当前位置:文档之家› 基于PSpice软件的单相Boost变换器的仿真分析

基于PSpice软件的单相Boost变换器的仿真分析

基于PSpice软件的单相Boost变换器的仿真分析
基于PSpice软件的单相Boost变换器的仿真分析

基于PSpice软件的单相Boost变换器的仿真分析

1引言

《电力电子技术》是一门重要的专业基础课,在教学中通过分析电力电子器件的导通、关断情况来了解整流问题、斩波等电路的工作原理,是一门实践性很强的课程,该课程中有大量的波形分析内容,需要教师花费大量的时间画出变流过程的电压、电流波形图,而仅靠图形来说明问题又缺乏真实性,如果能结合实验演示,从示波器上观察各种变流电路的电压、电流波形,则对教学内容的深入理解非常又帮助。

使用电力电子电路仿真软件[1]~[3],进行虚拟的电子电路实验就如同真实实验一样逼真、形象。例如在虚拟电路图上修改元件值并立即显示波形(或进行变参数仿真),就如同在实际的实验台上调整可变电阻(电位器),并用示波器显示调试后的波形一样,因此在教学过程中使用电力电子电路仿真软件,将使学生在学习过程中加深对理论知识的理解和加强对实际电路工作的感性认识。

Boost斩波电路是《电力电子技术》中的一个重要组成部分,Boost变换器又称为升压型电路,是一种DC-DC变换电路,Boost变换器在开关电源领域内占有

非常重要的地位,长期以来广泛的应用于各种电源设备的设计中。对Boost变换器的工作过程的理解、掌握关系到对整个开关电源领域各种电路工作过程的理解,然而现有的教材及其参考书上仅仅给出了变换器在理想情况下稳态工作过程的

分析,却没有涉及电路从启动到稳态工作过程之间暂态过程,这非常不利于研究人员理解电路的整个工作过程和升压原理。本文采用PSpice仿真软件[4],直观、详细的分析了Boost变换器由启动到达稳态的工作过程,并对其中各种现象进行了细致深入的分析,便于研究人员真正掌握Boost变换器的工作特性。

2 Boost变换器及其工作原理

工程中常用的升压(Boost)变换器的原理图如图1所示[5][6],其中Vi为输入直流电源,Q为功率开关管,在外部脉冲信号的激励下工作于开关状态,Q导通,输入电流流经电感L和开关管Q,电感L储能;开关管Q截止时,二极管D导通,直流电源Vi和电感L同时向负载R供电,输入电流经电感L、二极管D流向负

载R,同时给电容C充电,电感L释放能量,在理想情况下,该电路输出电压:

式中D为Boost变换器的占空比,因为占空比D<1,所以V(out)>Vi,故称升压式变换器。Boost变换器的工作模式分为电感电流连续工作模式(CCM)和电

感电流断续工作模式(DCM),所不同的是电流断续模式比电流连续模式多出一个电感电流为零的工作状态。Boost变换器的工作状态如图2所示。

3 PSpice仿真软件简介及其建模

PSpice是由美国Microsim公司在SPICE2G版本的基础上升级并用于PC机上的SPICE版本,其中采用自由格式语言的5.0版本自80年代以来在我国得到广泛

应用,并且从6.0版本开始引入图形界面。1998年著名的EDA商业软件开发商ORCAD公司与Microsim公司正式合并,自此Microsim公司的PSpice产品正式

并入ORCAD公司的商业EDA系统中。

PSpice的应用范围很广,电力电子电路的动态仿真仅仅是其应用之一。PSpice

的电路元件模型反映实际型号元件的特性,通过对电路方程运算求解,能够仿真电路的细节,特别适合于对电力电子电路中开关暂态过程的描述。它的仿真波形与试验电路的测试结果相近,在模拟实际电路的波形方面比较准确,对电路设计有着重要指导意义[1]~[4]。

本文基于PSpice软件对Boost变换器进行了建模,模型图如图3(a)所示,其中Vi为输入直流电源,Rs设为电源内阻,R1为驱动电阻,RL为负载电阻,为

保证Boost变换器工作于电流连续模式,滤波电感L1暂取为100uH。功率开关

管M1采用MOS管IR F640,其驱动信号采用脉冲信号源vs,其主要参数为:低电平V1=0V,高电平V2=5V,延迟时间TD=5us,上升时间TR=1us,下降时间TF=1us,脉冲宽度PW=10us,开关周期PER=25us,其波形示意图如图3(b)所示。

4电流连续模式下的仿真研究

4.1Boost变换器的瞬态过程分析

用PSpice仿真软件对图3所示的Boost变换器进行瞬态分析,各元器件的电气参数如图中所示,瞬态分析参数设为Printstep=100ns,Finaltime=2.5ms,电感电流的仿真结果用图形输出如图4所示,从图中可知电感电流IL1为锯齿波,而且始终为正值,说明该电路工作于连续状态。

