当前位置:文档之家› 低电阻油气层成因

低电阻油气层成因

低电阻油气层成因
低电阻油气层成因

低电阻油气层成因

一低电阻油气层概述

低电阻油气层分为:相对和绝对低电阻油气层。

相对低电阻油气层:油层电阻率数值并不太低,但油水层电性差异较小。

绝对低电阻油气层:油气层电阻率绝对值很低,甚至低于围岩电阻率。一般小于2欧姆米。而且油水层电性差异也很小。

它们的共同特征:油层电阻增大率小于2。

二低电阻油气层成因分析

看了多个专家对低电阻油气层成因的分析,我认为造成低电阻油气层的原因是多方面的,即有宏观的,也有微观的;即有内在的原因,也有外在的。

从宏观上看,有两个方面:

1.地质背景

2.油气成藏

地质背景:一般会出现在低能的沉积环境。从沉积相带来看,会出现在低能的、砂泥岩间互的沉积微相,例如三角洲前缘的水下分流河道的支流间湾,湖相里的半深湖相。在测井相来看,会出现在正旋回的末端或反旋回的始端。

油气成藏:低电阻油气层一般出现在低幅度的、压差小、孔隙结构差、冲注高度低、油水分异差的油气藏中。

从微观上看,低能的沉积环境下岩性颗粒细或较细的中细砂岩或粉砂

岩或泥质粉砂岩,且分选差、磨圆度低、结构成熟度低,使岩性细、孔隙结构差。在成藏方面看,易出现在断层遮挡的小型断块油气藏中。低电阻油气藏分析,其内在原因有下面七个:

1.高不动水饱和度

2.粘土的附加导电性

3.砂泥岩间互的储层

4.油水分异作用

5.地层水矿化度差异

6.微孔隙或裂缝发育的油气层

7.岩石组成部分中含有高导的金属矿物。

高不动水饱和度:

对于储层,其流体包括:毛管束缚水、粘土吸附水、自由水、束缚油气、可动油气。我们此处所说的不动水就是指毛管束缚水和粘土吸附水。

束缚水:滞留于储层的微细吼道内,其可流动性与外界压力差有关,当压力差能够克服毛管滞留力时,它就能够变成自由水。在一定范围内,压差越大,可流动水量越多。孔隙结构好,束缚水含量低。

粘土吸附水:被颗粒以化学力吸附而保存于储层孔隙内,这种水不能为外力作用而流动。与泥质含量和粘土类型密切有关。

在储层中,当颗粒较细(主要为砂岩),比表面积变大,吸附能力加强,而原始地层一般亲水,可吸附大量的地层水而使束缚水水饱和度高。我们知道,常见的土类型高龄石、蒙脱石、伊利石和绿泥石。

颗粒表面的离子非平衡性,促使其结构进行某些调整或表面重构。当其置于具有一定矿化度的地层水中,吸附水中的反离子使得在颗粒表面附近的离子浓度相对集中,从而形成偶电层。

理论分析表明,粘土膜表面扩散层厚度随溶液矿化度降低而增加是导致束缚水饱和度随地层水矿化度改变而变化的根本原因。

当储层中,当粘土吸附水的含量在不动水所占的比重很小的,我们可以忽略不计它,此时我们只需考虑束缚水对油气电阻的影响。

黏土的附加导电性:阳离子交换量高,具有较高的附加电导。

在储层里边,当泥质和粘土含量高,且黏土以蒙脱石、伊利石为主,较高的阳离子交换量使岩石电阻率大幅度降低。下表是根据柳赞油田砂岩阳离子交换容量与电阻率关系实验得出的结论。

砂泥岩间互的储层:

储层中含有泥质,促使束缚水和粘土吸附水含量增加,使油气层的电阻降低。同时,泥质对地层导电性的影响具有二重性。在纯水层,泥质使导电路径变复杂而引起电阻率升高;在纯油层,泥质通过增加束缚水饱和度和影响地层水分布引起电阻率显著降低;由阳离子交换而

形成的泥质附加导电性对地层电阻率的影响不大,例如水下分支河道侧翼及末梢形成低阻油层是储层泥质含量增加的结果。

油水分异作用:

对油气藏的含油饱和度用毛管理论分析,认为其含油饱和度跟三个因素有关:油藏高度、孔隙结构(孔、渗特性)、油水密度差(ρW-ρo)。我们根据毛管理论公式:

毛管压力(两相界面压力差--驱替力) Pc=(ρw - ρo)g h 考虑液体与毛管壁间作用力—阻力 Pc= 2σowCosθow / r

压力平衡 r = ( 2σowCosθow )/h( ρw - ρo)

h-原油在毛管中上升的高度,r-毛细管半径,反映孔隙结构,σow、θow 分别为油水界面上表面张力与接触角。由此可见,驱替力Pc愈大,油进入更小的毛管中,其含油饱和度愈大,油水分异越明显。

我们知道,在一个含油层系中,我们可以首先分析其油藏构造幅度,若该油藏构造幅度高、孔隙结构好、油水密度差小,则其油水分异作用强,促使含油饱和度高,这样的油气层一般是高电阻的;反之油水分异作用弱,含水饱和度,油气层一定是低电阻的。

地层水矿化度差异:

造成地层水矿化度差异的原因:沉积环境原因、成藏驱替作用、后期地层水活动。

沉积环境原因:河流相沉积岩性粗细变化大,在成岩过程中泥质重、岩性细的储层由于其比表面大、吸附能力强,可吸附水中的离子而在颗粒表明形成矿化度较高的水膜,使得地层水具有较高的矿化度。

成藏驱替作用:在颗粒细的储层中,储层孔隙结构复杂,孔喉大小分布不均,这样,油气运聚成藏过程中只能驱走大孔喉的自由水,而在微、小孔喉中由于其排替压力大,有相当一部分的地层水难以驱替走,保留了较高矿化度的不动水。

后期地层水活动:频繁的构造运动使完整、封闭的圈闭遭到破坏,油藏中的边底水或成岩过程中岩石矿物滤失的水再次向储层中运移,甚至地表水也可以通过开启的断层渗入地下原生储层,使储层流体性质发生变化。后期运动的较淡地层水通常容易进入孔渗性好、孔喉大的储层中,不仅使原来的油藏被淡水冲洗,部分原生水层也可能遭到同样的冲洗,从而导致岩性纯、分选好的块状砂岩储层中以淡水为主,而孔隙结构较差的储层则保留了成藏过程中的矿化度较高的地层水。因此,由上分析,我们认为无论原始状态是油气层还是水层,只要被后期各种原因造成的淡水冲刷而成为低矿化度水层,就将无一例外的变为相对的高阻水层;这样油层的电阻与水层的电阻相比,其增大率就明显降低降低,从而形成相对低电阻油气藏。

微孔隙或裂缝发育的油气层:

形成微孔隙的原因是由于岩石颗粒成分增多,泥质含量高(粘土的主要成分为伊利石、蒙脱石或伊蒙混层,以搭桥式形成线现接触或点线接触,而非形成结构泥质),两种因素共同作用引起孔隙粒径变小和微孔隙发育,造成束缚水含量明显增大,同时由于高矿化度地层水作用导致油气层低电阻。

