINK软件的 D-PMSG仿真模型,对机组的输出特性进行了分 析。文献[10]研究了一种用于D-PMSG并网的中性点箝位变频器系统, 并提出了变频器相应的控 制策略。文献[11]着重分析了双脉宽调制(PWM)D-PMSG发电机侧变频器的控制问题,提出了增加 约束方程来确定发电机端电压的稳定控制方案。这些文献基本集中于风电机组或机组所采用变频器的研究, 没有在实际电网中对模型的特性进行 仿真,不能突出D-PMSG的并网运行特性。 本文介绍了D-PMSG的工作原理,建立了PMSG、变频器模型及轴系的两质块数学模型,提出了全功率变频器的解耦控制策略,实现了有功和无功的解耦控制; 在电力系统仿真软件DIgSILENT/Power Factory中建立了D-PMSG的仿真模型,并结合某 实际地区电网,通过对有功功率突变、调整功率因数设定值以及电网三相短路故障时风电机组的动态响应分析,验证了该模型的正确性和控制策略的可行性。仿真结果较全面地反映了D-PMSG的并网运行特性。 1D-PMSG工作原理 D-PMSG主要包括风力机、PMSG、 全功率变频器以及控制系统4部分,其基本结构如图1所示。其中全功率变频器系统又可分为: 发电机侧变频器 (generator-sideconverter)、 直流环节(DC-link)和电网侧变频器(grid-sideconverter)。 风力机和PMSG通过轴系直接耦合,提高了系统的可靠性,大大减少了系统的运行噪声,降低了发电机的维护工作量。 PMSG经全功率变频器系统与电网相连,通过施加 在变频器系统上的控制系统作用,来实现风电机 组的变速运行。PMSG的输出经发电机侧变频器整 流后由电容支撑,再经网侧变频器将能量馈送给 电网。

风力发电机分析报告

风力发电技术概述 一、国内外风电发展历史、现状 风能是太阳能的一种表现形式。它是由太阳的热辐射引起的空气流动。太阳把自己能的绝大部分以热的形式给了地球,而到大气求得太阳能约有2%转变为风。所以,地球上风能资源蕴藏丰富。 人类对于风能的开发利用也很早就开始了。对风能的利用首先出现在波斯,在荷兰和英国的风车磨坊大约从公元七世纪就广泛应用,在中国对风能的利用至少不晚于13世纪中叶,主要用于磨面和提水灌溉。利用风力发电的设想始于1890年的丹麦,到1918年,丹麦已拥有120台风力发电机1931 年前苏联采用螺旋桨式的叶片建造了一台大型风力发电机。随后,各国相距建造了一大批大型风力发电机。 但是,近代火力、水力发电机的广泛应用和20世纪50年代中东油田的发展,使风力发电机的发展缓慢下来。20世纪70年代后,由于能源短缺,人类生存环境的进一步恶化,环境与能源问题成为当今世界面临的两大挑战。因此寻求无污染、可再生的能源成为科技界的一大目标。风能这一古老而丰富的自然资源,以其易于获得并转换,且分布广泛无污染又能够不断再生,而被重新认识,开发和利用。此时的风力发电机设计应用了航空器的成熟理论,使得风力机的效率比老式的风车提高了几倍乃至十倍。欧美工业发达国家凭借其先进的科技和工业水平,投入数以亿美元计的研制经费,相继制造了兆瓦级风力发电机,形成了风能工业,使风力机的概念由单机运行发展到并网运行和建成有相当规模的风车田。据报道,截止1990年底的报道材料统计,全球风力发电设备总装机容量已经达到3800MW,其中美国约200MW,而且各国正在不断加大对风能开发的投入。面对新世纪的来临,美国、丹麦、荷兰、德国、日本和英国等国家纷纷制定出能源规划的长远目标。 在我国风力发电机组的研制工作开展较早,但是没得到足够的重视与支持,因而发展较慢。五十年代后期有过一个兴旺时期,吉林、辽宁、内蒙古、江苏、安徽和云南等省都研制过千瓦级以下的风车,但是没有做好巩固和发展成果的工