为了对电路的启动过程进行分析,我们对0~60us的时间段进行瞬态分析[7],为了便于分析,我们将开关管的驱动脉冲延时了5us,分别对功率开关管M1的电压VM1、输出电压Vo、电感上的功率PL1、电感电压VL1进行测量,可得如图5所示的波形。下面对Boost变换器刚开始工作的第一个周期的工作状态进行详细的分析。

图5瞬态分析的各测量点波形图

(1)工作状态1:0~5us

此时间段中,开关管M1处于关断状态,直流电源通过电感L、二极管D1向负载供电,电路处于稳态。此时电感可以视为处于直流短路状态,直流电源直接通过二极管D1对负载供电。

(2)工作状态2:5us~16us

开关管M1在5us~6us之间开通,并一直保持开通状态到16us,此时电路开关状态如图2(a)所示。由于电路开关状态发生突变,电路进入暂态。由于开关管

的闭合,开关管两端的电压降为零,电感两端产生电压降,电感电流开始线性增长,电感开始储存能量;此时二级管D1处于关断状态,输出端由电容Co向负载RL提供能量,电容上的输出电压Vout在下降,为了能更明显的看清波形,我们将其电压波形放大后如图6所示,这就意味着电容在释放刚刚静态时储存的能量。

(3)工作状态3:16us~30us

开关管M1在16us~17us之间关断,并保持关断状态直到30us,电路处于如图2(b)所示的工作状态。在此阶段,电路开关状态再次发生突变,电路仍然处于暂态过程中。由于电感电流的连续性,电感L1的线圈产生的磁场将改变线圈两端的极性,以保持电感电流IL不变,因此电感电压在这一时段出现负电压,放大后的电感电压波形如图7所示,此电压是由线圈的磁能转化而成的,它与电源Vi串联,以高于Vi的电压向电路的后级供电,使电路产生了升压作用。此时,电感向后级释放能量,电感电流不断减小,电感电流通过二极管D1到达输出端后,一部分给输出提供能量,一部分给电容充电,可以看到,电容上的电压在上升,电容开始储存能量。

电路在5us~30us时间段之间的工作过程是Boost变换器的第一个工作周期,此后变换器重复上述过程工作至稳态过程。

4.2稳定(态)过程分析

观察图5中电感上的功率WL1的波形,因为WL1为正表示电感吸收能量,WL1为负表示电感释放能量,WL1波形曲线与时间轴所围面积即为相应时间内电感传递能量的大小。不难看出Boost变换器在工作的前两个开关周期中,电感储存的能量大于释放的能量。第二个周期开始时,电感电流在第一个开关周期的基础上增长,并进一步储存能量,在开关断开时,电感释放出更大能量,以更高的VM1

向负载提供更高的输出电压,图5中第二周期电感电压的负电压幅值大于第一周期也恰恰说明了这一点。但是应该注意到,电感上负电压的幅值又与电感电流下降的斜率成正比,随着电路的工作,每个周期电感提供的负电压越来越大,电感电流下降斜率也随之增加,直到在每个开关周期末,电感电流值下降到此工作周期开始时的电感电流值,此时电感吸收的能量等于其释放的能量,电感不再进一步储能。开关关断时电感提供的负电压不会再增加,电感电流下降的斜率也不会再增加,电感进入稳定工作状态。

与电感类似,输出电容也存在着由暂态到稳态的过渡过程,可以采用对电感分析时所采取的能量方法进行分析,在此不再赘述。

用PSpice对Boost变换器的模型进行瞬态分析,输出电压Vout的波形、电感上功率的波形和电感电流IL1的波形如图8所示,由此可见,电路输出电压、电感

电流在1.4ms左右趋于稳定,变换器进入稳定工作状态。值得注意的是,电感电流在前lms内形成了一个峰值,这是由于前lms内,电感和输出电容上的能量不断增加导致的,它反映了电感和电容由暂态到稳态的过渡工作过程中,器件自身的能量存储的过程。

在稳态过程中,电路的工作过程与图5相类似,只是此时电感、电容均已进入稳定工作状态,每个开关周期内电感提供相同大小的负电压,电感电流下降的斜率一定,如图4所示,电感吸收的能量等于释放的能量,电容充电能量等于放电能量,电感、电容不再吸收能量而成为能量传递工具。

5 电流断续模式分析

当电感较小(或者负载电阻较大,或者电路工作周期较长)时[1],Boost变换器将会进入电流断续模式,将图3中的Boost变换器的电感L1减小到40uH,同时将负载电阻RL增加到200,其他参数不变。仿真结果如图9所示,Boost变换器此时工作于电流断续模式,对于电路的瞬态过程与电流连续型完全类似,具体分析过程可以参阅电感电流连续模式的瞬态过程分析。

