当前位置:文档之家› 数值积分在MATLAB中的应用

数值积分在MATLAB中的应用

数值积分在MATLAB中的应用
数值积分在MATLAB中的应用

数值积分在MATLAB 中的应用

摘 要:介绍了数值积分法的几种计算公式及相应的MATLAB 命令,并给出了用MATLAB 编程求数值积分的实例.牛顿—莱布尼兹公式在计算积分的方法和解决实际问题中期了很大作用,但在某些领域遇到一些复杂情况,用牛顿—莱布尼兹公式则无法求解。这时可以“数值积分”的方法求定积分。“数值积分”法中常用的方法有“矩形公式”,“梯形公式”和“辛普森公式”等。MATLAB 中求数值积分的命令有:矩形公式命令 sum ;梯形公式命令 trapz ;辛普森公式命令 quad 。使用这些命令可以快速计算一些数值积分问题。 关键词:MATLAB ;数值积分;矩形公式;梯形公式;辛普森公式

Numerical integration in MATLAB Applications

Abstract : Introduced several numerical integration formula and the corresponding MATLAB commands, and gives the Numerical Integration with MATLAB programming examples. Newton - Leibniz formula in calculating the integral method to solve practical problems and a significant role in the medium-term However, the complexities encountered in some areas, with Newton - Leibniz formula can not be solved. Then you can "numerical integration" method seeking the definite integral. "Numerical integration" method commonly used method in the "rectangular formula", "trapezoidal rule" and "Simpson formula," and so on.

Numerical Integration in MATLAB commands are: rectangle formula order sum ; trapezoidal formula order trapz ; Simpson formula command quad . Use these commands to quickly calculate some numerical integration problems.

Key words: MATLAB ; Numerical integration; Rectangular formula; Trapezoid formula; Simpson formula 引言

MATLAB 是一个包含大量计算算法的集合。

其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。在通常情况下,可以用它来代替底层编程语言,如C 和++C 。在计算要求相同的情况下,使用MATLAB 的编程工作量会大大减少。MATLAB 的这些函数集包括从最简单最基本的函数到诸如距阵,特征向量、快速傅立叶变换的复杂函数。函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。

数值积分在众多方面都有着重用的作用,但其计算太过庞大和复杂。而MATLAB 拥有庞大的数学运算函数,使数值积分在MATLAB 中的计算变得简单,所以我们要了解数值积

分在MATLAB 中的应用。

在一元微积分学中,若已知函数)(x f 在闭区间],[b a 上连续且其原函数为)(x F ,求

)(x f 在该区间上的定积分可用牛顿—莱布尼兹公式求解,即

()()|()()b b

a a

f x dx F x F b F a ==-?

。我们知道牛顿-莱布尼茨公式,又称为微积分基本

定理,其意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。从几何上看,它在切线和面积两个看似很不相关的概念之间建立起了联系。而在MATLAB 中可以用符号积分命令int 求()b a

f x dx ?

该命令格式为

in t(,,,)

f x a b 。 例1 求20

sin xdx π

?

解 输入命令: > > syms x ; > >I = int (sin(x ),x ,0,2/pi ), 结果显示为:I = 1。

用牛顿—莱布尼兹公式计算定积分的方法在理论上和解决实际问题中起到了很大的作用,但它并不能解决定积分计算的所有问题。在技术领域常遇到十分复杂的情况而无法用牛顿—莱布尼兹公式求解。其可能出现的情况[4]有:

(1) 某些被积函数)(x f ,其原函数无法用初等函数表示,如2

x

e dx ?,sin x dx x

?等。

(2) 函数)(x f 结构复杂,求其原函数非常困难。

(3) 函数)(x f 的结构虽然简单且其原函数存在,但其原函数的结构相对复杂。

(4) 函数)(x f 没有具体的表达式,只有一些由试验测试数据形成的表格或图形。而在这些情况下,可采用“数值积分”的方法求出定积分(近似值) 。 一、数值积分法

用数值积分的方法求一个函数在区间],[b a 上的定积分,可利用定积分的定义来求解:

1

()lim

()

n

b k a

x k b a I f x dx f n

ξ→∞

=-=

=∑

?

设1

()

n

n k k b a I f n

ξ=-=

,则lim n x I I →∞

=

此时称n I 为数值积分。显然,数值积分n I 就是I 的近似值,并且当n 越大,n I 就越接近于精确值I 。由于k ξ取值不同,数值积分n I 的结果会有所不同。[5]数值积分的计算公式也有

多种: (一) 矩形公式

将积分区间],[b a n 等分,每个小区间宽度均为n a b h /)(-=,h 称为积分步长。记a =0x <1x < ?

别取左端点和右端点的函数值为小矩形的高,则分别得到两个曲边梯形面积的近似计算公式:

1

0()n n k k L h f x -==∑,b a h n -=

(1.1)

1

()n

n k k R h f x ==∑,b a h n

-=

(1.2)

称公式(1.1),(1.2)分别为左、右矩形公式,两个矩形面积分别小于和大于所求曲边梯形的面积。 (二) 梯形公式

如果将二者求平均值,则每个小区间上的小矩形变为小梯形,整个区间上的值变为:

1

01

()[()()]2

n n k n k h T h f x f x f x -==+

+∑ (1.3)

其中,b a h n

-=

。(1.3)式称为梯形公式。

(三) 辛普森公式

为了提高计算结果的精度,用分段二次插值函数代替)(x f 。由于每段要用到相邻两个小区间端点的三个函数值,所以,小区间的数目必须是偶数,记n =m 2,k = 0,1, ?,

1-m ,在第k 个小区间上用三个节点(2k x ,2k f ),(21k x +,21k f +), (22k x +,22k f +) 作

二次插值函数()k S x ,然后积分可得:

21222122()[()4()()]3

k k

x k k k k x h S x dx f x f x f x +++=

++?