永磁同步风力发电系统的组成、工作原理及控制机理

永磁同步风力发电系统的系统基本组成、工作原理、控制 模式论述 1.系统的基本组成: 直驱式同步风力发电系统主要采用如下结构组成:风力机(这里概括为:叶片、轮毂、导航罩)、变桨机构、机舱、塔筒、偏航机构、永磁同步发电机、风速仪、风向标、变流器、风机总控系统等组成。其中全功率变流器又可分为发电机侧整流器、直流环节和电网侧逆变器。就空间位置而言,变流器和风机总控系统一般放在塔筒底部,其余主要部件均位于塔顶。 2.工作原理: 系统中能量传递和转换路径为:风力机把捕获的流动空气的动能转换为机械能,直驱系统中的永磁同步发电机把风力机传递的机械能转换为频率和电压随风速变化而变化的不控电能,变流器把不控的电能转换为频率和电压与电网同步的可控电能并馈入电网,从而最终实现直驱系统的发电并网控制。 3.控制模式: 风力发电机组的控制系统是综合性控制系统。它不仅要监视电网、风况和机组运行参数,对机组运行进行控制。而且还要根据风速与风向的变化,对机组进行优化控制,以提高机组的运行效率和发电量。 风力发电控制系统的基本目标分为三个层次: 分别为保证风力发电机组安全可靠运行,获取最大能量,提供良好的电力质量。 控制系统主要包括各种传感器、变距系统、运行主控制器、功率输出单元、无功补偿单元、并网控制单元、安全保护单元、通讯接口电路、监控单元。 具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、自动最大功率点跟踪控制、功率因数控制、偏航控制、自动解缆、并网和解列控制、停机制动控制、安全保护系统、就地监控、远程监控。

一、系统运行时控制: 1、偏航系统控制: 偏航系统的控制包括三个方面:自动对风、自动解缆和风轮保护。 1)自动对风 正常运行时偏航控制系统自动对风,即当机舱偏离风向一定角度时,控制系统发出向左或向右调向的指令,机舱开始对风,当达到允许的误差范围内时,自动对风停止。 2)自动解缆 当机舱向同一方向累计偏转2~3圈后,若此时风速小于风电机组启动风速且无功率输出,则停机,控制系统使机舱反方向旋转2~3圈解绕;若此时机组有功率输出,则暂不自动解绕;若机舱继续向同一方向偏转累计达3圈时,则控制停机,解绕;若因故障自动解绕未成功,在扭缆达4圈时,扭缆机械开关将动作,此时报告扭缆故障,自动停机,等待人工解缆操作。3)风轮保护 当产生特大强风时,停机并释放叶尖阻尼板,桨距调到最大,偏航90°背风,以保护风轮免受损坏。 2、变桨距系统控制 变桨系统的控制包括三个方面:启动状态(转速控制)、欠功率状态(不控制)和额定功率状态(功率控制)。 1)起动状态 桨叶在静止时,节距角为90°,这时气流对桨叶不产生转矩,整个桨叶实际上是一块阻尼板。当风速达到启动风速时,桨叶向0°方向转动,知道气流对桨叶产生一定的攻角,风轮开始起动。在发电机并入电网以前,变桨距系统的节距给定值由发电机转速信号控制。转速控制器按照一定的速度上升斜率给出速度参考值。为确保并网平稳,对电网产生的冲击尽可能小,变桨距系统可以在一定时间内,保持发电机的转速在同步转速附近。 2)欠功率状态 当风速低于额定风速时,发电机在额定功率以下工作,此时变桨距系统不加控制,节距角为0,以实现最大功率跟踪。 3)额定功率状态 当风速达到或超过额定风速后,风力发电机进入额定功率状态。变桨距系统根据发电机的功率信号进行控制。 3、机侧变流器的控制 永磁同步发电机侧变流器的控制目标是: 1)将永磁同步发电机发出的频率和电压幅值变化无序的交流电整流成直流电 2)控制风力机转速,实现最大风能捕获 3)控制与永磁同步发电机间的无功交换。 4、网侧变流器的控制 网侧变流器可以工作在整流和逆变状态,一般情况下在单位功率因数逆变运行。此时,能量由直流侧流向电源,且无功功率为零。 网侧逆变器控制目标是: 1)将直流电逆变为与电网频率、幅值相同的交流电,保证电网侧电流正弦,减少谐波对电网的污染并维持直流侧电压恒定,提高发电效率。

