当前位置:文档之家› 激光脉冲测距实验报告讲解

激光脉冲测距实验报告讲解

激光脉冲测距实验报告讲解
激光脉冲测距实验报告讲解

激光脉冲测距

1

目录

一工作原理 (3)

(1)测距仪工作原理 (3)

(2)激光脉冲测距仪光学原理结构 (3)

(3)测距仪的大致结构组成 (4)

(4)主要的工作过程 (4)

(5)激光脉冲发射、接收电路板组成及工作原理 (5)

二激光脉冲测距的应用领域 (5)

三关键问题及解决方法 (6)

(1)优点 (6)

(2)问题及解决方案 (7)

2

一工作原理

(1)测距仪工作原理

现在就脉测距仪冲激光测距简要叙述其工作原理。简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。系统工作时,由发射单元发出一束激光,到达待测目标物后漫

反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D

为:式中:c 为激光在大气中的传播速度;D 为待测距离;t

为激光在待测距离上的往返时间。

R=C*T/2 (公式1)

图一脉冲激光测距系统原理框图激光脉冲测距仪光学原理结构2()

3

图二)测距仪的大致结构组成(3

时钟脉冲门控电路、脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、

振荡器以及计数显示电路组成4)主要的工作过程(其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。大部分光脉冲能量射向待测目标,由目标反射回测距仪的光脉冲能量被接收系统接收,这就是回波信号。参考信号和回波信号先后由光电探测器转换成为电脉冲,并加以放大和整形。整形后的参考信号能触发器翻转,控制计数器开始对晶格振荡器发出的时钟脉冲进行计数。整形后的回波信号使触发器的输出翻转无效,从而使计数器停实验装置实止工作。这样,根据计数器的输出即可计算出待测目标的距离。三单片机开放板和激光脉冲发射、接收电路验装置包括“”“”。 4

(5)激光脉冲发射、接收电路板组成及工作原理

激光脉冲发射/接收电路板原理框图如图2.3所示。图中EPM3032为CPLD;MAX3656为激光驱动器;MAX3747为限幅放大器;T22为单端信号到差分信号转换芯片;T23为差分信号到单端信号转换芯片;LD为半导体激光器;PD为光电探测器。板子上端的EPM3032被编程为脉冲发生器,输出重复频率为1KHz,脉冲宽度为48ns的电脉冲信号。此信号经MAX3656放大后驱动LD发光。板子下端的EPM3032被编程为计数器,对125MHz晶振进行计数。其计数的开门信号来自上端的TX信号,关门信号来自PD的输出。计数器的计数结果采用12

位二进制数据输出,对应的时间范围为0~32.7?s。

二激光脉冲测距的应用领域

激光测距仪一般采用两种方式来测量距离:脉冲法和相位法.脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收.测距仪同时记录激光往返的时间.光速和往返时间的乘积的一半.就是测距仪和被测量物体之间的距离.脉冲法测量距离的精度是一般是在+/-1米左右.另外.此类测距仪的测量盲区一般是15米左右。

激光测距仪已经被广泛应用于以下领域:电力.水利.通讯.环境.建筑.地质.警务.消防.爆破.航海.铁路.反恐/军事.农业.林业.房地产.休闲/户外运动等。

由于激光在亮度、方向性、单色性以及相干性等方面都有不俗的特点,它一出现就吸引了众多科学工作者的目光,并被迅速地被应用在工业生产方面、国防军工方面、房地产业、各级科研机构、工程、防盗安全等各个行业各个领域:激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等。有关于激光的研究与生产制造也如火如荼地开展了起来。

5

激光与普通光源所发出的光相比,有显著的区别,形成差别的主要原因在于激光是利用受激辐射原理和激光腔滤波效应。而这些本质性的成因使激光具有一些独特的特点:

1.激光的亮度高。固体激光器的亮度更可高达1011W/cm2Sr这是因为激光虽然功率有限,但是由于光束极小,于是具有极高的功率密度,所以激光的亮度一般都大于我们所见所有光(包括可见光中的强者:太阳光),这也是激光可用于星际测量的根本原因所在;

2.激光的单色性好。这是因为激光的光谱频率组成单一。

3.激光的方向性好。激光具有非常小的光束发散角,经过长距离的飞行以后仍然能够保持直线传输;

4.激光的相干性好。我们通常所见到的可见光是非相干光,激光可以做到他们都做不到的事情,比如说切割钢材。

在测距领域,激光的作用更是不容忽视,可以这样说,激光测距是激光应用最早的领域(1960年产生,1962年即被应用于地球与月球间距离的测量)。测量的精确度和分辨率高、抗干扰能力强,体积小同时重量轻的激光测距仪受到了大多数有测距需求的企业、机构或个人的青睐,其市场需求空间大,应用领域广行业需求多,并且起着日益重要的作用。

三关键问题及解决方法

(1)优点

脉冲激光测距法相比相位激光测距法有以下几项优点:

第一,在相同的总平均光功率输出条件下,脉冲光波型激光测距仪可测量的距离远必连续光波型激光测距仪要长。

第二,测距速度较快。

第三,不需要合作目标,隐蔽性和安全性好。

考虑以上特点和实际系统设计要满足体积小,功耗低,高重频,测距速度快等特点,本实验中我们选择脉冲激光测距法作为整体系统的测距方式。

6

(2)问题及解决方案

在脉冲式激光测距仪的设计当中,时差测量成为了一个影响整个测量精度最关键的因素。在当今这个科技发达的社会,激光测距的应用越来越普遍。在很多领域,电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,反恐/军事,农业,林业,房地产,休闲/户外运动等都可以用到激光测距仪。激光测距仪一般采用两种方式来测量距离:脉冲法和相位法脉冲式激光测距仪是通过测量激光从发射到返回之间的时间来计算距离的。因此时间测量对于脉冲式激光测距仪来说是非常重要的一个环节。由于激光的速度特别快,所以发射和接收到的激光脉冲之间的时间间隔非常小。。例如要测量1 公里的距离,分辨率要求1cm,

则时间间隔测量的分辨率则要求高达67ps。德国acam 公司的时间数字转换器TDC-GP2 单次测量分辨率为典型65ps,功耗超低,集成度高,测量灵活性高,是脉冲式激光测距仪时差(TOF)测量非常理想的选择。激光发射装置发射出光脉冲同时将发射脉冲输入到TDC-GP2 的start 端口,触发时差测量。一旦从物体传回的反射脉冲达到了光电探测器(接收电路)则给TDC 产生一个Stop

信号,这个时候时差测量完成。那么从Start 到Stop 脉冲之间的时差被TDC-GP2精确记录下来,用于计算所测物体与发射端的距离。在这个原理中,单片机对于TDCGP2进行寄存器配置以及时间测量控制,时间测量结果传回给单片机通过算法进行距离的精确计算,同时如果有显示装置的话,将距离显示出来。在这个原理当中距离的测量除了与TDC-GP2 的时差测量精度有关外还与很多其他因素

有关系:

-激光峰值功率

-激光束发散程度

-光学元件部分

-光传输的媒体(空气,雨天,雾天等)

-物体的光反射能力

-光接收部分的灵敏程度等等

7

-被测物体特性以及传输媒介的铁性一般是由应用的条件给出的,那么可以根据应用的条件来选择激光的发射器(波长,驱动条件,光束的特性等)和接收器(类型,灵敏度,带宽等)。测量的范围在激光峰值功率更高以及信噪比更高的情况下也会相应增加。那么时差测量的精度除了与TDC-GP2 芯片本身测量精度有关系外还与激光的脉冲特性有关,比如脉冲的形状(宽度,上升下降沿的时间),以及探测器带宽和信号处理电路。对于tdc-gp2 而言,脉冲信号的速度越快,带宽越宽,则测量精度相应得会越高。

那么上面所述的一些需要注意的问题在这里我们并不做讨论,我们假设其他方面都已经解决,那么这里我们着重介绍一下如何应用单片机和TDC-GP2

来控制时间测量。对于tdc-gp2 而言,这颗芯片本身有两个测量范围,测量范围1 和测量范围2。测量范围1 的时间测量从0ps-1.8us,相对于距离来讲大约为

0-270m。测量范围2 的测量范围从2 倍的高速时钟周期到4ms.也就是说最高的距离测量可以到25 公里以外.

8

激光脉冲测距实验报告讲解

激光脉冲测距

1 目录 一工作原理 (3) (1)测距仪工作原理 (3) (2)激光脉冲测距仪光学原理结构 (3) (3)测距仪的大致结构组成 (4) (4)主要的工作过程 (4) (5)激光脉冲发射、接收电路板组成及工作原理 (5) 二激光脉冲测距的应用领域 (5) 三关键问题及解决方法 (6) (1)优点 (6) (2)问题及解决方案 (7) 2 一工作原理 (1)测距仪工作原理 现在就脉测距仪冲激光测距简要叙述其工作原理。简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。系统工作时,由发射单元发出一束激光,到达待测目标物后漫

反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t 为激光在待测距离上的往返时间。 R=C*T/2 (公式1) 图一脉冲激光测距系统原理框图激光脉冲测距仪光学原理结构2() 3

图二)测距仪的大致结构组成(3 时钟脉冲门控电路、脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、 振荡器以及计数显示电路组成4)主要的工作过程(其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。大部分光脉冲能量射向待测目标,由目标反射回测距仪的光脉冲能量被接收系统接收,这就是回波信号。参考信号和回波信号先后由光电探测器转换成为电脉冲,并加以放大和整形。整形后的参考信号能触发器翻转,控制计数器开始对晶格振荡器发出的时钟脉冲进行计数。整形后的回波信号使触发器的输出翻转无效,从而使计数器停实验装置实止工作。这样,根据计数器的输出即可计算出待测目标的距离。三单片机开放板和激光脉冲发射、接收电路验装置包括“”“”。 4 (5)激光脉冲发射、接收电路板组成及工作原理 激光脉冲发射/接收电路板原理框图如图2.3所示。图中EPM3032为CPLD;MAX3656为激光驱动器;MAX3747为限幅放大器;T22为单端信号到差分信号转换芯片;T23为差分信号到单端信号转换芯片;LD为半导体激光器;PD为光电探测器。板子上端的EPM3032被编程为脉冲发生器,输出重复频率为1KHz,脉冲宽度为48ns的电脉冲信号。此信号经MAX3656放大后驱动LD发光。板子下端的EPM3032被编程为计数器,对125MHz晶振进行计数。其计数的开门信号来自上端的TX信号,关门信号来自PD的输出。计数器的计数结果采用12 位二进制数据输出,对应的时间范围为0~32.7?s。 二激光脉冲测距的应用领域 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法.脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收.测距仪同时记录激光往返的时间.光速和往返时间的乘积的一半.就是测距仪和被测量物体之间的距离.脉冲法测量距离的精度是一般是在+/-1米左右.另外.此类测距仪的测量盲区一般是15米左右。 激光测距仪已经被广泛应用于以下领域:电力.水利.通讯.环境.建筑.地质.警务.消防.爆破.航海.铁路.反恐/军事.农业.林业.房地产.休闲/户外运动等。 由于激光在亮度、方向性、单色性以及相干性等方面都有不俗的特点,它一出现就吸引了众多科学工作者的目光,并被迅速地被应用在工业生产方面、国防军工方面、房地产业、各级科研机构、工程、防盗安全等各个行业各个领域:激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等。有关于激光的研究与生产制造也如火如荼地开展了起来。 5