求出m 段的和就得到整个区间上的近似积分n S ,即

1

1

022120

1

[()()4()2()]3

m m n m k k k k h S f x f x f x f x --+===

+++∑∑ (1.4)

(1.4)式称为辛普森公式[6]

。 二、MATLAB 求数值积分 (一)矩形公式命令sum

命令格式:

)(y sum 输出一个向量y 的分量的和,按矩形公式(1.2), (1.2)计算积分的近似值。 dim),(A cumtrapz 返回大小和A 相同的数组,包含的是将矩阵A 进行梯形积分的累积值。

如果dim 已给定,则在dim 维内进行计算[7]

。 (二)梯形公式命令trapz 命令格式:

),(y x trapz 计算出函数x 的积分并将结果返回到y

[8]

。向量x 和y 有相同的长度,)

,(i i y x 代表曲线上的一点。曲线上点的距离不一定相等,x 值也不一定有序。然而,负值间距和子区间被认为是负值积分。

)(y trapz 计算方法同上,但x 值间隔为1[9]

),(A x trapz 将A 中每列的值带入x 的函数算出其积分,并返回一组包含

积分结果的向量。A 的列向量必须和向量x 的长度相同。

dim),,(A x trapz z = 在矩阵A 中dim 指定的维内进行数据积分。如果给定向量x ,则x 的

长度必须与dim),(A size 相同[1]。 (三)辛普森公式命令quad 命令格式:

),,(b a fcn quad 返回在区间],[b a 上g 的积分近似值。字符串fcn 包含一个与g 相对应的MATLAB 函数名,也就是预定义函数或者是M 文件。这个函数接收一个向量参数,并返回

一个向量结果。MATLAB 利用辛普森规则执行递归的积分,计算误差为3

10-[2]

),,,(tol b a fcn quad 求g 的积分近似值,

其相对误差由参数tol 定义。否则,计算过程同上。 a fcn quad ,( ),,pic tol b 求g 的积分近似值,其相对误差由参数tol 所定义。如果参数pic 是非零值,则在图形中显示求值的点。

)(......,trace quad 如果trace 是非零值,则画出积分图形。

(......)8quad 可以与quad 一样用于相同的参数组合并返回相同的结果,

但使用更高精度的方法[10]。因此,如果被积函数的导数在某一区间内是不定的,例如:dx x q ?

=

1

sin ,使用此命令将会更好一些。quad 和8quad 都要求被积函数在整个区间里

是有限的。

),,,2max ,2min ,1max ,1min ,(order trace tol f dblquad 计算双变量函数f 的二重积分。

函数中的第一个自变量用于内层积分。内层积分在min 1和max 1之间进行,外层积分在min 2和max 2之间进行。变量tol 指定相对误差。trace 的使用方法与quad 相同。根据字符串

order ,对于相同的访问,dblquad 能选择使用quad 、8quad 和许多用户定义的积分方

法,并返回与quad相同的变量[3]。

三、数值算例

(一)算例1:

2

下面用不同的方法来计算该积分:dx

e x

?-1

(1) 使用trapz命令。首先创建一个有x值的向量[11]。用5和1 0两个值进行计算:

,1,0(

10

x=;

10linspace

5linspace

)5,1,0(

x=;)

然后创建x的函数y:

y5 = exp)2

.^

10

(x

-;

-;y10 = exp)2

.^

5

(x

现在计算出积分值:

format long;

integral5 =)5

x

trapz,…

,5

(y

integral10=)

x

(y

trapz

10

10

,

返回

integral5=0.74298409780038

integral10=0.74606686791267

(2) 使用quad命令。首先在M文件中创建函数。此文件integrand.m包含函数,如下:

(x

function y= integral)

y = exp)2

-x;

.

(∧

首先以标准误差计算积分,然后再以指定误差计算积分。

format long;

integralStd =quad(‘integral’,0,1)

integralTol =quad(‘integral’,0,1,0.00001)

给出

integralStd = 0.74682612052747

integralTol = 0.74682414517798

(3) 使用8

quad命令。使用在(2)中创建的M文件,然后输入:

integral8Std = 8

quad(‘integrand’,0,1)

integral8Std = 0.74682413281243

这是MATLAB所能给出的最精确的结果。

(4)使用cumtrapz命令。能很容易地计算出不同区间的积分。

x= 0:5;

)(x cumtrapz

ans = 0 0.5000 2.0000 4.5000 8.0000 12.5000

(二)算例2: (5)计算二重积分:

dydx e

y

x ??

--10

1

2

2

首先创建一个包含函数M 文件integrand2.m :

function y = integrand 2),(y x

y =exp )2.2.(∧

--y x :

然后用quad 命令计算对于固定的x 值在y 方向的一些积分值:

)15,1,0(linspace x =;

for i =1:15

integral (i ) = quad (‘integrand 2’,0,1,[ ],[ ],x (i ));

end

现在已计算出在y 方向的15个积分值。trapz 命令能使用这些值来计二重积分:

format short

dintegral =trapz (x ,integral )

dintegral = 0.5575

输入下列语句可以得到一个积分区域的图形:

],[Y X =meshgird

(0:.1:1,0:.1:1);

Z = integrand 2(X ,Y );

mesh (X ,Y ,Z );view (30,30);

结果如图1所示

图1 函数2

2

y

x e

--在区间[0,1]?[0,1]上的图形

Chart1 Function 2

2

y

x e

--in interval[0,1]?[0,1] chart

(三)算例3:

对于不知道函数具体表达式,只知道x ,y 的一些实测数据的函数,可以用数值积分法的梯形公式求定积分。以求瑞士国土面积为例说明其应用。图2是瑞士地图,为了计算它的国土面积,首先对地图作如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当地划分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标1x 和1y ,这样就得到表1 中的数据(单位mm)。根据地图的比例,18 mm 相当于40 km ,由测量数据根据下列程序计算瑞士国土的近似面积:

图2 瑞士地图 Chart2 Switzerland map 表1 瑞士地图测量数据

Tab.1 Switzerland map survey data

x = [ 7 10. 5 13 17. 5 34 40. 5 44. 5 48 56 61 68. 5 76. 5 80. 5 91 96

101 104 106. 5 111. 5 118 123. 5 136. 5 142 146 150 157 158 ]*(40/ 18) ;

1y = [ 44 45 47 50 50 38 30 30 34 36 34 41 45 46 43 37 33 28 32

65 55 54 52 50 66 66 68 ] * (40/18) ;

2y = [ 44 59 70 72 93 100 110 110 110 117 118 116 118 118 121 124

121 121 121 122 116 83 81 82 86 85 68 ] * (40/ 18) ; trapz (x ,2y ) - trapz (x ,1y ) 运行该程序得结果为42 4142

km 。

结论:使用MATLAB 命令求积分不仅可对已知解析表达式的函数进行积分,还可以对一些离散点的数据进行积分(近似值),通过输入简单的命令就可得到结果,轻松完成手工计算难以处理的含有大量数据的工作。本文通过对数值积分中常用的积分方法的学习,了解积分在实际应用的的作用,但是其庞大的计算令人生畏。所以我们想采取某些方法使积分的计算变得简单而且快速。而MATLAB 中含有丰富的 参考文献

[1] G.Forsythe, M.Malcolm, and C.Moler, Computer Methods for Math-ematical Computations, Prentice Hall, Englewood Cliffs, 1977.