永磁同步风力发电机的原理和应用

永磁同步风力发电机的原理和应用 我国风能资源丰富,可开发的风能潜力巨大。根据有关资料,我国陆地风能资源可开发量23.8亿千瓦,海上风能资源可开发量约2亿千瓦。我国风能资源比较集中,“三北”地区(华北、东北和西北)以及东南沿海地区、沿海岛屿潜在风能资源开发量约占全国的80%。风能资源与煤炭资源的地理分布具有较高的重合度,与电力负荷则呈逆向分布。 近日,一款拥有自主知识产权,最大功率为2.5MW的高速永磁同步风力发电机在南车株洲电机有限公司成功下线。该发电机具有效率高、体积小、结构紧凑、成本低、可靠性高、维护量小等诸多优点,采用全功率变流控制,使机组具有良好的低电压穿越性能;该发电机与直驱型永磁同步风力发电机相比,体积大大减小、重量大大减轻,特别是磁钢用量大大减少,在稀土价格居高不下的今天,该产品的高性价比优势更加突出,具有很好的市场前景。该发电机的成功研制标志着我国企业已具备自主研发具有国际先进水平高速永磁同步风力发电机的能力。 “十二五”时期,我国风电装机容量占发电总容量比例将进一步加大,出于电网安全考虑,风电机组必须在“低电压穿越”保障下“御风而行”。据中国国家发改委能源研究所有关人士透露,2020年陆地风电的成本将与煤电持平,之后风电将逐步脱离国家补贴,“降低成本”也成为风电行业未来发展面临的新的“瓶颈”。南车株洲电机有限公司成功推出2.5MW高速永磁同步风力发电机,实现了发电机低成本制造,使机组极易实现低电压穿越,在国内处于技术领先水平。 永磁同步风力发电机由于机械损耗小、运行效率高、维护成本低等优点成为继双馈感应风电机组之后的又一重要风力发电机型受到广泛关注,并逐渐

直驱式风力发电机原理及发电机组概述

直驱式风力发电机原理及发电机组概述 二极三相交流发电机转速约每分钟3000转,四极三相交流发电机转速约每分钟1500转,而风力机转速较低,小型风力机转速约每分钟最多几百转,大中型风力机转速约每分钟几十转甚至十几转,必须通过齿轮箱增速才能带动发电机以额定转速旋转。下图是一台采用齿轮箱增速的水平轴风力发电机组的结构示意图。 使用齿轮箱会降低风力机效率,齿轮箱是易损件,特别大功率高速齿轮箱磨损厉害、在风力机塔顶环境下维护保养都较困难。不用齿轮箱用风力机浆叶直接带动发电机旋转发电是可行的,这必须采用专用的低转速发电机,称之为直驱式风力发电机。近些年直驱式风力发电机已从小型风力发电机向大型风力发电机应用发展,国内具有自主知识产权的2MW永磁直驱风力发电机已研制成功,据报道目前国外最大的风力发电机组已达7MW,是直驱式发电机组。 低转速发电机都是多极结构,水轮发电机就是低速多极发电机,风力机用的直驱式发电机也有类似原理构造,一种多极内转子结构,只是要求在结构上更轻巧一些。

近些年高磁能永磁体技术发展很快,特别是稀土永磁材料钕铁硼在直驱式发电机中得到广泛应用。采用永磁体技术的直驱式发电机结构简单、效率高。永磁直驱式发电机在结构上主要有轴向与盘式结构两种,轴向结构又分为内转子、外转子等;盘式结构又分为中间转子、中间定子、多盘式等;还有开始流行的双凸极发电机与开关磁阻发电机。 下图是一个内转子直驱式风力发电机组的结构示意图。其定子与普通三相交流发电机类似,转子由多个永久磁铁构成。 外转子永磁直驱式风力发电机的发电绕组在内定子上,绕组与普通三相交流发电机类似;转子在定子外侧,由多个永久磁铁与外磁軛构成,外转子与风轮轮毂安装成一体,一同旋转。本栏有对外转子直驱式风力发电机的专门介绍,下图是一个外转子直驱式风力发电机组的结构示意图。

