当前位置:文档之家› 梁壳组合结构的有限元合理建模

梁壳组合结构的有限元合理建模

梁壳组合结构的有限元合理建模
梁壳组合结构的有限元合理建模

2 梁壳组合结构的有限元建模

2.1 单元类型的选择

对于需要混合使用多种类型单元的梁壳组合结构而言,为了在不同类型的单元间实现无缝连接,保证相互间载荷传递的正确性,根据所分析问题的要求选择合适的单元类型是非常重要的。要实现这一点,最基本的就是要保证所选梁单元和壳单元具有相同的结点自由度类型及数量,进一步的,对于一些特殊类型的结构保证单元具有相同的阶次或相近的形函数形式也是非常重要的。此外,为了保证加强板的作用能被充分考虑,加强板需要用多个单元离散,与之焊接的梁也相应的需要划分多个单元,这可能导致最终的梁单元为深梁,此时就应考虑选用计及剪切变形影响的梁单元。

ANSYS提供了多种用于梁、壳建模的单元类型,以满足不同分析场合的要求。由于工程机械结构的重要性,在设计时不需要考虑其塑性的扩展和利用、其始终处于弹性阶段,因此对梁构件可选用BEAM188单元类型、壳体构件可选用SHELL43单元类型。BEAM188单元与SHELL43单元均为一次单元,每个单元结点均有6个自由度:三个平动自由度(ux,uv,uz)和三个转动自由度(θx

,θv,θz),可以保证受力的正确传递。Shell43单元考虑了剪切变形的影响,适合于中等厚度的壳体建模。Beam188单元是Timoshenko梁单元,采用如下形式的形函数:

(1)

式中:ui—某方向位移场;s—ui方向的自然坐标;

梁壳组合结构的有限元合理建模

王强 贵州交通职业技术学院 550008

1 引言

在当前实际应用的工程结构中,出于结构形式、连接条件、承载要求等方面的考虑,很多工程结构都采用梁壳组合结构的形式作为各种外加载荷的支撑件,如工程机械领域的港口起重机、动臂式塔机等的桁架吊臂往往在臂头和臂根焊接钢板以局部加强。此外,为了分析的需要或简化建模与计算,也往往将一些纯板壳焊接结构作为梁壳组合结构进行分析。

对梁壳组合结构进行力学分析以保证其强度和刚度满足使用要求是设计中必不可少的一环。显然要获得此类结构的理论解析解几乎是不可能的,在工程实际中往往要借助于有限元方法。有限元分析中最重要的步骤是有限元模型的建立和约束、载荷的施加,后者需要满足特定行业设计规范的要求,有一定的程式可循,而针对此类结构的特点,快速、合理建模问题还少有谈及。因此,本文以当前应用较为广泛的通用有限元软件ANSYS为平台,探讨复杂梁壳组合结构有限元模型的快速、合理建模方法及在建模过程中应注意的问题,对同类结构的有限元建模提供一些可供借鉴的有益经验。

uiI、uiJ—ui方向的单元始、终结点位移。与Euler-Bernoulli梁相比,其计入了剪切变形对梁弯曲的影响,适合于短粗梁的有限元建模。

2.2 有限元模型的建立

ANSYS提供了两种建模方式:一是首先建立结构的几何模型,通过对几何模型进行有限元网格离散而获得有限元模型;二是首先生成结点,随后由结点直接生成单元而获得有限元模型。至于具体使用何种建模方式或综合使用此两种建模方式应依据结构的实际情况灵活决定。

工程机械等领域中的梁壳组合结构往往以梁为主要承载构件,板壳仅起局部加强作用。有限元方法中的梁单元属线单元,当使用二结点线性梁单元时,其有限元模型的几何表现为一条直线,通常在其形心轴线位置上建立有限元模型。在梁壳组合结构中,梁是主要构件,且需要与其它构件相连,因此在其有限元建模时位置不能改变,即仍应按其形心轴线建模;板壳属附属构件,在对其进行有限元建模时,由于壳体构件需要使用许多单元离散,而通过结点生成单元的方式逐一生成这些单元无疑将非常烦琐,尤其是当加强板较多时,因此对壳体应采用第一种建模方式。

综合上述分析,工程机械中复杂梁壳组合结构的有限元建模有两种方法,本文通过图1(a)中所示结构为例加以说明,图中两根梁之间焊接了一块加强板,在此假设梁为圆管(工程机械的此类结构中的梁大部分为圆管,对其它截面形式的梁建模方法基本相同)。第一种建模方法的步骤如下:

(1)在梁的形心线和加强板的中平面位

图3 港口起重机桁架吊臂的有限元模型和分析结果

图1 梁壳组合结构几何模型和有限元模型示意图图2 梁壳组合结构及其有限元模型

置分别建立它们的几何模型;

(2)对几何模型进行有限元网格离散获得有限元模型;

(3)对梁单元和壳单元相应结点对进行相应自由度的耦合。

最终的有限元模型示意图如图1(b)所示,为了便于表达图中用黑点绘出了梁单元和两侧壳单元外缘的结点,d=D/2。在这种建模方法中应注意:应保证耦合结点对的相对位置与实际情况基本一致,为此可在有限元离散前为梁和加强板上与梁焊接的边指定相同的网格分段数。

第二种建模方法的步骤为:

(1)首先将加强板延伸至梁的形心线,建立其几何模型;