由于裂缝发育,在钻井过程中造成泥浆滤液的侵入,使得油气层由于

低阻侵入,而水层由于高阻侵入的影响,二者的电性差异越来越小,造成了油气层的低电阻。

岩石组成部分中可能含有高导的金属矿物:

当组成储层岩石的矿物中含有黄铁矿等高导矿物是,可以降低油气层的电阻,其含量越高,对油气层的低电阻影响越大

外在的原因只有一个:泥浆的侵入

1、淡水泥浆的侵入

在淡水泥浆的侵入,水层和含油水层(油水同层)的深侧向电阻率是增高的,而油层的深侧向电阻率则是降低的,这一大一小大为减少了油层和水层的测井电阻的增大率,使得该值接近2或小于2,从而形成低电阻油气层。

在淡水泥浆的侵入后,水层和含油水层的深感应的电阻略有增高,但变化不大,而油层的深感应电阻则明显降低,这将减小油层和水层的深感应电阻增大率,使得该值接近2或小于2,从而形成低电阻油气层。

2、盐水泥浆的侵入

盐水泥浆侵入油、水层,使得油、水层的测井电阻较原始电阻均降低,但随含油饱和度不同,电阻降低的幅度也不同。

盐水泥浆侵入,油层电阻可降低2/3以上,侧向测井电阻下降随泥浆侵泡时间而增加,不同饱和度油层各有差异;泥浆矿化度的差异也使侧向测井下降幅度不同。

贴片电阻常见封装

贴片电阻常见封装有9种,用两种尺寸代码来表示。一种尺寸代码是由4位数字表示的EIA(美国电子工业协会)代码,前两位与后两位分别表示电阻的长与宽,以英寸为单位。我们常说的0603封装就是指英制代码。另一种是米制代码,也由4位数字表示,其单位为毫米。下表列出贴片电阻封装英制和公制的关系及详细的尺寸: 英制(inch)公制 (mm) 长(L) (mm) 宽(W) (mm) 高(t) (mm) a (mm) b (mm) 020106030.60±0.050.30±0.050.23±0.050.10±0.050.15±0.05 040210051.00±0.100.50±0.100.30±0.100.20±0.100.25±0.10 060316081.60±0.150.80±0.150.40±0.100.30±0.200.30±0.20 080520122.00±0.201.25±0.150.50±0.100.40±0.200.40±0.20 120632163.20±0.201.60±0.150.55±0.100.50±0.200.50±0.20

一、零件规格: (a)、零件规格即零件的外形尺寸,SMT发展至今,业界为方便作业,已经形成了一个标准零件系列,各家零件供货商皆是按这一标准制造。 标准零件之尺寸规格有英制与公制两种表示方法,如下表 英制表示法1206 0805 0603 0402 公制表示法3216 2125 1608 1005 含义 L:1.2inch(3.2mm)W:0.6inch(1.6mm) L:0.8inch(2.0mm)W:0.5inch(1.25mm) L:0.6inch(1.6mm)W:0.3inch(0.8mm) L:0.4inch(1.0mm)W:0.2inch(0.5mm) 注: a、L(Length):长度; W(Width):宽度; inch:英寸 b、1inch=25.4mm (b)、在(1)中未提及零件的厚度,在这一点上因零件不同而有所差异,在生产时应以实际量测为准。 (c)、以上所讲的主要是针对电子产品中用量最大的电阻(排阻)和电容(排容),其它如电感、二极管、晶体管等等因用量较小,且形状也多种多样,在此不作讨论。 (d)、SMT发展至今,随着电子产品集成度的不断提高,标准零件逐步向微型化发展,如今最小的标准零件已经到了0201。 二、常用元件封装 1)电阻: 最为常见的有0805、0603两类,不同的是,它可以以排阻的身份出现,四位、八位都有,具体封装样式可参照MD16仿真版,也可以到设计所内部PCB库查询。 注: ABCD四类型的封装形式则为其具体尺寸,标注形式为L X S X H

常用贴片电阻

相关资料: 优先数及优先数系 由于各种产品的特征互不相同,不可能都按一个公比形成系列,客观上需要这样一种数列,即项数较少的数列包含在项数较多的数列中,并且按照十进的规律能向两端无限延伸,这就是优先数列。 优先数和优先数系是一种科学的数值制度,它是一种无量纲的分级数系,适用于各种量值的分级。它又是十进几何级数,它对于标准化对 E -24系列:常用于精度为5%的贴片电阻 (单位:Ω) E-24 1Ω~10Ω 10Ω~ 100Ω 100Ω~1k Ω 1k Ω~10k Ω 10k Ω~ 100k Ω 100k Ω~1M Ω 1M Ω~10M Ω 标准 实际 标准 实际 标准 实际 标准 实际 标准 实际 标准 实际 标准 实际 标准值 表示法 电阻值 表示法 电阻值 表示法 电阻值 表示法 电阻值 表示法 电阻值 表示法 电阻值 表示法 电阻值 1 1R0 1Ω 100 10Ω 101 100Ω 10 2 1k Ω 10 3 10k Ω 10 4 100k Ω 10 5 1M Ω 1.1 1R1 1.1Ω 110 11Ω 111 110Ω 112 1.1k Ω 113 11k Ω 114 110k Ω 115 1.1M Ω 1.2 1R2 1.2Ω 120 12Ω 121 120Ω 122 1.2k Ω 123 12k Ω 124 120k Ω 125 1.2M Ω 1.3 1R3 1.3Ω 130 13Ω 131 130Ω 132 1.3k Ω 133 13k Ω 134 130k Ω 135 1.3M Ω 1.5 1R5 1.5Ω 150 15Ω 151 150Ω 152 1.5k Ω 153 15k Ω 154 150k Ω 155 1.5M Ω 1. 6 1R6 1.6Ω 160 16Ω 161 160Ω 162 1.6k Ω 163 16k Ω 164 160k Ω 165 1.6M Ω 1.8 1R8 1.8Ω 180 18Ω 181 180Ω 182 1.8k Ω 183 18k Ω 184 180k Ω 185 1.8M Ω 2 2R0 2Ω 200 20Ω 201 200Ω 202 2k Ω 203 20k Ω 204 200k Ω 205 2M Ω 2.2 2R2 2.2Ω 220 22Ω 221 220Ω 222 2.2k Ω 223 22k Ω 224 220k Ω 225 2.2M Ω 2.4 2R4 2.4Ω 240 24Ω 241 240Ω 242 2.4k Ω 243 24k Ω 244 240k Ω 245 2.4M Ω 2.7 2R7 2.7Ω 270 27Ω 271 270Ω 272 2.7k Ω 273 27k Ω 274 270k Ω 275 2.7M Ω 3 3R0 3Ω 300 30Ω 301 300Ω 302 3k Ω 303 30k Ω 304 300k Ω 305 3M Ω 3.3 3R3 3.3Ω 330 33Ω 331 330Ω 332 3.3k Ω 333 33k Ω 334 330k Ω 335 3.3M Ω 3.6 3R6 3.6Ω 360 36Ω 361 360Ω 362 3.6k Ω 363 36k Ω 364 360k Ω 365 3.6M Ω 3.9 3R9 3.9Ω 390 39Ω 391 390Ω 392 3.9k Ω 393 39k Ω 394 390k Ω 395 3.9M Ω 4.3 4R3 4.3Ω 430 43Ω 431 430Ω 432 4.3k Ω 433 43k Ω 434 430k Ω 435 4.3M Ω 4.7 4R7 4.7Ω 470 47Ω 471 470Ω 472 4.7k Ω 473 47k Ω 474 470k Ω 475 4.7M Ω 5.1 5R1 5.1Ω 510 51Ω 511 510Ω 512 5.1k Ω 513 51k Ω 514 510k Ω 515 5.1M Ω 5.6 5R6 5.6Ω 560 56Ω 561 560Ω 562 5.6k Ω 563 56k Ω 564 560k Ω 565 5.6M Ω 6.2 6R2 6.2Ω 620 62Ω 621 620Ω 622 6.2k Ω 623 62k Ω 624 620k Ω 625 6.2M Ω 6.8 6R8 6.8Ω 680 68Ω 681 680Ω 682 6.8k Ω 683 68k Ω 684 680k Ω 685 6.8M Ω 7.5 7R5 7.5Ω 750 75Ω 751 750Ω 752 7.5k Ω 753 75k Ω 754 750k Ω 755 7.5M Ω 8.2 8R2 8.2Ω 820 82Ω 821 820Ω 822 8.2k Ω 823 82k Ω 824 820k Ω 825 8.2M Ω 9.1 9R1 9.1Ω 910 91Ω 911 910Ω 912 9.1k Ω 913 91k Ω 914 910k Ω 915 9.1M Ω

