当前位置:文档之家› PCB数字地和模拟地

PCB数字地和模拟地

PCB数字地和模拟地
PCB数字地和模拟地

数字地和模拟地

★数字地与模拟地的区别

简单来说,数字地是数字信号的对地,模拟地是模拟信号的对地。

由于数字信号一般为矩形波,带有大量的谐波。如果电路板中的

数字地与模拟地没有从接入点分开,数字信号中的谐波很容易会

干扰到模拟信号的波形。当模拟信号为高频或强电信号时,也会

影响到数字电路的正常工作。

存在问题的根本原因是,谁也无法保证电路板上铜箔的电阻为零,

在接入点将数字地和模拟地分开,就是为了将数字地和模拟地的

共地电阻降到最小。

★数字地和模拟地处理的基本原则如下:

1模拟地和数字地之间链接

(1)模拟地和数字地间串接电感一般取值多大?

一般用几uH到数十uH。

(2)用0欧电阻是最佳选择(1)可保证直流电位相等、(2)单点接地(限制噪声)、(3)对所有频率的噪声都有衰减作用(0欧也有阻抗,而且电流路径狭窄,可以限制噪声电流通过)。

磁珠相当于带阻陷波器,只对某个频点的噪声有抑制作用,如果不能预知噪点,如何选择型号,况且,噪点频率也不一定固定,故磁珠不是一个好的选择。

电容不通直流,会导致压差和静电积累,摸机壳会麻手。如果把电容和磁珠并联,就是画蛇添足,因为磁珠通直,电容将失效。串联的话就显得不伦不类。

电感特性不稳定,离散分布参数不好控制,体积大。电感也是陷波,LC谐振(分布电容),对噪点有特效。

总之,关键是模拟地和数字地要一点接地。

建议,不同种类地之间用0欧电阻相连;电源引入高频器件时用磁珠;高频信号线耦合用小电容;电感用在大功率低频上。

2 磁珠

采用在高频段具有良好阻抗特性的铁氧体材料烧结面成,专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。

主要参数:

标称值:因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆 .一般以100MHz为标准,比如2012B601,就是指在100MHz的时候磁珠的阻抗为600欧姆。

额定电流:额定电流是指能保证电路正常工作允许通过电流.

3 电感与磁珠的区别:

有一匝以上的线圈习惯称为电感线圈,少于一匝(导线直通磁环)的线圈习惯称之为磁珠;

电感是储能元件,而磁珠是能量转换(消耗)器件;

电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策;

磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰.两者都可用于处理EMC、EMI问题;

电感一般用于电路的匹配和信号质量的控制上.在模拟地和数字地结合的地方用磁珠.

磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变化。他比普通的电感有更好的高频滤波特性,在高频时呈现阻性,所以能在相当宽的频率范围内保持较高的阻抗,从而提高调频滤波效果。作为电源滤波,可以使用电感。磁珠的电路符号就是电感但是型号上可以看出使用的是磁珠在电路功能上,磁珠和电感是原理相同的,只是频率特性不同罢了

磁珠由氧磁体组成,电感由磁心和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去。磁珠对高频信号才有较大阻碍作用,一般规格有100欧/100mMHZ ,它在低频时电阻比电感小得多。

铁氧体磁珠(Ferrite Bead) 是目前应用发展很快的一种抗干扰组件,廉价、易用,滤除高频噪声效果显着。

在电路中只要导线穿过它即可(我用的都是象普通电阻模样的,导线已穿过并胶合,也有表面贴装的形式,但很少见到卖的)。当导线中电流穿过时,铁氧体对低频电流几乎没有什么阻抗,而对较高频率的电流会产生较大衰减作用。高频电流在其中以热量形式散发,其等效电路为一个电感和一个电阻串联,两个组件的值都与磁珠的长度成比例。磁珠种类很多,制造商应提供技术指标说明,特别是磁珠的阻抗与频率关系的曲线。

有的磁珠上有多个孔洞,用导线穿过可增加组件阻抗(穿过磁珠次数的平方),不过在高频时所增加的抑制噪声能力不可能如预期的多,而用多串联几个磁珠的办法会好些。

铁氧体是磁性材料,会因通过电流过大而产生磁饱和,导磁率急剧下降。大电流滤波应采用结构上专门设计的磁珠,还要注意其散热措施。

铁氧体磁珠不仅可用于电源电路中滤除高频噪声(可用于直流和交流输出),还可广泛应用于其它电路,其体积可以做得很小。特别是在数字电路中,由于脉冲信号含有频率很高的高次谐波,也是电路高频辐射的主要根源,所以可在这种场合发挥磁珠的作用。

铁氧体磁珠还广泛应用于信号电缆的噪声滤除。

以常用于电源滤波的HH-1H3216-500为例,其型号各字段含义依次为:

HH 是其一个系列,主要用于电源滤波,用于信号线是HB系列;

1 表示一个组件封装了一个磁珠,若为4则是并排封装四个的;

H 表示组成物质,H、C、M为中频应用(50-200MHz),

T低频应用(50MHz),S高频应用(200MHz);

3216 封装尺寸,长3.2mm,宽1.6mm,即1206封装;

500 阻抗(一般为100MHz时),50 ohm。

其产品参数主要有三项:

阻抗[Z]@100MHz (ohm) : Typical 50, Minimum 37;

直流电阻DC Resistance (m ohm): Maximum 20;

额定电流Rated Current (mA): 2500.

电感和磁珠的什么联系与区别

电感是储能元件,而磁珠是能量转换(消耗)器件

电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策

磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰。两者都可用于处理EMC、EMI问题。

磁珠是用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDR SDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路,中低频的滤波电路等,其应用频率范围很少超过错50MHZ。

★地的连接一般用电感,电源的连接也用电感,而对信号线则采用磁珠?

但实际上磁珠应该也能达到吸收高频干扰的目的啊?而且电感在高频谐振以后都不能再起电感的作用了……

先必需明白EMI的两个途径,即:辐射和传导,不同的途径采用不同的抑制方法。前者用磁珠,后者用电感。

对于扳子的IO部分,是不是基于EMC的目的可以用电感将IO部分和扳子的地进行隔离,比如将USB的地和扳子的地用10uH的电感隔离可以防止插拔的噪声干扰地平面?

电感一般用于电路的匹配和信号质量的控制上。在模拟地和数字地结合的地方用磁珠。

在模拟地和数字地结合的地方用磁珠。数字地和模拟地之间的磁珠用多大

磁珠的大小(确切的说应该是磁珠的特性曲线)

取决于你需要磁珠吸收的干扰波的频率

为什么磁珠的单位和电阻是一样的呢??都是欧姆!!