脉冲激光测距仪的设计-课程设计

目录 第一章绪论 (1) 1.1设计背景 (1) 第二章脉冲激光测距仪的工作原理 (2) 2.1测距仪的简要工作原理 (2) 第三章脉冲激光器的结构及工作过程 (3) 3.1激光脉冲测距仪光学原理结构 (3) 3.1.1测距仪的大致结构组成 (3) 3.2主要的工作过程 (4) 3.3主要部件分析: (4) 3.3.1激光器(一般采用激光二极管) (4) 3.3.2激光二极管的特性 (5) 3.3.3光电器件(采用雪崩光电二极管APD) (6) 第四章影响测距仪的各项因素 (7) 4.1光脉冲对测距仪的影响 (7) 4.2发散角对测距仪的影响 (8) 第五章测距仪的光电读数显示 (9) 5.1距离显示原理及过程 (9) 5.2测量精度分析 (10) 5.3总述 (11) 参考文献 (11)

第一章绪论 1.1设计背景 在当今这个科技发达的社会,激光测距的应用越来越普遍。在很多领域,如电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,军事,农业,林业,房地产,休闲、户外运动等都可以用到激光测距仪。 激光测距仪一般具有精确度和分辨率高、抗干扰能力强、体积小、重量轻等优点,因而应用领域广、行业需求众多,市场需求空间大。 当前激光测距仪的发展趋势是向测量更安全、测量精度高、系统能耗小、体积小型化方向发展。激光测距仪一般采用两种方法来测量距离:脉冲法和相位法。而其中脉冲激光测距的应用领域也是越来越宽广,比如,地形测量、战术前沿测距、导弹运行轨道跟踪以及人造卫星、地球到月亮距离的测量等。脉冲激光测距法是利用激光脉冲持续时间非常短,能量相对集中,瞬时功率很大(可达几兆瓦)的特点,在有合作目标的情况下,脉冲激光测距可以达到极远的测程;如果只是利用被测目标对脉冲激光的漫反射所取得的微弱反射信号,也是可以测距的。因而脉冲激光测距法应用较多。

基于单片机的超声波测距系统设计实验报告 - 重

指导教师评定成绩: 审定成绩: 自动化学院 计算机控制技术课程设计报告设计题目:基于单片机的超声波测距系统设计 单位(二级学院): 学生姓名: 专业: 班级: 学号: 指导教师: 负责项目: 设计时间:二〇一四年五月 自动化学院制

目录 一、设计题目 (1) 基于51单片机的超声波测距系统设计 (1) 设计要求 (1) 摘要 (2) 二、设计报告正文 (3) 2.1 超声波测距原理 (3) 2.2系统总体方案设计 (4) 2.3主要元件选型及其结构 (5) 2.4硬件实现及单元电路设计 (9) 2.5系统的软件设计 (13) 三、设计总结 (17) 四、参考文献 (17) 五、附录 (18) 附录一:总体电路图 (18) 附录二:系统源代码 (18)

一、设计题目 基于51单片机的超声波测距系统设计 设计要求 1、以51系列单片机为核心,控制超声波测距系统; 2、测量范围为:2cm~4m,测量精度:1cm; 3、通过键盘电路设置报警距离,测出的距离通过显示电路显示出来; 4、当所测距离小于报警距离时,声光报警装置报警加以提示; 5、设计出相应的电子电路和控制软件流程及源代码,并制作实物。

摘要 超声波具有传播距离远、能量耗散少、指向性强等特点,在实际应用中常利用这些特点进行距离测量。超声波测距具有非接触式、测量快速、计算简单、应用性强的特点,在汽车倒车雷达系统、液位测量等方面应用广泛。本次课设利用超声波传播中距离与时间的关系为基本原理,以STC89C52单片机为核心进行控制及数据处理,通过外围电源、显示、键盘、声光报警等电路实现系统供电、测距显示、报警值设置及报警提示的功能。软件部分采用了模块化的设计,由系统主程序及各功能部分的子程序组成。超声波回波信号输入单片机,经单片机综合分析处理后实现其预定功能。 关键词:STC89C52单片机; HC-SR04;超声波测距