贴片电阻阻值标注方法.

贴片电阻阻值标注方法 1.E-24标注方法 E-24标注法有两位有效数字,精度在±2%(-G ),±5%(-J ),±10%(-K )(1)常用电阻标注 XXY XX代表底数,Y 代表指数 例如 470 = 47Ω 103 = 10kΩ 224 = 220kΩ (2)小于10欧姆的电阻的标注 用R 代表单位为欧姆的电阻小数点,用m 代表单位为毫欧姆的电阻小数点 例如 1R0 = 1.0Ω R20 = 0.20Ω 5R1 = 5.1Ω R007 = 7.0mΩ 4m7 = 4.7mΩ 2.E-96标注方法 E-96标注法有三位有效数字,精度在±1%(-F )

(1 常用电阻标注 XXXY XXX代表底数,Y 代表指数 例如 4700 = 470Ω 1003 = 100kΩ 2203 = 220kΩ (2 小于10欧姆的电阻的标注 用R 代表单位为欧姆的电阻小数点,用m 代表单位为毫欧姆的电阻小数点例如 1R00 = 1.00Ω R200 = 0.200Ω 5R10 = 5.10Ω R007 = 7.00mΩ 4m70 = 4.70mΩ (3 E-96 Multiplier Code标注法 XXY XX 代表底数的代码,具体数值可从Multiplier Code表中查找 Y 代表指数的代码,具体数值也要从Multiplier Code表中查找 例如: 18A = 150Ω

02C = 10.2kΩ 12位数字后面加一字母表示法:这种方法前面两位数字表示电阻值的有效数值, 后面的字母表示有效数值后面应乘以10的多少次方, 单位Ω. 其标识意义见表一/二. 如:02C为102×102=10.2kΩ,27E 为187×104=1.87MΩ 代码表示数字代码表示数字代码表示数字 代码表示数字 01 100 26 182 51 332 76 604 02 102 27 187 52 340 77 619 03 105 28 191 53 348 78 634 04 107 29 196 54 357 79 649 05 110 30 200 55 365 80 665 06 113 31 205 56 374 81 681 07 115 32 210 57 383 82 698 08 118 33 215 58 392 83 715 09 121 34 221 59 402 84 732 10 124 35 226 60 412 85 750 11 127 36 232 61 422 86 768 12 130 37 237 62 432 87 787 13 133 38 243 63 442 88 806

第五章 油气成因理论与烃源岩

第五章油气成因理论与烃源岩 一、有机成因的证据 1、世界99%的石油产自沉积岩 2、石油在地壳中的出现,与地史上生物的发育和兴衰密切相关 3、在油田剖面上,含有层位总与富含有机质的层位有依存关系 4、石油中找到了许多鱼异戊间二烯类、萜类和甾醇类有关的化合物 5、石油的元素组成包括痕量元素组成,与有机质或有机矿产相近似 6、石油具有旋光性 7、各种生物物质通过降解可得到或多或少的烃类产物。 二、干酪根 1、沉积岩中不溶于碱、非氧化性酸和非极性有机溶剂的分散有机质 2、根据H/C和O/C原子比可分为三种:藻质型、腐泥型、腐殖型 三、油气生成的理化条件 温度、时间、细菌、催化剂、放射性、压力 门限温度:烃源岩达到门限温度时(50-200),干酪根才开始成熟,与门限温度对应的深度(1500-5000)叫门限深度。 四、成烃演化与模式 镜质体反射率(Ro)与有机质的成烃作用和成熟度有良好的对应关系。 1、未成熟阶段——成岩作用阶段 ①划分界限:此阶段从沉积有机质被埋藏开始至门限深度为止,Ro<0.55 ②物质基础:脂肪、碳水化合物、蛋白质和木质素等生物聚合物 ③化学作用过程:有机和无机过程。生物水解、降解 ④烃类产物:挥发物、少量未熟——低熟石油。 ⑤特点:正构烷烃具有明显的奇碳数优势 ⑥终结物:干酪根 2、成熟阶段——深成作用阶段(为干酪根生成油气的主要阶段) ①划分界限:该阶段从有机质演化的门限值开始至生成油气和湿气结束为止,Ro为 0.5%~2% ②物质基础:干酪根 ③化学作用过程:当达到门限深度和温度时,在热力作用下,粘土催化作用,干酪根初 期热降解生成石油,后期热裂解生成轻质油和湿气。 ④烃类物质:湿气、凝析气、成熟石油 ⑤特点:该阶段按干酪根的成熟度和成烃产物划分为为油带和轻质油、湿气带,其特点 分别为: 油带:石油以中-低分子量的烃类为主,正烷烃奇碳数优势逐渐变为成熟油冲淡直至消失,环烷烃和芳香烃的碳数和环数减少,曲线有双峰变为单峰 ⑥终结物:干酪根残渣 3、过成熟阶段——准变质作用阶段 ①划分界限该阶段埋深大,温度高,Ro>2% ②物质基础:干酪根残渣和已生成的湿气、凝析气、轻质油 ③化学作用过程:高温热裂解 ④烃类产物:干气(甲烷) ⑤特点:趋于向甲烷分子的化学热稳定;干酪根缩聚为富碳残余物。 ⑥终结物:次石墨

