当前位置:文档之家› 10种简单的数值滤波方法

10种简单的数值滤波方法

10种简单的数值滤波方法
10种简单的数值滤波方法

单片机利用软件抗干扰的几种滤波方法

1、限幅滤波法(又称程序判断滤波法)

A、方法:

根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断:

如果本次值与上次值之差<=A,则本次值有效;

如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值。

B、优点:

能有效克服因偶然因素引起的脉冲干扰。

C、缺点

无法抑制那种周期性的干扰,平滑度差。

2、中位值滤波法

A、方法:

连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。

B、优点:

能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。

C、缺点:

对流量、速度等快速变化的参数不宜。

3、算术平均滤波法

A、方法:

连续取N个采样值进行算术平均运算,N值较大时:信号平滑度较高,但灵敏度较低;N值较小时:信号平滑度较低,但灵敏度较高;N值的选取:一般流量,N=12;压力:N=4。

B、优点:

适用于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动。

C、缺点:

对于测量速度较慢或要求数据计算速度较快的实时控制不适用,比较浪费RAM。

4、递推平均滤波法(又称滑动平均滤波法)。

A、方法:

把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则),把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4。

B、优点:

对周期性干扰有良好的抑制作用,平滑度高,适用于高频振荡的系统

C、缺点:

灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差,不易消除由于脉冲干扰所引起的采样值偏差,不适用于脉冲干扰比较严重的场合,比较浪费RAM。

5、中位值平均滤波法(又称防脉冲干扰平均滤波法)

A、方法:

相当于“中位值滤波法”+“算术平均滤波法”,连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值,N值的选取:3~14,

B、优点:

融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。

C、缺点:

测量速度较慢,和算术平均滤波法一样,比较浪费RAM。

6、限幅平均滤波法

A、方法:

相当于“限幅滤波法”+“递推平均滤波法”,每次采样到的新数据先进行限幅处理,

再送入队列进行递推平均滤波处理

B、优点:

融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。

C、缺点:

比较浪费RAM。

7、一阶滞后滤波法

A、方法:

取a=0~1,本次滤波结果=(1-a)*本次采样值+a*上次滤波结果。

B、优点:

对周期性干扰具有良好的抑制作用,适用于波动频率较高的场合。

C、缺点:

相位滞后,灵敏度低,滞后程度取决于a值大小,不能消除滤波频率高于采样频率的1/2的干扰信号。

8、加权递推平均滤波法

A、方法:

是对递推平均滤波法的改进,即不同时刻的数据加以不同的权,通常是,越接近现时刻的数据,权取得越大。给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。

B、优点:

适用于有较大纯滞后时间常数的对象,和采样周期较短的系统。

C、缺点:对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号,不能迅速反应系统当前所受干扰的严重程度,滤波效果差

9、消抖滤波法

A、方法:

设置一个滤波计数器,将每次采样值与当前有效值比较:

如果采样值=当前有效值,则计数器清零;

如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出);

如果计数器溢出,则将本次值替换当前有效值,并清计数器。

B、优点:

对于变化缓慢的被测参数有较好的滤波效果,可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动。

C、缺点:

对于快速变化的参数不宜,如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统。

10、限幅消抖滤波法

A、方法:

相当于“限幅滤波法”+“消抖滤波法”,先限幅,后消抖。

B、优点:

继承了“限幅”和“消抖”的优点,改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统。

C、缺点:

对于快速变化的参数不宜。

参考程序,假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();

1、限副滤波

/* A值可根据实际情况调整value为有效值,new_value为当前采样值滤波程序返回有效的实际值 */ #define A 10

char value;

char filter()

{

char new_value;

new_value = get_ad();

if ( ( new_value - value > A ) || ( value - new_value > A )

return value;

return new_value;

}

2、中位值滤波法

/* N值可根据实际情况调整排序采用冒泡法*/

#define N 11

char filter()

{

char value_buf[N];

char count,i,j,temp;

for ( count=0;count

{

value_buf[count] = get_ad();

delay();

}

for (j=0;j

{

for (i=0;i

{

if ( value_buf>value_buf[i+1] )

{

temp = value_buf;

value_buf = value_buf[i+1];

value_buf[i+1] = temp;

}

}

}

return value_buf[(N-1)/2];

}

3、算术平均滤波法

/**/

#define N 12

char filter()

{

int sum = 0;

for ( count=0;count

{

sum + = get_ad();

return (char)(sum/N);

}

4、递推平均滤波法(又称滑动平均滤波法)

/**/

#define N 12

char value_buf[N];

char i=0;

char filter()

{

char count;

int sum=0;

value_buf[i++] = get_ad();

if ( i == N ) i = 0;

for ( count=0;count

sum = value_buf[count];

return (char)(sum/N);

}

楼主的滑动滤波法不对,应该是:

#define N 12

char value_buf[N];

char i=0;

int sum=0;

char filter()

{

char Temp_Value;

Temp_Value = get_ad();

sum += value_buf[i] - Temp_Value;

value_buf[i++] = Temp_Value;

if ( i == N ) i = 0;

return (char)(sum/N);

}//注意 value_buf全部初始化为第一次采集的值!!