磁珠就是阻高频嘛,对直流电阻低,对高频电阻高,不就好理解了吗,

比如1000R@100Mhz就是说对100M频率的信号有1000欧姆的电阻

因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆。磁珠的datasheet 上一般会附有频率和阻抗的特性曲线图。一般以100MHz为标准,比如2012B601,就是指在100MHz 的时候磁珠的Impedance为600欧姆。

在很多产品中,交换机的两个地用电容连接起来,为什么不用电感?你说的两个地,其中一个是不是机壳的?

我估计(以下全部估计,有错请指点)

如果用磁珠或者直接相连的话,人体静电等意外电平会轻易进入交换机的地,这样交换机工作就不正常了。但如果它们之间断开,那么遭受雷击或者其他高压的时候,两个地之间的电火花引起起火…… 加电容则避免这种情况。交换机的地,是通过两个地之间的之间的电容去消除谐波。就像高阻抗的变压器一样,他附加了一个消除谐波的通路!我自己认为!请指正!铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。铁氧体材料通常在高频情况下应用,因为在低频时他们主要程电感特性,使得线上的损耗很小。在高频情况下,他们主要呈电抗特性比并且随频率改变。实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。实际上,铁氧体较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由他的电阻特性决定的。线圈,磁珠有一匝以上的线圈习惯称为电感线圈,少于一匝(导线直通磁环)的线圈习惯称之为磁珠。用途由起所需电感量决定。

请教:对于骅讯的USB声卡方案中,在UBS电源端与地端也分别接有一个磁珠,不知是否有人清楚,但是在实际生产中也有些工程把磁珠用电感去代替了,请问这样可以吗?

那里的磁珠是起什么作用哟?作为电源滤波,可以使用电感。磁珠的电路符号就是电感但是型号上可以看出使用的是磁珠在电路功能上,磁珠和电感是原理相同的,只是频率特性不同罢了。

★数字地和模拟地处理的基本原则如下:

1)、若为低频模拟电路,加粗和缩短地线;单点接地,可有效防止由于地线公共阻抗而导致的部件之间的互相干扰。而高频电路和数字电路,地线的电感效应较严重,单点接地会导致实际地线加长,故应多点接地和单点接地相结合。

2)、高频电路还应考虑如何抑制高频辐射噪声。方法如下:应尽量加粗地线,以降低噪声对地阻抗;大面积(满)接地,即除传输信号及电源的印制线以外,其余部分全覆铜作为地线,但不要留有死的无用大面积铜箔。

3)、地线应构成环路,以防止产生高频辐射噪声,但环路面积不可过大,以免产生较大的感应电流。注意若为低频电路,则应避免地线环路。

4)、数字电源和模拟电源最好隔离,地线分开布置,如果有A/D转换电路,则只在尽量靠近该器件处单点接地。

1)、若为低频模拟电路,加粗和缩短地线;单点接地,可有效防止由于地线公共阻抗而导致的部件之间的互相干扰。而高频电路和数字电路,地线的电感效应较严重,单点接地会导致实际地线加长,故应多点接地和单点接地相结合。

2)、高频电路还应考虑如何抑制高频辐射噪声。方法如下:应尽量加粗地线,以降低噪声对地阻抗;大面积(满)接地,即除传输信号及电源的印制线以外,其余部分全覆铜作为地线,但不要留有死的无用大面积铜箔。

3)、地线应构成环路,以防止产生高频辐射噪声,但环路面积不可过大,以免产生较大的感应电流。注意若为低频电路,则应避免地线环路。

4)、数字电源和模拟电源最好隔离,地线分开布置,如果有A/D转换电路,则只在尽量靠近该器件处单点接地。

模拟地与数字地(转)

模拟电路涉及弱小信号,但是数字电路门限电平较高,对电源的要求就比模拟电路低些。既有数字电路又有模拟电路的系统中,数字电路产生的噪声会影响模拟电路,使模拟电路的小信号指标变差,克服的办法是分开模拟地和数字地。

对于低频模拟电路,除了加粗和缩短地线之外,电路各部分采用一点接地是抑制地线干扰的最佳选择,主要可以防止由于地线公共阻抗而导致的部件之间的互相干扰。

而对于高频电路和数字电路,由于这时地线的电感效应影响会更大,一点接地会导致实际地线加长而带来不利影响,这时应采取分开接地和一点接地相结合的方式。

另外对于高频电路还要考虑如何抑制高频辐射噪声,方法是:尽量加粗地线,以降低噪声对地阻抗;满接地,即除传输信号的印制线以外,其他部分全作为地线。不要有无用的大面积铜箔。

地线应构成环路,以防止产生高频辐射噪声,但环路所包围面积不可过大,以免仪器处于强磁场中时,产生感应电流。但如果只是低频电路,则应避免地线环路。数字电源和模拟电源最好隔离,地线分开布置,如果有A/D,则只在此处单点共地。

低频中没有多大影响,但建议模拟和数字一点接地。高频时,可通过磁珠把模拟和数字地一点共地。

如果把模拟地和数字地大面积直接相连,会导致互相干扰。不短接又不妥,理由如上有四种方法解决此问题∶1、用磁珠连接;2、用电容连接;3、用电感连接;4、用0欧姆电阻连接。

磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有显着抑制作用,使用时需要预先估计噪点频率,以便选用适当型号。对于频率不确定或无法预知的情况,磁珠不合。