[2] D.Kahaner, C.Moler, and S.Nash, Numerical Methods and Software,Prentice Hall,Englewood

Cliffs, 1989.

[3] Bruce L.Littlefield,Duane C.Hanselman. Mastering Matlab 7[M]. Pearson Education, 2004.11.

[4] 柯善军.高等数学与应用实验[M].北京:北京航空航天大学出版社, 2007.

[5] 萧树铁.大学数学数学实验[M].北京:高等教育出版社, 1997.

[6] 陈佩宁.用MATLAB求数值积分的方法[R].石家庄:石家庄职业技术学院学报, 2008.

[7] 华东师范大学数学系.数学分析[M].北京:高等教育出版社, 2001.

[8] 苏金明,阮沈勇.MATLAB实用教程[M].北京:电子工业出版社, 2005.

[9] 冯崇岭,刘升,陈国龙,胡国亮,韩玲. MATLAB在《数值分析》课程教学与实验中的应用

[J]. 淮北煤炭师范学院学报(自然科学版), 2008,(01)

[10] 曾繁慧,高雷阜,胡行华.基于MATLAB的《数值分析》教学改革研究[J].高教论坛,2008.

[11] 秦奋涛,徐永春.用MATLAB做积分数学实验[J].张家口师专学报, 2001,(06).

数值积分算法与MATLAB实现陈悦5133201讲解

东北大学秦皇岛分校 数值计算课程设计报告 数值积分算法及MATLAB实现 学院数学与统计学院 专业信息与计算科学 学号5133201 姓名陈悦 指导教师姜玉山张建波 成绩 教师评语: 指导教师签字: 2015年07月14日

1 绪论 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值检索方其理论与软件的实现.而数值分析主要研究数值计算. 现科学技术的发展与进步提出了越来越多的复杂的数值计算问题,这些问题的圆满解决已远人工手算所能胜任,必须依靠电子计算机快速准确的数据处理能力.这种用计算机处理数值问题的方法,成为科学计算.今天,科学计算的应用范围非常广泛,天气预报、工程设计、流体计算、经济规划和预测以及国防尖端的一些科研项目,如核武器的研制、导弹和火箭的发射等,始终是科学计算最为活跃的领域. 1.1 数值积分介绍 数值积分是数值分析的重要环节,实际问题当中常常需要计算积分,有些数值方法,如微分方程和积分方程的求解,也都和积分计算相联系. 求某函数的定积分时,在多数情况下,被积函数的原函数很难用初等函数表达出来,因此能够借助微积分学的牛顿-莱布尼兹公式计算定积分的机会是不多的.另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解.由于以上原因,数值积分的理论与方法一直是计算数学研究的基本课题.对微积分学做出杰出贡献的数学大师,如I.牛顿、L.欧拉、C.F.高斯、拉格朗日等人都在数值积分这个领域作出了各自的贡献,并奠定了这个分支的理论基础. 构造数值积分公式最通常的方法是用积分区间上的n 次插值多项式代替被积函数,由此导出的求积公式称为插值型求积公式.特别在节点分布等距的情形称为牛顿-科特斯公式,例如梯形公式(Trapezoidal Approximations)与抛物线公式(Approximations Using Parabolas)就是最基本的近似公式.但它们的精度较差.龙贝格算法是在区间逐次分半过程中,对梯形公式的近似值进行加权平均获得准确程度较高的积分近似值的一种方法,它具有公式简练、计算结果准确、使用方便、稳定性好等优点,因此在等距情形宜采用龙贝格求积公式(Rhomberg Integration).当用不等距节点进行计算时,常用高斯型求积公式计算,它在节点数目相同情况下,准确程度较高,稳定性好,而且还可以计算无穷积分.数值积分还是微分方程数值解法的重要依据.许多重要公式都可以用数值积分方程导出.现探讨数值积分算法以及运用MATLAB软件的具体实现

数值积分的matlab实现

实验10 数值积分 实验目的: 1.了解数值积分的基本原理; 2.熟练掌握数值积分的MATLAB 实现; 3.会用数值积分方法解决一些实际问题。 实验内容: 积分是数学中的一个基本概念,在实际问题中也有很广泛的应用。同微分一样,在《微积分》中,它也是通过极限定义的,由于实际问题中遇到的函数一般都以列表形式给出,所以常常不能用来直接进行积分。此外有些函数虽然有解析式,但其原函数不是初等函数,所以仍然得不到积分的精确值,如不定积分?1 0 d sin x x x 。这时我们一般考虑用数值方法计算其 近似值,称为数值积分。 10.1 数值微分简介 设函数()y f x =在* x 可导,则其导数为 h x f h x f x f h ) ()(lim )(**0* -+='→ (10.1) 如果函数()y f x =以列表形式给出(见表10-1),则其精确值无法求得,但可由下式求得其近似值 h x f h x f x f ) ()()(*** -+≈' (10.2) 表 10-1 一般的,步长h 越小,所得结果越精确。(10.2)式右端项的分子称为函数()y f x =在 *x 的差分,分母称为自变量在*x 的差分,所以右端项又称为差商。数值微分即用差商近似 代替微商。常用的差商公式为: 000()() ()2f x h f x h f x h +--'≈ (10.3) h y y y x f 243)(2 100-+-≈ ' (10.4)