图9电路断续模式时的电感电流仿真波形

6 结论

计算机仿真具有效率高、精度高、可靠性高和成本低等特点,已经广泛的应用于电力电子电路(或系统)的分析和设计中。计算机仿真不仅可以取代系统的许多繁琐的人工分析,减轻劳动强度,提高分析和设计能力,避免因为解析法在近似处理中带来的较大误差,而且还可以与实物试制和调试相互补充,最大限度的降低设计成本,缩短系统研制周期。可以说,电路的计算机仿真技术大大加速了电路的设计和试验过程。

PSpice的应用范围很广,电力电子电路的动态仿真仅仅是其应用之一。PSpice 的电路元件模型反映实际型号元件的特性,通过对电路方程运算求解,能够仿真电路的细节,特别适合于对电力电子电路中开关暂态过程的描述。它的仿真波形与试验电路的测试结果相近,在模拟实际电路的波形方面比较准确,对电路设计有着重要指导意义。本文采用PSpice仿真分析方法,对Boost变换器的工作过程和升压原理进行了详细分析,对深入理解Boost变换器具有极大的促进作用。此外,PSpice中还可引入模拟行为建模,可以用函数、表格等方式实现复杂系统的建模,这就为高层次模拟电路进行仿真奠定了基础,从而使其具有了对电力电子系统、控制系统等系统级的建模仿真能力。

基于Spectre运算放大器的设计

《集成电路CAD》课程设计报告 课题:基于Spectre运算放大器的设计 一:课程设计目标及任务 利用Cadence软件设计使用差分放大器,设计其原理图,并画出其版图,模拟器各项性能指标,修改宽长比,使其最优化。 二:运算放大器概况 运算放大器(operational amplifier),简称运放(OPA),如图1.1所示: 图1.1运放示意图 运算放大器最早被设计出来的目的是将电压类比成数字,用来进行加、减、乘、除的运算,同时也成为实现模拟计算机的基本建构方块。然而,理想运算放大器的在电路系统设计上的用途却远远超过加减乘除的计算。今日的运算放大器,无论是使用晶体管或真空管、分立式元件或集成电路元件,运算放大器的效能都已经接近理想运算放大器的要求。早期的运算放大器是使用真空管设计的,现在多半是集成电路式的元件。但是如果系统对于放大器的需求超出集成电路放大器的需求时,常常会利用分立式元件来实现这些特殊规格的运算放大器。 三:原理图的绘制及仿真

3.1原理图的绘制 首先在Cadence电路编辑器界面绘制原理图如下: 图3.1电路原理图 原理图中MOS管的参数如下表: Instance name Model W/m L/m Multiplier Library Cell name View name M1 nmosl 800n 500n 1 Gpdk180 nmos symbol M2 nmosl 800n 500n 1 Gpdk180 nmos symbol M3 pmosl 1.1u 550n 1 Gpdk180 pmos symbol M4 pmosl 1.1u 550n 1 Gpdk180 pmos symbol M5 nmosl 800n 500n 1 Gpdk180 nmos symbol

基于pspice的电路仿真实验设计

目录 第一章pspice简介 (4) 1.1 PSPICE的起源与发展 (4) 1.2 PSPICE仿真软件的优越性 (6) 1.3 PSPICE的组成 (7) 第二章pspice中的电路元器件介绍 (9) 2.1. 电阻、电容和电感 (11) 2.2 有源器件 (11) 2.3 信号源及电源 (11) 第三章pspice的仿真 (12) 3.1 pspice的仿真功能 (12) 3.2 pspice软件的仿真步骤 (15) 3.3 pspice仿真使用中应主义的问题 (15) 第四章实验设计 (16) 4.1 实验一:二极管整流电路仿真 (16) 4.2 实验二:555定时器组成的单稳态触发器 (18) 第五章结束语及感想 (21) 参考文献 (22)