电容隔直通交,造成浮地。

电感体积大,杂散参数多,不稳定。

0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑

制。电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。

模拟地和数字地的分割

中 国产品研发易站w w w .r d e a s y .c n 有关模拟地和数字地分割的介绍 如何降低数字信号和模拟信号间的相互干扰呢?在设计之前必须了解电磁兼容(EMC)的两个基本原则:第一个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面。相反,如果系统存在两个参考面,就可能形成一个偶极天线(注:小型偶极天线的辐射大小与线的长度、流过的电流大小以及频率成正比);而如果信号不能通过尽可能小的环路返回,就可能形成一个大的环状天线(注:小型环状天线的辐射大小与环路面积、流过环路的电流大小以及频率的平方成正比)。在设计中要尽可能避免这两种情况。 有人建议将混合信号电路板上的数字地和模拟地分割开,这样能实现数字地和模拟地之间的隔离。尽管这种方法可行,但是存在很多潜在的问题,在复杂的大型系统中问题尤其突出。最关键的问题是不能跨越分割间隙布线,一旦跨越了分割间隙布线,电磁辐射和信号串扰都会急剧增加。在PCB 设计中最常见的问题就是信号线跨越分割地或电源而产生EMI 问题。 我们采用上述分割方法,而且信号线跨越了两个地之间的间隙,信号电流的返回路径是什么呢?假定被分割的两个地在某处连接在一起(通常情况下是在某个位置单点连接),在这种情况下,地电流将会形成一个大的环路。流经大环路的高频电流会产生辐射和很高的地电感,如果流过大环路的是低电平模拟电流,该电流很容易受到外部信号干扰。最糟糕的是当把分割地在电源处连接在一起时,将形成一个非常大的电流环路。另外,模拟地和数字地通过一个长导线连接在一起会构成偶极天线。 了解电流回流到地的路径和方式是优化混合信号电路板设计的关键。许多设计工程师仅仅考虑信号电流从哪儿流过,而忽略了电流的具体路径。如果必须对地线层进行分割,而且必须通过分割之间的间隙布线,可以先在被分割的地之间进行单点连接,形成两个地之间的连接桥,然后通过该连接桥布线。这样,在每一个信号线的下方都能够提供一个直接的电流回流路径,从而使形成的环路面积很小。 采用光隔离器件或变压器也能实现信号跨越分割间隙。对于前者,跨越分割间隙的是光信号;在采用变压器的情况下,跨越分割间隙的是磁场。还有一种可行的办法是采用差分信号:信号从一条线流入从另外一条信号线返回,这种情况下,不需要地作为回流路径。 要深入探讨数字信号对模拟信号的干扰必须先了解高频电流的特性。高频电流总是选择阻抗最小(电感最低),直接位于信号下方的路径,因此返回电流会流过邻近的电路层,而无论这个临近层是电源层还是地线层。 在实际工作中一般倾向于使用统一地,而将PCB 分区为模拟部分和数字部分。模拟信号在电路板所有层的模拟区内布线,而数字信号在数字电路区内布线。在这种情况下,数字信号返回电流不会流入到模拟信号的地。 只有将数字信号布线在电路板的模拟部分之上或者将模拟信号布线在电路板的数字部分之上时,才会出现数字信号对模拟信号的干扰。出现这种问题并不是因为没有分割地,真正的原因是数字信号的布线不 适当。 PCB 设计采用统一地,通过数字电路和模拟电路分区以及合适的信号布线,通常可以解决一些比较困难的布局布线问题,同时也不会产生因地分割带来的一些潜在的麻烦。在这种情况下,元器件的布局和分区就成为决定设计优劣的关键。如果布局布线合理,数字地电流将限制在电路板的数字部分,不会干扰模拟

PCB数字地和模拟地

数字地和模拟地 ★数字地与模拟地的区别 简单来说,数字地是数字信号的对地,模拟地是模拟信号的对地。 由于数字信号一般为矩形波,带有大量的谐波。如果电路板中的 数字地与模拟地没有从接入点分开,数字信号中的谐波很容易会 干扰到模拟信号的波形。当模拟信号为高频或强电信号时,也会 影响到数字电路的正常工作。 存在问题的根本原因是,谁也无法保证电路板上铜箔的电阻为零, 在接入点将数字地和模拟地分开,就是为了将数字地和模拟地的 共地电阻降到最小。 ★数字地和模拟地处理的基本原则如下: 1模拟地和数字地之间链接 (1)模拟地和数字地间串接电感一般取值多大? 一般用几uH到数十uH。 (2)用0欧电阻是最佳选择(1)可保证直流电位相等、(2)单点接地(限制噪声)、(3)对所有频率的噪声都有衰减作用(0欧也有阻抗,而且电流路径狭窄,可以限制噪声电流通过)。 磁珠相当于带阻陷波器,只对某个频点的噪声有抑制作用,如果不能预知噪点,如何选择型号,况且,噪点频率也不一定固定,故磁珠不是一个好的选择。 电容不通直流,会导致压差和静电积累,摸机壳会麻手。如果把电容和磁珠并联,就是画蛇添足,因为磁珠通直,电容将失效。串联的话就显得不伦不类。 电感特性不稳定,离散分布参数不好控制,体积大。电感也是陷波,LC谐振(分布电容),对噪点有特效。 总之,关键是模拟地和数字地要一点接地。 建议,不同种类地之间用0欧电阻相连;电源引入高频器件时用磁珠;高频信号线耦合用小电容;电感用在大功率低频上。 2 磁珠 采用在高频段具有良好阻抗特性的铁氧体材料烧结面成,专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。 主要参数: 标称值:因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆 .一般以100MHz为标准,比如2012B601,就是指在100MHz的时候磁珠的阻抗为600欧姆。 额定电流:额定电流是指能保证电路正常工作允许通过电流. 3 电感与磁珠的区别: 有一匝以上的线圈习惯称为电感线圈,少于一匝(导线直通磁环)的线圈习惯称之为磁珠; 电感是储能元件,而磁珠是能量转换(消耗)器件;

后仿真流程

synplify,ISE,ModelSim后仿真流程 我想很多人跟我一样,被ModelSim的后仿真搞的头晕脑胀。为了这个问题,我在网上找了很多的资料,但发现这些资料往往说的不明白。一些步骤被作者有意无意地省略掉,这常常给读者造成不必要的麻烦,所以我决定写下这一篇文章,把这3天我努力的结果拿出来,与大家分享。 首先,我把我用到的软件说明一下。如果你发现根据我的操作,你还是解决不了ModelSim 后仿真的问题,那就可能是软件版本的问题。 1,ModelSim Se 6.1b 2,Synplify Pro 7.5.1 3,ISE 5.2i (这个是老了点) 4,WindowsXP(这个应该没有多大的关系) 还有就是我使用的是verilog,我想VHDL的方法与verilog是差不多的,最多也就是在建库方面有点差别而已。 下面的这些方法,是我这3天搞出来的。当然也参考了一些文章。如果谁有更方便的方法,欢迎指出来。我的邮箱是vf1983cs@https://www.doczj.com/doc/0411367946.html,。有空大家多交流。 一,为modelsim生成3个库。 首先,介绍一下这三个库。 Simprim_ver:用于布局布线后的仿真。 Unisim_ver :如果要做综合后的仿真,还要编译这个库。 Xilinxcorelib_ver:如果设计中调用了CoreGen产生的核,则还需要编译这个库。 我们要为modelsim生成的是标准库。所谓的标准库就是modelsim运行后,会自动加载的库。不过这方面我还不是很肯定。因为我在后仿真时,还是要为仿真指定库的路径,不然modelsim找不到。 第一步:在modelsim环境下,新建工程,工程的路径与你想把库存储的路径一致。 第二步:新建库,库名起作s imprim_ver。我们首先就是要建的就是这个库。