(2)对加强板的几何模型进行有限元网格离散,得到其有限元模型;

(3)利用加强板有限元模型正确位置上的结点生成梁的有限元模型。

最终的有限元模型示意图如图1(c)所示,图中用黑点绘出了梁单元和壳单元的共用结点。在这种建模方法中应注意:为了方便生成梁的有限元模型,在对加强板的几何模型进行有限元网格离散前应指定与梁焊接的加强板边线的有限元网格大小或分段数,使该边线上的结点具有明确的坐标,以便使用ANSYS的内嵌函数NODE(xm,ym,zm)(根据结点坐标(xm,ym,zm)获取结点)能正确捕捉到该边线上的结点,为建立梁的有限元模型做准备。ANSYS还提供了循环功能,其与FORTRAN语言中的DO循环和C语言中的FOR循环相似,这样就不需要由手工方式逐一生成梁单元,极大地方便了焊有多个加强板的结构的有限元建模。

上述两种建模方法各有优缺点,方法一比较符合结构的受力特点,但在建模时需要考虑的因素较多,即使使用ANSYS的循环功能耦合工作量也很大,操作不便;方法二对加强板进行了部分延长(如图1(c)中延长了d),但梁本身具有厚度,这种延长对计算的影响不大,且这种方法与方法一相比较为方便。在实际建模中可根据不同的结构特点进行选择,而第二种方法比较而言更为简便,且可以满足工程计算精度的要求。

上述第二种建模方法可以很自然地推广到当加强板四周均与梁焊接的情况。例如图2左图中有一用圆管焊接而成的结构,为了提高其绕X轴的抗弯刚度,在其内部焊接了一块加强板,该加强板也同时提高了结构绕Z轴和Y轴的抗弯刚度。此外,在分析中认为焊接质量可靠,梁与加强板作为一个组合整体共同承载。使用第二种建模方法的建模过程如下:首先将加强板的四边延长至梁的形心轴线位置,建立加强板的几何模型——一个平面;为加强板的四边指定单元大小或网格分段数;使用壳体单元为此加强板的几何模型划分网格,获得其有限元模型;使用加强板边线上的结点结合ANSYS循环功

工作温度偏低,流量计的曲线向正的方向

变化,按标准要求检定温度应和工作相吻合,才能保证流量计在交接过程中的准确性。有公式可以证明流量计计量腔容积变化的附加误差:E=E1-βm(t-t1)

式中:E——工作温度下实际使用时的基本误差%

E1——检定温度下的基本误差%t1——检定时的液体温度℃

t——流量计运行中的液体温度℃βm——流量计计量腔材质的体积膨胀系数1/℃

按上式计算,如果流量计检定时的温度比流量计运行时温度高10℃,则引起的附加误差为:ΔΕ=E-E1=-βm(t-t1)=-36χ10-6(-10)=3.6χ10-4(流量计腔体为铸钢,体膨胀系数取0.000036/℃),由于标定温度上升10℃,流量计计量腔容积变化所引起的误差为0.04%。如果是甲方流量计采用这种方法,则对甲方有利,反之不利。

四、温度对测定密度的影响

质量把关重在化验基础工作,对不同的油种、不同温度、不同密度、不同黏度进行测试对比,掌握其变化规律,计量交接,测定密度时,温度又是关键因素之一,控制好化验室的环境温度,测定密度时尽量接近油品的实际温度,应在油品的实际温度的±3℃范围内测定密度,两次测定密度的温度不能超过0.5℃,在整个测定密度的过程中环境温度的变化不能大于2℃,当环境温度变化大于±2℃时,应使用恒温水浴,读数时力求准确,读数方法要标准,因为温度相差0.25℃,密度误差0.01%至0.02%,交接的数量越多误差越多。

温度对油品计量交接的影响,远不止上述几个方面,需要探讨的方面很多,这就需要我们在计量交接中去挖掘,研究温度,掌握好温度,利用好温度,同时,要抓好油品计量交接的质量管理,努力学好各种标准,学好技术,在细节上下工夫,准确测定密度、含水、温度、压力等参数,保证计量交接的准确性,提高原油的销售效益。