摘要: 在众多的仿真软件中,PSpice软件以其强大的仿真设计应用功能,在电子电路的仿真和设计中得到了较广泛的使用。PSpice及其相关库包的应用对提高学生的仿真设计能力,更新设计理念有较大的好处。本论文首先简要介绍了PSpice软件的基本功能和特点以及软件的基本操作方法,然后从电路分析的具体实验给出了的PSpice具体操作步骤,接着进行了电子电路应用系统的设计与仿真,并通过精确的仿真结果进一步体现了仿真PSpice软件的优越性,同时也反映了仿真实验在当今电路设计中的重要意义。 第一章 Pspice简介 1.1 Pspice简介 Pspice是由Spice发展而来的用于微机系列的通用电路分析软件。 Spice(Simulation Program with Integrated Circuit Emphasis)是由美国加州大学伯克利分校开发的电路仿真程序。随后,版本不断更新,功能不断完善。目前广泛使用的Pspice(P:Popular)软件是美国Microsim公司于1996年开发的基于Windows环境的仿真程序。它主要用于电子电路的仿真,以图形方式输入,自动进行电路检查,生成网表,模拟和计算电路的功能,不仅可以对模拟电子线路进行不同输入状态的时间响应、频率响应、噪声和其他性能的分析优化,以使设计电路达到最优的性能指标,还可以分析数字电子线路和模数混合电路,被公认是通用电路模拟程序中最优秀的软件,具有广阔的应用前景。 1.2 PSPICE的起源与发展 用于模拟电路仿真的SPICE(Simulation Program with Integrated Circuit Emphasis)软件于1972年由美国加州大学伯克利分校的计算机辅助设计小组利用FORTR AN语言开发而成,主要用于大规模集成电路的计算机辅助设计。SPICE的正式版SPICE 2G在1975年正式推出,但是该程序的运行环境至少为小型机。1985年,加州大学伯克利分校用C语言对SPICE 软件进行了改写,并由MICROSIM公司推出。1988年SPICE被定为美国国家工业标准。与此同时,各种以SPICE为核心的商用模拟电路仿真软件,在SPICE的基础上做了大量实用化工作,从而使SPICE成为最为流行的电子电路仿真软件。

PSPICE仿真

目录 介绍: (2) 新建PSpice仿真 (3) 新建项目 (3) 放置元器件并连接 (3) 生成网表 (5) 指定分析和仿真类型 (5) Simulation Profile设置: (6) 开始仿真 (7) 参量扫描 (9) Pspice模型相关 (11) PSpice模型选择 (11) 查看PSpice模型 (11) PSpice模型的建立 (12)

介绍: PSpice是一种强大的通用模拟混合模式电路仿真器,可以用于验证电路设计并且预知电路行为,这对于集成电路特别重要。 PSpice可以进行各种类型的电路分析。最重要的有: ●非线性直流分析:计算直流传递曲线。 ●非线性瞬态和傅里叶分析:在打信号时计算作为时间函数的电压和电流;傅里叶分 析给出频谱。 ●线性交流分析:计算作为频率函数的输出,并产生波特图。 ●噪声分析 ●参量分析 ●蒙特卡洛分析 PSpice有标准元件的模拟和数字电路库(例如:NAND,NOR,触发器,多选器,FPGA,PLDs和许多数字元件) 分析都可以在不同温度下进行。默认温度为300K 电路可以包含下面的元件: ●Independent and dependent voltage and current sources 独立和非独立的电压、电流 源 ●Resistors 电阻 ●Capacitors 电容 ●Inductors 电感 ●Mutual inductors 互感器 ●Transmission lines 传输线 ●Operational amplifiers 运算放大器 ●Switches 开关 ●Diodes 二极管 ●Bipolar transistors 双极型晶体管 ●MOS transistors 金属氧化物场效应晶体管 ●JFET 结型场效应晶体管 ●MESFET 金属半导体场效应晶体管 ●Digital gates 数字门 ●其他元件(见用户手册)。

PSpice 92电子电路设计与仿真

电子线路实验报告

Pspice 9.2 电子电路设计与仿真 实验报告 学号:080105011128 专业:光信 班级:081班 姓名:李萍

一、启动PSpice 9.2—Capture CLS Lite Edition 在主页下创建一个工程项目lp 二、画电路图 1.打开库浏览器选择菜单Place/Part—Add Liabray, 提取:三极管Q2N2222、电阻R、电容C、电源VDC、模拟地0/Source、信号源VSIN。 2.移动元件、器件。鼠标选中该元、器件并单击,然后压住鼠标左键拖到合适位置,放开鼠标即可。 3.翻转某一元、器件符号。 4.画电路线 选择菜单中Place/wire,此时将鼠标箭头变成一支笔。 5.为了突出输出端,需要键入标注V o字符,选择菜单Place/Net Alias—Vo OK! 6.将建立的文件(wfh.sch)存盘。 三、修改元件、器件的标号和参数

1、用鼠标箭头双击该元件符号(R或C),此时出现修改框,即可进入标号和参数的设置 2、VSIN信号电源的设置:①鼠标选中VSIN信号电源的FREQ用鼠标箭头单击(符号变为红色),然后双击,键入FREQ=1KHz、同样方法即键入VoEF=0V、VAMPL=30mv。②鼠标选中VSIN 信号电源并单击(符号变为红色)然后用鼠标箭头双击该元件符号,此时出现修改框,即可进入参数的设置,AC=30mv,鼠标选中Apply并单击,退出 3、三极管参数设置:鼠标选中三极管并单击(符号变为红色)然后,选择菜单中的Edit/Pspice Model。打开模型编辑框Edit/Pspice Model 修改Bf为50,保存,即设置Q2N2222-X的放大系数为50。 4、说明:输入信号源和输出信号源的习惯标法。 Vs、Vi、Vo(鼠标选中Place/Net Alias) 单级共射放大电路 四、设置分析功能 1、静态