模拟地和数字地单点接地

模拟地和数字地单点接地 只要是地,最终都要接到一起,然后入大地。如果不接在一起就是"浮地",存在压差,容易积累电荷,造成静电。地是参考0电位,所有电压都是参考地得出的,地的标准要一致,故各种地应短接在一起。人们认为大地能够吸收所有电荷,始终维持稳定,是最终的地参考点。虽然有些板子没有接大地,但发电厂是接大地的,板子上的电源最终还是会返回发电厂入地。如果把模拟地和数字地大面积直接相连,会导致互相干扰。不短接又不妥,理由如上有四种方法解决此问题:1、用磁珠连接;2、用电容连接;3、用电感连接;4、用0欧姆电阻连接。 *磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有显著抑制作用,使用时需要预先估计噪点频率,以便选用适当型号。对于频率不确定或无法预知的情况,磁珠不合。 *电容隔直通交,造成浮地。 *电感体积大,杂散参数多,不稳定。 *0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑制。电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。 跨接时用于电流回路 当分割电地平面后,造成信号最短回流路径断裂,此时,信号回路不得不绕道,形成很大的环路面积,电场和磁场的影响就变强了,容易干扰/被干扰。在分割区上跨接0欧电阻,可以提供较短的回流路径,减小干扰。 配置电路 一般,产品上不要出现跳线和拨码开关。有时用户会乱动设置,易引起误会,为了减少维护费用,应用0欧电阻代替跳线等焊在板子上。 空置跳线在高频时相当于天线,用贴片电阻效果好。 其他用途 布线时跨线 调试/测试用 临时取代其他贴片器件 作为温度补偿器件

更多时候是出于EMC对策的需要。另外,0欧姆电阻比过孔的寄生电感小,而且过孔还会影响地平面(因为要挖孔)。 ;-------------------------------------------------------- 大尺寸的0欧电阻还可当跳线,中间可以走线 还有就是不同尺寸0欧电阻允许通过电流不同,一般0603的1A,0805的2A,所以不同电流会选用不同尺寸的还有就是为磁珠、电感等预留位置时,得根据磁珠、电感的大小还做封装,所以0603、0805等不同尺寸的都有了 ;----------------------------------------- 0欧姆电阻一般用在混合信号的电路中,在这种电路中为了减小数字部分和模拟部分的相互干扰,他们的电源地线都是分开布的,但在电源的入口点又需要连在一起,一般是通过0欧姆电阻连接的,这样既达到了数字地和模拟地间无电压差,又利用了0欧姆电阻的寄生电感滤除了数字部分对模拟部分的干扰.

模拟地和数字地的区别

为什么数字地和模拟地要分开 在做简单电路时,是可以不用分开的。但为什么大家都说要把他们分开接呢? 其实本质是对的,就是数字地,模拟地都是地,并不是他们俩头上长角,十分的怪异,要明白为什么要分开,先听我说一个故事 我们公司所在的商务楼共有3楼,2楼是搞模拟的,3楼是做数字的,整幢楼只有一部电梯,平时人少的时候还好办,上2楼,上3楼互不影像,但每天早上上下班的时候就不得了了,人多得很,搞数字的要上3楼,总是被2楼的模拟影响,2楼模拟的人要下楼,总是要等电 梯上了3楼,再下来,互相影响很是麻烦, 商务楼的物业为解决这个问题,提出了2个方案, 第1个(笑死人了) 电梯扩大,可以装更多的人, 电梯大了是好,但公司会招人,人又多了,再换电梯,再招人...永远死循环,有一个办法到挺好,大家索性不要电梯,直接往下跳,不管2楼的,3楼的,肯定解决问题,但肯定会 出问题(第1个被枪毙掉了) 第2个 装2部电梯,一部专门上2楼,另一部专门上3楼 WondeRFul!太机智了,这样2层楼面的工作人员就互不影响了。 End 明白了否? 数字地,模拟地互相会影响不是因为一个叫数字,一个叫模拟,而是他们用了同一部电梯--地,而这部电梯所用的井道就是我们在PCB上布得地线。 模拟回路的电流走这条线,数字回路的电流也走这条线,本来无可厚非,线布着就是用来导 通电流的,可问题处在这根线上有电阻! 而且最根本的问题是走这条线的电流要去2个不同的回路。 假设一下,有2股电流,数流,模流同时从地出发。有2个器件,数件,模件。 若2个回路不分开,数流,模流回走到数件的接地端前的时候,损耗的电压为v v=(数流+模流)x走线电阻 相当于数字器件的接地端相对于地端升高了v 数字器件不满意了,我承认会升高少许电压,数流的那部分我认了,但模流的为什么要加在 我头上? 同理模拟器件也会同样抱怨 2个解决方案 第1个:你布的PCB线没有阻抗,自然不会引起干扰,就像2、3楼直接往下跳,那是井道

接地数字地,模拟地,信号地区别与接法

接地:数字地,模拟地,信号地区别与接法 除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。控制系统中,大致有以下几种地线: (1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。 (2)模拟地:是各种模拟量信号的零电位。 (3)信号地:通常为传感器的地。 (4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。 (5)直流地:直流供电电源的地。 (6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。 以上这些地线处理是系统设计、安装、调试中的一个重要问题。下面就接地问题提出一些看法: (1)控制系统宜采用一点接地。一般情况下,高频电路应就近多点接地,低频电路应一点接地。在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。 (2)交流地与信号地不能共用。由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。 (3)浮地与接地的比较。全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。还有一种方法,就是将机壳接地,其余部分浮空。这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。 (4)模拟地。模拟地的接法十分重要。为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。 (5)屏蔽地。在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。根据屏蔽目的不同,屏蔽地的接法也不一样。电场屏蔽解决分布电容问题,一般接大地;电磁场屏蔽主要避免雷达、电台等高频电磁场辐射干扰。利