光电探测技术实验报告

光电探测技术实验报告 班级:08050341X 学号:28 姓名:宫鑫

实验一光敏电阻特性实验 实验原理: 光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 实验所需部件: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、 各种光源、遮光罩、激光器、光照度计(由用户选配) 实验步骤: 1、测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩 盖,用万用表测得的电阻值为暗电阻 R暗,移开遮光罩,在环境光照下测得的光敏电阻的 阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光 电阻越大,则灵敏度越高。 在光电器件模板的试件插座上接入另一光敏电阻, 试作性能比较分析。 2、光敏电阻的暗电流、亮电流、光电流 按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 分别测出两种光敏电阻的亮电流,并做性能比较。 图(2)几种光敏电阻的光谱特性 3、伏安特性: 光敏电阻两端所加的电压与光电流之间的关系。 按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果填入表格并作出V/I曲线。 注意事项: 实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 501 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 氦氖激光器的模式分析 实验仪器:(注明规格和型号) 扫描干涉仪;高速光电接收器;锯齿波发生器;示波器; 半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。 实验目的: (1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。 实验原理简述: 1. 激光器模式的形成 激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用某 种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于 自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被 增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一 周的光程差为波长的整数倍,即 q q uL λ=2 满足此条件的光将获得极大的增强。 每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模 序数。纵模的频率为 uL c q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21= ?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作TEM mnq 。 横模序数越大,频率越高。不同横模间的频率差为: ?? ??????????????--?+?=?2/121,)1)(1(arccos )(12''R L R L n m uL c n m mn πν 相邻横模频率间隔为: ?? ??????????????--?=?=?=?+?2/12111)1)(1(arccos 1'R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长与曲率半径的比值越大,分数值就越大。 另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。 2. 共焦球面扫描干涉仪 共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫 描。 2.1 共焦球面扫描干涉仪的机构和工作原理 共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜 构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦 腔)。其中一块反射镜固定不动,另一块反射镜固定在可随 外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀 系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、R 2 总处于共焦状态。 当一束波长为λ的光近轴入射到 干涉仪内时,在忽略球差的条件 下,在共焦腔中经四次反射形成 一条闭合路径,光程近似为4l , 如右图所示 编号为1和1’ 的两组透光强分别为: 1222201]sin )12(1)[1(--+-=βR R R T I I 和 121'I R I = β为往返一次所形成的相位差,即

超声波测距仪硬件电路的设计

超声波测距仪电路设计实验报告 轮机系楼宇071 周钰泉2007212117 实验目的:了解超声波测距仪的原理,掌握焊接方法,掌握电路串接方法,熟悉电路元件。 实验设备及器材:电烙铁,锡线,电路元件 实验步骤:1,学习keil软件编写程序2、焊接电路板3、运行调试 超声波测距程序: #include unsigned char code dispbitcode[]={0x31,0x32,0x34,0x38,0x30,0x30, 0x30,0x30}; unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x77,0x7c,0x 39}; unsigned char dispbuf[8]={10,10,10,10,10,10,0,0}; unsigned char dispcount; unsigned char getdata; unsigned int temp; unsigned int temp1;

unsigned char i; sbit ST=P3^0; sbit OE=P3^1; sbit EOC=P3^4; sbit CLK=P3^5; sbit M1=P3^6; sbit M2=P3^7; sbit SPK=P2^6; sbit LA=P3^3; sbit LB=P3^2; sbit LC=P2^7; sbit K1=P2^4; sbit K2=P2^5; bit wd; bit yw; bit shuid; bit shuig; unsigned int cnta; unsigned int cntb; bit alarmflag; void delay10ms(void) { unsigned char i,j; for(i=20;i>0;i--) for(j=248;j>0;j--); } void main(void) { M1=0; M2=0; yw=1; wd=0; SPK=0; ST=0; OE=0; TMOD=0x12; TH0=0x216; TL0=0x216; TH1=(65536-500)/256; TL1=(65536-500)%256; TR1=1; TR0=1; ET0=1; ET1=1; EA=1; ST=1; ST=0; while(1) { if(K1==0) { delay10ms(); if(K1==0) { yw=1; wd=0; } } else if(K2==0) { delay10ms(); if(K2==0) { wd=1; yw=0; } } else if(LC==1) { delay10ms(); if(LC==1) { M1=0; M2=1; temp1=13; shuid=0; shuig=1; LB=0; } } else if((LC==0) && (LB==1)) { delay10ms(); if((LC==0) && (LB==1)) { M1=0; M2=0; temp1=12; shuig=0; shuid=0; LB=0; }

超声波测距实验报告

电子信息系统综合设计报告 超声波测距仪

目录 摘要 (3) 第一章绪论 (3) 1.1 设计要求 (3) 1.2 理论基础 (3) 1.3 系统概述 (4) 第二章方案论证 (4) 2.1 系统控制模块 (5) 2.2距离测量模块 (5) 2.3 温度测量模块 (5) 2.4 实时显示模块 (5) 2.5 蜂鸣报警模块 (6) 第三章硬件电路设计 (6) 3.1 超声波收发电路 (6) 3.2 温度测量电路 (7) 3.3 显示电路 (8) 3.4 蜂鸣器报警电路 (9) 第四章软件设计 (10) 第五章调试过程中遇到的问题及解决 (11) 5.1 画PCB及制作 (11) 5.2 焊接问题及解决 (11) 5.3 软件调试 (11) 实验总结 (13) 附件 (14) 元器件清单 (14) HC-SR04超声波测距模块说明书 (15) 电路原理图 (17) PCB图 (17) 程序 (18)