永磁同步风力发电机的设计doc资料

精品文档 哈尔滨工业大学 《交流永磁同步电机理论》课程报告题目:永磁同步风力发电机的设计 院(系) 电气工程及其自动化 学科电气工程 授课教师 学号 研究生

精品文档 二〇一四年六月 第1章小型永磁发电机的基本结构 小型风力发电机因其功率低,体积小,一般没有减速机构,多为直驱型。发电机型式多种多样,有直流发电机、电励磁交流发电机、永磁电机、开关磁阻电机等。其中永磁电机因其诸多优点而被广泛采用。 1.1小型永磁风力发电机的基本结构 按照永磁体磁化方向与转子旋转方向的相互关系,永磁发电机可分为径向式、切向式和轴向式。 (1)径向式永磁发电机径向式转子磁路结构中永磁体磁化方向与气隙磁通轴线一致且离气隙较近,漏磁系数较切向结构小,径向磁化结构中的永磁体工作于串联状态,只有一块永磁体的面积提供发电机每极气隙磁通,因此气隙磁密相对较低。这种结构具有简单、制造方便、漏磁小等优点。 径向磁场永磁发电机可分为两种:永磁体表贴式和永磁体内置式。表贴式转子结构简单、极数增加容易、永磁体都粘在转子表面上,但是,这需要高磁积能的永磁体(如钕铁硼等)来提供足够的气隙磁密。考虑到永磁体的机械强度,此种结构永磁电机高转速运行时还需转子护套。内置式转子机械强度较高,但制造工艺相对复杂,制造费用较高。 径向磁场电机用作直驱风力发电机,大多为传统的内转子设计。风力机和永磁体内转子同轴安装,这种结构的发电机定子绕组和铁心通风散热好,温度低,定子外形尺寸小;也有一些外转子设计。风力机与发电机的永磁体外转子直接耦合,定子电枢安装在静止轴上,这种结构有永磁体安装固定、转子可靠性好和转动惯量大的优点,缺点是对电枢铁心和绕组通风冷却不利,永磁体转子直径大,不易密封防护、安装和运输[1]。表贴式和径向式的结构如图1-1 a)所示。

永磁直驱风力发电实验报告

实验一永磁同步风力发电系统接线实验 一、实验目的 1.掌握永磁同步风力发电系统的基本结构及组成; 2.掌握永磁同步风力发电实验系统各部分间的接线。 二、实验原理 1.永磁同步风力发电系统的结构及组成 永磁步风力发电系统主要由模拟风力发电机、双向变流器、电网以及电量监视仪表等部分组成。系统组成及控制原理框图如图1-1所示。 机侧变流器网侧变流器 图1-1永磁同步风力发电系统原理框图 2.模拟风力发电机 模拟风力发电机即永磁直驱风力发电机组,包括风力机及永磁同步发电机、和增量编码器等组成,其中风力机由三相异步变频调速电动机组成,其由单独地变频控制转动,来模拟风力机转动,如图1-2所示。另外,图1-3中的永磁直驱风力发电模拟系统控制柜里面包含三相变频器,是控制三相异步变频调速电机转动,模拟风机带动永磁同步电机转动发电,风力机的定子接线端接到该控制柜。图1-4中的直驱永磁风力发电机组变频柜里面包含机侧变流器和网侧变流器,是对永磁同步发电机发出的电进行PWM整流和逆变,增量编码器的A、A_、B、B_、Z、Z_信号输出端,以及永磁同步电机的定子输出端都要接到该控制柜。直驱永磁风力发电机组变频柜的输出端接到电网上,如图1-2所示。