电源地 信号地 模拟地 数字地

从参考电平的角度看,都是同一个地,最终都要接到一起获得相同的参考电位。对于地的分开,主要是从布线的角度看的。减少不同电路之间地的干扰。 电源的地不能看成模拟地,信号地也不能看成数字地。因为电源有给模拟电路供电的,有给数字电路供电的。信号有数字信号和模拟信号。 主要是根据电路的性能来分割地,对于数字信号3.3v电路,2。5V电路和5V电路的地也可能有分开的需要。即使是同一个供电的数字电路,有时候也有布线的要求,例如大电流的IO部分的地,可能需要单独处理。 大地一般指机壳,这个部分有ESD和屏蔽的需要的。有些时候电路地通过一个1M电阻同外壳相连,有时候直接连接。要根据应用和ESD的要求来处理。 总之,地的逻辑连接特性和PCB上的物理特性是要区分来看的。理论上讲地是0电压的,但是在实际PCBA 上地是有很多噪声和反弹的。 关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地 除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。 (2)模拟地:是各种模拟量信号的零电位。 (3)信号地:通常为传感器的地。 (4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。 (5)直流地:直流供电电源的地。 (6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。 以上这些地线处理是系统设计、安装、调试中的一个重要问题。下面就接地问题提出一些看法: (1)控制系统宜采用一点接地。一般情况下,高频电路应就近多点接地,低频电路应一点接地。在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。 (2)交流地与信号地不能共用。由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。 (3)浮地与接地的比较。全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。还有一种方法,就是将机壳接地,其余部分浮空。这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。 (4)模拟地。模拟地的接法十分重要。为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。 (5)屏蔽地。在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。根据屏蔽目的不同,屏蔽地的接法也不一样。电场屏蔽解决分布电容问题,一般接大地;电磁场屏蔽主要避免雷达、电台等高频电磁场辐射干扰。利用低阻金属材料高导流而制成,可接大地。磁场屏蔽用以防磁铁、电机、变压器、线圈等磁感应,其屏蔽方法是用高导磁材料使磁路闭合,一般接大地为好。当信号电路是一点接地时,低频电缆的屏蔽层也应一点接地。如果电缆的屏蔽层地点有一个以上时,将产生噪声电流,形成噪声干扰源。当一个电路有一个不接地的信号源与系统中接地的放大器相连时,输入端的屏蔽应接至放大器的公共端;相反,当接地的信号源与系统中不接地的放大器相连时,放大器的输入端

模拟地和数字地的说明

模拟地与数字地详解 二者本质是一直的,就是数字地和模拟地都是地。要明白为什么要分开,先听一个故事;我们公司的商务楼,2楼是搞模拟的,3楼是搞数字的,整幢楼只有一部电梯,平时人少的时候还好办,上2楼上3楼互不影响,但每天上下班的时候就不得了了,人多得很,搞数字的要上3楼,总是被2楼搞模拟的人影响,2楼模拟的人要下楼,总是要等电梯上了3楼再下来,互相影响很是麻烦,商务楼的物业为解决这个问题,提出了2个方案:第 1个(笑死人了)电梯扩大,可以装更多的人,电梯大了是好,但公司会招人,人又多了,再换电梯,再招人...永远死循环,有一个办法到挺好,大家索性不要电梯,直接往下跳,不管2楼的3楼的,肯定解决问题,但肯定会出问题(第1个被枪毙掉了)。第2个办法装2部电梯,一部专门上2楼,另一部专门上3楼,Wonderful!太机智了,这样2层楼面的工作人员就互不影响了。明白了否? 数字地、模拟地互相会影响不是因为一个叫数字,一个叫模拟,而是他们用了同一部电梯:地,而这部电梯所用的井道就是我们在PCB上布得地线。模拟回路的电流走这条线,数字回路的电流也走这条线,本来无可厚非,线布着就是用来导通电流的,可问题出在这根线上有电阻!而且最根本的问题是走这条线的电流要去2个不同的回路。假设一下:有 2股电流,数流,模流同时从地出发。有2个器件:数字件和模拟件。若2个回路不分开,数流模流走到数字件的接地端前的时候,损耗的电压为V=(数流+模流)X走线电阻,相当于数字器件的接地端相对于地端升高了V,数字器件不满意了,我承认会升高少许电压,数流的那部分我认了,但模流的为什么要加在我头上?同理模拟器件也会同样抱怨! 两个解决方案:第1个:你布的PCB线没有阻抗,自然不会引起干扰,就像2、3楼直接往下跳,那是井道最宽的时候,也就是可以装一个无限大的电梯,自然谁都不影响谁,但谁都知道,This is mission impossible!第2个:2条回路分开走,数流,模流分开,既数地、模地分开。 同理,有时虽在模拟回路中,但也要分大、小电流回路,就是避免相互干扰。所谓的干扰就是:2个不同回路中的电流在PCB走线上引起的电压,这2部分电压互相叠加而产生的。 下面再具体介绍,简单来说,数字地是数字电路部分的公共基准端,即数字电压信号的基准端;模拟地是模拟电路部分的公共基准端,模拟信号的电压基准端(零电位点)。 一,分为数字地和模拟地的原因 由于数字信号一般为矩形波,带有大量的谐波。如果电路板中的数字地与模拟地没有从接入点分开,数字信号中的谐波很容易会干扰到模拟信号的波形。当模拟信号为高频或强电信号时,也会影响到数字电路的正常工作。模拟电路涉及弱小信号,但是数字电路门限电平较高,对电源的要求就比模拟电路低些。既有数字电路又有模拟电路的系统中,数字电路产生的噪声会影响模拟电路,使模拟电路的小信号指标变差,克服的办法是分开模拟地和数字地。 存在问题的根本原因是,无法保证电路板上铜箔的电阻为零,在接入点将数字地和模拟地分开,就是为了将数字地和模拟地的共地电阻降到最小。

modelsim使用 + 前仿真 + 后仿真 + verilog

Modelsim 6.0 使用教程 1. Modelsim简介 Modelsim仿真工具是Model公司开发的。它支持Verilog、VHDL以及他们的混合仿真,它可以将整个程序分步执行,使设计者直接看到他的程序下一步要执行的语句,而且在程序执行的任何步骤任何时刻都可以查看任意变量的当前值,可以在Dataflow窗口查看某一单元或模块的输入输出的连续变化等,比quartus自带的仿真器功能强大的多,是目前业界最通用的仿真器之一。 对于初学者,modelsim自带的教程是一个很好的选择,在Help->SE PDF Documentation->Tutorial里面.它从简单到复杂、从低级到高级详细地讲述了modelsim的各项功能的使用,简单易懂。但是它也有缺点,就是它里面所有事例的初期准备工作都已经放在example文件夹里,直接将它们添加到modelsim就可以用,它假设使用者对当前操作的前期准备工作都已经很熟悉,所以初学者往往不知道如何做当前操作的前期准备。 2.安装 同许多其他软件一样,Modelsim SE同样需要合法的License,通常我们用Kengen产生license.dat。 ⑴.解压安装工具包开始安装,安装时选择Full product安装。当出现Install Hardware Security Key Driver时选择否。当出现Add Modelsim To Path选 择是。出现Modelsim License Wizard时选择Close。 ⑵.在C盘根目录新建一个文件夹flexlm,用Keygen产生一个License.dat,然后 复制到该文件夹下。 ⑶.修改系统的环境变量。右键点击桌面我的电脑图标,属性->高级->环境变量-> (系统变量)新建。按下图所示内容填写,变量值内如果已经有别的路径了, 请用“;”将其与要填的路径分开。LM_LICENSE_FILE = c:\flexlm\license.dat