摘要 该系统是一个以单片机技术为核心,实现实时测量并显示距离的超声波测距系统。系统主要由超声波收发模块、温度补偿电路、LED显示电路、CPU处理电路、蜂鸣器报警电路等5部分组成。系统测量距离的原理是先通过单片机发出40KHz 方波串,然后检测超声波接收端是否接收到遇到障碍物反射的回波,同时测温装置检测环境温度。单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,显示当前距离与温度,按照不同阈值进行蜂鸣报警。由于超声波检测具有迅速、方便、计算简单、易于做到实时控制的特点,并且在测量精度方面能达到工业实用的要求,因此在生产生活中得到广泛的应用,例如超声波探伤、液位测量、汽车倒车雷达等。 关键词:超声波测距温度测量单片机 LED数码管显示蜂鸣报警 第一章绪论 1.1设计要求 设计一个超声波测距仪,实现以下功能: (1)测量距离要求不低于2米; (2)测量精度±1cm; (3)超限蜂鸣器或语音报警。 1.2理论基础 一、超声波传感器基础知识 超声波传感器是利用晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的特性,实现对各种参量的测量。 超声波的传播速度与介质的密度和弹性特性有关,与环境条件也有关: 在气体中,超声波的传播速度与气体种类、压力及温度有关,在空气中传播速度为C=331.5+0.607t/0C (m/s) 式中,t为环境温度,单位为0C. 二、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 三、超声波测距原理 由于超声波指向性强,能量消耗缓慢,在空气中传播的距离较远,因而超声波

激光干涉仪报告讲解

机械工程综合实 践 实验报告 课程名称机械工程综合实践 专业精密工程 指导教师彭小强 小组成员刘强14033006 谌贵阳 吴志明 实验日期2012.4.2—2011.6.25 国防科学技术大学机电工程与自动化学院

目录 1激光干涉仪 1.1激光干涉仪介绍 1.2激光干涉仪原理 2 激光干涉仪测量机床的直线度 2.1实验器材以及平台的搭建 2.2激光干涉仪的调试 2.3直线度的测量 3 激光干涉仪测量机床的重复定位精度3.1实验器材以及平台的搭建 3.2激光干涉仪的调试 3.3重复定位精度的测量 4 实验分析与总结

目录 一、实验目的与任务 (2) 二、实验内容与要求 (2) 三、实验条件与设备 (2) 四.实验原理 (3) 1.定位精度测量 (3) 2.直线度测量 (4) 五、实验步骤 (5) 1.设定激光测量系统 (5) 2.调整激光光束,使之与机器运动轴准直。 (5) 3.数据记录与数据处理 (6) 六、实验过程和结果 (8) 1.X轴定位精度 (8) 2.X轴直线度 (9) 3.误差分析 (11) 七、实验总结与体会 (14) 1.实验总结 (14) 2.实验心得体会 (14) 3.对课程的一些建议 (14)

综合实践3 伺服系统运动精度建模与评价 一、实验目的与任务 通过对三轴机床的X轴进行定位误差实验,使学生掌握一般机构空间运动精度的测量与分析评价方法。主要内容包括了解双频激光干涉仪测量位移的基本原理,掌握利用双频激光干涉仪测量机床进给轴的定位误差的方法,深刻理解轴运动的精度的概念。在对机床进给轴运动定位误差测量的基础上,分析机床的运动误差。 二、实验内容与要求 (1)直线轴运动误差测量。利用双频激光干涉仪建立直线轴定位精度、直线度、姿态误差的测量系统,并对机床典型三维进给机构各轴的运动误差进行测量,分析测量结果的不确定度; (2)垂直度测量。任选进给机构两轴,利用双频激光干涉仪建立两轴垂直度的测量系统,并对垂直度进行测量,并对测量结果进行评价; (3)典型三维进给机构的精度建模。在分析多轴进给机构拓扑结构的基础上,用多体系统理论和变分法建立多轴进给机构运动空间各点的运动误差传递模型; (4)典型三维进给机构的精度分析与评价。在测量得到的进给机构轴运动误差的基础上,利用所建立的精度模型,对机构的典型运动轨迹如直线、圆弧、平面等的运动误差进行分析,并对分析结果的不确定度进行评价。 三、实验条件与设备 双频激光干涉仪,含直线度、定位精度测量组件。具体如图1所示。 (图1 定位精度测量组件直线度测量组件)