5、中位值平均滤波法(又称防脉冲干扰平均滤波法)

/**/

#define N 12

char filter()

{

char count,i,j;

char value_buf[N];

int sum=0;

for (count=0;count

{

value_buf[count] = get_ad();

for (j=0;j

{

for (i=0;i

{

if ( value_buf>value_buf[i+1] )

{

temp = value_buf;

value_buf = value_buf[i+1];

value_buf[i+1] = temp;

}

}

}

for(count=1;count

sum += value[count];

return (char)(sum/(N-2));

}

中位值滤波,为什么要排序?简单的东西,复杂化了。中位值无非就是去掉最大最小值而已,排序太麻烦了。贴上我自己的做法,给大家参考

u16 GetTheMiddleValue(u16 *Pointer,u8 Length)

{

u8 i;

u32 temp32 = 0;

u16 MaxVal = 0x0000;

u16 MinVal = 0xffff;

if ( Length>2 )

{

for ( i=0;i

{

if ( Pointer[i]> MaxVal)

{

MaxVal = Pointer[i];

}

if ( Pointer[i]

{

MinVal = Pointer[i];

}

temp32 += Pointer[i];

}

temp32 = (temp32-MaxVal-MinVal)/(Length-2);

}

else

{

for ( i=0;i

{

temp32 += Pointer[i];

}

temp32 = temp32/Length;

}

return (u16)temp32;

}

6、限幅平均滤波法

/**/

略参考子程序1、3

7、一阶滞后滤波法

/* 为加快程序处理速度假定基数为100,a=0~100 */

#define a 50

char value;

char filter()

{

char new_value;

new_value = get_ad();

return (100-a)*value + a*new_value;

}

8、加权递推平均滤波法

/* coe数组为加权系数表,存在程序存储区。*/

#define N 12

char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};

char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;

char filter()

{

char count;

char value_buf[N];

int sum=0;

for (count=0,count

{

value_buf[count] = get_ad();

delay();

}

for (count=0,count

sum += value_buf[count]*coe[count];

return (char)(sum/sum_coe);

}

9、消抖滤波法

#define N 12

char filter()

{

char count=0;

char new_value;

new_value = get_ad();

while (value !=new_value);

{

count++;

if (count>=N) return new_value;

delay();

new_value = get_ad();

}

return value;

}

10、限幅消抖滤波法

/**/

略参考子程序1、9

低通插值滤波器说明书

The University of South China 数字信号处理课程设计 说明书 学院名称 指导教师 班级 学号 学生姓名 2010年6 月

设计一个按因子I=5的内插器,要求镜像滤波器通带最大衰减为 0.1dB ,阻带最小衰减为30dB ,过渡带宽不大于20/π,设计FIR 滤波器系数h(n) 一、初始设计 (1) 幅度指标 可以两种方式给出。第一种,叫做绝对指标,它提出了对幅度回应函数|H (jw)| 的要求。这些指标一般可直接用于FIR 滤波器。第二种方法叫做相对指标,它以分贝(dB )值的形式提出要求,其定义为: 0|)(|| )(|log 20max 10≥-=jw jw e H e H dB 经过定义中所包含的归一化,所有滤波器的相对幅频特性最高处的值为0dB ,由于定义式中有一个负号,幅频特性小的地方,其dB 值反而是正的。 绝对指标: [0,wp]段叫通带,δ1是在理想通带中能接受的振幅波动或(容限) [ws, ]段叫做阻带,δ2是阻带中能接受的振幅波动或(容限) [wp,ws]叫做过渡带,在此段上幅度回应通常没有限制,也可以给些弱限制。 低通滤波器的典型幅度指标 相对指标(dB ): p R 是通带波动的dB 值; s A 是阻带衰减的dB 值。 由于绝对指标中的)1(|)(|1max δ+=jw H ,因此 011log 201 1 10 >+--=δδp R , ) (ωj e G c ω 1 1+ p 1- p s p s