Pspice仿真

PSPICE实验报告 完成实验共7个 第四章二个,第三章二个,第五章一个, 第六章一个,第二章一个 (部分图片由于修改了扫描速率,导致绿线变为了灰色线)姓名:张熙童 班级:智能二班 学号:201208070225

第四章基本共射极放大电路 实验背景 BJT的重要特性之一是具有电流控制(即电流放大)作用,利用这一特性可以组成各种放大电路,单管放大电路是复杂放大电路的基本单元。这里以基本共射极放大电路为例,显然放大电路中可能会交、直流共存。分析放大电路的工作情况的基本方法有图解分析法和小信号模型分析法。这里用到了图解分析法,这种方法特别适用于分析信号幅度较大而工作频率不太高的情况,它直观、形象,有助于理解正确选择电路参数、合理设置静态工作点的重要性。 实验目标 1.静态工作点的计算 2.通过仿真实验理解基本共射极放大电路的基本原理. SPE4.9.1 题目简述: 共射极放大电路分别为下图a与图b所示。设两图中BJT均为NPN型硅管,型号 为Q2N3904,Bf=50(Bf为共射极放大系数)。图中的C e 是R e 的旁路电容。试用 Pspice程序分析: 分别求两路电路的Q点; 作温度特性分析,观察当温度在-30度~ +70度范围变化时,比较两电路BJT的集电极电流I c 的相对变化量; 是否可将图a与图b放在同一个窗口执行仿真并进行比较? 共射极放大电路有两种,两图的BJT均为PNP管,型号为2N3904,放大系数为50。 BJT参数: 书图4.4.1共射极放大电路如图基极分压射极偏置电路:

书图4.3.7共射极放大电路如图固定偏置电路: 数据记录: 图4.4.1 静态工作点:

PSpice电路仿真报告

PSpice 电路仿真报告 ——11351003 陈纪凯 一、 实验目的 1. 学会Pspice 电路仿真软件的基本使用 2. 掌握直流电路分析、瞬态电路分析等仿真分析方法 二、 实验准备 1. 阅读PSpice 软件的使用说明 2. 掌握节点法和网孔法来分析直流电路中各元件的电流和电压 3. 掌握用函数式表示一阶、二队电路中某些元件的电流和电压 三、 实验原理 用PSpice 仿真电路中各元件属性并与计算理论值比较,得出结论。 四、 实验内容 A. P113 3.38 1. 该测试电路如图a-1所示。输入该电路图,设置好元件属性和合适的分析方法,按 Analysis/Simulate 仿真该电路。 图a -1 图a-2 2. 仿真结果如图a-2所示。 3. 比较图a-2中仿真出来的数据与理论计算出来的数据。 计算值为: 1.731i A =,153.076V V =,262.885V V = 仿真值为: 1.731i A =,153.08V V =,262.89V V = 经比较,发现计算值与仿真值只是精确度不一样,精确值相等。 B. P116 3.57 1. 该测试电路图如图b-1如示。设置好元件属性及仿真方法。

图b- 1图b- 2 2.仿真出来的电路中各支路电流值如图b-2所示。 3.比较仿真值与理论计算值。 计算值:用网孔分析法得到线性方程组如下: 用matlab解上述方程得 i=1.5835A, i=1.0938A, i=1.2426A, i=-0.8787A 即 1234 i=1.584A, i=1.094A, i=1.243A, i=-0.87872A 从图b-2可以读出仿真值: 1234把计算值当作真实值,把仿真值当作测量值,计算相对误差如下表

运算放大器的电路仿真设计

运算放大器的电路仿真设计 一、电路课程设计目的 错误!深入理解运算放大器电路模型,了解典型运算放大器的功能,并仿真实现它的功能; 错误!掌握理想运算放大器的特点及分析方法(主要运用节点电压法分析); ○3熟悉掌握Multisim软件。 二、实验原理说明 (1)运算放大器是一种体积很小的集成电路元件,它包括输入端和输出端。它的类型包括:反向比例放大器、加法器、积分器、微分器、电 压跟随器、电源变换器等. (2) (3)理想运放的特点:根据理想运放的特点,可以得到两条原则: (a)“虚断”:由于理想运放,故输入端口的电流约为零,可近似视为断路,称为“虚断”。 (b)“虚短”:由于理想运放A,,即两输入端间电压约为零,可近似视为短路,称为“虚短”. 已知下图,求输出电压。