h y y y x f n n n n 234)(12+-≈ '-- (10.5) 其误差均为2 ()O h ,称为统称三点公式。 10.2 数值微分的MATLAB 实现 MATLAB 提供了一个指令求解一阶向前差分,其使用格式为: dx=diff(x) 其中x 是n 维数组,dx 为1n -维数组[]21321,, ,n x x x x x x ---,这样基于两点的数值导 数可通过指令diff(x)/h 实现。对于三点公式,读者可参考例1的M 函数文件diff3.m 。 例1 用三点公式计算()y f x =在=x 1.0,1.2,1.4处的导数值,()f x 的值由下表给 解:建立三点公式的M 函数文件diff3.m 如下: function f=diff3(x,y) n=length(x);h=x(2)-x(1); f(1)=(-3*y(1)+4*y(2)-y(3))/(2*h); for j=2:n-1 f(j)=(y(j+1)-y(j-1))/(2*h); end f(n)=(y(n-2)-4*y(n-1)+3*y(n))/(2*h); 在MATLAB 指令窗中输入指令: x=[1.0,1.1,1.2,1.3,1.4];y=[0.2500,0.2268,0.2066,0.1890,0.1736];diff3(x,y) 运行得各点的导数值为:-0.2470,-0.2170,-0.1890,-0.1650,-0.0014。所以()y f x =在=x 1.0,1.2,1.4处的导数值分别为-0.2470,-0.1890和-0.0014。 对于高阶导数,MATLAB 提供了几个指令借助于样条函数进行求导,详细使用步骤如下: step1:对给定数据点(x,y ),利用指令pp=spline(x,y),获得三次样条函数数据pp ,供后面ppval 等指令使用。其中,pp 是一个分段多项式所对应的行向量,它包含此多项式的阶数、段数、节点的横坐标值和各段多项式的系数。 step2:对于上面所求的数据向量pp ,利用指令[breaks,coefs,m,n]=unmkpp(pp)进行处理,生成几个有序的分段多项式pp 。 step3:对各个分段多项式pp 的系数,利用函数ppval 生成其相应导数分段多项式的系数,再利用指令mkpp 生成相应的导数分段多项式 step4:将待求点xx 代入此导数多项式,即得样条导数值。 上述过程可建立M 函数文件ppd.m 实现如下: function dy=ppd(pp) [breaks,coefs,m]=unmkpp(pp);

用递推公式计算定积分(matlab版)

用递推公式计算定积分 实验目的: 1.充分理解不稳定的计算方法会造成误差的积累,在计算过程中会导致误差的迅速增加,从而使结果产生较大的误差。 2.在选择数值计算公式来进行近似计算时,应学会选用那些在计算过程中不会导致误差迅速增长的计算公式。 3.理解不稳定的计算公式造成误差积累的来源及具体过程; 4.掌握简单的matlab语言进行数值计算的方法。 实验题目: 对n=0,1,2,…,20,计算定积分: 实验原理: 由于y(n)= = – 在计算时有两种迭代方法,如下: 方法一: y(n)=– 5*y(n-1),n=1,2,3, (20) 取y(0)= = ln6-ln5 ≈ 0.182322 方法二: 利用递推公式:y(n-1)=-*y(n),n=20,19, (1) 而且,由 = * ≤≤* =

可取:y(20)≈*()≈0.008730. 实验容: 对算法一,程序代码如下: function [y,n]=funa() syms k n t; t=0.182322; n=0; y=zeros(1,20); y(1)=t; for k=2:20 y(k)=1/k-5*y(k-1); n=n+1; end y(1:6) y(7:11) 对算法二,程序代码如下: %计算定积分; %n--表示迭代次数; %y用来存储结果; function [y,n]=f(); syms k y_20;

y=zeros(21,1); n=1; y_20=(1/105+1/126)/2; y(21)=y_20; for k=21:-1:2 y(k-1)=1/(5*(k-1))-y(k)/5; n=n+1; end 实验结果: 由于计算过程中,前11个数字太小,后9个数字比较大,造成前面几个数字只显示0.0000的现象,所以先输出前6个,再输出7—11个,这样就能全部显示出来了。 算法一结果: [y,n]=funa %先显示一y(1)—y(6) ans = 0.1823 -0.4116 2.3914 -11.7069 58.7346

【数学建模学习】Matlab的数值积分

Matlab 的数值积分问题 (1)求和命令sum 调用格式. 如果x 是向量,则sum(x) 给出x 的各个元素的累加和;如果x 是矩阵,则sum(x)是一个元素为x 的每列列和的行向量. 例3.1 调用命令sum 求向量x 的各个元素的累加和。 解:输入 x=[1,2,3,4,5,6,7,8,9,10]; sum(x) 得到 ans=55 例3.2 调用命令sum 求矩阵x 的各列元素的累加和。 解:输入 x=[1,2,3;4,5,6;7,8,9] x= 1 2 3 4 5 6 7 8 9 sum(x) 得到 ans=12 15 18 2.定积分的概念. 定积分是一个积分和的极限. 例如取x e x f =)(,求定积分?10dx e x 的近似值。 积分区间为[0,1],等距划分为20个子区间, x=linspace(0,1,21); 选取每个子区间的端点,并计算端点处的函数值. y=exp(x); 取区间的左端点处的函数值乘以区间长度全部加起来. y1=y(1:20); s1=sum(y1)/20 s1=1.6757 s1可作为定积分?10dx e x 的近似值。 若选取右端点: y2=y(2:21); s2=sum(y2)/20 s2=1.7616 s2也可以作为定积分?10dx e x 的近似值。 下面我们画出图象. plot(x,y);hold on for i=1:20 fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i),y(i),0],'b')