梁壳组合结构的有限元合理建模

2 梁壳组合结构的有限元建模 2.1 单元类型的选择 对于需要混合使用多种类型单元的梁壳组合结构而言,为了在不同类型的单元间实现无缝连接,保证相互间载荷传递的正确性,根据所分析问题的要求选择合适的单元类型是非常重要的。要实现这一点,最基本的就是要保证所选梁单元和壳单元具有相同的结点自由度类型及数量,进一步的,对于一些特殊类型的结构保证单元具有相同的阶次或相近的形函数形式也是非常重要的。此外,为了保证加强板的作用能被充分考虑,加强板需要用多个单元离散,与之焊接的梁也相应的需要划分多个单元,这可能导致最终的梁单元为深梁,此时就应考虑选用计及剪切变形影响的梁单元。 ANSYS提供了多种用于梁、壳建模的单元类型,以满足不同分析场合的要求。由于工程机械结构的重要性,在设计时不需要考虑其塑性的扩展和利用、其始终处于弹性阶段,因此对梁构件可选用BEAM188单元类型、壳体构件可选用SHELL43单元类型。BEAM188单元与SHELL43单元均为一次单元,每个单元结点均有6个自由度:三个平动自由度(ux,uv,uz)和三个转动自由度(θx ,θv,θz),可以保证受力的正确传递。Shell43单元考虑了剪切变形的影响,适合于中等厚度的壳体建模。Beam188单元是Timoshenko梁单元,采用如下形式的形函数: (1) 式中:ui—某方向位移场;s—ui方向的自然坐标; 梁壳组合结构的有限元合理建模 王强 贵州交通职业技术学院 550008 1 引言 在当前实际应用的工程结构中,出于结构形式、连接条件、承载要求等方面的考虑,很多工程结构都采用梁壳组合结构的形式作为各种外加载荷的支撑件,如工程机械领域的港口起重机、动臂式塔机等的桁架吊臂往往在臂头和臂根焊接钢板以局部加强。此外,为了分析的需要或简化建模与计算,也往往将一些纯板壳焊接结构作为梁壳组合结构进行分析。 对梁壳组合结构进行力学分析以保证其强度和刚度满足使用要求是设计中必不可少的一环。显然要获得此类结构的理论解析解几乎是不可能的,在工程实际中往往要借助于有限元方法。有限元分析中最重要的步骤是有限元模型的建立和约束、载荷的施加,后者需要满足特定行业设计规范的要求,有一定的程式可循,而针对此类结构的特点,快速、合理建模问题还少有谈及。因此,本文以当前应用较为广泛的通用有限元软件ANSYS为平台,探讨复杂梁壳组合结构有限元模型的快速、合理建模方法及在建模过程中应注意的问题,对同类结构的有限元建模提供一些可供借鉴的有益经验。 uiI、uiJ—ui方向的单元始、终结点位移。与Euler-Bernoulli梁相比,其计入了剪切变形对梁弯曲的影响,适合于短粗梁的有限元建模。 2.2 有限元模型的建立 ANSYS提供了两种建模方式:一是首先建立结构的几何模型,通过对几何模型进行有限元网格离散而获得有限元模型;二是首先生成结点,随后由结点直接生成单元而获得有限元模型。至于具体使用何种建模方式或综合使用此两种建模方式应依据结构的实际情况灵活决定。 工程机械等领域中的梁壳组合结构往往以梁为主要承载构件,板壳仅起局部加强作用。有限元方法中的梁单元属线单元,当使用二结点线性梁单元时,其有限元模型的几何表现为一条直线,通常在其形心轴线位置上建立有限元模型。在梁壳组合结构中,梁是主要构件,且需要与其它构件相连,因此在其有限元建模时位置不能改变,即仍应按其形心轴线建模;板壳属附属构件,在对其进行有限元建模时,由于壳体构件需要使用许多单元离散,而通过结点生成单元的方式逐一生成这些单元无疑将非常烦琐,尤其是当加强板较多时,因此对壳体应采用第一种建模方式。 综合上述分析,工程机械中复杂梁壳组合结构的有限元建模有两种方法,本文通过图1(a)中所示结构为例加以说明,图中两根梁之间焊接了一块加强板,在此假设梁为圆管(工程机械的此类结构中的梁大部分为圆管,对其它截面形式的梁建模方法基本相同)。第一种建模方法的步骤如下: (1)在梁的形心线和加强板的中平面位 图3 港口起重机桁架吊臂的有限元模型和分析结果 图1 梁壳组合结构几何模型和有限元模型示意图图2 梁壳组合结构及其有限元模型

第9章 桁架和梁的有限元分析

第9章桁架和梁的有限元分析 第1节基本知识 一、桁架和梁的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中最常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表9-1。 通过对桁架和梁进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位

移动画等结果。 第2节桁架的有限元分析实例 一、案例1——2D桁架的有限元分析 图9-1 人字形屋架的示意图 问题 人字形屋架的几何尺寸如图9-1所示。杆件截面尺寸为0.01m2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0×1011 N/m2,泊松比为0.3。 解题过程 制定分析方案。材料弹性材料,结构静力分析,属2D桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图9-1所示,边界条件为1点和5点固定,6、7、8点各受1000 N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility>Menu>File>Clear & Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility>Menu> File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Utility>Menu>File>Change Title,弹出Change Title对话框,在Enter New Title项输入标题名,本例中输入“2D-spar problem”为标题名,然

