当前位置:文档之家› 加权余量法和变分法建立有限元方程

加权余量法和变分法建立有限元方程

加权余量法和变分法建立有限元方程 分片定义试函数和有限元法

直接法只能用来推导比较简单的有限元方程。例如假设温度、位移是线性变化的,因此在单元边界上热流、应力、表面力是常数,容易化成等效的节点热流和端点力。直接法形式上把连续区域化为有限元网格,对每个有限元用直接法分析得到单元刚度矩阵再组合成总体刚度矩阵。这种方法对计算结果的收敛性、误差和试函数选取的要求没有进行讨论。

0=+p ?L 在D 内

0=+γ?M 在Γ 上

用加权余量方法,选取近似函数

m M

m m a N ∑=+=?1

?ψ?

?

建立加权余量公式

()∫∫=+++Γ

D

l l

W dD p W 0?(?)M L γ??

该方法在整个区域定义试函数和建立加权余量公式,只能求解比较简单的问题。

可以设想把整个求解区域 D 划分为若干个互相既不重合,也不分离的子区域e D 之和。这些子区域叫

做有限元。然后在每个有限元内部分别构造近似函数e ?

?、选取加权函数。当然在不同的有限元内部可用不同的方法构造近似函数,对整个区域建立的加权余量公式,就可以写成各个子区域公式之和,即

()

∑∫

∫∑∫==+==E

e D e

e

l D

E e D e

D

e

l D l e

e

dD p W dD R W dD R W 11??L

()

∑∫∫∑∫=ΓΓ

=ΓΓ

ΓΓ+=Γ=ΓE

e e e

l E

e e e

l l e

e

d W d R W d R W 11?γ?M 由于上式把全域的积分写成子域积分之和,所以对被积函数提出了一定的要求,要求被积函数在子域之间的边界上满足一定的连续性。

有限元法分片选取试函数,它们在各自的子区域中一般都具有足够的连续性,使被积函数满足要求,关键是在子区域之间的交界面上能否满足要求。

分片选取的试函数需要满足:

1 如果在积分中只含未知数本身,不含导数,在有限元之间试函数本身可存在有限间断;

2 如果在积分中对未知函数的最高阶导数是一阶,在有限元之间试函数本身连续,一阶导数可存在有限间断,称为C0阶问题;

3 如果在积分中对未知函数的最高阶导数是二阶,在有限元之间试函数本身及其一阶导数连续,二阶导数可存在有限间断,称为C1阶问题;

4 如果在积分中对未知函数的最高阶导数是 n 阶,在有限元之间试函数本身及直至其 (n-1) 阶导数连续,n 阶导数可存在有限间断,称为C n?1阶问题。

(常用的是C0阶、C1阶问题,特别是C0阶问题。)

采用了分片定义的近似函数,整个区域中的加权余量公式可写成各个子区域(有限元)的加权余量公式之和,每一子区域中的加权余量公式表示在各个子区域上方程近似满足,整个区域中的加权余量公式表示整个区域中方程近似满足。整个系统的方程是由各有限元方程的组合、装配起来的,这就把一个连续问题化为若干小的离散单元的组合,然后可用标准离散系统的分析步骤求解。

例子

(1) 一维线单元

(2) 二维三角形单元

二维热传导问题有限元法

0=+???

?

????+??????=+Q y k y x k x p ???????????L 在D 内

??= 在 Γ?

k n q ??

?=? 在Γq

其加权余量公式为

0)?()?()?(=Γ+++??????+∫∫∫Γq d W q n k QdD W dD W y k y x k x l D

l l D ??

???????????

整个求解区域划分为有限元,上式可写成各有限元区域积分之和,要求

∑==m

i i i e N 1

???

中的

i N 在有限

元之间的边界上是C 1阶连续的,而W l 没有连续性要求,如果取W N l l =,就意味着要求l W 是C 1阶连续的。

将加权余量公式化为弱形式后有

0)??(

=Γ+?+∫∫∫Γ

q

q W QdD W dD y k x W x k x W l D l D l l ???????

??? 取W N l

l =,显然,只要求N l 是C 0阶的,对一个有限元有

0)??(=Γ+?+∫∫∫Γ

e

q

e

e

d q N dD Q N dD y k x N x k x N l D e

l D e

l e l ??????????