理论分析: 由题意可得:(列节点方程) 011(1)822A U U +-= 0111 ()0422 B U U +-= A B U U = 解得: 三、 电路设计内容与步骤 如上图所示设计仿真电路. 仿真电路图:

V18mV R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 0.016 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 0.011 V + - 根据电压表的读数,, 与理论结果相同. 但在试验中,要注意把电压调成毫伏级别,否则结果误差会很大, 致结果没有任何意义。如图所示,电压单位为伏时的仿真结 果:V18 V R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 6.458 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 4.305 V + - ,与理论结果相差甚远。 四、 实验注意事项 1)注意仿真中的运算放大器一般是上正下负,而我们常见的运放是上负下正,在仿真过程中要注意。

PSpice仿真实验报告

实验七:使用PSpice软件对混频电路仿真 一.实验目的 1. 掌握PSpice软件的基本操作(包括设计绘制电路、仿真调测、时域频域分析)。 2.掌握如何使用PSpice仿真软件研究分析三极管混频器和乘法器混频器工作原理。 3.通过实验中波形和频谱,研究三极管混频与乘法器混频的区别。 二.实验仪器 1.计算机2.PSpice8.0软件 三.实验内容 1.在PSpice原理图编辑环境下分别完成三极管混频和乘法器混频的电路绘制; 2.对以上两种电路分别进行仿真,显示时域波形图(参与混频的两个频率为1kHz和10kHz); 3.对以上两种电路的输出波形分别进行FFT(频域分析),指出二者的频谱差别。四.实验步骤 1.实验准备 在计算机上安装PSpice8.0软件包(安装过程中如有提示,选默认即可)。 2.原理图的绘制方法 安装成功后,选择Windows程序->DesignLab Eval 8->Schematics即可打开原理图编辑界面。然后按如下操作: (1)选择与布放元器件:菜单 -> Draw -> Get New Part…选择所需电路元器件 -> Place&Close (2)连接元器件:把所需元器件布放完毕后,可点击菜单栏下方的快捷图标按钮“”将各元器件按照下图提示连接起来。 图1 三极管混频原理图

图1提示:图中Vcc与VBB选择元件库中的“VDC”元件,分别双击它们,按照图中标记设定好直流电压(DC)参数。V1与V2选择元件库中的“VSIN”元件。双击这些元件可以改变这些电压的参数,将V1和V2的振幅(VAMPL)参数都设置为0.01V,频率(FREQ)参数按上图标记设定好。“地”选择库中的“AGND”元件。 图2 乘法器混频原理图 图2提示:图中的乘法器直接使用库中的“MULT”元件。V1与V2选择元件库中的“VSIN”元件。振幅都设为0.01V,频率分别为1kHz和10kHz。 3.时域仿真及频域分析 ⑴实验步骤 ①在电脑D:\盘上创建pspice目录。将电路图按上面提示画好,并将各参数按上述提示要求设好,点击File -> Save把文件保存在D:\pspice目录下。 ②选择菜单–> analysis -> Setup 将Transient选项左侧选上对钩(其他项均不选),如下图所示

二级运算放大电路版图设计

1前言1 2二级运算放大器电路 1 2.1电路结构 1 2.2设计指标 2 3 Cadence仿真软件 3 3.1 schematic原理图绘制 3 3.2 生成测试电路 3 3.3 电路的仿真与分析 4 3.1.1直流仿真 4 3.1.2交流仿真 4 3.4 版图绘制 5 3.4.1差分对版图设计 6 3.4.2电流源版图设计 7 3.4.3负载MOS管版图设计 7 3.5 DRC & LVS版图验证 8 3.5.1 DRC验证 8 3.5.2 LVS验证 8 4结论 9 5参考文献 9

本文利用cadence软件简述了二级运算放大器的电路仿真和版图设计。以传统的二级运算放大器为例,在ADE电路仿真中实现0.16umCMOS工艺,输入直流电源为5v,直流电流源范围27~50uA,根据电路知识,设置各个MOS管合适的宽长比,调节弥勒电容的大小,进入stectre仿真使运放增益达到40db,截止带宽达到80MHz和相位裕度至少为60。。版图设计要求DRC验证0错误,LVS验证使电路图与提取的版图相匹配,观看输出报告,要求验证比对结果一一对应。 关键词:cadence仿真,设计指标,版图验证。 Abstract In this paper, the circuit simulation and layout design of two stage operational amplifier are briefly described by using cadence software. In the traditional two stage operational amplifier as an example, the realization of 0.16umCMOS technology in ADE circuit simulation, the input DC power supply 5V DC current source 27~50uA, according to the circuit knowledge, set up each MOS tube suitable ratio of width and length, the size of the capacitor into the regulation of Maitreya, the simulation of stectre amplifier gain reaches 40dB, the cut-off bandwidth reaches 80MHz and the phase margin of at least 60.. The layout design requires DRC to verify 0 errors, and LVS validation makes the circuit map matching the extracted layout, viewing the output report, and requiring verification to verify the comparison results one by one. Key words: cadence simulation, design index, layout verification.