考虑剪力连接件刚度的钢-混凝土组合梁有限元分析

考虑剪力连接件刚度的钢!混凝土 组合梁有限元分析 方 恺 陈世鸣 (同济大学结构工程与防灾研究所 上海 !"""#!) 摘 要:钢$混凝土组合梁剪力连接程度是依据截面极限状态的抗弯强度定义的,即使是完全抗剪连 接,组合梁的混凝土板与钢梁之间仍存在滑移。采用有限元分析,构造了混凝土板$连接单元$钢梁的组合梁有限元计算模型,推导了混凝土与钢梁界面有限元连接单元刚度系数,分析了不同剪力连接程度组合梁的受力与变形特性,研究了剪力连接程度对挠度和混凝土翼缘有效宽度的影响,并对照已有的试验数据和相关规范进行分析比较。 关键词:组合梁 刚度 剪力连接 有效翼缘宽度 "#$#%&&’&(&$%)$)’*+#+,"+%&&’%-,$-.&%&-,(/,+#%&0&)(+1#%2 #$"’3&$-&,"%2&+2&).-,$$&-%,.+%#""$&++ &’()*’+,-.(/-+0+() (/1234132’56()+(..2+()78(1+9+:’:1.2;(:1+131.<=><()?+@(+A.2:+1B /-’()-’+!"""#!) )4567896:,322.(19.=+(+1+<(<=:-.’24<((.41+<(9.)2..<=:1..5%4<(42.1.4<0C<:+1.D.’0+:D’:.9<(1-.351+0’1.=5.E32’5:12.()1-<=1-.42<::%:.41+<(<=1-.D.’0F G-.=<24.9’(99.=<20’1+<(4-’2’41.2+:1+4:<==+A.:1..5%4<(42.1.4<0C<:+1.D.’0:H+1-A’2+.94<((.41+<(9.)2..:’2.:139+.9F >-.+(=53.(4.<=1-.:-.’24<((.41<2:1+==(.::<(1-..==.41+A.H+91-:<=4<(42.1.=5’().+:’5:<’(’5BI.9F >-.4’5435’1.92.:351:’2.4<0C’2.9H+1-1-.1.:19’1’’(91-.4322.(1:C.4+=+4’1+<(2.:C.41+A.5BF :;<=>7?5:4<0C<:+1.D.’0 :1+==(.:: :-.’24<((.41+<( .==.41+A.H+91-<==5’(). 第一作者:方 恺 男 J#KL 年L 月出生 硕 士 收稿日期:!""M $"M $!" 剪力连接程度是影响钢$混凝土组合梁中混凝土与钢梁组合作用的一个重要参数,剪力连接程度的提高可改善组合梁的强度、刚度,达到两种材料“组合”作用的充分利用。 现行相关设计规范采用换算截面法计算钢$混凝土组合梁截面特性,假定组合梁为完全剪力连接,即: !N !O !=!J (J )式中,!为剪力连接系数;!为控制剪跨内叠合面上连接件数目;!=为截面达到塑性极限抗弯强度时在控制剪跨内所需的连接件数目。 由于剪力连接程度是依据组合梁截面的强度极限定义的,忽略了混凝土与钢梁之间的滑移影响。试验发现,即使是完全剪力连接,两种材料交界面上的滑移仍不可避免。界面滑移使截面的实际弹性弯矩小于采用换算截面法的弯矩 计算值,同时使构件的挠度和应变增大[J ,!]。 本文根据剪力连接件的连接刚度来分析两者的组合作用,采用有限元分析方法,推导了剪力连接件的刚度系数形式,研究了连接栓钉刚度对组合梁受力、变形性能的影响。 @有限元计算模型 混凝土板、钢梁和剪力连接件是钢$混凝土组合梁三个 重要组成部分,采用有限元模型见图J ,其中混凝土板采用板壳单元,钢梁和连接件采用梁单元和P+(Q 单元。 组合梁钢梁模型采用弹塑性梁元,二折线本构建模。考虑到简支组合梁的混凝土板受压,建模中对其采用等参板壳单元,忽略混凝土板中的构造钢筋,视混凝土为各向同性材料,等效本构关系按文献[M ]选用: "N "4J $J $#O #()[]"#"#"(!)式中,"4为抗压强度,#"为峰值应力下的应变。为避免计算中可能出现的奇异,暂不考虑曲线的下降段效应。 剪力连接件采用悬臂梁单元(图J ),为避免钢梁和混凝土板相互之间过大的竖向变形,可将连接件截面积取大,以 R K ;(93:12+’5,<(:12341+<(S<5TMM ,U

梁结构应力分布ANSYS分析汇总

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062 2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,