end 如果选取右端点,则可画出图象. for i=1:20 fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i+1),y(i+1),0],'b') hold on end plot(x,y,'r') 在上边的语句中,for … end 是循环语句,执行语句体内的命令20次,fill 命令可以填充多边形,在本例中,用的是兰色(blue)填充. 可试取50个子区间看一看结果怎样.下面按等分区间计算。 syms k n s=symsum(exp(k/n)/n,k,1,n); limit(s,n,inf) 得结果 ans=exp(1)-1 3.计算定积分 例3.6 计算?10dx e x . 解:输入命令: syms x; int(exp(x),0,1) 得结果 ans=exp(1)-1. 这与我们上面的运算结果是一致的. ⒈ 由给定数据进行梯形求积 假设已经建立起向量T N T N y y y y x x x x ],,,[,],,,[2121 ==,则可用以下语句进行梯形求积: sum((2*y(1:end-1,:)+diff(y)).*diff(x))/2 MATLAB 提供的trapz()函数也可直接用梯形法求解积分问题,该函数调用格式为 S=trapz(x,y) [例1-6-17] 试用梯形法求出),0(π∈x 区间内,函数sin(x),cos(x),sin(x/2)的定积分值。 [求解] >> x1=[0:pi/30:pi]'; y=[sin(x1) cos(x1) sin(x1/2)]; x=[x1 x1 x1]; S=sum((2*y(1:end-1,:)+diff(y)).*diff(x))/2 >> S1=trapz(x1,y) [例1-6-18] 用定步长方法求解积分?2 /30)15cos(πdx x 。 [求解] 鉴于求解区域内被积函数有很强的振荡,可先用下述语句绘制被积函数的曲线。 >> x=[0:0.01:3*pi/2,3*pi/2]; y=cos(15*x); plot(x,y) 采用不同的步距,可分别得到积分近似结果。 >> syms x, A=int(cos(15*x),0,3*pi/2) % 求理论值 >> h0=[0.1,0.01,0.001,0.0001,0.00001,0.000001]; v=[]

matlab实现数值分析插值及积分

Matlab实现数值分析插值及积分 摘要: 数值分析(numerical analysis)是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。在实际生产实践中,常常将实际问题转化为数学模型来解决,这个过程就是数学建模。学习数值分析这门课程可以让我们学到很多的数学建模方法。 分别运用matlab数学软件编程来解决插值问题和数值积分问题。题目中的要计算差值和积分,对于问题一,可以分别利用朗格朗日插值公式,牛顿插值公式,埃特金逐次线性插值公式来进行编程求解,具体matlab代码见正文。编程求解出来的结果为:=+。 其中Aitken插值计算的结果图如下: 对于问题二,可以分别利用复化梯形公式,复化的辛卜生公式,复化的柯特斯公式编写程序来进行求解,具体matlab代码见正文。编程求解出来的结果为: 0.6932 其中复化梯形公式计算的结果图如下:

问题重述 问题一:已知列表函数 表格 1 分别用拉格朗日,牛顿,埃特金插值方法计算。 问题二:用复化的梯形公式,复化的辛卜生公式,复化的柯特斯公式计算积分,使精度小于5。 问题解决 问题一:插值方法 对于问题一,用三种差值方法:拉格朗日,牛顿,埃特金差值方法来解决。 一、拉格朗日插值法: 拉格朗日插值多项式如下: 首先构造1+n 个插值节点n x x x ,,,10 上的n 插值基函数,对任一点i x 所对应的插值基函数 )(x l i ,由于在所有),,1,1,,1,0(n i i j x j +-=取零值,因此)(x l i 有因子 )())(()(110n i i x x x x x x x x ----+- 。又因)(x l i 是一个次数不超过n 的多项式,所以只 可能相差一个常数因子,固)(x l i 可表示成: )())(()()(110n i i i x x x x x x x x A x l ----=+- 利用1)(=i i x l 得:

数值积分用matlab实现

数值积分用m a t l a b实 现

东北大学秦皇岛分校 数值计算课程设计报告 数值积分及Matlab实现 学院数学与统计学院 专业信息与计算科学 学号5133117 姓名楚文玉 指导教师张建波姜玉山 成绩 教师评语: 指导教师签字: 2015年07月14日

1 绪论 在科研计算中,经常会碰到一些很难用公式定理直接求出精确解的积分问题,对于这类问题,我们一般转化为数值积分问题,用计算机来实现求解问题. 1.1 课题的背景 对于定积分()b a f x dx ?在求某函数的定积分时,在一定条件下,虽然有牛顿-莱布里 茨公式()()()b a I f x dx F b F a ==-?可以计算定积分的值,但在很多情况下的原函数() f x 不易求出或非常复杂.被积函数的原函数很难用初等函数表达出来,例如 2 sin (),x x f x e x -= 等;有的函数()f x 的原函数()F x 存在,但其表达式太复杂,计算量太大,有的甚至无法有解析表达式.因此能够借助牛顿-莱布尼兹公式计算定积分的情形是不多的.另外,许多实际问题中的被积函数()f x 往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解,只能设法求其近似值.因此,探讨近似计算的数值积分方法是有明显的实际意义的,即有必要研究定积分的数值计算方法,以解决定积分的近似计算.而数值积分就是解决此类问题的一种有效的方法,它的特点是利用被积函数在一些节点上的信息求出定积分的近似值.微积分的发明是人类科学史上一项伟大的成就,在科学技术中,积分是经常遇到的一个重要计算环节数值积分是数学上重要的课题之一,是数值分析中重要的内容之一.随着计算机的出现,近几十年来,对于数值积分问题的研究已经成为一个很活跃的研究领域.现在,数值积分在计算机图形学,积分方程,工程计算,金融数学等应用科学领域都有着相当重要的应用,所以研究数值积分问题有着很重要的意义.国内外众多学者在数值积分应用领域也提出了许多新方法.在很多实际应用中,只能知道积分函数在某些特定点的取值,比如天气测量中的气温、湿度、气压等,医学测量中的血压、浓度等等.通过这个课题的研究,我们将会更好地掌握运用数值积分算法求出特殊积分函数的定积分的一些基本方法、理论基础;并且通过Matlab 软件编程的实现,应用于实际生活中. 1.2 课题的主要内容框架