贴片电阻的命名方法

贴片电阻的命名方法: 1、5%精度的命名:RS-05K102JT 2、1%精度的命名:RS-05K1002FT R-表示电阻 S-表示功率,0402是1/16W、0603是1W。 05-表示尺寸(英寸):02表示0402、03表示0603、05表示0805、06表示1206、1210表示1210、1812表示1812、10表示2010、12表示2512。 K-表示温度系数为100PPM。 102-5%精度阻值表示法:前两位表示有效数字,第三位表示有多少个零,基本单位是Ω,102=1000Ω=1KΩ。1002是1%阻值表示法:前三位表示有效数字,第四位表示有多少个零,基本单位是Ω,1002=10000Ω=10KΩ。 J -表示精度为5%、F-表示精度为1%。 T -表示编带包装 贴片电阻阻值误差精度有±1%、±2%、±5%、±10%精度,常规用的最多的是±1%和±5%。±5%精度的常规是用三位数来表示例,例512,前面两位是有效数字,第三位数2表示有多少个零,基本单位是Ω,这样就是5100欧,1000Ω=1KΩ,1000000Ω=1MΩ。 为了区分±5%,±1%的电阻,于是±1%的电阻常规多数用4位数来表示,这样前三位是表示有效数字,第四位表示有多少个零4531也就是4530Ω,也就等于4.53KΩ。是1/10W、0805是1/8W、1206是1/4W、1210是1/3W、1812是1/2W、2010是3/4W、2512 贴片电阻封装与功率的关系 贴片电阻的封装与功率关系如下表: 封装额定功率@ 70°C 最大工作电压(V) 英制(mil) 公制(mm) 常规功率系列提升功率系列 0201 0603 1/20W / 25 0402 1005 1/16W / 50 0603 1608 1/16W 1/10W 50 0805 2012 1/10W 1/8W 150 1206 3216 1/8W 1/4W 200 1210 3225 1/4W 1/3W 200 1812 4832 1/2W / 200 2010 5025 1/2W 3/4W 200 2512 6432 1W / 200 注:电压=√功率x电阻值(P=V2/R) 或最大工作电压两者中的较小值 电阻在电路中用“R”加数字表示,如:R1表示编号为1的电阻。电阻在电路中的主要作用为 分流、限流、分压、偏置等。 1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。换算方法是:1兆欧=1000千欧=1000000欧

油气成因理论

油气成因理论 一、油气无机成因说 (一)泛宇宙说 认为包含烃类在内的有机化合物是宇宙天体的无机演化过程中形成的。 1.宇宙说:认为地球呈熔融状态时,碳氢化合物就包含在气圈中,随着地球的冷却被冷凝岩浆吸收,最后凝结于地壳形成石油。 2.地幔脱气说:认为地球深部存在大量的甲烷和其他非烃资源,在地球分异演化的早期从地球深部被加热而释放出来,有的被释放到大气圈,一小部分形成天然气藏。 (二)地球深部的无机合成说 1.门捷列夫的碳化合物说:认为地球内部的水与重金属碳化物相互作用,形成碳氢化合物。2.高温生成说:认为深度在150km,温度超过1500k、压力达5000Mpa,由于FeO及Fe3O4的参与,水与二氧化碳被还原形成烃类。 3.蛇纹石化生油说:提出橄榄石的蛇纹石化可以产生烃类。 4.费—托地质合成说:认为地球上原始石油是在20×108 年前通过费—托反应生成。 二、有机成因说 基本观点:石油是地质历史时期生物有机质形成的。 分为:早期生油理论和晚期生油理论。 目前晚期生油理论占主导,晚期生油理论是指石油是在有机物质被埋藏到一定深度、温度条件,在热力作用和催化作用由有机物转化而来。 (一)生油的原始物质 生物有机质:包括脂类、蛋白质、碳水化合物、木质素和丹宁 (二)生油环境 温暖、潮湿的气候环境有利于生物的大量繁殖和发育,总而具备了丰富的生油原始物质。海洋、湖泊、三角洲等古地理区域不仅有丰富的水生生物,还因水体起到了隔绝空气的作用,阻止了有机质的腐烂分解,是生油的有利地区。 (三)油气生成的一般模式: 1.生物化学生气阶段 2.热催化生油气阶段 3.热裂解生凝析气阶段 4.深部高温生气阶段

贴片电阻代码表

贴片电阻的识别 片状电阻器的阻值和一般电阻器一样,在电阻体上标明.共有三种阻值标称法,但标称方法与一般电阻器不完全 一样。 1.数字索位标称法(一般矩形片状电阻采用这种标称法) 数字索位标称法就是在电阻体上用三位数字来标明其阻值。它的第一位和第二位为有效数字,第三位表示在有 效数字后面所加“0”的个数.这一位不会出现字母。 例如:“472'’表示“4700Ω”;“151”表示“150Ω”。 如果是小数.则用“r”表示“小数点”.并占用一位有效数字,其余两位是有效数字。 例如:“2r4"表示“2.4Ω”;“r15”表示“0.15Ω”。 2.色环标称法(一般圆柱形固定电阻器采用这种标称法) 贴片电阻与一般电阻一样,大多采用四环(有时三环)标明其阻值。第一环和第二环是有效数字,第三环是倍率(色 环代码如表1) 色环棕红橙黄绿蓝紫灰白黑金银无色第一环 1 2 3 4 5 6 7 8 9 0 第二环 1 2 3 4 5 6 7 8 9 0 第三环 101 102 103 104 105 10610710810910010-110-2 第四环±5% ±10% ±20% 例如:“棕绿黑”表示"15Ω”;“蓝灰橙银”表示“68Ω”误差±10%。 3.e96数字代码与事母混合标称法 数字代码与字母混合标称法也是采用三位标明电阻阻值,即“两位数字加一位字母”,其中两位数字表示的是 e96系列电阻代码.具体见附表2。它的第三位是用字母代码表示的倍率(如表3)。 例如:“51d”表示“332x103;332kΩ”;“249y”表示“249x10-2; 2.49Ω”。

E96系列电阻代码表 代码1234567891011121314151617 阻值100102105107110113115118121124127130133137140143147 代码1819202122232425262728293031323334 阻值150154158162165169174178182187191196200205210215221 代码3536373839404142434445464748495051 阻值226232237243249255261267274280287294301309316324332 代码5253545556575859606162636465666768 阻值340348357365374383392402412422432442453464475487499 代码6970717273747576777879808182838485 阻值511523536549562576590604619634649665681698715732750 代码8687888990919293949596 阻值768787806825845866887909931953976 倍率代码表 A B C D E F G H X Y Z 10010110210310410510610710-110-210-3