钢_混凝土组合梁疲劳性能的有限元分析_1

图1组合梁截面示意

图4试验与有限元数据比较 编号FSCB-1FSCB-2FSCB-3FSCB-4FSCB-5FSCB-6FSCB-7 荷载/kN P max120.0114.0128.7118.0114.6110.0101.1 P min20303030302020 DP100.084.098.788.084.690.080.1 应力,并指定事件(Event)的重复次数和比例系数;激活疲 劳计算。 2数值算例 2.1计算参数取值 本文采用上述有限元模型分析7个组合梁分别为: FSCB-1、FSCB-2、FSCB-3、FSCB-4FSCB-5、FSCB-6和 FSCB-7七根梁的截面尺寸、栓钉间距以及混凝土板做法完 全相同,其配筋率rst和混凝土抗压强度fcu见表1。 2.2模型建立及计算结果 本模型是由三部分组成:混凝土板、连接件和钢梁。其 中混凝土板是由SOLID65构成,根据7根不同配筋率和混凝 土强度的试件设置混凝土的含筋量和混凝土抗压强度,工字 钢梁是有SOLID45构成,连接件的作用通过钢筋混凝土板和 钢梁应用GLUE命令来实现的,采用接触面耦合自由度的方 法使混凝土板和工字梁完全连接。 2.2.1S-N曲线 通过试验建立等幅循环应力与疲劳破坏时循环次数之间 的关系,即S-N曲线为: logN k+4.81logΔτ=16.23(2) 2.2.2等幅疲劳荷载和疲劳损伤累积 (1)疲劳荷载。 试验中施加的是常幅疲劳荷载,如图3。试验荷载结果, 见表2。 (2)疲劳损伤累积。 迄今为止,大部分疲劳试验都是研究等幅荷载下的疲劳 问题,ANSYS采用的是Miner线性积累损伤法.Miner线性积 累损伤法假定:①低于疲劳极限的应力不导致疲劳损伤;② 大小不同载荷加载顺序的影响忽略不计;③临界疲劳损伤 DCR=1。 (3)疲劳寿命。 从有限元分析过程可以看出,在疲劳荷载作用下,栓 钉、混凝土与钢梁结合部产生应力较大,随着疲劳次数的增 加,同时栓钉的疲劳承载力也不断下降,降低的速率取决于 作用在栓钉上的疲劳荷载幅,荷载幅越大则栓钉的静力极限 承载力下降越快.由荷载引起的剪力在尚未发生疲劳破坏的栓 钉之间重新分布,使剩余栓钉承受的剪力增大.随着疲劳次数 的增加,栓钉承载力进一步降低,又有栓钉被荷载上限引起 的剪力剪断,又进一步引起剪力重分布现象。 2.3结果分析与讨论 本文结合组合梁的试验数据,与有限元分析结果进行了 比较。 2.3.1疲劳寿命 梁疲劳寿命比较见表3、图4。 从表3和图4可以看出,FSCB-1和FSCB-2,FSCB-3 和FSCB-4具有相同的配筋率,当混凝土抗压强度越高时, 其对应的试件疲劳寿命也越大,并且当混凝土抗压强度提高 时,其疲劳寿命相应的提高很大;从表上看比较明显,例如 FSCB-4和FSCB-5,FSCB-5配筋率明显小于FSCB-4,但无 论是实验还是数值分析中FSCB-5的疲劳寿命都大于FSCB-图2组合梁加载示意 图3疲劳试验加载路径 表2试验荷载 表3疲劳寿命对比 梁号FSCB-1FSCB-2FSCB-3FSCB-4FSCB-5FSCB-6FSCB-7 rst/%0.770.770.610.610.450.610.61 fcu/MPa35.336.836.441.845.334.434.4 表1组合梁试件设计参数 编号FSCB-1FSCB-2FSCB-3FSCB-4FSCB-5FSCB-6FSCB-7 rst/%0.770.770.610.610.450.610.61 fcu/MPa35.336.836.441.845.334.434.4 试验中疲劳次数/万38.0-206.0(实振)68.5170.0179.034.822.0 有限元中疲劳次数/万46.0-721801903713 ◎研究与应用 49

梁单元的分析

梁单元有限元法分析 关键词:梁单元有限元分析 1.摘要:二维平面梁单元是梁单元中最简单的单元之一,这次作业旨在学习如何运用有限元分析法分析梁单元。 2.目的:运用MATLAB软件分析二维梁单元。 3.题目:设一方形的截面梁,截面每边长为5cm,长度为10m,在左端约束固定,在右端施以一个沿y方向的集中力ω=100N,求其挠度与转角。 3.建立有限元分析模型: (1).结构离散化: 单元的选择:由于为悬臂梁,且横向的长度远远小于轴向的长度,所以在这选择平面梁单元; 单元的数量:将这个梁从中间划分为两个单元; 建立坐标系,坐标系包括结构的整体坐标系与单元的局部坐标系; (2.)建立平面梁单元的位移模式: 建立整体坐标系: 建立一个有两个单元组成的模型,由于X方向的位移U1,U2,U3太小所以我们略去这三个自由度的变化;节点坐标码: 单元编码: 同样出1号单元,建立局部坐标系:

4.具体的MATLAB求解过程与结果:>> clear x1=0; x2=sym('L'); x=sym('x'); j=0:3; v=x.^j v = [ 1, x, x^2, x^3] >> %计算形函数矩阵 m=... [1 x1 x1^2 x1^3 0 1 2*x1 3*x1^2 1 x 2 x2^2 x2^3 0 1 2*x2 3*x2^2] m = [ 1, 0, 0, 0] [ 0, 1, 0, 0] [ 1, L, L^2, L^3] [ 0, 1, 2*L, 3*L^2] >> mm=inv(m) mm = [ 1, 0, 0, 0] [ 0, 1, 0, 0] [ -3/L^2, -2/L, 3/L^2, -1/L] [ 2/L^3, 1/L^2, -2/L^3, 1/L^2] >> mm=inv(m);

实验一梁结构静力有限元分析(精)

实验一 梁结构静力有限元分析 一、实验目的: 1、 加深有限元理论关于网格划分概念、划分原则等的理解。 2、 熟悉有限元建模、求解及结果分析步骤和方法。 3、 能利用ANSYS 软件对梁结构进行静力有限元分析。 二、实验设备: 微机,ANSYS 软件(教学版)。 三、实验内容: 利用ANSYS 软件对图示由工字钢组成的梁结构进行静力学分析,以获得其应力分布情况。 A-A B-B 四、实验步骤: 1、建立有限元模型: (1) 建立工作文件夹: 在运行ANSYS 之前,在默认工作目录下建立一个文件夹,名称为beam ,在随后的分析过程中所生成的所有文件都将保存在这个文件夹中。 启动ANSYS 后,使用菜单“File ”——“Change Directory …”将工作目录指向beam 文件夹;使用“Change Jobname …”输入beam 为初始文件名,使分析过程中生成的文件均以beam 为前缀。 选择结构分析,操作如下: GUI: Main Menu > Preferences > Structural (2) 选择单元: 操作如下: GUI: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Structural Beam >3D 3 node 189 然后关闭Element Types 对话框。 (3) 定义材料属性: 定义弹性模量和泊松比,操作如下: GUI: Main Menu > Preprocessor > Material Props > Material Models > Structural > linear > Elastic > Isotropic 在弹出的对话框中输入材料参数: 杨氏模量(EX): 2.06e11 泊松比(PRXY): 0.3 (4) 定义梁的截面类型和尺寸: 操作如下: GUI: Main Menu > Preprocessor > Sections > Beam > Common Sections 选择“工”字型,W1=W2=0.4,W3=0.6,t1=t2=t3=0.015 (5)创建实体模型: F=10000N 6m 6m A A B B