数字地和模拟地区别

模拟地与数字地 简单来说,数字地是数字电路部分的公共基准端,即数字电压信号的基准端;模拟地是模拟电路部分的公共基准端,模拟信号的电压基准端(零电位点)。 一、分为数字地和模拟地的原因: 由于数字信号一般为矩形波,带有大量的谐波。如果电路板中的数字地与模拟地没有从接入点分开,数字信号中的谐波很容易会干扰到模拟信号的波形。当模拟信号为高频或强电信号时,也会影响到数字电路的正常工作。模拟电路涉及弱小信号,但是数字电路门限电平较高,对电源的要求就比模拟电路低些。既有数字电路又有模拟电路的系统中,数字电路产生的噪声会影响模拟电路,使模拟电路的小信号指标变差,克服的办法是分开模拟地和数字地。 存在问题的根本原因是,无法保证电路板上铜箔的电阻为零,在接入点将数字地和模拟地分开,就是为了将数字地和模拟地的共地电阻降到最小。 二、数字地和模拟地处理的基本原则如下: 如果把模拟地和数字地大面积直接相连,会导致互相干扰。不短接又不妥。 对于低频模拟电路,除了加粗和缩短地线之外,电路各部分采用一点接地是抑制地线干扰的最佳选择,主要可以防止由于地线公共阻抗而导致的部件之间的互相干扰。 而对于高频电路和数字电路,由于这时地线的电感效应影响会更大,

一点接地会导致实际地线加长而带来不利影响,这时应采取分开接地和一点接地相结合的方式。 另外对于高频电路还要考虑如何抑制高频辐射噪声,方法是:尽量加粗地线,以降低噪声对地阻抗;满接地,即除传输信号的印制线以外,其他部分全作为地线。不要有无用的大面积铜箔。 地线应构成环路,以防止产生高频辐射噪声,但环路所包围面积不可过大,以免仪器处于强磁场中时,产生感应电流。但如果只是低频电路,则应避免地线环路。数字电源和模拟电源最好隔离,地线分开布置,如果有A/D,则只在此处单点共地。 低频中没有多大影响,但建议模拟和数字一点接地。高频时,可通过磁珠把模拟和数字地一点共地。 三、四种解决方法 模拟地和数字地间串接 1)用磁珠连接;2)用电容连接;3)用电感连接;4)用0欧姆电阻连接。 1.电感一般用几uH到数十uH。 2.用0欧电阻是最佳选择 a.可保证直流电位相等 b.单点接地(限制噪声) c.对所有频率的噪声都有衰减作用(0欧也有阻抗,而且电流路径狭窄,可以限制噪声电流通过)。 3. 磁珠

反相器设计前仿与后仿流程

目录 前端电路设计与仿真 (2) 第一节双反相器的前端设计流程 (2) 1、画双反相器的visio原理图 (2) 2、编写.sp文件 (2) 第二节后端电路设计 (4) 一、开启linux系统 (4) 2、然后桌面右键重新打开Terminal (6) 双反相器的后端设计流程 (7) 一、schematic电路图绘制 (7) 二、版图设计 (21) 画版图一些技巧: (29) 三、后端验证和提取 (30) 第三节后端仿真 (37) 其它知识 (40)

前端电路设计与仿真 第一节双反相器的前端设计流程1、画双反相器的visio原理图 in V DD M2 M3 out 图1.1 其中双反相器的输入为in 输出为out,fa为内部节点。电源电压V DD=1.8V,MOS 管用的是TSMC的1.8V典型MOS管(在Hspice里面的名称为pch和nch,在Cadence里面的名称为pmos2v和nmos2v)。 2、编写.sp文件 新建dualinv.txt文件然后将后缀名改为dualinv.sp文件 具体实例.sp文件内容如下:

.lib 'F:\Program Files\synopsys\rf018.l' TT 是TSMC用于仿真的模型文件位置和选择的具体工艺角*****这里选择TT工艺角*********** 划红线部分的数据请参考excel文件《尺寸对应6参数》,MOS管的W不同对应的6个尺寸是不同的,但是这六个尺寸不随着L的变化而变化。 划紫色线条处的端口名称和顺序一定要一致 MOS场效应晶体管描述语句:(与后端提取pex输出的网表格式相同) MMX D G S B MNAME 2.1、在wind owXP开始--程序这里打开Hspice程序 2.2、弹出以下画面然后进行仿真 1、打开.sp 文件 2、按下仿真按钮3 形 存放.sp文件的地址 查看波形按钮按下后弹出以下对话框

ModelSim的前后仿真(Quartus)

利用Quartus5.0实现功能仿真 1)打开一个工程文件。 2)打开Settings设置栏,选择Fitting Settings下的Simulator栏。在右边出现的设置栏中将 “Simulation Mode”的下拉菜单选择“Functional”,即可以实现软件下的功能仿真。(下拉菜单中有“Functional”、“Timing”和“Timing using Fast Timing Model”,分别代表可以在Quartus软件下实现功能仿真,时序仿真和快速时序仿真。最后一项一般不选,如果在Settings->Timing Requirement->More Settings下“Report Combined Fast/Slow Timing” 选项设为“On”,就可以选择最后一项。编译的报告里也会分别列出最快和最慢的时序报告。) 3)选择“Processing”菜单下的“Generate Functional Simulation Netlist”命令,否则将无法 启动仿真。 4)新建一个波形仿真文件,文件后缀名为.vwf。选择File菜单下的New->Other Files->Vector Waveform File。如下图所示,左边空白栏处是节点名的列表区,右边空白栏处是仿真波形的显示区。波形编辑窗口默认时间为1us,如果想改变仿真时间,可以选择Edit菜单下End Time,在弹出的对话框中选择需要的时间。将新建的波形仿真文件保存下来。

5)将需要仿真的信号加入波形编辑窗口。在列表区任一位置双击或者点击右键选择“Insert Node or Bus…”,弹出的对话框点击“Node Finder”按钮。在“Node Finder”界面中点击“List”按钮,有关信号的列表会出现在界面的左边,双击需要观察的信号加入至界面右边。如果工程中用到了很多信号,在左边列表中也会显示很多(Named编辑框默认的是*通配符),可以在Named编辑框中添加需要的信号名称实现模糊查找。界面中“Filter”下拉框中默认的是“Pins: all”,也就是说将要列出的信号都是IO管脚。如果需要观察一些内部信号,可以改变下拉框的参数,比如“Registers: Pre-Synthesis”。下图显示了仿真信号加入波形编辑窗口的情况。对于有些总线信号可以改变其显示的进制格式,比如二进制、八进制、十进制和十六进制。在列表中对应信号点击右键选择 “Properties”,弹出的对话框中选择“Radix”下拉框实现进制的转换。