生油理论的发展

生油理论的发展 ----油气地球化学 CUG 021103班从过去到现在,人们在长期寻找、勘探和研究油气的基础上,提出各种生油假说。不断地发展、改进完善,直至今天,干酪根热降解成油理论,逐步被大多数人接受,但是 世界上第一个试图探索石油成因的是俄国的罗蒙诺索夫。早在1763年,他就提出了以下观点:地下肥沃的物质,如油页岩、碳、沥青、石油和琥珀都起源于植物。石油是当今世界使用最普遍的能源和最重要的化工原料。然而关于石油的起源,自从100~200 年前,俄国两位有名的科学家分别提出了石油的有机成因和无机成因以来,学者们也就分成旗帜鲜明的两大学派,各持一说,至今仍争论不休,难分胜负。 石油工业发展早期,认为是石油是无机成因的,无机成因说大致可归为2类:一是地深成因说,认为烃形成于地球深处;二是宇宙成因说,认为烃类早在宇宙阶段已经形成。 从十八世纪七十年代以来,对油气成因的认识基本上分为无机成油和有机成油学说两大学派。 (一)无机成因说 石油成因的一种假说。这种假说认为,石油是由自然界的无机碳和氢经过化学作用而形成的。石油无机成因说大致分为两类。①地深成因说,认为烃类起

源于地球深处。其依据是:在火山喷出的气体及熔岩流中含烃,来自地下深处的岩浆岩中发现有C1~C2的烷烃及可供生成烃类的化学元素;变质岩、岩浆岩及穿入前寒武系结晶岩的伟晶岩中也见到含油显示,甚至在结晶基岩中发现可供开采的工业油气流。②宇宙成因说,认为烃类在宇宙形成阶段即已生成。其依据是:在天体中常有碳、氢、氧诸元素及其化合物的存在。例如,彗星头部的气圈中含有一氧化碳、二氧化碳和甲烷等;在太阳系行星的大气圈中也存在一定浓度的甲烷;在陨石中也已鉴定出烃类化合物。 在日常生活中,我们常用“化石燃料”来称呼石油、煤炭、天然气等经过千百万年才形成的,埋藏在地层中的能源。在煤层中,人们早已发现了树木的性状和由树木的脂类物质形成的琥珀等直接证据,表明煤炭确是由死去的植物变成的;对于天然气,石油地质工作者们也已证明,它们可以由石油、甲烷细菌的生物化学作用、煤炭的分解作用而形成,还可以从地下深处的岩浆中释放出来富含甲烷的“无机成因天然气”。石油是由古代生物(包括动物与植物,尤以浮游生物为主)生成的,既有机成因,这一点也被大多数学者认同。然而,随着全球范围内石油勘探难度的增加和人们对油田的认识加深,越来越多的现象用“石油有机成因”的理论无法解释,长期失宠的无机成油理论又重新受到世界石油地质家的普遍重视。 1、碳化说:1876年俄国化学家门捷列夫:石油是地下深处的金属碳化物与下渗的水相互作用所生成。生成的石油蒸气在冲向地壳的过程中冷凝形成油气藏。 2、宇宙说:1889年俄国索柯洛夫:碳氢化合物是宇宙所固有的,在地

油气成因l理论

石油天然气成因理论概论 资信研10-8班地质工程钟娟娟 Z1001011 作为国家的战略性资源,油气对国民经济的发展发挥着至关重要的作用。其中,石油向来被誉为“工业的血液”,其重要性不言自明。现代经济社会的发展在很大程度上依赖于油气资源的勘探与获取。而油气成因问题的研究则是为了更好地确定勘探方向,更有效地探寻支撑经济社会发展的油气能源。 从物态上看,石油与天然气是流体,在地下一定条件下,它不断流动,现在所找到的油气藏并非其生成地方,而是经过一定距离运移而聚集起来的;从化学组成上看,石油与天然气的组份很复杂,并非单一物质,且在地下运移过程中或其它条件的改变,其成份也在发生变化,其现今的组成并不代表其原貌.;从认知层面来看,油气成因研究涉及众多学科门类,具有很强的复杂性、综合性,需要专业化、综合化、广泛化的知识体系作为基底进行研究;由于分离及鉴定手段的限制,目前对石油组份的了解尚不充分,缺乏对石油及其成油母质过渡形式的明确认知。如上众多因素导致石油成因这一复杂问题的争论从未真正停止过。各家众说纷纭,各有特色。在众多对油气的认识中,基本可分为有机成油说和无机成因说两大学派。其中,有机成因学派认为,生物体是油气生成的最初来源,油气是在地球上生物起源之后,在地质历史发展过程中,由保存在沉积岩中的生物有机质逐步转化而成。而无机成因学派则认为石油是在地壳深处、在地下高温高压条件下由无机物通过化学反应形成的。现今,有机成因说占据主导地位,是指导当前油气勘探的主要理论依据. 油气有机成因说又具体分为早期成油说和晚期成油说两大类。其中,早期成油说认为,石油烃类是地壳浅处,沉积物成岩作用早期,由沉积岩中的分散有机质在生物化学作用下生成的。晚期成油说认为,石油是有机物质被埋藏后,在一定深度、一定温度,在热力作用和催化剂作用下,由有机物质转化而来的。早期成因说主张沉积有机质在成岩过程中,逐步转化为石油和天然气,并运移到临近的储层中去;晚期成因说认为沉积物埋藏到一定深度后,到了成岩作用晚期或后生作用初期,沉积岩中的不溶有机质才开始发生热降解,生成大量的液态石油和天然气。有机成因说认为,油气生成需要满足两个基本条件:有利于油气生成的

贴片电阻命名规则

国内贴片电阻命名方法: 1、5%精度的命名:RS-05K102JTL 2、1%精度的命名:RS-05K1002FTL R-表示厚膜片式固定电阻器(Thick film chip fixed resistor) S-是该贴片电阻额定功率所属系列为特殊功率系列(额定功率比此前的老款标准有所提升):不同封装尺寸的贴片电阻功率不同,但是同一封装尺寸的贴片电阻具有统一的额定功率值。具体数值如下:0402是1/16W、0603是1/10W、0805是1/8W、1206是1/4W、1210是1/3W、1812是1/2W、2010是3/4W、2512是1W。 (备注:C 系列是较早的老一代贴片电阻的额定功率系列代号,现在已经基本不生产了。因此基本上看不到。C系列的额定功率参数表如下:0402是 1/16W、0603是1 /16W、0805是1/10W、1206是1/8W、1210是1/4W、1812是1/2W、2010是1/2W、2512是1W) 05-表示封装尺寸(英寸):02表示0402、03表示0603、05表示0805、06表示1206、1210表示1210、1812表示1812、10表示1210、12表示2512。 点击查看封装尺寸英寸与国际标准尺寸对照表 K-表示温度系数为100PPM。其他型号包括:W:正负200PPM;U正负400PPM;K正负100PPM;L正负250PPM 102-表示电阻阻值为1000Ω=1kΩ E-24(5%精度贴片电阻)系列贴片电阻阻值采用三位数表示法:前两位为有效数字,后一位是有效数字后面零的个数,基本单位是Ω。例如:103=10 000Ω=10kΩ E-96系列(1%精度贴片电阻)采用4位数表示法:前三位为有效数字,后一位是有效数字后面零的个数,基本单位是Ω。例如:1003=100 000Ω=100kΩ备注:1欧姆电阻的表示法比较特殊,用1R0表示,即1R0=1欧姆 J-表示该贴片电阻的阻值误差精度在正负5%内。 其他代号所代表的意义如下: D:正负0.5%即正负千分之五 F:正负1% G:正负2% J:正负5% K:正负10% T-表示该贴片电阻的包装形式为编带包装。除了编带包装外,贴片电阻还有塑料盒包装(用B表示)和C(塑料袋散装)两种包装方法。 L-表示无铅化等级为L级,表示整体低铅(小于等于1000ppm),如果是G 则表示为整体无铅(小于等于100ppm)