基于PSpice软件的二极管电路仿真

基于PSpice软件的二极管电路仿真 一、实验目的 1.掌握PSPICE软件中工程的建立方法。 2.掌握PSPICE软件中电路图的输入和编辑方法。 3.简单学习PSPICE软件中DC扫描的设置、仿真和波形查看方法。 二、实验工具 1.PC机 2.OrCAD 16.5软件 三、实验要求 1.熟悉PSPICE软件的安装及操作界面。 2.学会使用PSPICE软件对二极管进行简单的DC扫描仿真。 四、实验步骤 1.打开PSPICE软件,界面如下图1.1所示。 图1.1 软件界面 2.新建一个Diode工程,如下图1.2所示. 图1.2 新建工程

工程名为Diode,在Create a New Project Using中选择Analog or Mixed A/D项,该项表示模拟或数字混合仿真,其余三项不能用于模拟仿真。 然后,点击OK进行下一步。 3.下一步会弹出图1.3的对话框,新建一个为空的工程。 图1.3 空的工程 4.点击OK,即进入电路图编辑的界面,如图1.4所示。 图1.4 电路图编辑界面 在界面中,包含了绘图窗口、信息查看窗口和项目管理视图,项目管理视图如图1.5所示。 图1.5 项目管理视图

在该界面中,我们可以进行各种电路图的编辑。 5.在编辑电路图之前,我们需要添加器件库。在Capture中鼠标点击绘图窗口,点击绘图窗口的图标,即会弹出加载器件库的对话框,如图1.6所示。 图1.6 器件加载 在器件加载对话框中,我们选中所有器件库,即可添加各种元器件。 6.进行简单的电路图绘制及编辑,绘制、编辑后的电路图如下图1.7所示。 图1.7 电路图 电路图中,电源V1电压为0V,电阻R1阻值为10欧姆,D1为一个二极管。器件的使用情况如下表1.1所示。

模电PSPICE仿真实验报告

实验一晶体三极管共射放大电路 实验目的 1、 学习共射放大电路的参数选取方法。 2、 学习放大电路静态工作点的测量与调整,了解静态工作点对放大电路性能的影响。 3、 学习放大电路的电压放大倍数和最大不失真输出电压的分析方法 4、 学习放大电路数输入、输出电阻的测试方法以及频率特性的分析方法。 、实验内容 确定并调整放大电路的静态工作点。 为了稳定静态工作点,必须满足的两个条件 条件一: 条件二: I 1>>I BQ V>>V BE I I =(5~10)I B V B =3~5V R E 由 V B V BE V B 再选定 I EQ I CQ 计算出Re R b2 I I ,由 V B V B I I (5~10)I B Q 计算出 m - Vcc V B R b1 再由 V CC V B (5~10)I BQ 计算出 Ri

Time 从输出波形可以看出没有出现失真,故静态工作点设置的合适。 改变电路参数: V1 12Vdc Rc 此时得到波形为: 400mV 200mV 0V -200mV 450us 500us 75k 3k 4.372V R2 50k Q1 Q2N2222 Re 2.2k C2 T 一 6.984V 10uF 彳Ce 100uF

2.0 V -4.0V 0s 50us 100us 口V(C2:2) V(C1:1) 150us 200us 250us 300us 350us 400us 450us 500us Time 此时出现饱和失真。 当RL开路时(设RL=1MEG Q)时: V1 输出波形为:

4.0V -4.0V 出现饱和失真 二、实验心得 这个实验我做了很长时间,主要是耗在静态工作点的调试上面。按照估计算出的Rb1、Rb2、Re的值带入电路进行分析时,电路出现失真,根据其失真的情况需要不停的调 节Rb1、Rb2和Re的值是电路输出不失真。 实验二差分放大电路 -、实验目的 1、学习差分放大电路的设计方法 2、学习差分放大电路静态工作的测试和调整方法 3、学习差分放大电路差模和共模性能指标的测试方法 二、实验内容 1. 测量差分放大电路的静态工作点,并调整到合适的数值。

Pspice仿真

华中科技大学 《电子线路设计、测试与实验》实验报告 实验名称:PSpice软件仿真练习 院(系):自动化学院 地点: 实验成绩: 指导教师:汪小燕 2014年 3 月26 日 一、实验目的 1.了解电子电路CAD技术的基本知识,熟悉仿真软件PSpice的主要功能。 2.学习利用仿真手段,分析,设计电子电路。 3.初步掌握用仿真软件PSpice分析,设计电路的基本方法和技巧。