11log 201 2 10 >>+-=δδs A 逆向的关系为 20 20 1101101p p R R --+-= δ 20 20 1210 10 )1(s s A A --≈+=δδ (2)低通FIR 滤波器阶数的估计 π ωωδδ2/)(6.1413)lg(20p s s p N ---≈ (3)滤波器结构分析: 整数倍内插器的 FIR 直接实现 整数I 倍内插是在已知的相邻两个原采样点之间等间隔插入I-1个新的采样值。对已知的采样序列)(11T n x 进行D/A 转移,得道原来的模拟信号)(t x a ,然后再对)(t x a 进行较高采样率的采样得到)(22T n y ,这里 21IT T = I 为大于1的整数,称为内插因子。 整数倍内插是先在已知采样序列)(11T n x 的相邻两个样点之间等间隔插入I-1个0值点,然后进行低通滤波器,即可获得I 倍内插的结果。内插方案如图所示: )(11T n x )(22T n v )(22T n y 图中↑ I 表示在)(11T n x 相邻样点之间插入I-1个0值采样,称为零值内插器。 )(11T n x 、)(22T n y 的傅里叶变换为:)(1 jw e X 、)(2jw e Y ,二者均为周期函数,若二 者都用模拟频率Ω表示,则 (1jw e X =)(1T j e X Ω,周期为11/2T sa π=Ω; )(2jw e Y =)(2T i e Y Ω,周期为2sa Ω=112)//(2/2sa I I T T Ω==ππ。 )(22T n v =?? ??? ±±=其它当 02,,0n )(212I I I T n x ↑ I )(22T n h

10种常用滤波方法

1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:

对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点: 测量速度较慢,和算术平均滤波法一样 比较浪费RAM 6、限幅平均滤波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点: 比较浪费RAM 7、一阶滞后滤波法 A、方法: 取a=0~1 本次滤波结果=(1-a)*本次采样值+a*上次滤波结果 B、优点: 对周期性干扰具有良好的抑制作用 适用于波动频率较高的场合 C、缺点: 相位滞后,灵敏度低 滞后程度取决于a值大小

数字滤波算法

几种简单的数字滤波 假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad(); 1、限副滤波 /* A值可根据实际情况调整 value为有效值,new_value为当前采样值 滤波程序返回有效的实际值*/ #define A 10 char value; char filter() { char new_value; new_value = get_ad(); if ( ( new_value - value > A ) || ( value - new_value > A ) return value; return new_value; } 2、中位值滤波法 /* N值可根据实际情况调整 排序采用冒泡法*/ #define N 11 char filter() { char value_buf[N]; char count,i,j,temp; for ( count=0;countvalue_buf[i+1] ) { temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } } }

return value_buf[(N-1)/2]; } 3、算术平均滤波法 /* */ #define N 12 char filter() { int sum = 0; for ( count=0;count

常用的8种数字滤波算法

常用的8种数字滤波算法 摘要:分析了采用数字滤波消除随机干扰的优点,详细论述了微机控制系统中常用的8种数字滤波算法,并讨论了各种数字滤波算法的适用范围。 关键词:数字滤波;控制系统;随机干扰;数字滤波算法 1 引言 在微机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来自被测信号源本身、传感器、外界干扰等。为了进行准确测量和控制,必须消除被测信号中的噪声和干扰。噪声有2大类:一类为周期性的,其典型代表为50 Hz 的工频干扰,对于这类信号,采用积分时间等于20 ms整倍数的双积分A/D转换器,可有效地消除其影响;另一类为非周期的不规则随机信号,对于随机干扰,可以用数字滤波方法予以削弱或滤除。所谓数字滤波,就是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。 数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优点: (1)数字滤波器是用软件实现的,不需要增加硬设备,因而可靠性高、稳定性好,不存在阻抗匹配问题。 (2)模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而降低了成本。 (3)数字滤波器可以对频率很低(如0.01 Hz)的信号进行滤波,而模拟滤波器由于受电容容量的限制,频率不可能太低。 (4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤波参数,具有灵活、方便、功能强的特点。 2 常用数字滤波算法 数字滤波器是将一组输入数字序列进行一定的运算而转换成另一组输出数字序列的装置。设数字滤波器的输入为X(n),输出为Y(n),则输入序列和输出序列之间的关系可用差分方程式表示为: 其中:输入信号X(n)可以是模拟信号经采样和A/D变换后得到的数字序列,也

滤波电容的选型与计算(详解)