油气成因研究综述

油气成因研究综述 石油天然气的形成必须要有物质基础,还要遵循客观的演化规律,对于它的成因有机成因说和无机成因说的对峙已久,至今仍然存在争议,而两派争议的核心自然是对油气的起源物质和生成演化过程的认识不同。简单的说,有机成因说认为油气是地下分散在沉积岩中的植物、动物有机质转化而成,无机成因说主张油气是在地下深部高温高压的环境下,由无机物转换而来,这两种争论从其产生延续至今。 标签:天然气;石油;有机成因说;无机成因说 1 油气有机成因说 有机成因说是18世纪中叶提出的,主要理论有“蒸馏说”、“动物说”、“植物说”、“动植物混合说”、“晚期成油说”等。最主要的证据有:a.目前发现的油田大都分布在沉积岩中;b.前寒武纪到第四纪的每个时代岩层里都发现了石油;c.从油气剖面中看出含油气层位与富含有机质的层位有相互依存的关系;d.目前发现的石油中化学成分并不完全相同,也没有完全不同;e.石油组分中的元素和有机质中的元素相近;f.在模拟实验中可以从有机质中提取到在油气中含有的烃类物质;g.油层的温度大都低于100℃;h.石油大都有旋光性。下面将以时间顺序介绍有机成因的各个学说。 1.1 高温蒸馏说 18世纪中叶苏联的罗蒙诺索夫提出高温蒸馏说,他是最早提出有机学说的学者,他认为石油是煤在地下受到高温蒸馏的产物。 1.2 动物说与植物说 在18世纪60年代,有机学派根据实验和观察,提出了一些新的方案,如以低等动物为主的动物说和以藻类为主的植物说,植物说认为可能成为生油气的藻类有绿藻、蓝藻、硅藻及甲藻。从1888年起,Hoefer和Engler对多种动植物的脂肪酸进行了实验,进一步完善了该学说。 1.3 动植物混成学说 20世纪初,波东尼认为动植物都可以成为油气生成的基础材料,它们和矿物质点一起形成腐泥岩,腐泥岩经过天然蒸馏可产生石油。进而在1932年古勃金各种生物化学组成部分均可参与生成油气,他们可以来自海洋的动植物残体和从陆地携带进海洋的生物分解产物,含有这些有机质的腐泥就是生油气的母岩,一开始时石油以纤维油滴的形式分散于粘土淤泥的母岩中,而后在压力的作用下运移聚集形成油气藏。在这个过程中温度并不高,其间有厌氧菌的参加,压力也在不断增加。这些都使得早期成油理论得到进一步发展。

常规的贴片电阻的标准封装及额定功率

常规的贴片电阻的标准封装及额定功率如下表:英制(mil) 公制(mm) 额定功率(W)@ 70°C 0201 0603 1/20 0402 1005 1/16 0603 1608 1/10 0805 2012 1/8 1206 3216 1/4 1210 3225 1/3 1812 4832 1/2 2010 5025 3/4 2512 6432 1 国内贴片电阻的命名方法:1、5%精度的命名:RS-05K102JT 2、1%精度的命名:RS-05K1002FT R -表示电阻S -表示功率0402是1/16W、0603是1/10W 、0805是1/8W、1206是1/4W、1210是1/3W、1812是1/2W、2010是3/4W、2512是1W。 05 -表示尺寸(英寸):02表示0402、03表 示0603、05表示0805、06表示1206 、1210表示1210、1812表示 1812、10表示1210、12表示2512。 K -表示温度系数为100PPM, 102-5%精度阻值表示法:前两位表示 有效数字,第三位表示有多少 个零,基本单位是,102=1000=1K。1002是1%阻值表示法 :前三位表示有效数字,第四位表示有多少个零,基本单位是 ,1002=10000=10K。 J -表示精 度为5%、F-表示精度为1%。 T -表示编 带包装 一.E-24标注方法 E-24标注法有两位有效数字,精度在±2%(-G),±5%(-J),±10%(-K) 怎么看电阻的阻值_贴片电阻的识别和标注方法1. 常用电阻标注 XXY XX代表底数,Y代表指数 例如 470 = 47 103 = 10k 224 = 220k 怎么看电阻的阻值_贴片电阻的识别和标注方法2: 小于10欧姆的电阻的标注用R代表单位为欧姆的电阻小数点,用m代表单位为毫欧姆的电阻小数点 例如 1R0 = 1.0 R20 = 0.20

常用贴片电阻阻值速查表

常用贴片电阻阻值速查表 常用贴片电阻阻值速查表 说明:现在的电子产品正在向小而精的方向发展,很多大规模类电子产品都使用贴片电阻来减小产品的整体体积,很多人对贴片电阻的标识数据不是很了解,电阻小且不好测量,为解决部分人员对贴片电阻标识的不解,也为大家以后方便速查,本人通过各种电子书籍参考,特制作出该速查文档用于速查贴片电阻阻值。 下面列出了常用的5%和1%精度贴片电阻的标称值和换算值,仅供大家使用时参考。 电阻阻值换算关系 ?= ? k = k? = 1,000 ? M = M? = 1,000,000 ? 微型贴片电阻上的代码一般标为3位数或4位数的,3位数精度为5%,4位数的精度为1%,请大家根据精度要求挑选合适的代码类型。 代码为3位数精度5%数字代码=电阻阻值 代码为3位数精度 5%数字代码=电阻 阻值 代码为3位数精度 5%数字代码=电阻 阻值 代码为3位数精度 5%数字代码=电阻 阻值 1R1=0.1? R22=0.22? R33=0,33? R47=0.47? R68=0.68? R82=0.82? 1R0=1? 1R2=1.2? 2R2=2.2? 3R3=3.3? 2R7=4.7? 5R6=5.6? 6R8=6.8?? 8R2=8.2? 100=10? 120=12?