[][]{}

e m m m m m

i i i e

N N N N N N N ????????

=?

?????????=+++==∑=M L L 1122111?

m 是单元节点数,对于二维三角形单元,m=3

N x y i (,)是x ,y 的函数,称为节点 i 的形函数

对简单三角形单元,

)

(21

),(y c x b a y x N i i i i ++?=

)

(21)(21

)(21

j k i k j i j k k j i x x c y y b y x y x a ??

=??=??=(?是三角形面积)

把e ?

?的表达式代入有限元的弱形式,有

0))((1=Γ+?+∫∫∫∑Γ

=q

e e

e

q N dD Q N dD y N k x N x N k x N l D e

l D i i l i i l m

i ??????????

写成代数方程

m

l f k e

l m

i i

e li L 2,1,

1

==∑=?

载荷和刚度系数分别为

∫∫ΓΓ?=

+=e

q

e

e

d q N dD Q N f dD

y N y N x N x N k k l D e

l e

l D

i

l i l e li

)(????????

写成矩阵形式为

[]{}{}K f e

e

e

?=

下面来看刚度矩阵的具体表达

l l l l l l l l c y N b x N l y c x b a N ?

=?

==++?=21

,21

3

,2,1,

)(21????

形函数的一阶导数是常数,积分即乘以面积,

)(4)()2()()2(2

2i l i l D i l i l i l i l e

li

c c b b k c c b b k dD c c b b k k e

+?=?+?=+?=∫

和直接方法得到的完全相同。

弹性力学平面问题有限元法

弹性力学平面问题的泛函表达式

{}[]{}{}{}{}{}∫∫∫ΓΓ

??=Πσ??εεd t dD b dD D T

D

T D

T 21

ΠΠ

=∑e

e

{}

??

?

???????=e e

e

v u ???? C 0

阶连续 取

{}

{}[]{}

e m m m m

i i i e

N v u N v u N N ???=?

???????????++????????????==∑=10011001?1111L

{}[]{}[][]{}[]{}[]{}

i

m

i i

e

e

e

e

N ????ε∑=====1

B B L ?L ?

[][][]

i i N L B =

代入得到

{}[][][]{}{}[]{}{}[]{}∫∫∫ΓΓ

?????

?????=Πe

e e D T

T

e T

T

e e D T

T e e

d t N dD b N dD B D B σ

??

??21

泛函变分等于0,得到

[][][]{}[]{}[]{}0)(=Γ?

?∫

∫∫Γe

e

e

d t N dD b N dD B D B T

D T

D e

T

σ

?

可以写成

[]{}{}

e

e

e

f K =?

刚度矩阵和载荷向量分别为

[][][][]∫=e

D j

T i

e

ij

dD

B D B K

{}[]{}[]{}[]{}[]{}∫∫∫∫ΓΓΓ

+=Γ+=e

e e

e

d t N dD b N d t N dD b N f i

D i

T i

D T

i e

i

σ

σ

通过型函数,运用加权余量方法或者变分原理都能得到单元刚度方程,同时可以方便地得到等效节点载荷向量。该方法容易推广到三维和复杂单元形状的情况。

变分原理与变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间数域 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A ② 函数的积分: 函数空间数域

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?=∏0 221 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使 系统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B ,A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

变分原理及变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1 max ;21 )(11 2 2 ∑∑===n j n i ij a A

② 函数的积分: 函数空间 数域 D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得 有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

第三章有限元法基础通常将有限元法分为两大类变分法和加权余量法

第三章 有限元法基础 通常将有限元法分为两大类:变分法和加权余量法。两种方法的出发点不同,但最后都归结为:①离散化:用若干个子区域(即单元)代替整个连续区域,②算子解析方程,即偏微分方程转化为代数方程组:区域的物理性质可以用节点上有限个自由度来描述,再应用离散系统分析方法将其汇集在一起。 §3-1 算子方程及变分原理 3.1.1 算子的概念 (1)静电场中,泊松方程 ρ?ε-=??? 可以写为 ρ?=L ,其中??-?=εL 称为算子。 (2)稳态磁场中,双旋度方程 J A =??? ?μ 1 J LA =? (3)时变场中,波动方程 J H H 2??=-????νννk J H ??=?νL 3.1.2 泛函 1、泛函的概念 泛函是函数空间H 中,函数到数的映像,如 ()()[]x y I x I = 也可以说泛函是函数的函数,函数空间中的某一函数()x y 有一个I 值与之对应,变量I 就是D 空间的函数()x y 的泛函。 例如 求()x y 所表示的曲线长度及所围面积。 曲线长度 ()[]? ?? ? ??+=2 1 2 1x x dx dx dy x y I