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频 率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为

十种数字滤波方法

1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 自动化科协 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果

N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 自动化科协 测量速度较慢,和算术平均滤波法一样 比较浪费RAM 6、限幅平均滤波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 比较浪费RAM 7、一阶滞后滤波法 A、方法: 取a=0~1 本次滤波结果=(1-a)*本次采样值+a*上次滤波结果 B、优点: 对周期性干扰具有良好的抑制作用 适用于波动频率较高的场合 C、缺点:

10种简单的数值滤波方法

单片机利用软件抗干扰的几种滤波方法 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效; 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值。 B、优点: 能有效克服因偶然因素引起的脉冲干扰。 C、缺点 无法抑制那种周期性的干扰,平滑度差。 2、中位值滤波法 A、方法: 连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。 B、优点: 能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。 C、缺点: 对流量、速度等快速变化的参数不宜。 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算,N值较大时:信号平滑度较高,但灵敏度较低;N值较小时:信号平滑度较低,但灵敏度较高;N值的选取:一般流量,N=12;压力:N=4。 B、优点: 适用于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动。 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用,比较浪费RAM。 4、递推平均滤波法(又称滑动平均滤波法)。 A、方法: 把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则),把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4。 B、优点: 对周期性干扰有良好的抑制作用,平滑度高,适用于高频振荡的系统 C、缺点: 灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差,不易消除由于脉冲干扰所引起的采样值偏差,不适用于脉冲干扰比较严重的场合,比较浪费RAM。 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法”,连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值,N值的选取:3~14, B、优点: 融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。 C、缺点: 测量速度较慢,和算术平均滤波法一样,比较浪费RAM。 6、限幅平均滤波法

滤波电容的计算方法

关于电压型变频器直流环节滤波电容的计算方法 作者:浙江大学王青松 关键词:整流电路,电压型变频器,纹波 摘要:电压型变频器直流环节并入电容对整流电路的输出进行滤波,理论上电容值越大,电压纹波越小,但是从空间和成本上考虑并不能如此。详细论述了三相输入和单相输入变频器滤波电容的计算方法,为电压型变频器不同功率的负载所需滤波电容的选择提供了理论依据。最后通过实验证明了该算法可行、可靠,不仅保证了产品的性能,更节约了成本。 0 引言 虽然利用整流电路可以将交流电变换成直流电,但是在三相电路中这种直流电压或电流含有频率为电源频率6倍的电压或电流纹波。此外,变频器逆变电路也将因输出和载波频率等原因而产生纹波电压或电流,并反过来影响直流电压或电流的品质。因此,为了保证逆变电路和控制电路能够得到高质量的直流电压或电流,必须对直流电压或电流进行滤波,以减少电压或电流的脉动。 直流环节是指插在直流电源和逆变电路之间的滤波电路,其结构的差异将对变换器的性能产生不同的影响:凡是采用电感式结构,其输入电流纹波较小,类似电流源性质;凡是采用电容式结构,其输入端电压纹波较小,类似电压源性质。 对电压型变频器米说,整流电路的输出为直流电压,直流中间电路则通过大电解电容对该电压进行滤波;而对于电流型变频器米说,整流电路的输出为直流电流,中间电路则通过大电感对该电流进行滤波。 l 三相变频器直流中间电路电解电容的计算 1.1 变频器及直流中间电路结构框图 变频器及直流中间电路结构图如图1所示。

1.2 三相输入及整流后的电压波形 三相输入线电压220V及整流后的电压波形如图2所示。 图2中,Ua、Ub、Uc是三相三线制的三相输入相电压;uc是电容电压,ur是整流之后未加电容时的电压。 1.3 分析过程 1.3.l 整流后电压的计算 对于三相三线制输入线电压为220V系列变频器(以下简称220V系列)来说U=220V;对于440V系列,U=440V。

AD数据采集的“数字滤波”:10个“软件滤波程序”

AD数据采集的“数字滤波”:10个“软 件滤波程序” 在AD采集中经常要用到数字滤波,而不同情况下又有不同的滤波需求,下面是10种经典的软件滤波方法的程序和优缺点分析: 1、限幅滤波法(又称程序判断滤波法) 2、中位值滤波法 3、算术平均滤波法 4、递推平均滤波法(又称滑动平均滤波法) 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) 6、限幅平均滤波法 7、一阶滞后滤波法 8、加权递推平均滤波法 9、消抖滤波法 10、限幅消抖滤波法 1、限副滤波 A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断: 如果本次值与上次值之差;A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点:能有效克服因偶然因素引起的脉冲干扰