增增增增增 增增增增增增增增增增增增增增 增增增 增增增增增增增增增增增增增增增 图1-2 永磁直驱发电机组结构图 图1-3 永磁直驱风力发电模拟系统控制柜

机侧控制 板 网侧 控制 板增量式 输入接 口 图1-4 永磁直驱风力发电机组变频柜 图1-5 电网接入端口 三、 实验内容及步骤 1. 实验准备 实验前请仔细阅读系统的安全操作说明及系统相关的使用说明书,识别并准备完成实验开始前所需的器件。 2. 实验步骤 1) 将机组中三相异步变频调速电动机的定子输入三相线接到永磁直驱风力发电模拟系统控制柜的U ,V ,W 端子上,注意变频器输出相序和风力机的定子输出相序一致。 2) 将机组中增量式编码器输出端口的A 、A _、B 、B _、Z 、Z _ 信号输出端口接到永磁直驱

永磁直驱式风力发电机的工作原理

-- 你好,你的这个问题问的比较广。我大概给你阐述下,对于现在国内国外大型水平轴风力发电机组,有双馈机和永磁直驱发电机。 永磁直驱发电机顾名思义是在传动链中不含有增速齿轮箱。?总所周知,一般发电机要并网必须满足相位、幅频、周期同步。而我国电网频率为50hz这就表示发电机要发出50hz 的交流电。学过电机的都知道。转速、磁极对数、与频率是有关系的n=60f/p。?所以当极对数恒定时,发电机的转速是一定的。所以一般双馈风机的发电机额定转速为1800r/mi n。而叶轮转速一般在十几转每分。这就需要在叶轮与发电机之间加入增速箱。 而永磁直驱发电机是增加磁极对数从而使得电机的额定转速下降,这样就不需要增速齿轮箱,故名直驱。而齿轮箱是风力发电机组最容易出故障的部件。所以,永磁直驱的可靠性要高于双馈。?对于永磁直驱发电机的磁极部分是用钕铁硼的永磁磁极,原料为稀土。?风轮吸收风能转化为机械能通过主轴传递给发电机发电,发出的电通过全功率变流器之后过升压变压器上网。?不知道有木有解释清楚。 还有什么不清楚可以继续追问,知无不言。 风力发电机也在逐步的永磁化。采用永磁风力发电机,不仅可以提高发电机的效率,而且能在增大电机容量的同时,减少体积,并且因为发电机采用了永磁结构,省去了电刷和集电环等易耗机械部件,提高了系统的可靠性,这也是风电发电机的发展趋势之一。?风力机的直驱化也是当前的一个热点趋势。目前大多风电系统发电机与风轮并不是直接相连,而是通过变速齿轮相连,这种机械装置不仅降低了系统的效率,增加了系统的成本,而且容易出现故障,是风力发电急需解决的瓶颈问题。直驱式风力发电机可以直接与风轮相连,增加了系统的稳定性,同时增大了电机的体积和设计制造以及控制的难度。直驱型风力发电系统是采用风轮直接驱动多极低速永磁同步发电机发电,通过功率变换电路将电能转换后并入电网,相对于双馈型发电系统,直驱式发电机采用较多的极对数,使得在转速较低时,发电机定子电压输出频率仍然比较高,完全可以在电机的额定等级下工作,并且其定子输出电压通过变流器后再和电网相接,定子频率变化并不会影响电网频率。在直驱风力发电系统中风机与发电机直接耦合,省去了传统风力发电系统中的国内难以自主生产且故障率较高的齿轮箱这一部件,减少了发电机的维护工作,并且降低了噪音。另外其不需要电励磁装置,具有重量轻、效率高、可靠性好的优点。 直驱永磁发电机与双馈异步发电机技术相比,由于不需要转子励磁,没有增速齿轮箱,效率要比双馈发电机高出20%以上,年发电量要比同容量的双馈机型高; 增速齿轮箱故障较高,维护保养成本高,直驱永磁发电机不需要齿轮箱,易于维修 保养;直驱永磁发电机采用全功率的交-直-交变频技术,与电网隔离,具有低电压穿越能力,对电网友好;?直驱永磁发电机的缺点是稀土永磁材料成本高,导致整机成本相对较高,永磁材料在高温、震动和过电流情况下,有可能永久退磁,致使发电机整体报废,这是直驱永磁发电机的重大缺陷。 --