曲线所围面积 ()[]()?=2 1 x x dx x y x y I 不同的()x y ,有不同的I 与之对应,不同的 图3-1 求曲线长度及所围面积 ()[]x y I 构成了函数空间H 。 2、泛函连续 若对于()x y 的微小改变,有泛函()[]x y I 的微小改变与之对应,就称泛函是连续的。 3、线性泛函 若泛函满足 ()[]()[]x y cI x cy I = c 为常数 或 ()()[]()[]()[]x y I x y I x y x y I 2121+=+ 则称其为线性泛函。 4、函数的变分y δ 泛函()[]x y I 的宗量()x y 的变分y δ是()x y 的微小增量 ()()x y x y y 1-=δ 5、泛函的变分I δ 对于宗量()x y 的变分y δ,泛函的增量为 ()[]()[]()[]()[]y ,x y o y ,x y L I I I x y I y x y I I δδδδδδ+=+++=-+=? 32 式中,()[]y x y L δ,是对y δ的线性泛函,是I ?的主要部分,称为一阶(或一次)变分 ()[]y x y L I δδ,= ()[]y x y o δ,是误差项。 y δ与dy 的区别: 当自变量x 的增量1x x x -=?充分小时,可用dx 来表示,dx 称为x 的微分。相应地,函数y 的增量 ()()()()x o x x A x y x x y y ?+?=-?+=? 当x ?充分小时,可用dy 来表示,dy 称为y 的微分,dy 是x 的变化引起的微分,

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

变分原理

变分原理 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,或称最小作用原理。 例如:实际上光的传播遵循最小能量原理: 在静力学中的稳定平衡本质上是势能最小的原理。 一、举一个例子(泛函) 变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论。 在理论上和实践上均需要放宽解的条件。因此,引入弱解以及边值问题的弱的形式即变分形式。在讨论二阶椭圆边值问题时的Lax-Milgram 定理。 Poisson 方程的Neumann 问题 设Ω是单连通域,考察Poisson 方程的Neumann 问题 (N) ??? ? ??? =??=?-Γ,g n u f u u ,在Ω内,,使得求函数 这里)(),(2/12Γ∈Ω∈-H g L f ,且满足 01 ,=+Γ Ω ? g f d x 其中的对偶积表示)()(,2/12/1Γ?Γ??-ΓH H . 问题(N )的解,虽然是不唯一的,但是,若把问题(N )局限于商空间)(V 1Ω=H 内求解,且赋予商范数 ΩΩ∈Ω=,1) (/)(1 1i n f ?v v H v R H ,V v ∈? 可以得到唯一解。实际上,由定理5.8推出R H v /)(1?Ω等价于半范Ω→,1?v v . 定义双线性泛函R V V →?: V v u v v u u v u v u B ∈∈∈???=?,?,?,?),,()?,?( 和线性泛函 V v v v u g fdx v l ∈∈?+→Γ Ω??,?,,?:. 其右端与v v ?∈无关。因此v ?中的元素仅仅相差一个任意常数,同时,可以判定'V l ∈,实际上 ,,2/1,2/1,0,0)?(ΓΓ -Ω Ω +≤v g v f v l

变分原理与变分法

第一章 变分原理与变分法 1、1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总就是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理就是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也就是光传播最短路径(Heron); ③ 光线折射遵循时间最短的途径 CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上就是势能最小的原理。 二、变分法就是自然界变分原理的数学规划方法(求解约束方程系统极值的数学 方法),就是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间的(映 射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A