C、缺点:无法抑制那种周期性的干扰,平滑度差 程序: /* A值可根据实际情况调整,value为有效值,new_value为当前采样值,滤波程序返回有效的实际值*/ #define A 10 char value; char filter() { char new_value; new_value = get_ad(); if ( ( new_value - value >; A ) || ( value - new_value >; A ) return value; return new_value; } 2、中位值滤波法

A、方法:连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值 B、优点:能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点:对流量、速度等快速变化的参数不宜 程序: /* N值可根据实际情况调整 排序采用冒泡法*/ #define N 11 char filter() { char value_buf[N]; char count,i,j,temp; for ( count=0;count;value_buf[i+1] ) { temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } } } return value_buf[(N-1)/2];

一些经典的滤波电路

有源滤波电路 滤波器的用途 滤波器是一种能使有用信号通过,滤除信号中无用频率,即抑制无用信号的电子装置。 例如,有一个较低频率的信号,其中包含一些较高频率成分的干扰。

有源滤波器实际上是一种具有特定频率响应的放大器。它是在运算放大器的基础上增加一些R 、C 等无源元件而构成的。 低通滤波器(LPF ) 高通滤波器(HPF ) 带通滤波器(BPF ) 带阻滤波器(BEF )有源滤波电路的分类

低通滤波器的主要技术指标 (1)通带增益A v p 通带增益是指滤波器在通频带内的电压放大倍数,性能良好的LPF通带内的幅频特性曲线是平坦的,阻带内的电压放大倍数基本为零。(2)通带截止频率f p 其定义与放大电路的上限截止频率相同。通带与阻带之间称为过渡带,过渡带越窄,说明滤波器的选择性越好。

一阶有源滤波器 电路特点是电路简单,阻 带衰减太慢,选择性较差。 1 01R R A A f VF + == ) (11)(s V SRC s V i P ?? +=∴SRC A s V s V s A VF +==11 )()()(0S A =02.传递函数 当 f = 0时,电容视为开路,通带内的增益为1.通带增益

3. 幅频响应 一阶LPF 的幅频特性曲线 ) (1)()()(0 0n i j A j V j V j A ωωωωω+= =n i S A s V s V s A ω+= =1)()()(0 02 0) (1) () ()(n i A j V j V j A ωωωωω+= =

简单二阶低通有源滤波器 为了使输出电压在高频段以更快的速率下降,以改善滤波效果,再加一节RC低通滤波环节,称为二阶有源滤波电路。它比一阶低通滤波器的滤波效果更好。 二阶LPF二阶LPF的幅频特性曲线

单片机数字滤波算法

单片机主要作用是控制外围的器件,并实现一定的通信和数据处理。 但在某些特定场合,不可避免地要用到数学运算,尽管单片机并不擅长实现算法和进行复杂的运算。下面主要是介绍如何用单片机实现数字滤波。 在单片机进行数据采集时,会遇到数据的随机误差,随机误差是由随机干扰引起的,其特点是在相同条件下测量同一量时,其大小和符号会现无规则的变化而无法预测,但多次测量的结果符合统计规律。为克服随机干扰引起的误差,硬件上可采用滤波技术,软件上可采用软件算法实现数字滤波。滤波算法往往是系统测控算法的一个重要组成部分,实时性很强。 1采用数字滤波算法克服随机干扰的误差具有以下优点: 1.数字滤波无需其他的硬件成本,只用一个计算过程,可靠性高,不存在阻 抗匹配问题。尤其是数字滤波可以对频率很低的信号进行滤波,这是模拟滤波器做不到的。 2.数字滤波使用软件算法实现,多输入通道可共用一个滤波程序,降低系统 开支。 3.只要适当改变滤波器的滤波程序或运算,就能方便地改变其滤波特性,这 对于滤除低频干扰和随机信号会有较大的效果。 4.在单片机系统中常用的滤波算法有限幅滤波法、中值滤波法、算术平均滤 波法、加权平均滤波法、滑动平均滤波等。 2限幅滤波算法 该运算的过程中将两次相邻的采样相减,求出其增量,然后将增量的绝对值,与两次采样允许的最大差值A进行比较。A的大小由被测对象的具体情况而定,如果小于或等于允许的最大差值,则本次采样有效;否则取上次采样值作为本次数据的样本。 算法的程序代码如下: #define A //允许的最大差值 char data; //上一次的数据 char filter() { char datanew; //新数据变量 datanew=get_data(); //获得新数据变量 if((datanew-data)>A||(data-datanew>A)) return data; else return datanew; }

常用的软件滤波方法(工程师必备).