数字地和模拟地应怎样处理

数字地和模拟地应怎样处理 The name "DGND" on an IC tells us that this pin connects to the digital ground of the IC. 一个IC中的“DGND”表示这个脚是连接到该IC内部的数字地。 This does not imply that this pin must be connected to the digital ground of the syste m. 但这并不意味着该脚必须接到系统的数字地。 It is true that this arrangement may inject a small amount of digital noise onto the an alog ground plane. 这样的安排,的确会将少量的数字噪声引入到模拟地平面中。 These currents should be quite small, and can be minimized by ensuring that the converter output does not drive a large fanout (they normally can't, by desig n). 然而,IC的数字地电流应该是非常小的。并且,通过确保(模数)转换器的(数字)输出不驱动重负载 可以使IC的数字地电流达到最小。 Minimizing the fanout on the converter's digital port will also keep the converter logi c transitions relatively free from ringing and minimize digital switching currents, and thereby reducing any potential coupling into the analog port of the converter. 减少转换器的数字端口负载(注:原文为扇出,就是同时驱动多少个门的意思,我翻译为负载, 负载包括动态和静态的)还可以减少翻转电流和避免出现振铃,这就减少了任何潜在的耦合 混入到转换起的模拟端口中。 The logic supply pin (VD) can be further isolated from the analog supply by the inserti on of a small lossy ferrite bead as shown in Figure 9.26. 如图9.26所示,通过插入一个有损耗的小铁氧体磁珠,数字电源(VD)可以进一步与模拟电源隔离。

PCB数字地和模拟地

数字地和模拟地 ★数字地与模拟地的区别简单来说,数字地是数字信号的对地,模拟地是模拟信号的对地。 由于数字信号一般为矩形波,带有大量的谐波。如果电路板中的数字地与模拟地没有从接入点分开,数字信号中的谐波很容易会干扰到模拟信号的波形。当模拟信号为高频或强电信号时,也会影响到数字电路的正常工作。 存在问题的根本原因是,谁也无法保证电路板上铜箔的电阻为零, 在接入点将数字地和模拟地分开,就是为了将数字地和模拟地的共地电阻降到最小。 ★数字地和模拟地处理的基本原则如下: 1模拟地和数字地之间链接 (1 )模拟地和数字地间串接电感一般取值多大? 一般用几uH到数十uH。 (2)用0欧电阻是最佳选择⑴可保证直流电位相等、⑵单点接地(限制噪声卜⑶对所有频率的噪 声都有衰减作用(0欧也有阻抗,而且电流路径狭窄,可以限制噪声电流通过)。 磁珠相当于带阻陷波器,只对某个频点的噪声有抑制作用,如果不能预知噪点,如何选择型号,况且,噪点频率也不一定固定,故磁珠不是一个好的选择。 电容不通直流,会导致压差和静电积累,摸机壳会麻手。如果把电容和磁珠并联,就是画蛇添足,因为磁珠通直,电容将失效。串联的话就显得不伦不类。 电感特性不稳定,离散分布参数不好控制,体积大。电感也是陷波,LC谐振(分布电容),对噪点有 特效。 总之,关键是模拟地和数字地要一点接地。 建议,不同种类地之间用0欧电阻相连;电源引入高频器件时用磁珠;高频信号线耦合用小电容;电感用在大功率低频上。 2磁珠 采用在高频段具有良好阻抗特性的铁氧体材料烧结面成,专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。 主要参数: 标称值:因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆.一般以100MHz为标准, 比如2012B601,就是指在100MHz的时候磁珠的阻抗为600欧姆。 额定电流:额定电流是指能保证电路正常工作允许通过电流 3电感与磁珠的区别: 有一匝以上的线圈习惯称为电感线圈,少于一匝(导线直通磁环)的线圈习惯称之为磁珠; 电感是储能元件,而磁珠是能量转换(消耗)器件电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策; 磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰.两者都可用于处理EMC、EMI问题; 电感一般用于电路的匹配和信号质量的控制上.在模拟地和数字地结合的地方用磁珠. 磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变化。他比普通的电感有更好的高频滤

modelsim后仿真详解

modelsim后仿真 想很多人跟我一样,被ModelSim的后仿真搞的头晕脑胀。为了这个问题,我在网上找了很多的资料,但发现这些资料往往说的不明白。一些步骤被作者有意无意地省略掉,这常常给读者造成不必要的麻烦,所以我决定写下这一篇文章,把这3天我努力的结果拿出来,与大家分享。 首先,我把我用到的软件说明一下。如果你发现根据我的操作,你还是解决不了ModelSim后仿真的问题,那就可能是软件版本的问题。 1, ModelSim Se 6.1b 2, Synplify Pro 7.5.1 3, ISE 5.2i (这个是老了点) 4, WindowsXP(这个应该没有多大的关系) 还有就是我使用的是verilog,我想VHDL的方法与verilog是差不多的,最多也就是在建库方面有点差别而已。 下面的这些方法,是我这3天搞出来的。当然也参考了一些文章。如果谁有更方便的方法,欢迎指出来。我的邮箱是vf1983cs@https://www.doczj.com/doc/0411367946.html,。有空大家多交流。 一、为modelsim生成3个库。 首先,介绍一下这三个库。 Simprim_ver:用于布局布线后的仿真。 Unisim_ver :如果要做综合后的仿真,还要编译这个库。 Xilinxcorelib_ver:如果设计中调用了CoreGen产生的核,则还需要编译这个库。 我们要为modelsim生成的是标准库。所谓的标准库就是modelsim运行后,会自动加载的库。不过这方面我还不是很肯定。因为我在后仿真时,还是要为仿真指定库的路径,不然modelsim找不到。 第一步:在modelsim环境下,新建工程,工程的路径与你想把库存储的路径一致。 第二步:新建库,库名起作simprim_ver。我们首先就是要建的就是这个库。