永磁直驱风力发电机技术综述

永磁直驱风力发电机技术综述 发表时间:2018-07-02T11:27:53.600Z 来源:《电力设备》2018年第7期作者:左禾 [导读] 摘要:风能是一种清洁的可再生能源,其分布面广,开发利用潜力巨大,而风力发电则是最为常规的风能利用技术。 (西安中车永电捷力风能有限公司陕西西安 710000) 摘要:风能是一种清洁的可再生能源,其分布面广,开发利用潜力巨大,而风力发电则是最为常规的风能利用技术。永磁直驱风力发电机采用永磁体作为励磁系统,由风轮直接驱动发电机,是风力发电机的主要发展方向,通常采用径向气隙以及轴向气隙结构,包括减小起动转矩、冷却和散热设计、永磁体的固定以及发电机的防雷设计等关键技术。文章就永磁直驱风力发电机技术进行相关分析。 关键词:永磁直驱;风力发电机;技术应用 1 风力发电机 1.1 风力发电机含义 风力发电机主要是一种电力设备,其能够把风能转为机械功,从而带动转子旋转,最后输出交流电。在广义上,风能也作为太阳能,因此,风力发电机也是以大气为介质、太阳为热源的热能利用发电机。 1.2 风力发电机原理 风力发电原理说来很简单,但做起来很难,其利用风去带动风车叶片使叶片旋转,再通过增速机提高叶片旋转速度,以此促使发电机进行发电。风力发电相较于柴油发电要好很多,因为其利用自然能源。风力发电不能够作为备用电源,但其使用寿命长,可长期利用。 1.3 风力发电机类型 (1)异步型,包括笼型异步发电机和绕线式双馈异步发电机。(2)同步型,包括永磁同步发电机和电励磁同步发电机。(3)水平轴,目前利用最多的风力发电机类型。(4)垂直轴,新型的风力发电机。与水平轴风力发电机相比,其效率较高,且没有噪音,维护简单,中小型发电机首选。 1.4 永磁直驱风电机组的结构组成 永磁直驱风力发电机组没有齿轮箱,风轮直接驱动发电机,亦称无齿轮风力发电机,采用永磁体代替励磁线圈,减少了励磁损耗。此外,永磁电机无需从电网吸收无功功率来建立磁场,由于没有励磁装置,减少了很多电气设备,从而使机组具有可靠、高效、方便安装和维护等很多优点。因此,永磁直驱风力发电机组代表了未来风电行业的发展方向。 2 永磁直驱风力发电机关键技术 根据永磁直驱风力发电机的设计要求,主要包括以下关键技术。 2.1 减小起动转矩 由发电机齿槽效应带来的起动转矩,限制了风力发电机的稳定运行范围,导致风能利用率的降低,因此,在设计永磁直驱风力发电机时,降低起动转矩是一个重要设计要求,通常采用转子斜极、定子斜槽以及分数槽来减小起动转矩。 2.2 冷却系统 对发电机散热,目前常见的冷却方式有空冷、氢内冷、氢外冷和直接液冷等。 2.3 永磁体却和散热设计 目前,普遍采用先充磁后装配的方法来安装永磁体,由于永磁体吸力很大,需采用专门的磁钢安装工装,以保证人身和设备安全。为减小吸力对装配过程的影响,也可以采用先安装后磁化的方法来安装永磁体。 此外,由于永磁体是固定在发电机的转子上,在转子旋转时,会产生较大的离心力,特别是内转子结构的发电机,永磁体固定在转子外侧或外表面,离心力会使永磁体的固定存在困难。 2.4发电机的防雷设计 永磁直驱风力发电机组通常安装在空旷的地区或是雷暴比较频繁的沿海地区,容易遭受雷击,因此设计防止风力发电机组在雷击过程中受损坏的防雷系统显的尤为重要。 2.5 绝缘系统设计及绝缘材料的选用 永磁直驱发电机运行的可靠性和运行寿命主要取决于绝缘系统的设计及其材料选用,由于风力发电机使用的特殊地理环境(戈壁、草原、沿海等),对发电机的绝缘系统及绝缘材料有着特殊的要求,如防震、抗潮、耐盐雾及在低压、大电流绝缘系统的机械强度和因机械性能下降引发的绝缘性能衰退以及特殊环境下运行绝缘系统的耐候性问题等。因此,合理绝缘系统的设计及其材料的选用,对电机性能有至关重要的作用,在很大程度上决定了电机的效率和可靠性等因素。 3 控制系统的关键技术 控制系统作为风电机组的关键组成部分,其性能直接影响到机组的性能,效率和稳定性。目前,较为先进的风电机组控制系统多采用变速恒频技术和变桨距控制技术。变速恒频技术使风力发电机组在不同风速下变转速运行,极大的提高了机组发电效率。而风轮是风力发电系统捕获风能的重要部件,直接影响着系统的安全性与稳定性,因此变桨距控制技术也是风电控制系统的关键技术。 3.1 变速恒频技术 在风力发电系统中,风速的变化率较高,为了尽可能的提高风能利用率,目前的主流风力发电机组多采用变速恒频技术,即风力发电机可以在不同的风速下运行在不同的转速范围内,追踪最大Cp值,使机组的发电效率提升。 风电机组的转速控制决定了整个系统的性能、发电效率以及输出电能质量。现阶段的风力发电机组有恒速风电机组和变速恒频风电机组。 恒速风电机组在运行时转速不变,但由于风速是时刻变化的,所以机组转速偏离最佳Cp点,风能利用率较差。因此恒转速运行的机组的发电效率比较低。所以,目前的主流机型多为变速恒频发电机组,永磁直驱风力发电机组就是变速恒频风力发电机组,此机型由于拥有全功率变频器,即发电机定子出线端连接变频器整流侧,经变频器整流再逆变后上网,与电网保持同频同压同相,从而实现机组的变速恒频运行。机组在低于额定风速以下工况运行时,控制系统通过控制变频器转矩实现对发电机转速的调节,使机组始终运行在Cp最大的区域,控制框图如图1所示,在此过程中,变桨角度始终为0度。主控制系统只根据发电机转速计算转矩值并传输到变频器,由变频器实现对