软件滤波在嵌入式的数据采集和处理中有着很重要的作用,这10种方法各有优劣,根据自己的需要选择。同时提供了C语言的参考代码,希望对各位能有帮助。 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 /* A值可根据实际情况调整 value为有效值,new_value为当前采样值 滤波程序返回有效的实际值 */ #define A 10 char value; char filter()

char new_value; new_value = get_ad(); if ( ( new_value - value > A ) || ( value - new_value > A ) return value; return new_value; } 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 /* N值可根据实际情况调整 排序采用冒泡法*/ #define N 11

char filter() { char value_buf[N]; char count,i,j,temp; for ( count=0;countvalue_buf[i+1] ) { temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } } }

电源滤波电路公式

電源供應器(二) 濾波(Filtering) 的基本概念 在開始討論濾波之前有一點要先聲明: Filter 是一門較深奧的理論, 要徹底研究filters 少不了要用到“轉移函數”(transfer function) 之類的工具, 只好暫時割愛了. 等以後有機會時再來討論克希赫夫定律(Kirchhoff’s theorem), 網路與節點分析(mesh and nodal analysis), 拉普拉斯變換(Laplace transform). 對這些題材感興趣的朋友請您參考: Valley, Wallman: Vacuum Tube Amplifiers 第一章. (或是電路學的書籍, 如: Chua, Desoer, Kuh: Linear and Non-Linear Circuits, 第八章.) 1. 基本方法. 在上次的討論中, 我們知道一個整流子的輸出還不是穩定的直流. 現在我們要來處理整流子的輸出. 處理的越小心, 越精密, 會越接近完美的直流源。 最簡單的處理辦法是利用電容儲存能量及緩慢放電的特性. 將全波整流子的輸出並聯一個電容: 讓我們來看這個電容在這裡產生的功能: 整流子的輸出是一個100/120 Hz, 上下振盪的訊號. 當電壓升高時, 電容開始充電, 電壓降低時電容開始緩慢放電, 在完全放電之前, 又再度開始下一波充電與放電的程序. 所以並聯一個電容的效果是把一個在0 伏特與V 伏特間劇烈振動的訊號變成一個振幅較小的漣波(ripple). 這個電容越大, 漣波的振幅dV越小, 也就是說越接近直流. 理論上, 如果這個電容的電容值是無限大, 那麼這個濾波電容的輸出就是一個完美的直流. 但是, 世界上沒有完美的事物, 也因為物物皆有缺陷, 所以才會產生各種不同的方法, 想要補償不足, 科技才會不停的進步.對於這個漣波, 為了將來的需要, 我們把它分解成:

数据处理中的几种常用数字滤波算法

数据处理中的几种常用数字滤波算法 王庆河王庆山 (济钢集团计量管理处,济南250101) (济钢集团中厚板厂,济南250101) 摘要随着数字化技术的发展,数字滤波技术成为数字化仪表和计算机在数据采集中的关键性技术,本文对常用的几种数字滤波算法的原理进行描述,并给出必要的数学模型。 关键词:数据采样噪声滤波移动滤波 一、引言 在仪表自动化工作中,经常需要对大量的数据进行处理,这些数据往往是一个时间序列或空间序列,这时常会用到数字滤波技术对数据进行预处理。数字滤波是指利用数学的方法对原始数据进行处理,去掉原始数据中掺杂的噪声数据,获得最具有代表性的数据集合。 数据采样是一种通过间接方法取得事物状态的技术如将事物的温度、压力、流量等属性通过一定的转换技术将其转换为电信号,然后再将电信号转换为数字化的数据。在多次转换中由于转换技术客观原因或主观原因造成采样数据中掺杂少量的噪声数据,影响了最终数据的准确性。 为了防止噪声对数据结果的影响,除了采用更加科学的采样技术外,我们还要采用一些必要的技术手段对原始数据进行整理、统计,数字滤波技术是最基本的处理方法,它可以剔除数据中的噪声,提高数据的代表性。 二、几种常用的数据处理方法 在实际应用中我们所用的数据滤波方法很多,在计算机应用高度普及的今天更有许多新的方法出现,如逻辑判断滤波、中值滤波、均值滤波、加权平均 2中值滤波 中值滤波是对采样序列按大小排滤波、众数滤波、一阶滞后滤波、移动滤波、复合滤波 等。 假设我们采用前端仪表采集了一组采样周期为1s的温度数据的时间序列 T0为第0s 采集的温度值,Ti为第is采集的温度值。下面介绍如何应用几种不同滤波算法来计算结果温度T。 1.程序判断滤波 当采样信号由于随机干扰、误检测或变送器不稳定引起严重失真时,可采用程序判断滤波算法,该算法的基本原理是根据生产经验,确定出相邻采样输入信号可能的最大偏差△T,若超过此偏差值,则表明该输入信号是干扰信号,应该去掉,若小于偏差值则作为此次采样值。 (1)限幅滤波 限幅滤波是把两次相邻的采集值进行相减,取其差值的绝对值△T作为比较依据,如果小于或等于△T,则取此次采样值,如果大于△T,则取前次采样值,如式(1)所示:

(整理)11种滤波方法+范例代码.

软件滤波算法(转载) 这几天做一个流量检测的东西,其中用到了对数据的处理部分,试了很多种方法,从网上找到这些个滤波算法,贴出来记下 需要注意的是如果用到求平均值的话,注意总和变量是否有溢出,程序没必要照搬,主要学习这些方法,相信做东西的时候都能用得上 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点:

适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 测量速度较慢,和算术平均滤波法一样 比较浪费RAM

十一种软件数字滤波算法

1 数字滤波 1.1 概述 在单片机进行数据采集时,会遇到数据的随机误差,随机误差是由随机干扰引起的,其特点是在相同条件下测量同一量时,其大小和符号会现无规则的变化而无法预测,但多次测量的结果符合统计规律。为克服随机干扰引起的误差,硬件上可采用滤波技术,软件上可采用软件算法实现数字滤波。滤波算法往往是系统测控算法的一个重要组成部分,实时性很强。 采用数字滤波算法克服随机干扰的误差具有以下优点: 1、数字滤波无需其他的硬件成本,只用一个计算过程,可靠性高,不存在阻 抗匹配问题。尤其是数字滤波可以对频率很低的信号进行滤波,这是模拟滤波器做不到的。 2、数字滤波使用软件算法实现,多输入通道可共用一个滤波程序,降低系统 开支。 3、只要适当改变滤波器的滤波程序或运算,就能方便地改变其滤波特性,这 对于滤除低频干扰和随机信号会有较大的效果。 4、在单片机系统中常用的滤波算法有限幅滤波法、中值滤波法、算术平均滤 波法、加权平均滤波法、滑动平均滤波等。 1.2 限幅滤波算法 原理:该运算的过程中将两次相邻的采样相减,求出其增量,然后将增量的绝对值,与两次采样允许的最大差值A进行比较。A的大小由被测对象的具体情况而定,如果小于或等于允许的最大差值,则本次采样有效;否则放弃本次值取上次采样值作为本次数据的样本。 优点:能有效克服因偶然因素引起的脉冲干扰。 缺点:无法抑制那种周期性的干扰,平滑度差。 说明:限幅滤波法主要用于处理变化较为缓慢的数据,如温度、物体的位置等。使用时,关键要选取合适的门限制A。通常这可由经验数据获得,必要时可通过实验得到。 1.3 中值滤波算法 原理:该运算的过程是对某一参数连续采样N次(N一般为奇数),然后把N次采样的值按从小到大排列,再取中间值作为本次采样值,整个过程实际上是一个序列排序的过程。

简单滤波电路计算公式

介绍几个简单而有用的滤波电路---如何应用及计算公式 2009-09-16 17:24:32| 分类:老师傅盖电子 | 标签: |字号大 中 小订阅 基本型的音频RC滤波电路 最常用的滤波电路应该是很基本的RC滤波,不管是高通型或是低通型,公式都是一样的如下所示: Freq-6dB = 1 / 2πRC 但是在应用上,却很少去考虑这个公式是可以活用的。在整个电路上,当然会有很多的RC 组合,如果每个都套用这个公式,那最后的频率响应不就是衰减了几十dB去了。如果全部都让它所有音频通过,只留下一个RC滤波来控制频率响应,那么区除杂讯的效果就变差了。 举例说,如果有三组低通滤波电路,我们需要设计在 -6dB为20 KHz。每一组在20 KHz的频率点,只能有2dB的衰减量。那么公式就要修正为 Freq-2dB = (1 / 2πRC) * 1.6 也就是电阻或电容的数值,必须减少1.6倍。(6dB – 2dB = 4dB = 1.6) 高衰减度的音频陷波器 再来要介绍很有名的双T型滤波电路,能够针对特定的音频频率点产生很高的衰减度,用来做简易的音频失真仪更是好用,因为失真仪是很昂贵又很容易损坏的仪器。只要在交流微伏表的输入端,加装可切换的双T型滤波电路,就可以当音频失真仪使用。例如未经双T型滤波电路的电表读数为0 dBm, 但是经过双T型滤波电路后为 -40 dBm, 则失真率为 1 %。(因为相差40 dB为100倍) 陷波器的频率点为:Freq-trap = 1 / 2πRC 数值设定为:R1 = R2 = R, C1 = C2 = C, C3 = 2C, R3 = R/2 理论上如果RC数值搭配准确时,可达到60 dB的衰减度。但是如此Q值太高,会使滤波的有效频宽太窄,容易产生频率偏差。一般建议故意将数值偏差,使Q值降低到40-46 dB的衰减