② 函数的积分: 函数空间 D ?=?n b a n f dx x f J )( Note : 泛函的自变量就是集合中的元素(定义域);值域就是实数域。 Discussion : ① 判定下列那些就是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i 、 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii 、 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii 、 外力位能: ?-=∏l l qwdx 0 iv 、 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系统 势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 与B ,A 高于B ,要求在两点间连接一条曲线,使得有 重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i 、 通过A 与B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii 、 建立泛函: x

变分原理与变分法

变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、大自然总是以可能最好的方式安排一切, 似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律, 获称最小作用原理。 Exa mp les ① ② Summary:实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的 (映射)关系 第一章 光线最短路径传播; 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); 光线折射遵循时间最短的途径(Fermat ); AE+ EB A AC +CB ③

特征描述法:{ J: X u D T R | J ( x ) = r € R } Exa mp les ① 矩阵范数:线性算子(矩阵)空间— 数域 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个 w (x ),使 i.梁的弯曲应变能: □b =-f' EJ (雪 2 P dx 2 ii.弹性地基贮存的能量: n f 1 J 2 =一 J kw dx 2 0 iii.外力位能: 口 l l =-0 qwdx iv.系统总的势能: )2dx 11 AII 1 = max 2 a j i4 ;|A L = max 2 a ij ; I A 2 仁 )12 ②函数的积分:函数空间i 数域 b J = a f n (X )dX fn U D Note:泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussi on : ①判定下列那些是泛函: c f (x y) --- '—-3x+5y=2; J 6(x-x 0) f (x)dx = f (x 0) f i=ma 少(x )i ; ex ②试举另一泛函例子。 物理问题中的泛函举例 q(x) /■'■'I rmTrfT ① 弹性地基梁的系统势能 ■ d 丨 L l d 2 w 2 □卡E J( dxr) 2 Tkw - qW}dx; x = 0 d w = 0 dx x x = 0,固支;x =

1有限元法简介

1有限元法简介 1.1有限单法的形成 在工程技术领域内,经常会遇到两类典型的问题。其中的第一类问题,可以归结为有限个已知单元体的组合。例如,材料力学中的连续梁、建筑结构框架和桁架结构。我们把这类问题,称为离散系统。如图1-1所示平面桁架结构,是由6个承受轴向力的“杆单元”组成。尽管离散系统是可解的,但是求解图1-2所示这类复杂的离散系统,要依靠计算机技术。 图1-1 平面桁架系统

图1-2 大型编钟“中华和钟”的振动分析及优化设计(曾攀教授) 第二类问题,通常可以建立它们应遵循的基本方程,即微分方程和相应的边界条件。例如弹性力学问题,热传导问题,电磁场问题等。由于建立基本方程所研究的对象通常是无限小的单元,这类问题称为连续系统。 图1-3 V6引擎的局部 下面是热传导问题的控制方程与换热边界条件: t T c Q z T z y T y x T x ??=+??? ??????+??? ? ??????+??? ??????ρλλλ (1- 1) 初始温度场也可以是不均匀的,但各点温度值是已知的: () 00 x,y,z T T t == (1- 2) 通常的热边界有三种,第三类边界条件如下形式: ()f T-T h n T λ=??- (1- 3) 尽管我们已经建立了连续系统的基本方程,由于边界条件的限制,通常只能得到少数简单问题的精确解答。对于许多实际的工程问题,还无法给出精确的解答,例如,图1-3所示V6引擎在工作中的温度分布。这为解决这个困难,工程师们和数学家们提出了许多近似方法。 在寻找连续系统求解方法的过程中,工程师和数学家从两个不同的路线得到了相同的结果,即有限元法。有限元法的形成可以回顾到二十世纪50年代,来源于固体力学中矩阵结构法的发展和工程师对结构相似性的直觉判断。从固体力学的角度来看,桁架结构等标准离散系统与人为地分割成有限个分区后的连续系统在结构上存在相似性。 1956年M..J.Turner, R.W.Clough, H.C.Martin, L.J.Topp 在纽约举行的航空学会年会上介