双馈风电机组与永磁直驱机组对比

双馈风电机组与永磁直驱机组对比 摘要:清洁能源在电力系统中的大规模利用,使得风电机组在电网中的占比日 益扩大,其运行特性极大地影响电力系统的运行稳定性.本文分析了双馈变速与直 驱同步风电机组的结构特点。 关键词:电力系统;风力机组;永磁直驱机 风力发电机组主要包括变频器、控制器、齿轮箱,发电机、主轴承、叶片等 部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包括两种机型:永磁同步发电机和异步发电机。永磁同步发电机低速 运行时,不需要庞大的齿轮箱,但机组体积和重量都很大,1.5MW的用词直驱发 电机机舱会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵, 技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,在带动异步发电机运行,因为叶片速度很低, 齿轮箱可以变速100倍,以让风机在额定转速下运行,目前流行的是双馈异步发 电机,主要有1.25MW\1.5MW\2MW三种机型,异步发电机组的机组单价低,技 术成熟,国产化高。 一、双馈风力发电系统 双馈风力发电机组的控制核心是通过变流器对双馈发电机转子电流(频率、 幅值、相位)的控制,以达到与风电机组机械部分运行特性匹配、提高风能的利 用效率及改善供电质量的目的。 1、双馈变速恒频型风力发电机组的风轮叶片桨距角可以调节,同时发电机可 以变速,并输出恒频恒压电能; 2、在低于额定风速时,他通过改变转速和叶片桨距角使风力发电机组在最佳 叶尖速比下运行,输出最大的功率; 3、在高风速时通过改变叶片桨距角使风力发电机组功率输出稳定在额定功率。 双馈风力发电系统主要由叶片、增速齿轮箱、双馈发电机、双向变流器和控 制器组成。双馈式风力发电机组将风轮吸收的机械能通过增速机构传递到发电机,发电机将机械能转化为电能,通过发电机定子、转子传送给电网。发电机定子绕 组直接和电网连接,转子绕组和变频器相连。变频器控制电机在亚同步和超同步 转速下都保持发电状态。在超同步发电时,通过定转子两个通道同时向电网馈送 能量,双馈式风力发电机在亚同步和超同步转速下都可发电。故称双馈技术主要特点 发电机采用绕线式异步电机,定子直接与电网相连,转子侧通过变流器与电 网相连。当双馈发电机的负载和转速变化时,通过调节馈入转子绕组的电流,不 仅能保持定子输出的电压和频率不变,而且还能调节双馈发电机的功率因数。 1发电机转子侧变流器功率仅需要25%~30%的风机额定功率,大大降低了变 流器的造价; 2发电机体积小、运输安装方便、成本低; 3可承受电压波动范围:额定电压±10%; 4网侧及直流侧滤波电感、电容功率相应缩小,电磁干扰也大大降低; 5可方便地实现无功功率控制。 主要缺点