数值积分算法与MATLAB实现

数值积分算法与MATLAB实现 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 摘要:在求一些函数的定积分时,由于原函数十分复杂难以求出或用初等函数表达,导致积分很难精确求出,只能设法求其近似值,因此能够直接借助牛顿-莱布尼兹公式计算定积分的情形是不多的。数值积分就是解决此类问题的一种行之有效的方法。积分的数值计算是数值分析的一个重要分支;因此,探讨近似计算的数值积分方法是有着明显的实际意义的。本文从数值积分问题的产生出发,详细介绍了一些数值积分的重要方法。 本文较详细地介绍了牛顿-科特斯求积公式,以及为了提高积分计算精度的高精度数值积分公式,即龙贝格求积公式和高斯-勒让德求积公式。除了研究这些数值积分算法的理论外,本文还将这些数值积分算法在计算机上通过MATLAB软件编程实现,并通过实例用各种求积公式进行运算,分析比较了各种求积公式的计算误差。 【关键词】数值积分牛顿-科特斯求积公式高精度求积公式MATLAB软件

前言 对于定积分,在求某函数的定积分时,在一定条件下,虽然有牛顿-莱布里茨公式可以计算定积分的值,但在很多情况下的原函数不易求出或非常复杂。被积函数的原函数很难用初等函数表达出来,例如等;有的函数的原函数存在,但其表达式太复杂,计算量太大,有的甚至无法有解析表达式。因此能够借助牛顿-莱布尼兹公式计算定积分的情形是不多的。另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解,只能设法求其近似值。因此,探讨近似计算的数值积分方法是有明显的实际意义的,即有必要研究定积分的数值计算方法,以解决定积分的近似计算。而数值积分就是解决此类问题的一种有效的方法,它的特点是利用被积函数在一些节点上的信息求出定积分的近似值。 微积分的发明是人类科学史上一项伟大的成就,在科学技术中,积分是经常遇到的一个重要计算环节。数值积分是数学上重要的课题之一,是数值分析中重要的内容之一,也是应用数学研究的重点。随着计算机的出现,近几十年来,对于数值积分问题的研究已经成为一个很活跃的研究领域。现在,数值积分在计算

用MATLAB算多元函数积分

用MATLAB 计算多元函数的积分 三重积分的计算最终是化成累次积分来完成的,因此只要能正确的得出各累次积分的积分限,便可在MA TLAB 中通过多次使用int 命令来求得计算结果。但三重积分的积分域Ω是一个三维空间区域,当其形状较复杂时,要确定各累次积分的积分限会遇到一定困难,此时,可以借助MATLAB 的三维绘图命令,先在屏幕上绘出Ω的三维立体图,然后执行命令 rotate3d on ↙ 便可拖动鼠标使Ω的图形在屏幕上作任意的三维旋转,并且可用下述命令将Ω的图形向三个坐标平面进行投影: view(0,0),向XOZ 平面投影; view(90,0),向YOZ 平面投影; view(0,90),向XOY 平面投影. 综合运用上述方法,一般应能正确得出各累次积分的积分限。 例11.6.1计算zdv Ω ???,其中Ω是由圆锥曲面222z x y =+与平面z=1围成的闭区域 解 首先用MA TLAB 来绘制Ω的三维图形,画圆锥曲面的命令可以是: syms x y z ↙ z=sqrt(x^2+y^2); ↙ ezsurf(z,[-1.5,1.5]) ↙ 画第二个曲面之前,为保持先画的图形不会被清除,需要执行命令 hold on ↙ 然后用下述命令就可以将平面z=1与圆锥面的图形画在一个图形窗口内: [x1,y1]=meshgrid(-1.5:1/4:1.5); ↙ z1=ones(size(x1)); ↙ surf(x1,y1,z1) ↙ 于是得到Ω的三维图形如图:

由该图很容易将原三重积分化成累次积分: 111zdv dy -Ω=???? 于是可用下述命令求解此三重积分: clear all ↙ syms x y z ↙ f=z; ↙ f1=int(f,z.,sqrt(x^2+ y^2),1); ↙ f2=int(f1,x,-sqrt(1- y^2), sqrt(1- y^2)); ↙ int(f2,y,-1,1) ↙ ans= 1/4*pi 计算结果为4 π 对于第一类曲线积分和第一类曲面积分,其计算都归结为求解特定形式的定积分和二重积分,因此可完全类似的使用int 命令进行计算,并可用diff 命令求解中间所需的各偏导数。 例11.6.2用MATLAB 求解教材例11.3.1 解 求解过程如下 syms a b t ↙ x=a*cos(t); ↙ y=a*sin(t); ↙ z=b*t; ↙ f=x^2 +y^2+z^2; ↙ xt=diff(x,t); ↙ yt=diff(y,t); ↙ zt=diff(z,t); ↙ int(f*sqrt(xt^2 +yt^2+zt^2),t,0,2*pi) ↙ ans= 2/3*( a^2 +b^2)^1/2*a^2*pi+8/3*( a^2 +b^2)^1/2*b^2*pi^3 对此结果可用factor 命令进行合并化简: factor (ans ) ans= 2/3*( a^2 +b^2)^1/2*pi*(3* a^2 +4*b^2*pi^2) 例11.6.3用MATLAB 求解教材例11.4.1 解 求解过程如下 syms x y z1 z2↙ f= x^2 +y^2; ↙ z1=sqrt(x^2 +y^2); ↙ z2=1; ↙ z1x=diff(z1,x); ↙ z1y=diff(z1,y); ↙ z2x=diff(z2,x); ↙ z2y=diff(z2,y); ↙

数值积分的算法比较及其MATLAB实现

编号: 审定成绩: 重庆邮电大学 毕业设计(论文) 设计(论文)题目:数值积分算法与MATLAB实现 学院名称:数理学院 学生姓名: 专业:数学与应用数学 班级: 学号: 指导教师: 答辩组负责人: 填表时间:年月 重庆邮电大学教务处制

摘要 在求一些函数的定积分时,由于原函数十分复杂难以求出或用初等函数表达,导致积分很难精确求出,只能设法求其近似值,因此能够直接借助牛顿-莱布尼兹公式计算定积分的情形是不多的。数值积分就是解决此类问题的一种行之有效的方法。积分的数值计算是数值分析的一个重要分支;因此,探讨近似计算的数值积分方法是有着明显的实际意义的。本文从数值积分问题的产生出发,详细介绍了一些数值积分的重要方法。 本文较详细地介绍了牛顿-科特斯求积公式,以及为了提高积分计算精度的高精度数值积分公式,即龙贝格求积公式和高斯-勒让德求积公式。除了研究这些数值积分算法的理论外,本文还将这些数值积分算法在计算机上通过MATLAB软件编程实现,并通过实例用各种求积公式进行运算,分析比较了各种求积公式的计算误差。 【关键词】数值积分牛顿-科特斯求积公式高精度求积公式MATLAB软件