变分原理与变分法

第一章变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称 /相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律, 获称最小作用原理。 Examples: ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ 光线折射遵循时间最短的途径(Fermat ); , Summary 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 、变分法是自然界变分原理的数学规划方法 (求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映 射)关系 特征描述法:{ J: X D R|J (x ) r R } Examples: ① 矩阵范数:线性算子(矩阵)空间 = 数域 ② 函数的积分:函数空间数域 n II A II 1 = max a ij j i 1 max a ij i j 1 n n A 2 ( a ij 产 j 1 i 1 AE EB AC CB

b J f n (X )dX f n D a Discussi on : ① 判定下列那些是泛函: ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个 w (x ),使 系统势能 泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B, A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从 A 到B 所需时间最短(忽略摩擦 力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。 B 点坐标(a, b ), 设曲线为 y = y (x ),并已知:x = 0, y = 0 ; x = a, y = b ii. 建立泛函: i.梁的弯曲应变能: 1 ' d 2 w 2 b o 0 EJ( 2 ) dx 2 0 dx ii.弹性地基贮存的能量: f — kw 2 dx 2 0 iii.外力位能: l I o qwdx iv.系统总的势能: 左Ej (d 丫)2 1 2 2 kw qw}dx; x 0 w 0削0 dx x = 0,固支;x = l, 自由 Note:泛函的自变量是集合中的元素(定义域) ;值域是实数域。 max f (x); a x b f(X,y) ; 3x+5y=2; x (x x °)f(x)dx f(X o ) q(x) con sts E 、J x

(完整版)有限元法的基本原理

第二章有限元法的基本原理 有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。 2.1等效积分形式与加权余量法 加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。 2.1.1 微分方程的等效积分形式 工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组 12()()()0A A A ?? ?== ? ??? u u u M (在Ω内) (2-1) 域Ω可以是体积域、面积域等,如图2-1所示。同时未知函数u 还应满足边界条件 12()()()0B B B ?? ?== ? ??? u u u M (在Γ内) (2-2) 要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。所以在以上两式中采用了矩阵形式。 以二维稳态的热传导方程为例,其控制方程和定解条件如下: ()()()0A k k q x x y y φφφ????=++=???? (在Ω内) (2-3)

0()0q B k q n φφφφφ?-=Γ?=??-=Γ???(在上)(在上) (2-4) 这里φ表示温度(在渗流问题中对应压力);k 是流度或热传导系数(在渗流问题中对应流度/K μ);φ和q 是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n 是有关边界Γ的外法线方向;q 是源密度(在渗流问题中对应井的产量)。 在上述问题中,若k 和q 只是空间位置的函数时,问题是线性的。若k 和q 是φ及其导数的函数时,问题则是非线性的。 由于微分方程组(2-1)在域Ω中每一点都必须为零,因此就有 1122()(()())0u d v A u v A u d ΩΩ Ω≡++Ω≡? ?T V A L (2-5) 其中 12v V v ?? ?= ? ??? M (2-6) 其中V 是函数向量,它是一组和微分方程个数相等的任意函数。 式(2-5)是与微分方程组(2-1)完全等效的积分形式。我们可以说,若积分方程对于任意的V 都能成立,则微分方程(2-1)必然在域内任一点都得到满足。同理,假如边界条件(2-2)亦同时在边界上每一点都得到满足,对于一组任意函数,下式应当成立 1122 ()(()())0u d v B u v B u d ΓΓΓ≡++Γ≡??VB L 因此积分形式 ()()0u d u d ΓΓ Ω+Γ=??T T V A V B 对于所有的V 和V 都成立是等效于满足微分方程(2-1)和边界条件(2-2)。我们把(2-7)式称为微分方程的等效积分形式。 2.1.2等效积分的“弱”形式 在一般情况下,对(2-7)式进行分部积分得到另一种形式: ()()()()0T T v d v d ΩΓ Ω+Γ=??C D u E F u (2-8) 其中C ,D ,E ,F 是微分算子,它们中所包含的导数的阶数较(2-7)式的低,这样对函数u 只需要求较低阶的连续性就可以了。在(2-8)式中降低连续性要求是以提高V 和V 的连续性要求为代价的,由于原来对V 和V (在(2-7)式中)并无连续性要求,但是适当提高对其连续性的要求并不困难,因为它们是可以选择的已知函数。这种降低对函数u 连续性要求的作法在近似计算中,尤其是在有限单元法中是十分重要的。(2-8)式称为微分方程