基于内插滤波器符号同步的实现

基于内插滤波器符号同步的实现 陈卫东,孙 栋,张华冲 (中国电子科技集团公司第五十四研究所,河北石家庄050081) 摘 要:比较了同步采样和异步采样条件下符号同步实现方法的不同,在全数字接收机中需要采用内插方法来实现符号同步,内插滤波器是一种线性时变滤波器,在工程中可以采用多项式内插函数来近似,采用FARROW 结构实现。在此基础上介绍了内插法符号同步环路的结构,组成单元,其中详细介绍了内插控制器和定时误差检测器的原理。在AWGN 信道中针对QAM 64信号进行了仿真和实现,眼图和星座图恢复良好,该符号同步环路可以应用于侦察接收机的解调器中。 关键词:全数字接收机;内插滤波器;符号同步 中图分类号:TN914.42 文献标识码:A 文章编号:1003-3114(2009)06-53-3 Design of Symbol Synchronization Circuit Based on Interpolation C HE N Wei dong,SUN Dong,ZHANG Hua chong (The 54th Research Insti tute of CETC,Shijiazhuang Hebei 050081,China) Abstract :In traditional demodulator synchronization sampling is used.In all di g i tal recei ver based on the non synchronization samplin g timing recovery is achieved with the help of interpolator.Cubic interpolator,interpolation controller and Gardner Algoithm for symbol timing error detection are introduced in detail i n this paper.The performance of the design is well i n si mulation.The desi gn is implemented in XILINX FPGA and i t can be applied to demodulation for reconnaissance receiver. Key words:all digital receiver;interpolator;symbol synchronization 收稿日期:2009-09-01 作者简介:陈卫东(1968-),男,高级工程师。主要研究方向:通信信号处理、软件无线电。 0 引言 符号同步的主要任务是从接收到的信号中估计出恢复时钟相位与最佳采样位置的相位误差信息,并根据该信息,将本地采样时钟调整到能够对码元进行最佳检测的相位上,得到信号的最佳采样值,这些采样值中包含判决时刻的信号值。 传统的数字化解调器一般采用零中频方案,需要零中频信道单元把中频信号变换为I Q 两路零中频信号,再进行A/D 采样,定时恢复是通过调整AD 采样时钟相位来完成的,这种接收机定时恢复环路结构简单,但是环路包含模拟单元,模拟器件的非线性,稳定性较差,会对定时恢复的精度,可靠性造成影响。在全数字接收机中,A/D 采样在中频完成,数字下变频确保了I Q 幅度、相位的一致性,定时恢复环路完全在数字域实现。在具体实现中,整个环路可以在一片FPGA 芯片内完成,可靠性与稳定性得到了很大提高。符号同步是全数字接收机中的一个关键技术。 传统的解调器采用同步采样方式,即符号同步 环路锁定后,采样时钟频率是符号速率的整倍数,采样点中包含了判决时刻。在全数字接收机中,采用异步采样方式,即采样时钟频率与发送端时钟频率不相关,而是一个固定时钟频率,采样点中不包含判决时刻。由于采样不同步而引入的定时速率和相位误差,需要用数字信号处理的方法来补偿,即通过定时误差估值控制内插滤波器对采样得到的信号样本值进行插值运算,从而得到信号在最佳采样时刻的近似值。内插滤波器即是完成这一功能必须的环节。 1 内插原理 Gardner 在其文献中给出了速率转换模型来分析内插滤波器,该模型如图1 所示。 图1 内插滤波器速率转换模型 设发送的线性调制符号周期为T,T s 为采样周期。在全数字接收机中,由于T s 的定时来源于独立 工程实践及应用技术

相关主题
文本预览
相关文档 最新文档