ABSTRACT When the solution of the definite integral of some function values,because the original function is very complex and difficult to find the elementary function expression, the integral is difficult to accurately calculate, only managed to find the approximate value, and the case is small that allows to direct interface with the Newton - Leibniz formula to calculate the definite integral. Numerical integration is an effective method to solve such problems. The numerical integration is an important branch of numerical analysis; therefore, exploring the approximate calculation of the numerical integration method has obvious practical significance. This article departure from the numerical integration problem, described in detail some important numerical integration methods. This paper has introduced detail the Newton - Coates quadrature formula, and in order to improve the calculation accuracy of numerical integration formulas, More precise formulas have Romberg quadrature formulas and the Gauss - Legendre quadrature formula. In addition to the study of these numerical integration algorithm theory, the article also involve what these numerical integration algorithm be programmed by matlab software on the computer, and an example is calculated with a variety of quadrature formulas, finally analysis and comparison to various quadrature formulas calculation error. 【Key words】Numerical integration Newton-Cotes quadrature formula High-precision quadrature formula Matlab software

利用Matlab实现Romberg数值积分算法----系统建模与仿真结课作业

利用Matlab 实现Romberg 数值积分算法 一、内容摘要 针对于某些多项式积分,利用Newton —Leibniz 积分公式求解时有困难,可以采用数值积分的方法,求解指定精度的近似解,本文利用Matlab 中的.m 文件编写了复化梯形公式与Romberg 的数值积分算法的程序,求解多项式的数值积分,比较两者的收敛速度。 二、数值积分公式 1.复化梯形公式求解数值积分的基础是将区间一等分时的Newton —Cotes 求积公式: I =(x)[f(a)f(b)]2 b a b a f dx -≈ +? 其几何意义是,利用区间端点的函数值、与端点构成的梯形面积来近似(x)f 在区间[a,b]上的积分值,截断误差为: 3" (b a)()12 f η-- (a,b)η∈ 具有一次的代数精度,很明显,这样的近似求解精度很难满足计算的要求,因而,可以采用将积分区间不停地对分,当区间足够小的时候,利用梯形公式求解每一个小区间的积分近似值,然后将所有的区间加起来,作为被求函数的积分,可以根据计算精度的要求,划分对分的区间个数,得到复化梯形公式: I =1 1 (b a)(b a) (x)dx [f(a)f(b)2(a )]2n b a k k f f n n -=--≈+++∑? 其截断误差为:

2" (b a)h ()12 R f η--= (a,b)η∈ 2.Romberg 数值积分算法 使用复化的梯形公式计算的数值积分,其收敛速度比减慢,为此,采用Romberg 数值积分。其思想主要是,根据I 的近似值2n T 加上I 与2n T 的近似误差,作为新的I 的近视,反复迭代,求出满足计算精度的近似解。 用2n T 近似I 所产生的误差可用下式进行估算: 12221 ()3 n n n I T T T -?=-=- 新的I 的近似值: 122 n n j T T -=?+ j =(0 1 2 ….) Romberg 数值积分算法计算顺序 i=0 (1) 002T i=1 (2) 102T (3) 012T i=2 (4) 202T (5) 112T (6) 022T i=3 (7) 302T (8) 212T (9) 122T (10) 032T i=4 (11) 402T (12) 312T (13) 222T (14) 132T … … … … 其中,第一列是二阶收敛的,第二列是四阶收敛的,第三列是六阶收敛的,第四列是八阶收敛的,即Romberg 序列。

[整理]Matlab积分.

一.数值积分的实现方法 1.变步长辛普生法 基于变步长辛普生法,MA TLAB给出了quad函数来求定积分。该函数的调用格式为:[I,n]=quad('fname',a,b,tol,trace) 其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。 例8-1 求定积分。 (1) 建立被积函数文件fesin.m。 function f=fesin(x) f=exp(-0.5*x).*sin(x+pi/6); (2) 调用数值积分函数quad求定积分。 [S,n]=quad('fesin',0,3*pi) S = 0.9008 n = 77 2.牛顿-柯特斯法 基于牛顿-柯特斯法,MA TLAB给出了quad8函数来求定积分。该函数的调用格式为:[I,n]=quad8('fname',a,b,tol,trace) 其中参数的含义和quad函数相似,只是tol的缺省值取10-6。?该函数可以更精确地求出定积分的值,且一般情况下函数调用的步数明显小于quad函数,从而保证能以更高的效率求出所需的定积分值。 (1) 被积函数文件fx.m。 function f=fx(x) f=x.*sin(x)./(1+cos(x).*cos(x)); (2) 调用函数quad8求定积分。 I=quad8('fx',0,pi) I = 2.4674 分别用quad函数和quad8函数求定积分的近似值,并在相同的积分精度下,比较函数的调用次数。 调用函数quad求定积分: format long; fx=inline('exp(-x)'); [I,n]=quad(fx,1,2.5,1e-10) I = 0.28579444254766 n = 65 调用函数quad8求定积分: format long; fx=inline('exp(-x)'); [I,n]=quad8(fx,1,2.5,1e-10) I = 0.28579444254754 n = 33

matlab求定积分之实例说明

一、符号积分 符号积分由函数int来实现。该函数的一般调用格式为: int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分; int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分; int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数求被积函数在区间[a,b]上的定积分。a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。当a,b中有一个是inf时,函数返回一个广义积分。当a,b中有一个符号表达式时,函数返回一个符号函数。 例: 求函数x^2+y^2+z^2的三重积分。内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下: >>syms x y z %定义符号变量 >>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式 F2 = 1610027357/6563700-6072064/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2 ^(3/4) %给出有理数解 >>VF2=vpa(F2) %给出默认精度的数值解 VF2 = 224.92153573331143159790710032805 二、数值积分 1.数值积分基本原理 求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)?法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。 2.数值积分的实现方法 基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为: [I,n]=quad('fname',a,b,tol,trace) 基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。该函数的调用格式为: [I,n]=quadl('fname',a,b,tol,trace) 其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。 例: 求函数'exp(-x*x)的定积分,积分下限为0,积分上限为1。 >>fun=inline('exp(-x.*x)','x'); %用内联函数定义被积函数fname