直驱式永磁同步风力发电变流器

1.3风力发电变流器技术 电力电子变流器(系统)是风力发电机组与电网的核心中间环节,堪称风力发电系统的重中之重。在风机控制器的统筹管理下,变流器要实现发电机组的最大风能捕获(MPPT );同时还必须使机组具备低电压穿越等故障保护功能,向电网输送高品质电能。并且受限于风电机组的空间尺寸与成本,变流器必须做到较高的功率密度与可靠性。这对变流器系统的电磁性能、结构及安全易用性等设计研究均提出了较高要求。 1.3.1变流器拓扑与控制 以永磁直驱式风力发电系统为例,整个风机系统的控制框图如图1.4所示。其中,变流器的控制主要包括PMSG的(电机侧)PWM整流控制技术与电网侧PWM逆变器控制技术。电机侧PWM变流器通过对发电机定子励磁与转矩电流的解耦控制,实现电机转速调节,使其具备最大风能捕获功能,已有如最大转矩/电流比控制、效率最优控制、定子磁通矢量控制、直接转矩控制等;电网侧PWM变流器均通过调节网侧的交直轴电流,保持直流侧电压稳定,实现有功和无功的解辅控制,保持机组运行在变速恒频发电状态;同时,配合输出滤波器来保证电能质量,并对电网故障进行实时检测,以实现LVRT功能气 图1.4风机系统的控制框图 对于直驱式风电变流器系统,变流器拓扑常见的有如下几种[3 ]。 图1.5 二极管不控整流+逆变

如果将可控器件GTO或者IGBT应用至机侧和网侧变流器,如图1.8。利用PWM(脉宽调制)技术不但使电流波形得到很好的控制,而且PWM变流器可以四象限运行。采用PWM调制的发电机侧变流器自然为BOOST电路,发电机可以在很宽的风速范围内运行,使系统的风能捕获效率得到显著改善。特别是双PWM结构的变流器中,能量可以双向流动,使发电机控制的灵活性得到极大提高,通过釆用更多的先进控制策略,极大的提高了系统整体性能。随着可控半导体功率器件技术的不断发展,双PWM背靠背变流器结构得到越来越广泛的应用。 1.3.2变流器结构设计 正如前文所述,由于风电机组可能面临的各种恶劣环境条件(如风沙、严寒、沿海及海上等),同时受限于变流器有限的安装维护空间,对于风力发电应用场合变流器的功率密度、防护等级、维修性与可靠性要求较为严苛,这就对变流器的结构设计与生产提出了更高要求。 尤其对于兆瓦级低压(直流侧电压不大于1100V)大容量风电变流器,由于电压等级并不算太高,变流器通过的额定电流较大.一些在小容量应用场合中无需关注甚至根本不会存在的问题却会成为这类变流器设计的难点及关键,如开关器件的限制,各种连接线、接头及其线路杂散参数的影响,散热系统设计,系统的高

相关主题
文本预览
相关文档 最新文档