变分原理与变分法

第一章 变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ①光线最短路径传播; ②光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③光线折射遵循时间最短的途径( CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ①判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(;3x+5y=2;?+∞∞-=-)()()(00x f dx x f x x δ ②试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i.梁的弯曲应变能:?=∏l b dx dx w d EJ 02 22)(21 ii.弹性地基贮存的能量:dx kw l f ?=∏0 221 iii.外力位能:?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ②最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得有重 物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii.建立泛函: 设P (x , y )是曲线上的点,P 点的速度由能量守恒定律求得: x

能量原理的应用 变分法 变分法数学基础

第七章能量原理及其应用 偏微分方程求解的困难 ——应力函数解法的限制 能量原理的应用 变分法 变分法数学基础

目录 §7.1基本概念 §7.2虚功原理 §7.3最小势能原理§7.4虚应力方程§7.5最小余能原理§7.6有限元概念

格林公式 §7.1基本概念 (密度) 外力功——变形体的能量关系变形能xz xz yz yz xy xy z z y y x x U U U U U U γτγτγτεσεσεσ??= ??=??=??= ??= ??= 000 ij ij U εσd d 0=xz xz yz yz xy xy z z y y x x γτγτγτεσεσεσ+++++d d d d d =

注意 线弹性问题的变形能 ) (2 1 0xz xz yz yz xy xy z z y y x x U γτγτγτεσεσεσ+++++=ij ij U εσ2 1 0=V U U V d 0???=

功-能关系 位移边界面力边界 V S u F V u F k ij s ij k i i k i i d d d s b ??? ?????=+εσ弹性体体积V ,表面积为S 。 位移给定表面S u 面力给定表面S σ 静力可能的应力与几何可能的位移 S =S u +S σ b ,=+i j ij F σj ij i n F σ=s )(21,,i j j i ij u u +=εi i u u =S u S σ s ij σ k i u k ij ε

§7.2虚功原理 弹性体处于平衡状态,对于满足变形连续条件的虚位移及其虚应变,外力在虚位移上所做的虚功,等于真实应力分量在对应的虚应变上所做的虚功,即虚应变能。 虚功原理 V S u F V u F V ij ij V S i i i i d d d s b ????????=+δεσ δδσ

第一章-理论基础-加权余量法和变分原理

同济大学土木工程学院研究生课程 《有限单元法》 第一章 有限元法的理论基础——加权余量法和变分原理 1、微分方程的近似解法 2、加权余量法 3、变分原理与里兹法 4、弹性力学基本方程 5、弹性力学变分原理 授课教师:吴明儿教授 2015年春

1、微分方程的近似解法 将连续体进行离散化,将微分方程离散成有限个未知数的代数方程组进行近似求解。典型的离散方法有里兹法、加权余量法、差分法等。 数值解加权余量法变分法 差分法 数值积分法Monte Carlo法 配点法 最小二乘法 力矩法 伽辽金法 里兹法 变分法:存在泛函,取泛函数驻值,里兹法。固体力学领域加权余量法:系统不需要存在泛函数。其他领域

2、加权余量法考虑某一维问题 微分方程 d2T dx2?T=0(0≤x≤1) 边界条件 T=0x=0边界条件1 dT dx =1x=1边界条件2 理论解 T=(e x?e?x)(e+e?1)近似解T= β=1 M Nβx Tβ Nβ:试探函数已知函数;Tβ:待定参数未知系数 选取:Nβ0=0β=1,2,…,M满足边界条件1 加权余量法 1 wαΩ d2T dx2 ?T dx+wαΓ d T dx ?1 x=1 =0(α=1,2,…,M) wαΩ及wαΓ为任意的加权函数。加权函数的选取办法有配点法、子 域法、最小二乘法、力矩法和伽辽金法等,以伽辽金法最为常用。伽辽金法:wαΓ=?wαΩ=?Nα 分部积分、考虑Nα0=0: Nα d T dx 1 + 1 ? dNα dx d T dx ?NαT dx+?Nα d T dx ?1 x=1 =0 1dNα dx d T dx +NαT dx=Nα1 若边界条件2右边为零,则Nα1=0,上式不需要对边界进行处理。根据这种性质,边界条件2称为自然边界条件,边界条件1称为强 制边界条件。

相关主题
文本预览
相关文档 最新文档