详解Matlab求积分的各种方法

详解Matlab求积分的各种方法 一、符号积分由函数int来实现。 该函数的一般调用格式为: int(s): 没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;int(s,v): 以v为自变量,对被积函数或符号表达式s求不定积分;int(s,v,a,b): 求定积分运算。 a,b分别表示定积分的下限和上限。 该函数求被积函数在区间[a,b]上的定积分。 a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。 当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。 当a,b中有一个是inf时,函数返回一个广义积分。 当a,b中有一个符号表达式时,函数返回一个符号函数。 例: 求函数x^2+y^2+z^2的三重积分。 内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下: >>syms x y z %定义符号变 量>>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式F2 =57/-

/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2^(3/4) %给出有理数 解>>VF2=vpa(F2) %给出默认精度的数值解VF2 = 224.9 232805二、数值积分 1.数值积分基本原理求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)?法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。 它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1], i=1,2,…,n,其中x1=a,xn+1=b。 这样求定积分问题就分解为求和问题。 2.数值积分的实现方法基于变步长辛普生法,MATLAB给出了quad函数来求定积分。 该函数的调用格式为: [I,n]=quad('fname',a,b,tol,trace)基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。 该函数的调用格式为: [I,n]=quadl('fname',a,b,tol,trace)其中fname是被积函数名。 a和b分别是定积分的下限和上限。 tol用来控制积分精度,缺省时取tol= 0.0 01。 trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace= 0。

MATLAB计算积分

函数的积分和椭圆的周长 1.正弦函数的积分 [问题]求正弦函数从0到π的积分 y = sin x 当x = 0时,积分为0,画出积分的函数曲线。 [数学模型] 定积分的结果为 ππ00 sin d cos 2S x x x ==-=? 不定积分的结果为 sin d cos I x x x C ==-+? 其中C 是积分常量,由初始条件决定。当x = 0时,积分为I = 0,必有C = 1。结果为 I = -cos x + 1 [算法]根据积分的基本概念,将积分区域分为多份,用矩形法求曲线下的近似面积表示积分的近似值 1()n i i S f x x ==?∑ 矩形法的函数是sum(f)。 用梯形法求曲线下的近似面积表示积分的近似值 1 101[()()]2 n i i i S f x f x x -+==+?∑ 梯形法的函数是trapz(f)。 用数值积分的函数是quad 和quadl ,常用使用格式是 S = quad(f,a,b) 其中,f 表示被积函数,a 表示积分的下限,b 表示积分的下限。 用符号的函数是int ,常用使用格式是 S = int(f,a,b) [程序]zqy4_1.m 如下。 %正弦函数的积分 clear %清除变量 x=linspace(0,pi); %自变量向量 dx=x(2); %间隔 y=sin(x); %被积函数 s1=sum(y)*dx %矩形法积分 s2=trapz(y)*dx %梯形法积分 f=inline('sin(x)'); %被积的内线函数 s3=quad(f,0,pi) %数值定积分

s4=int('sin(x)',0,pi) %符号积分 sc1=cumsum(y)*dx; %矩形法累积积分(精度稍差) sc2=cumtrapz(y)*dx; %梯形法累积积分 figure %创建图形窗口 plot(x,-cos(x)+1,x,sc1,'.',x,sc2,'o') %画解析式和矩阵法以及梯形法积分曲线 s=int('sin(x)') %符号积分 sc3=subs(s,'x',x); %替换数值求符号积分的值 C=-sc3(1) %求积分常数 hold on %保持图像 plot(x,sc3+C,'c*') %画符号法积分曲线 grid on %加网格 fs=16; %字体大小 xlabel('\itx','FontSize',fs) %横坐标 ylabel('\intsin\itx\rmd\itx','FontSize',fs)%纵坐标 title('正弦函数的积分','FontSize',fs) %标题 legend('解析解','矩形法','梯形法','符号法')%图例 zqy4.1图 zqy4.2图 2.三角函数和指数的积分 [问题]求如下函数的积分 y = e ax sin bx 其中a = 0.5,b = 2。积分下限为0。画出积分的函数曲线。 [数学模型] 设 11e sin d sin de {e sin e cos d }ax ax ax ax I bx x bx bx b bx x a a == =-??? 11{e sin cos de }{e sin [e cos e sin d ]}ax ax ax ax ax b b bx bx bx bx b bx x a a a a =-=-+?? 因此不定积分为 221e (sin cos )ax I a bx b bx C a b =-++ 当x = 0时,I 应该为零,所以 22b C a b =+

详解Matlab求积分的各种方法

详解Matlab求积分地各种方法 一、符号积分 符号积分由函数int来实现.该函数地一般调用格式为: int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示地默认变量对被积函数或符号表达式s求不定积分; int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分; int(s,v,a,b):求定积分运算.a,b分别表示定积分地下限和上限.该函数求被积函数在区间[a,b]上地定积分.a和b可以是两个具体地数,也可以是一个符号表达式,还可以是无穷(inf).当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果.当a,b中有一个是inf时,函数返回一个广义积分.当a,b中有一个符号表达式时,函数返回一个符号函数. 例: 式 F2 = 1. 2. 其中 取tol=0.001.trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0.返回参数I即定积分值,n为被积函数地调用次数. 例: 求函数'exp(-x*x)地定积分,积分下限为0,积分上限为1. >>fun=inline('exp(-x.*x)','x'); %用内联函数定义被积函数fname >>Isim=quad(fun,0,1) %辛普生法 Isim = 0.746824180726425 IL=quadl(fun,0,1) %牛顿-柯特斯法

IL = 0.746824133988447 三、梯形法求向量积分 trapz(x,y)—梯形法沿列方向求函数Y关于自变量X地积分(向量形式,数值方法). >>d=0.001; >>x=0:d:1; >>S=d*trapz(exp(-x.^2)) S= 0.7468 或: S =

相关主题
文本预览
相关文档 最新文档