脉冲发射的相位式激光测距技术研究

西安电子科技大学 硕士学位论文 脉冲发射的相位式激光测距技术研究 姓名:王刚 申请学位级别:硕士 专业:光学工程 指导教师:曾晓东 20100101

中文摘要I 中文摘要 激光测距技术,尤其是相位式激光测距技术,是一种应用广泛的距离测量技术,具有精度高、昼夜可用且性能可靠等特点,受到工程测量部门的广泛使用。一般情况下,相位式激光测距是用一调制信号对发射连续的光波进行光强调制,利用混频技术和自动测相技术,测量“调制光波”往返于被测距离的相位差,间接求得待测距离。然而对光强的连续调制存在调制波形易变形,且随着调制频率的增加,调制深度会降低,特别是在高频时就更为严重;并且与脉冲式激光测距相比,连续光强调制消耗功率大,测量距离不远等不足。从而限制了相位式激光测距技术的应用。针对连续光波光强调制存在的不足,分析相位式激光测距的检相过程,发现对检相有用的信号是整形过程中的过零点的部分,而连续信号的其他部分对数据处理没有贡献,反而这些部分使激光器连续工作,既损耗着功率,也在减少激光器的寿命。根据信号的傅里叶变换理论、频谱分析方法,脉冲(方波)与同频正弦信号之间的关系,并借鉴脉冲式激光测距技术的优点,产生了基于脉冲信号调制的相位式激光测距想法。 该方法是通过用等周期脉冲调制激光光波来代替连续光强调制激光光波,即脉冲出现的位置代表原连续调制信号的过零点位置,而激光光波脉冲的幅度和宽度不变。因此,当激光功率不稳定时,发射的激光脉冲强度变化时不会影响到调制信号的相位信息。利用等周期激光脉冲光波往返于被测距离的相位差,求得待测距离。根据该激光测距原理,本文利用DDS频率合成技术和高频电路设计知识,设计了激光测距系统方案,并对该方案进行分析,包括高频连续正弦信号与同频脉冲(方波)信号之间的关系,产生高精度高频率脉冲(方波)的方法,高频脉冲(方波)信号的混频技术以及基于CPLD的数字鉴相技术等。随后进行了电路制作,硬件实现和系统调试等工作。这样即实现了脉冲测距的测程远,功耗小的优点,也实现了相位式激光测距的高精度优点,有效地解决了相位法测距中测程与测量精度之间的矛盾,具有实际使用价值。 总之,随着激光技术和电子技术的发展,激光测距向着高精度、大量程的方向发展,势必在多种领域得到更为广泛的应用。尤其是在激光大气通信,非合作目标的高精度、远距离激光测距的应用方面具有很大的应用空间。 关键词:激光测距技术、相位、脉冲

PLC超声波测距实验报告082039140程稳

利用plc的高速计数模块进行超声波测距实验 ―――――微型控制计算机暑期设计实验报告 082039140程稳 利用51单片机来驱动超声波模块测距,是一件很容易的事,只需要结合定时中断和外部中断,利用12M或更高的晶振频率即可精确获取从发射到接收到超声波之间的时间,平均1ms对应 3.4cm的行程,本GE比赛设计需要物位测量的最大距离是30cm,即需要30*2/3.4=17.64ms,而GE PAC RX3i的PME软件梯形图程序得扫描周期2ms以上,就算是最快的定时节点也有1ms,所以若直接用PLC的普通离散量输入模块IC694MDL654输入节点来测量接收到超声波回波的时间的误差为1ms,误差距离3.4/2=1.7cm,结果自然不理想,更严重的问题在于PLC该模块无硬件中断响应功能,是不能测电平宽度的。总之PLC的IO口工作在低速模式下是难以胜任高速测量任务的,但可喜的是GE PLC 的高速计数模块HSC304能处理2MHZ的信号,但仍无硬件中断功能。于是想能否干脆把单片机测出的电平时间数据通过串口发送给PLC,我也试着这样连线测试,不过PLC串口的使用不像单片机这么简单,没有相关资料,PLC内部寄存器找不到PLC从单片机接收的数据。于是仍决定放弃此方案,回到高速计数模块。再认真阅读此模块配置信息和实验调试后,发现其可以测量出外部信号频率,于是想既然PLC无法直接测电平宽度,那干嘛不测量频率,有了频率自然有周期,有周期自然有电平宽度!

利用plc的高速计数模块检测超声波测距仪的信号接收端的频率,正常情况下应使用频率直接求得周期接而来计算时间,但由于实际测得这样根本很难实现,所以直接测频率,并利用示波器查看该频率的波形,并修改程序使得在所测距离变化的情况下,一周期内的低电平保持不变(高电平所持续的时间表示超声波从发出到接收到所经历的时间,低电平是延时,为了使得波形正常),然后测出频率及其所对应的距离。 以下是用虚拟示波器测出的超声波模块在不同距离测量回波接收脚电压波形:

光电探测实验报告

光电探测技术 实验报告 班级:10050341 学号:05 姓名:解娴

实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。 二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果 填入表格并做出V/I曲线。 图1光敏电阻的测量电路 偏压2V4V6V8V10V12V 光电阻I 四、实验数据 实验数据记录如下: 光电流: E/V246810 U/V0.090.210.320.430.56 I/uA1427.54255.270.5 暗电流:0.5uA 实验数据处理:

激光光束分析实验报告讲解

激光光束分析实验报告 引言 1960年,世界上第一台激光器诞生。激光作为一种相干光源,以其高亮度、高准直性、高单色性的优点,一直在各种生产和研究领域发挥着重要的作用。 虽然激光具有上述优点,然而严格地说,激光并不是平面光束,而是一种满足旁轴近似的旁轴波。由稳定谐振腔发出的激光束大多为高斯光束,其主要参数为光束宽度、光束发散角和光束传播因子。由于这几个参数不同,不同激光束的质量也就有了差别,因此就需要制定评价光束质量的普适方法。常用来评价光束 质量的因子有:衍射极限倍数因子、斯特列耳比、环围能量比、因子和因子的倒数K因子(通常称为光束传播因子)。其中因子为国际ISO组织推荐的评价标准,也是我们在实验中采用的评价标准。 因子的定义为: 其中为实际光束束腰宽度,为实际光束远场发散角。 采用因子时,作为光束质量比较标准的是理想高斯光束。基模(模) 高斯光束有最好的光束质量,其,可以证明对于一般的激光光束有 。因子越大,实际光束偏离理想高斯光束越远,光束品质越差。当 高斯光束通过无像差、衍射效应可忽略的透镜、望远镜系统聚焦或扩束镜时,虽然光腰尺寸或远场发散角会发生变化,但光束宽度和发散角之积不变,是几何光学中的拉格朗日守恒量。 实验原理