数字地与模拟地问题

其实本质是对的,就是数字地,模拟地都是地,要明白为什么要分开,先听我说一个故事 公司所在的商务楼共有3楼,2楼是搞模拟的,3楼是做数字的,整幢楼只有一部电梯,平时人少的时候还好办,上2楼,上3楼互不影像,但每天早上上下班的时候就不得了了,人多得很,搞数字的要上3楼,总是被2楼的模拟影响,2楼模拟的人要下楼,总是要等电梯上了3楼,再下来,互相影响很是麻烦, 商务楼的物业为解决这个问题,提出了2个方案, 第1个 电梯扩大,可以装更多的人, 电梯大了是好,但公司会招人,人又多了,再换电梯,再招人...永远死循环,有一个办法到挺好,大家索性不要电梯,直接往下跳,不管2楼的,3楼的,肯定解决问题,但肯定会出问题 第2个 装2部电梯,一部专门上2楼,另一部专门上3楼 Wonderful!太机智了,这样2层楼面的工作人员就互不影响了。 End 明白了否? 数字地,模拟地互相会影响不是因为一个叫数字,一个叫模拟,而是他们用了同一部电梯--地,而这部电梯所用的井道就是我们在PCB上布得地线。 模拟回路的电流走这条线,数字回路的电流也走这条线,本来无可厚非,线布着就是用来导通电流的,可问题处在这根线上有电阻! 而且最根本的问题是走这条线的电流要去2个不同的回路。 假设一下,有2股电流,数流,模流同时从地出发。有2个器件,数件,模件。 若2个回路不分开,数流,模流回走到数件的接地端前的时候,损耗的电压为v v=(数流+模流)x走线电阻 相当于数字器件的接地端相对于地端升高了v 数字器件不满意了,我承认会升高少许电压,数流的那部分我认了,但模流的为什么要加在我头上? 同理模拟器件也会同样抱怨

利用ModelSim进行的功能仿真,综合后仿真,时序仿真

利用ModelSim进行的功能仿真,综合后仿真,时序仿真 功能仿真,就是在理想状态下(不考虑延迟),验证电路的功能是否符合设计的要求。 功能仿真需要: 1.TestBench或者其他形式的输入激励 2.设计代码(HDL源程序) 3.调用器件的模块定义(供应商提供,如FIFO,RAM等等) 值得一提的是,可以在ModelSim直接编写TestBench,使用View->Source->Show language templates. 综合后仿真(门级仿真),实际上就是将对综合后的门级网表进行仿真,只考虑门延迟,而没有加入时延文件。在功能仿真之后检验综合的结果是否满足功能要求。 综合后仿真需要: 1.综合后的门级网表,注意这里变成了*.vo文件,而不是原来功能仿真中所需要的HDL源代码. 2.测试激励 3.元件库Altera的仿真库位置为 *:\altera\quartus\eda\sim_lib 所谓时序仿真,就是在综合后仿真的基础上加上时延文件(sdf文件),综合考虑了路径延迟和门延迟的情况,验证电路是否存在时序违规。 时序仿真需要: 1.综合后的门级网表,注意这里变成了*.vo文件,而不是原来功能仿真中所需要的HDL源代码. 2.测试激励 3.元件库Altera的仿真库位置为 *:\altera\quartus\eda\sim_lib 4.较门级仿真还需要具有包含时延信息的反标记文件*.sdf 可以有两种方法实现门级仿真,或时序仿真。

1.工程编译成功后,自动启用ModelSim来运行门级仿真,前提是要在Quartus II的Options中设置好ModelSim的路径(和有些参考PDF上说的环境变量好像无关,至少我用的Quartus II 9.0 Web Edtion是这样的)具体方法是,进入Quartus9.0->Tools->Options,在Categroy里选中General 下的EDA Tool Options,在ModelSim右边的Location of Executable中双击来改变路径,就并且在工程中设置了自动启动ModelSim,就可以自动启用了。 1.在EDA Tool Settings,首先将仿真工具设置为ModelSim,然后点击让它自动启动。 2.NativeLink settings中选择testbench,完成相关的设置,例如test bench name,top level module in test bench,Design instance name in test bench,仿真时间,然后编译时会自动启动ModelSim然后完成所有操作,大概这就是Altera所指的和很多EDA工具的无缝连接。 另外一种方法,则是现在quartus ii中生成门级网表和延时文件,然后调用ModelSim进行仿真 1.在quartus ii设置仿真工具为ModelSim,这样设置完成后,在当前目录下会生成一个simulation的目录,该目录下有一个simulation文件夹,里面包含了网标文件和时延反标文件,vhdl语言对应的是网表文件为*.vho,时延文件为*.sdo。Verilog则为*.vo,*.sdo。 2.建立库并映射到物理目录,编译TestBench,执行仿真。 对库的理解: 我想所谓库,实际上就是一个代替文件夹的符号,区别就是,库中的文件的表述皆是经过了编译的实体或者module,一切操作都在库中进行。 ModelSim有两种库,一种是资源库,一种是工作库(默认名为work,保存当前工程下已通过编译的所有文件,资源库放置work库已编译文件所要调用的资源)。所以编译前,一定要有work库,而且只能有一个。

EMC-模拟地与数字地

模拟地与数字地 一、模拟部分敷铜不要形成闭环, 两部分地共同接到电源地上。 二、首先要尽量把数字和模拟分开(尽量) 再将模拟和数字分开敷铜 模拟的敷铜尽量保证完整,在双面板的时候,我会尽量在一层布线,另一层做地平面,只要地平面相对完整,就有类似单点接地的效果了;不过走线多的时候,想要比较完整的地平面比较困难。 在电源输出的地方再将模数的地连接到电源上。 一点自己的做法,望请其它大侠来指点。 学习中。。。。。 三、闭环。。。就是环地,简单说就是某个部分电路全部被敷铜包围,这部分敷铜整体上看就是一个环状的导体,相当于环形的天线,容易感应空间电磁波,特别是工频干扰,这在音频电路上是尤其需要注意的。 完整的地平面,我的理解,2楼所说的就是尽量完整包围整个或部分电路(区域敷铜的话),而地平面其中的走线,尽量不对地平面分割,产生零碎的小区域。。。还真不好描述,语言太匮乏了。 数字电路和模拟电路其实在干扰上最大的区别就是门限不同,你看看TTL CMOS 等各种逻辑电路的门限电压,几十毫伏的干扰根本不会有影响,但在模拟电路上,几十毫伏的干扰就要命了。。 对于数字电路来说,引脚上的脉冲电流会在地平面的各个点上产生不同的电位(任何导体都是有电阻的),如果不采用单独的地平面,而采用模拟电路的树枝装的走线,地线上的各个枝段会产生很高的电压。导致严重的干扰。而采用地平面的话,这些电流会就近分散到地平面上 。 对于数字电路,双面板一般都是把底层作为主要的地平面,顶层因为走线较多,敷铜的作用就稍微小了些,所以一般数字电路不需要单独布地线,直接敷铜做地平面,接地引脚会自动连接到地平面上。如果是网状敷铜,在有大电流流过的地方,单独布线。 4层板,中间两层作为电源和地比较好。 曾经见过高频电路的处理,双面板两层都做环地敷铜,电路板四周的边缘用铜箔包上,焊接到顶层地和底层地上。 四、但是我看到的老外翻译的AD英文资料说的是:模拟数字单点接地最好靠近器件:

相关主题
文本预览
相关文档 最新文档