基于有限元软件ABAQUS的组合结构分析

基于有限元软件ABAQUS的组合结构分析 摘要:本文通过大型有限元工程模拟软件ABAQUS对波纹钢腹板组合梁建立有限元模型,并与试验数据作对比,检验有限元分析的正确性。 关键词:组合梁、有限元 Abstract: this paper through the large finite ABAQUS software engineering simulation of the corrugated steel beams webs, a finite element model and with the test data as compared to test the validity of the finite element analysis. Key words: the composite beams, finite element 0引言 有限元数值分析方法起源于20世纪50年代飞机结构分析,并由其理论依据的普遍性己被推广到其它很多领域。在结构分析领域,几乎所有的弹塑性结构静、动力学问题都可以用它求得满意的数值结果。桥梁结构作为众多结构中的一种,利用有限元数值方法分析其力学特性同样可以得到很好的数值分析结果。 波纹钢腹板预应力组合箱梁桥是20世纪80年代起源于法国的一种新型组合桥梁,此类新型结构与传统的混凝土箱梁相比有以下优点:(1) 自重降低,抗震性能好。腹板采用较轻的波形钢板,其桥梁自重与一般的预应力混凝土箱梁桥相比大为减轻,地震激励作用效果显著降低,抗震性能获得一定的提高。(2) 改善结构性能,提高预应力效率。波形钢腹板的纵向刚度较小,几乎不抵抗轴向力,因而在导入预应力时不受抵抗,从而有效地提高预应力效率。(3)充分发挥各种材料特性。在波形钢腹板预应力箱梁桥中,混凝土用来抗弯,而波形钢腹板用来抗剪,几乎所有的弯矩与剪力分别由上、下混凝土翼缘板和波形钢腹板承担,而且其腹板内的应力分布近似为均布图形,有利于材料发挥作用。[1-5] 本文通过大型有限元工程模拟软件ABAQUS对波纹钢腹板试验梁建立有限元模型,并与试验数据作对比,检验有限元分析的正确性。 1 有限元建模 1.1单元选择 有限元工程模拟软件的实体单元库包含二维和三维的一阶插值单元和二阶插值单元,积分方式有完全积分和减缩积分。三维实体单元有四面体和六面体。四面体单元有4节点12自由度和10节点30自由度的四面体单元,六面体单元

ansys桁架和梁的有限元分析

桁架和梁的有限元分析 第一节基本知识 一、桁架和粱的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中晕常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表7-1。 通过对桁架和粱进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。 第128页

第二节桁架的有限元分析实例案例1--2D桁架的有限元分析 问题 人字形屋架的几何尺寸如图7—1所示。杆件截面尺寸为0.01m^2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0x10^11N/m^2,泊松比为0.3。 解题过程 制定分析方案。材料为弹性材料,结构静力分析,属21)桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图7-1所示,边界条件为1点和5点固定,6、7、8点各受1000N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility Menu>File>Clear&Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility Menu>File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Ufility Menu>File>Change Title,弹出ChangeTitle对话框,在Enter New Tifie项输入标题名,本例中输入“2D-spar problem'’为标题名,然后单击OK按钮完成分析标题的定义。 (4)重新刷新图形窗9 选取Utility Menu>Plot>Replot,定义的信息显示在图形窗口中。 (5)定义结构分析运行主菜单Main Menu>Preferences,出现偏好设置对话框,赋值分析模块为Structure结构分析,单击OK按钮完成分析类型的定义。 2.定义单元类型 运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择