如图选定坐标系。设光束的束腰位置为,束腰直径为,远场发散角为。为了简化问题,假设光束关于束腰对称,则可求出传播轴上任一垂直面上的 光束直径。光束传播方程的一级近似为: 光束的因子为: 其中n为传播介质折射率,为光束波长。对于束腰宽度和远场发散角, 可用如下方法测得。 本实验中,我们采用的CCD能够测量在柱坐标系中传播轴上任一垂直面上的光束能量密度函数。由于能量密度函数关于传播轴中心对称,故在分布函数中没有自变量。对于高斯光束,可以证明: 其中: 因此只要测出能量密度函数就可以求出传播轴上任一垂直面上的光束直径。 有了测量光束直径的方法后,分别在轴向位置处测量能量密度 函数,求出光束直径和,之后将其代入光束传播的一级近似方程

基于单片机的超声波测距系统实验报告

基于单片机的超声波测距系统实验报告

一、实验目的 1.了解超声波测距原理; 2.根据超声波测距原理,设计超声波测距器的硬件结构电路; 3.对设计的电路进行分析能够产生超声波,实现超声波的发送与接收,从而实现利用 超声波方法测量物体间的距离; 4.以数字的形式显示所测量的距离; 5.用蜂鸣器和发光二极管实现报警功能。 二、实验容 1.认真研究有关理论知识并大量查阅相关资料,确定系统的总体设计方案,设计出系 统框图; 2.决定各项参数所需要的硬件设施,完成电路的理论分析和电路模型构造。 3.对各单元模块进行调试与验证; 4.对单元模块进行整合,整体调试; 5.完成原理图设计和硬件制作; 6.编写程序和整体调试电路; 7.写出实验报告并交于老师验收。 三、实验原理 超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距S=Ct/2,式中的C为超声波波速。由于超声波也是一种声波,其声速C与温度有关。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理,单片机(AT89C51)发出短暂的40kHz信号,经放大后通过超声波换能器输出;反射后的超声波经超声波换能器作为系统的输入,锁相环对此信号锁定,产生锁定信号启动单片机中断程序,得出时间t,再由系统软件对其进行计算、判别后,相应的计算结果被送至LED显示电路进行显示。 (一)超声波模块原理: 超声波模块采用现成的HC-SR04超声波模块,该模块可提供 2cm-400cm 的非接触式距离感测功能,测距精度可达高到 3mm。模块包括超声波发射器、接收器与控制电路。基本工作原理:采用 IO 口 TRIG 触发测距,给至少 10us 的高电平信号;模块自动发送 8 个 40khz 的方波,自动检测是否有信号返回;有信号返回,通过 IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。测试距离=(高电平时间*声速(340M/S))/2。实物如下图1。其中VCC 供5V 电源,GND 为地线,TRIG 触发控制信号输入,ECHO 回响信号输出等四支线。

激光散斑测量实验报告

实验报告 陈杨 PB05210097 物理二班 实验题目:激光散斑测量 实验目的: 了解单光束散斑技术的基本概念,并应用此技术测量激光散斑的大小和毛玻璃的面内位移。 实验内容: 本实验中用到的一些已知量:(与本次实验的数据略有不同) 激光波长λ = 0.0006328mm 常数π = 3.14159265 CCD像素大小=0.014mm 激光器内氦氖激光管的长度d=250mm 会聚透镜的焦距f’=50mm 激光出射口到透镜距离d1=650mm 透镜到毛玻璃距离=d2+P1=150mm 毛玻璃到CCD探测阵列面P2=550mm 毛玻璃垂直光路位移量dξ和dη, dξ=3小格=0.03mm,dη=0 光路参数:P1=96.45mm ρ(P1)=96.47mm P2= 550mm dξ=3小格=0.03mm (理论值) 数据及处理: 光路参数: P1+d2=15cm P2=52.5cm

d1=激光出射口到反射镜的距离+反射镜到透镜距离=33.6+28.5=62.1cm f ’=5cm d=250mm λ=632.8nm (1)理论值S 的计算: 经过透镜后其高斯光束会发生变换,在透镜后方形成新的高斯光束 由实验讲义给的公式: 2'2 012'11 '' 2)()1(d f W f d d f f λπ+--- = πλd W 01= 201W d πλ= 代入数据,可得: '' 1 21 221''12 2 22 01 02 2 2 2101102 d 15(1)() 5 62.11559.6332439.63362.12515511f d f cm P d d f f cm cm P cm cm cm cm cm cm cm cm d W W d d W d f f W λπ πλ???? ? ? ???? ?????? ?? ? ? ? ? ? ? ? ????? ???? -=-=--+-=-+ =≈-+= = -+-+= 可得 由公式-31.80010cm ≈? 此新高斯光束射到毛玻璃上的光斑大小W 可以由计算氦氖激光器的