150=15? 180=18? 220=22? 270=27? 330=33? 390=39? 470=47? 560=56? 680=68? 820=82? 101=100? 121=120? 151=150? 181=180? 221=220? 271=270? 331=330? 391=390? 471=470? 561=560? 681=680? 821=820? 102=1K? 122=1.2K? 152=1.5K? 182=1.8K? 222=2.2K? 272=2.7K? 332=3.3K? 392=3.9K? 472=4.7K? 562=5.6K? 682=6.8K? 822=8.2K? 103=10K? 123=12K? 153=15K? 183=18K? 223=22K? 273=27K? 333=33K? 393=39K? 473=47K? 563=56K? 683=68K? 823=82K? 104=100K? 124=120K? 154=150K? 184=180K? 224=220K? 274=270K? 334=330K? 394=390K? 474=470K? 564=560K? 684=680K? 824=820K? 105=1M? 125=1.2M? 155=1.5M? 185=1.8M? 225=2.2M? 275=2.7M? 335=3.3M? 395-3.9M? 475=4.7M? 565=5.6M? 685=6.8M? 825=8.2M? 106=10M? 代码为4位数精度1%数字代码=电阻阻值 代码为4位数精度 1%数字代码=电阻 阻值 代码为4位数精度 1%数字代码=电阻 阻值 代码为4位数精度 1%数字代码=电阻 阻值

油气成因理论综述

第二章 油气成因理论综述 油气从哪里来?或者说什么是油气的先质?这些先质是如何转化为油气的?这些问题是从油气被发现以来,就摆在油气勘探开发工作者面前的重大课题。是油气地球化学必需面对、油气成因理论必需回答的问题。对这些问题的回答,不仅具有阐明油气成因的理论意义,而且对指导油气勘探具有不言而喻的现实意义。比如说,如果油气是火山成因的,那么油气勘探的有利区域就应该在正在或者曾经发生过火山活动的地区;如果油气是有机成因的,那么油气勘探就应该将主要注意力放在与有机质沉积密切有关的沉积岩发育区。 概括来说,油气成因理论的发展大致经历了四个阶段,即无机成因说、早期有机成因说、晚期有机成因说和以晚期有机成因为主但兼顾其它因素贡献的成烃理论。由于石油工业早期找到的更多的是油,因此早期的油气成因理论更多关注的是油的成因问题。但现代的石油成因理论应既包括油也包括气。 第一节 油气的无机成因说 无机成烃说认为,油气是由无机化合物经化学反应形成的。它们或者是由地球深部高温条件下原始碳或其氧化态经还原作用形成,如Д·И·门捷列夫(1876)提出的碳化说,库德梁采夫(1951)提出的“岩浆说”;或者是在宇宙(地球)形成初期即已经存在,后来随着地球冷却被吸收并凝结在地壳的上部,由这些碳氢化物沿裂隙溢向地表过程中便可形成油气藏。如索柯洛夫(В·Д·СΟКΟЛΟВ,1889)、Gold 等(1982,1984,1993)提出的宇宙说。这一观点在二十世纪三十年代之前占支配地位。 按照这一学说,无机成因油气不仅存在,而且远景巨大,将有可能比有机成因的油气潜力大得多,其蕴藏量几乎是取之不尽的(陈沪生,1998)。较典型的有如对中东油气富集的认识:波斯湾地区几十个油气田分布在一条500英里长的地带,占地球表面积不到2%,却拥有世界可采储量的50%以上。这些油气藏显示了很宽的地质年龄谱;而且烃类产在构造和地层变化都很大的环境中,各种圈闭都是严重泄漏的,油气渗流随处可见,且由来已久;显然是一种过度供给的情形。这里的石油组成极为相同,因而推测它们是同一来源。但这个来源是什么呢?不少地质学家认为可能是地幔来的无机成因烃源(P.A 切诺韦斯,1993;转引自陈沪生,1998)。 支持无机成因学说的主要证据有: (1)烃类已经在实验室内通过无机物合成。 例如,著名的俄国化学家门捷列夫很早就已在实验室中由无机的碳化物合成出烃类 FeC 2+2H 2O →HC ≡CH+Fe(OH)2 Szatmari (1989)、张景廉(2001)等认为地幔脱气生成的CO 2,CO ,H 2沿破裂带上升到超基性的蛇纹岩带,发生费-托合成反应: 22n m 2Fe,Co,Ni,V()CO + H C H +H O+ Q 300~400 催化℃ 费-托反应合成的烃类伴随着岩浆活动(如火山喷发)沿花岗岩缺失的“通道”上升,并运移到储集层形成油气藏。 (2)天体的光谱中有烃类的显示,陨石中也已检测到烃类化合物。如在水星、土星、天王星、海王星等的气圈中以及慧星的头部都有发现。地球上的有机质和生命最初也是有无机过程合成的。 (3)在火山气和火成岩中有烃类存在。如东太平洋海隆、红海、冰岛,我国的五大连池、云南腾冲等火山区均发现有这类成因的天然气,许多含油气盆地都已在火山岩储层中发

常见贴片电阻其阻值读值表

片式固定电阻器,俗称贴片电阻(简称SMD Resistor),是金属玻璃铀电阻器中的一种。 贴片电阻封装尺寸与功率关系:0201 1/20W、0402 1/16W、0603 1/10W、0805 1/8W 、1206 1/4W 贴片电阻的功率是指通过电流时由于焦耳热电阻产生的功率。 常见贴片电阻其阻值读值表,可以掌握其规律,便于迅速了解其大致阻值范围 电阻符号位欧姆Ω阻值换算关系 Ω= Ωk = kΩ= 1,000 ΩM = MΩ= 1,000,000 Ω微型贴片电阻上的代码一般标为3位数或4位数的,3位数精度为5%,4位数的精度为1%,请大家根据精度要求挑选合适的代码类型。 代码为3位数精度5%数字代码=电阻阻值代码为3位数精度5%数字代码=电阻阻值代码为3位数 精度5%数字代码=电阻阻值代码为3位数精度5%数字代码=电阻阻值 1R1=0.1Ω R22=0.22Ω R33=0,33Ω R47=0.47Ω R68=0.68Ω R82=0.82Ω 1R0=1Ω 1R2=1.2Ω 2R2=2.2Ω 3R3=3.3Ω 2R7=4.7Ω 5R6=5.6Ω 6R8=6.8ΩΩ 8R2=8.2Ω 100=10Ω 120=12Ω 150=15Ω 180=18Ω 220=22Ω 270=27Ω 330=33Ω 390=39Ω 470=47Ω 560=56Ω 680=68Ω 820=82Ω 101=100Ω 121=120Ω

151=150Ω 181=180Ω 221=220Ω 271=270Ω 331=330Ω 391=390Ω 471=470Ω 561=560Ω 681=680Ω 821=820Ω 102=1KΩ 122=1.2KΩ 152=1.5KΩ 182=1.8KΩ 222=2.2KΩ 272=2.7KΩ 332=3.3KΩ 392=3.9KΩ 472=4.7KΩ 562=5.6KΩ 682=6.8KΩ 822=8.2KΩ 103=10KΩ 123=12KΩ 153=15KΩ 183=18KΩ 223=22KΩ 273=27KΩ 333=33KΩ 393=39KΩ 473=47KΩ 563=56KΩ 683=68KΩ 823=82KΩ 104=100KΩ 124=120KΩ 154=150KΩ 184=180KΩ 224=220KΩ 274=270KΩ 334=330KΩ 394=390KΩ 474=470KΩ 564=560KΩ 684=680KΩ 824=820KΩ 105=1MΩ 125=1.2MΩ 155=1.5MΩ 185=1.8MΩ 225=2.2MΩ 275=2.7MΩ 335=3.3MΩ 395-3.9MΩ 475=4.7MΩ 565=5.6MΩ