钢框架梁柱组合节点滞回性能有限元分析_石永久

第32卷第3期土木建筑与环境工程 Vo l .32No .32010年06月Jo urnal o f Civil ,A rchitectural &Environm ental Engineering Jun .2010 钢框架梁柱组合节点滞回性能有限元分析 石永久,王 萌,王元清,施 刚 (清华大学土木工程系,北京100084) 摘 要:钢框架组合节点考虑楼板组合效应后,其承载能力大幅提高,节点区刚度相应增大,可能对抗震造成不利影响。采用通用有限元软件ABAQ US 建立非线性精细有限元模型,并对单元选取,螺栓受力行为和材料的应力应变关系及损伤模型的确定进行详细说明。结合国内外已有的钢框架组合梁节点拟静力试验,验证了非线性有限元模型的正确性和适用性。试验和有限元分析结果均表明:考虑楼板的组合效应之后,该类型节点的刚度和承载力均有较大幅度提高,承载力提高幅度约为26%,节点区弹性刚度提高了30%左右;在静力往复荷载作用下,该类型节点的滞回曲线较为饱满,耗能能力强,具有良好的抗震性能。 关键词:钢框架组合节点;有限元分析;滞回曲线;承载力;损伤退化 中图分类号:TU391 文献标志码:A 文章编号:1674-4764(2010)03-0001-07 FEM Analysis on Cyclic Behavior of Steel Frame -Composite Connections SHI Yo ng -jiu ,WANG Meng ,WAN G Yu an -qing ,SHI Gang (Department of Civ il Enginee ring ,T sing hua U nive rsity ,Beijing 100084,P .R .China ) A bstract :T he capacity and stiffness of the steel frames are improved sig nificantly considering slab com po site effect w hich may cause bad effects on the seismic .Efficient and accurate FEM of ABAQ US w as pro po sed fo r numerical simulatio n .A nd the selectio n of elements type s ,the material stre ss -strain relationship and damage m odel w ere made a detailed description .No n -linear finite element mo del w as approved with existing steel frame -com po site co nnectio ns quasi -static test home and abroad .It is show n that the capacity o f this ty pe co nnections is improved by nearly 26%and the stiffness by 30%.A nd this ty pe o f connections have m ore full hy steretic curve with high ene rg y -consuming ability and good seismic performance . Key words :S teel Frame -Co mposite Co nnections ,finite element analy sis ,hy steretic curve ,bearing capacity ,damage deg radatio n 在多高层钢框架中最常用的刚性连接方式即为梁翼缘与柱焊接、梁腹板与柱上耳板用高强度螺栓连接。钢框架结构中的楼盖常采用混凝土或压型钢板组合楼板。抗震设计的基本准则要求“强柱弱梁”、“强节点弱构件”[1],但是目前对于节点的强化 往往是考虑加强钢梁与钢柱的连接,在实际工程中并没有考虑节点区组合效应使承载力提高的作用,特别是在采用钢柱—组合梁的框架结构中,组合效应对节点区的承载性能影响更为突出。 组合作用对于节点承载力的提高毋庸置疑[2],

悬臂梁ansys有限元分析求最大挠度

(一) 悬臂梁ansys 有限元分析求最大挠度 问题:悬臂梁长1000mm ,宽50mm ,高10mm ,左端固定,求其在自重作用下的最大挠度? 解:弯矩方程: 221) ()(x l q x M --= 微分方程: 22 1'')(x l q y EI z -= 积分求解:D Cx qx qlx x ql y EI C qx qlx x ql y EI z z +++-=++-=4322322'24 1 6125.06 1 5.05.0 由边界条件:0; 0, 0' ' ====A A A y y x θ 得:C=0, D=0 I=1/12*h^3*b,h 为梁截面的高,b 为梁截面的宽。 q=ρ*g*a*h*l 材料力学公式求:Y=EI 85 gahl^ρ=5.733mm L

ANSYS 模拟求:Y=5.5392mm,详细见下步骤 ANSYS 软件设置及其具体过程如下: 步骤1:建立一个模型,在model下creat一个长1,宽0.05,高0.01的长方体实体。(单位默认为m) 步骤2:材料属性设置。密度:7800,杨氏模量:2E11,泊松比0.3。

步骤3:划分网格。设置网格单元为structure solid brick 8node 185,mesh tool中设置网格大小为0.002,HEX下点击mesh。

步骤4:施加载荷;在preprocessor中inertia中设置重力加速度Y方向为9.8。在左面施加固定约束(三个方向固定)

步骤5::求解。在solve下solve current LS。 步骤6:后处理查看。在result中plot result,查看nodes displacement。List查看文本,观察nodes的最大位移点。

梁结构静力有限元分析论文

梁结构静力有限元分析论文 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力 时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立好梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键字:ANSYS ,梁结构,有限元,静力分析。 0引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,且能保证准确性。另外,有限元法分析梁结构时,建模简单,施加应力和约束也相对容易,能分析梁结构应力状况的具体分布、最大变形量以及中性面位置,优势明显。以下介绍一种常见梁的受力状况,并采用有限元法进行静力分析,得出了与手动计算基本吻合的结论。以下为此次分析对象。 梁的截面形状为梯形截面,各个截面尺寸相同。两端受弯矩沿中性面发生弯曲,如图2-1所示。试利用ANSYS 软件对此梯形截面梁进行静力学分析,以获得沿梁AA 截面的应力分布情况。 r θ A A M M A -A 截面 D,B 1#面 2#面 C A B D

C,A 1 有限元模型的建立 首先进入ANSYS中,采用自下而上的建模方式,创建梁结构有限元分析模型,同时定义模型的材料单元为Brick 8-node 45,弹性模量为200e9,泊松比为0.3。由于分析不需要定义实常数,因此可忽略提示,关闭Real Constants菜单。 建立的切片模型如下:

abaqus有限元分析报告开裂梁

Abaqus梁的开裂模拟计算报告 1.问题描述 利用ABAQUS有限元软件分析如图1.1所示的钢筋混凝土梁的裂缝开展。参考文献Brena et al.(2003)得到梁的基本数据: 图1.1 Brena et al.(2003)中梁C尺寸 几何尺寸:跨度3000mm,截面宽203mm,高406mm的钢筋混凝土梁 由文献Chen et al. 2011得材料特性: 1.混凝土:抗压强度f c’=35.1MPa,抗拉强度f t= 2.721MPa,泊松比ν=0.2,弹性模量 E c=28020MPa; 2.钢筋:弹性模量为E c=200GPa,屈服强度f ys=f yc=440MPa,f yv=596MPa 3.混凝土垫块:弹性模量为E c=28020MPa,泊松比ν=0.2 2.建模过程 1)Part 打开ABAQUS使用功能模块,弹出窗口Create Part,参数为:Name:beam;Modeling Space:2D;Type:Deformable;Base Feature─Shell;Approximate size:2000。点击Continue 进入Sketch二维绘图区。由于该梁关于Y轴对称,建模的时候取沿X轴的一半作为模拟对象。 使用功能模块,分别键入独立点(0,0),(1600,0),(1600,406),(406,0),(0,0)并按下下方提示区的Done,完成草图。 图2.1 beam 部件二维几何模型