激光拉曼光谱实验报告

激光拉曼光谱实验报告 摘要:本实验研究了用半导体激光器泵浦的3Nd + :4YVO 晶体并倍频后得到的532nm 激 光作为激发光源照射液体样品的4CCL 分子而得到的拉曼光谱,谱线很好地吻合了理论分析的4CCL 分子4种振动模式,且频率的实验值与标准值比误差低于2%。又利用偏振片及半波片获得与入射光偏振方向垂直及平行的出射光,确定了各振动的退偏度,分别为、、、,和标准值0和比较偏大。 关键词:拉曼散射、分子振动、退偏 一, 引言 1928年,印度物理学家拉曼()和克利希南()实验发现,当光穿过液体苯时被分子散射的光发生频率变化,这种现象称为拉曼散射。几乎与此同时,苏联物理学家兰斯别而格()和曼杰尔斯达姆()也在晶体石英样品中发现了类似现象。在散射光谱中,频率与入射光频率0υ相同的成分称为瑞利散射,频率对称分布在0υ两侧的谱线或谱带01υυ±即为拉曼光谱,其中频率较小的成分01υυ-又称为斯托克斯线,频率较大的成分01υυ+又称为反斯托克斯线。这种新的散射谱线与散射体中分子的震动和转动,或晶格的振动等有关。 拉曼效应是单色光与分子或晶体物质作用时产生的一种非弹性散射现象。拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 20世纪60年代激光的问世促进了拉曼光谱学的发展。由于激光极高的单色亮度,它很快被用到拉曼光谱中作为激发光源。而且基于新激光技术在拉曼光谱学中的使用,发展了共振拉曼、受激拉曼散射和番斯托克斯拉曼散射等新的实验技术和手段。 拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。它提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。拉曼光谱的分析方向有定性分析、结构分析和定量分析。

激光测距仪原理

激光测距仪激光测距基本原理 激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。 D=ct/2 式中:D——测站点A、B两点间距离;c——光在大气中传播的速度;t——光往返A、B 一次所需的时间。 由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。 相位式激光测距仪 相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间。 相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。 若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为: t=φ/ω 将此关系代入(3-6)式距离D可表示为 D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ) =c/4f (N+ΔN)=U(N+) 式中:φ——信号往返测线一次产生的总的相位延迟。 ω——调制信号的角频率,ω=2πf。 U——单位长度,数值等于1/4调制波长 N——测线所包含调制半波长个数。 Δφ——信号往返测线一次产生相位延迟不足π部分。 ΔN——测线所包含调制波不足半波长的小数部分。 ΔN=φ/ω

在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。 为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。 由上所述一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相脉冲展宽细分技术,无需合作目标即可达到毫米级精度,测程已经超过100m,且能快速准确地直接显示距离。是短程精度精密工程测量、房屋建筑面积测量中最新型的长度计量标准器具。

stm32超声波测距汇总

嵌入式系统及应用开放性实验报告 Stm32 HC-SR04超声波测距

第一章绪论 1.1STM32超声波测距系统 1.1.1 HC-SR04超声波测距模块简介 HC-SR04 超声波测距模块可提供2cm-400cm 的非接触式距离感测功能,测距精度可达高到3mm;模块包括超声波发射器、接收器与控制电路。 使用电压:DC---5V 静态电流:小于2mA 电平输出:高5V 低0V 感应角度:不大于15度 探测距离:2cm-450cm 高精度:可达3mm 1.1.2 HC-SR04超声波测距模块原理 采用IO 口TRIG 触发测距,给TRIG至少10us 的高电平信号; 模块自动发送8个40khz 的方波,自动检测是否有信号返回; 有信号返回,通过IO口ECHO输出一个高电平,高电平持续的时间就是超 声波从发射到返回的时间。 测试距离=(高电平时间*声速(340M/S))/2; T(℃)={(V25-Vsense)/Avg_Slope}+25 V25=Vsense 在25 度时的数值(典型值为: 1.43)。 Avg_Slope=温度与Vsense 曲线的平均斜率(单位为mv/℃或uv/℃)(典型值为4.3Mv/℃)。 利用以上公式,我们就可以方便的计算出当前物体超声波模块之间的距离。 程序中使用: 测试距离=高电平时间*声速(340M/S))/2 这个公式 1.2 设计要求 使用ARM开发板上硬件资源与超声波模块结合,编程实现实时距离显示功能,通过数码管实时显示距离,并在距离小于设定报警距离时使用蜂鸣器报警。1.3 总体设计方案及框图

1.3.1 距离测量及获取方法 通过设置定时器,开启中断,读取ECHO 输出高电平的持续时间,计算结果 作为当前距离。1.3.2 总体设计方案 实时距离: 本超声波测距系统可实现对距离的实时测量,并不断显示在数码 管上 保持距离: 用户可通过按键使得当前距离值在数码管保持, 也可再次返回对 距离的实时测量,此模式下距离小于报警值不会报警,仅为显示模式。 两种模式相互转换,并且可以在距离保持状态时通过按键进入修改报警距离模式,如果实测距离小于下限值,蜂鸣器报警,当距离大于下限值时,报警自动停止。 1.3.3 程序框图 K5 按下 K6按下 否 是 K7按下 是 否 否 超声波测距数码管显示距离K4是否按下 显示当前距离K7是否按下 开始初始化 数码管及按键扫描 SV++ SV-- K1是否按下

相关主题
文本预览
相关文档 最新文档