现代油气成因理论综述.doc

前言 石油和天然气的成因问题是石油地质学的前缘学科之一,也是石油地质的热门话题。因为不仅涉及到油气成因理论的创新,而且关系到深部油气的勘查方向和最大程度扩大能源储备的问题。对于油气成因,除了“生物成因论”和“地幔成因论”之外,尚有“地幔热柱成因论”、“宇宙尘石油雨成因论”、“地下放电放光成因论”、“古陨石坑成因论”等等概括地说,就是“有机”和“无机”的成因争论。20世纪中期,我国大庆油田在陆相有机成因理论的指引下,发现了世界上最大的中、新生代陆相油田,突破了“中国贫油论”的束缚,取得了辉煌的成绩。近年来由于我国冀东南堡大型油田、四川盆地普光大型海相油田、松辽盆地徐家园子油田火山岩气田的发现,无疑是对单一的“生物成因论(有机成因论)”提出了挑战。然而石油成因理论不仅关系到生命起源等重大科学问题,而且对于石油勘探工作有着实际的指导意义。有机生油论指导我们找到了目前绝大多数的油气资源,然而无机成因油气田的不断发现,以及无机生油论取得的一些令人瞩目的研究成果,使我们不得不重新审视生油理论,以求解放思想,拓宽视野,在新领域探寻石油资源。现在认为石油基本上是无机成因的,而天然气的成因却是二元的即有机成因和无机成因。 油气成因理论应该是不断发展、不断进步、不断丰富的过程。上世界七十年建立的油气有机成因理论极大地推动了石油工业的发展,指导地质学家们发现了众多的油气田。但是油气的无机成因理论也在发展丰富取得了一些列的成就。以及一些无机成因的油气田的发现更是极大地鼓舞了长期坚持油气可以无机形成的地质学家,进一步推动了有机无机成因理论的发展。同时也有一些理论认为尤其是两种机制同时作用的结果,即油气中的碳元素来自生物有机质即为有机成因,而油气中的氢元素部分却是来自无机自然界的。更有一些理论运用地球动力学的模式直接打破了油气传统的有机或者无机成因划分,将二者融为一体运用地球动力学模式进行分析和研究进而指导油气田的勘探。 一.油气有机成因 油气的有机成因理论包括早期生油说和晚期干酪根热降解。油气的有机成因理论大家已较为熟悉在这里我只做简要的介绍。油气的有机成因理论中最重要的是上世纪七十年代法国科学家Tissot等创立的干酪根晚期热成烃理论,揭示了常规油气的形成、演化和分布规律,描述了油气生成、破坏的阶段性和基本过程在指导现在常规油气的勘探中发挥了无可替代的作用。干酪根晚期热降解生烃理论认为液态烃形成的温度范围为 60-120℃( 即Ro在0.6%-1.35%之间 ),当地层温度超过 120℃( Ro>1.35%)时有机质和液态烃将发生分解形成以甲烷为主的气态烃类。世界上绝大部分已发现的石油均存在于65.5-149℃的温度范围,高于此范围的石油则被天然气所取代。故将此温度界限称之为“液态窗”。 该理论认为在约 4500m以下深度的地温环境下石油和天然气将不能形成有商业价值的油气藏。然而勘探实践和理论研究表明石油特别是天然气可稳定地存在于更大的深度。因此对深层石油和天然气的研究应着眼于突破传统的"经济死亡线"在现行勘探深度以下研究和寻找石油和天然气特别是天然气资源。这说明传统的油气有机成因理论即干酪根晚期热降解理论存在着一定的局限性,不能用于指导地壳更深层的油气资源的勘探。 二.油气无机成因 从1763年俄国学者洛蒙诺索夫注意到油气的成因与火山活动有关,提出了无机成因油气的启蒙思想以来,无机成因油气说几度兴衰。油气无机成因理论出现两个多世纪以来,形成了多种无机成因油气观点,概括起来有以下几种:宇宙说、碳化说、岩浆说、变质说和核变说。目前影响较大的非无机生油气的几个学派。其中之一是Gold的地幔脱气理论;其中之二是费-托地质合成理论。 1.地幔脱气说 1.1Gold氏的理论 Gold 等依据太阳系、地球形成演化的模型, 认为地球深部存在着大量的甲烷及其它非烃资源,这些甲烷在地球形成时就已存在,大量还原状态的碳是在地壳深部被加热而释放出来的。经过地质历史时期的种种变化,这些甲烷向上运移, 并大量聚集在地壳深度15km左右的地带,形成无机成因的油气藏。Gold 认为,大陆板块边缘褶皱带、大型地壳裂谷、地震活动带、活火山或死火山附近,以及已查明富集油气的线性带的外延部位均是油气概率极高的地区。如前所述,来自地幔的烃,可以进入到大气圈中,也可运移到沉积储层,也可运移到火成岩、变质岩中,更可以进入水圈。北极地区大量气水合物的发现正是甲烷等烃类气体向上运移而形成的类冰态化合物。著名天体学家Ahrens( 1994) 在论述地球起源时明确指出:地球是吸积形成的, 被吸积的物质是冷却的, 因此,它们保留了相当一部分挥发份(水、甲烷、氨和稀有气体等)。 1.2幔汁说 幔汁说由杜乐天所倡导。杜乐天通过对地幔流体及软流层地球化学的多年系统的深入研究,在1987 年提出幔汁说的基础上,于1993 年提出了地球有5 个气圈的新假设。该假设认为:地球是一个充气的球,它内部存在压力极大,而且温度和密度都很高的气体,这些气体构成了从地球表面一直到地核的至少 5 个气圈。其中地壳气圈( 即气圈,位于地壳8~10km以下)对于人类具有重大的意义,它蕴藏着可供人类大规模开发利用的巨大天然气资源。 1. 3 幔源油气 前苏联科学院地质研究所极重视地球深源气的研究, 根据他们的理论,以及实验模拟,并从大量的地球化学资料,论证了在强还原条件下形成的深源气是氢气、各种烃类气及硫化氢。他们认为:在上地幔这种特有的温度和压力条件下,液-气相是氢和烃的巨大储气库。 2.费-托地质合成说 2. 1俄罗斯学者的“超基性岩底辟说” 俄罗斯学者卡罗斯、萨尔基索夫等( 1986)根据大量折射波、反射波、转换波的研究和分析,提出地壳结晶基底非层状特征的新概念模型。尔后,沃里沃夫斯基提出了陆壳岩浆潜入式增长的超基性蛇纹岩底辟说。他们认为: 陆壳的结晶部分不全是由高变质的层状结晶岩所构成,即在花岗岩(花岗片麻岩) 与玄武岩中间夹有可塑性的超基性蛇纹岩。在地壳发展早期是双层结构,后来由于可塑性的超基性岩的挤入使上下层分离,并发生破裂, 即所谓的“超基性蛇纹岩底辟说”。这种超基性岩在地

相关主题
文本预览
相关文档 最新文档