相同的方法建立混凝土垫块: 图2.2 plate 部件二维几何模型 所选用的点有(0,0),(40,0),(40,10),(0,10) 受压区钢筋: 在选择钢筋的base feature的时候选择wire,即线模型。 图2.3 compression bar 部件二维几何模型 选取的点(0,0),(1575,0) 受拉区钢筋: 图2.4 tension bar 部件二维几何模型 选取的点(0,0),(1575,0) 箍筋: 图2.5 stirrup 部件二维几何模型 选取的点为(0,0),(0,330) 另外,此文里面为了作对比,部分的模型输入尺寸的时候为m,下面无特别说明尺寸都为mm。

组合结构有限元分析

组合结构的有限元分析 一、分析目的 本分析包含了铜管、夹具、螺栓和螺母的组合结构,在螺栓上施加一个预紧力,观察螺栓和铜管的应力、变形以及安全系数。再在铜管上施加一个垂直向下的载荷,观察铜管在被夹紧并受载荷是的应力、变形及安全系数。并且在分析的过程中掌握接触面设置、螺栓预紧力施加、接触区域网格细化方法等一系列问题. 二、模型特点 1、网格划分 模型采用的单元类型是solid186、solid187号单元、surf154号单元、conta174号单元等。对圆柱面进行映射网格划分以得到很一致的网格。如图所示。 具体网格单元信息如下: Number of total nodes = 6746 --- Number of contact elements = 640 --- Number of spring elements = 96 --- Number of solid elements = 2633 --- Number of total elements = 3390 2.接触面信息: 1) 铜管和体的接触面定义为frictional,摩擦系数为0.4 2 ) 螺帽和体侧面的接触为:no separation 3) 螺母和体侧面的接触为:no separation 4) 螺杆和螺母的接触为:bond

3、载荷和约束的施加: 1)螺栓示只受预紧力载荷和约束施加 2) 在 钢管上施加的载荷如图所 示 三.结果分析比较 1. 当铜管在竖直方向受力不受力时,螺杆的应力和变形与安全系数如下: 螺杆变形图 螺杆应力图 螺杆安全系数图 2 当铜管在竖直方向受力为0N 时,铜管的应力和变形与安全系数如下:

有限元分析梁的受力

有限元分析梁的受力 设E 为弹性模量,【D 】为平面应力,U= 3 1 , 高度为h 单元(1)对应节点1 3 4,单元2对应节点1 2 3 。 单元1编码:i ,j ,m ;单元2编码:i ,j ,m ; F={F1x F1y 0 0 0 0 F2x F2y} 计算单元刚度矩阵,对单元1则有: K 1= ) 1(34 ) 1(31 ) 1(33 )1(41)1(43) 1(44 ) 1(13 )1(14 ) 1(11 k k k k k k k k k k 2 =2 12 213 2 11 2232 22221 2 33 2 322 31 k k k k k k k k k K= 02 23 2 22 2 21 134 233 133 232231 131 1 44 1 431 411 142 13 1132 122 11 1 11k k k k k k k k k k k k k k k k k k ++++ K )1(11 = x y y x y x y x k k k k 1111111,1= ) 1(42 u Eh -s 1 1111 1111 11111112 12 12121b b u c c c b u b uc b c u c ub c c u b b +-+ -+ -+-+ 计算得出k 111 = ) 1(42 u Eh -2 2 03 1l l

同理计算出K2 12= ) 1(42u Eh -0 3 1 3 1 hl hl - - ,k2 11 = ) 1(42u Eh -2 2 3 1 h h , k1 13= ) 1(42u Eh -0 3 1 3 1 hl hl ,k2 11 = ) 1(42u Eh -2 2 3 1 h h , K1 14= ) 1(42u Eh - s 2 3 1 3 1 l hl hl - - - K1 43= ) 1(42u Eh -h hl hl h 3 1 3 1 3 1 2 - - - - K2 13= ) 1(42u Eh -0 3 1 3 1 hl hl - - k1 44= ) 1(42u Eh - s 2 2 2 2 3 2 3 2 3 1 h l hl hl l h + - - K1 34= ) 1(42u Eh -2 2 3 1 3 1 3 1 h hl hl h - - - - K1 33= ) 1(42u Eh -2 2 3 1 h h K2 33= ) 1(42u Eh -2 2 2 2 3 1 3 2 3 2 3 1 h l hl hl l h + + . 组装整体刚度矩阵,并且根据边界约束条件:u1=0.v1=0;u4=0,v4=0,采用带入法引入边界条件,划去整体矩阵中1,2,7,8的行和列

相关主题
文本预览
相关文档 最新文档