二、实验元器件 计算机,PSpice仿真软件 三、预习要求 1.认真阅读本书附录A,详细了解PSpice软件的功能,仿真步骤及使用方法。 2.熟悉单极共射放大电路的静态工作点,输入,输出电阻及幅频特性,相频特性等。 四、实验原理及参考电路 PSpice用于电子电路的仿真分析,除了可以对模拟电路,数字电路进行仿真分析外,还可以对模拟混合电路进行分析,具有优化设计的功能。 本实验以单级共射放大电路为例,简要介绍Capture和PSpice A/D两部分软件的仿真步骤及使用方法。 单级共射放大参考电路的仿真步骤如图 4.1.1所示,三极管型号为Q2N222( =50),试分析: (1)放大电路的工作点 (2)当输入电压信号为幅值10mV,频率1kHz的正弦波时,仿真输入,输出波形。 (3)仿真该电路电压增益的幅频响应和相频响应曲线。 (4)仿真该电路的输入,输出电阻频率响应曲线。

图4.1.1 单级共射放大电路 五、实验内容与步骤 1 在主页下创建一个新的工程项目文件 2 按照图4.1.1绘制单级共射放大电路原理图 (1)调元器件 (2)移动、旋转和删除元器件 (3)画连接线 (4)修改元器件标号和参数 (5)对节点定义节点名 3 设置仿真分析类型,创建仿真简要表(Simulation Profile) (1)通过直流工作点分析(Bias Piont),来获得例题的分析要求 (2)通过瞬态分析,得到放大电路的输入、输出波形 (3)通过交流扫描分析(AC Sweep),获得放大电路电压增益的幅频和相频响应 4 电路规则检查及生成电路连接网表 5 仿真 (1)电路的静态工作点

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406 实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 反相比例放大电路

输入输出关系: 输入电阻: Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图 i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

压输入输出波形图 同相比例放大电路 输入输出关系: 输入电阻: Ri=∞ 输出电阻: Ro=0 同相比例放大电路仿真电路图 i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+ =

电压输入输出波形图 差动放大电路电路图

差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。 (2)输入f=1kHz、ui=100mV的正弦交流信号,测量相应的uo,

PSPICE仿真流程

PSPICE仿真流程 (2013-03-18 23:32:19) 采用HSPICE 软件可以在直流到高于100MHz 的微波频率范围内对电路作精确的仿真、分析和优化。 在实际应用中,HSPICE能提供关键性的电路模拟和设计方案,并且应用HSPICE进行电路模拟时, 其电路规模仅取决于用户计算机的实际存储器容量。 二、新建设计工程 在对应的界面下打开新建工程: 2)在出现的页面中要注意对应的选择 3)在进行对应的选择后进入仿真电路的设计:将生成的对应的库放置在CADENCE常用的目录

中,在仿真电路的工程中放置对应的库文件。 这个地方要注意放置的.olb库应该是PSPICE文件夹下面对应的文件,在该文件的上层中library 中 的.olb中的文件是不能进行仿真的,因为这些元件只有.olb,而无网表.lib。 4)放置对应的元件: 对于项目设计中用到的有源器件,需要按照上面的操作方式放置对应的器件,对于电容, 电阻电感等分离器件,可以在libraries中选中所有的库,然后在滤波器中键入对应的元件 就可以选中对应的器件,点击后进行放置。 对分离元件的修改直接在对应的元件上面进行修改:电阻的单位分别为:k m; 电容的单位分别为:P n u ;电感的单位分别为:n 及上面的单位只写量级不写单位。 5)放置对应的激励源: 在LIBRARIES中选中所有的库,然后键入S就可以选中以S开头的库。然后在对应的 库中选中需要的激励源。 激励源有两种一种是自己进行编辑、手工绘制的这个对应在库中选择: 另外一种是不需要自己进行编辑:

该参数的修改可以直接的在需要修改的数值上面就行修改,也可以选定电源然后点击右键后进行对应的修改。 6)放置地符号: 地符号就是在对应的source里面选择0的对应的标号。 7)直流电源的放置: 电源的选择里面应该注意到选择source 然后再选定VDC或者是其它的对应的参考。 8)放置探头: 点击对应的探头放置在感兴趣的位置处。

OrCAD-PSpice电路仿真综合实验

课程名称:电路实验实验名称:PSpice 仿真综合实验实验学时:3学时 仪器设备:计算机、模块化电路实验装 置 实验平台:PSpice 仿真软件、硬件实验系统 课程目标:学习运用PSpice 仿真软件求解直流电路。掌握直流工作点及直流扫描分析方法,学习用Capture软件绘制电路图、进行直流工作点及直流扫描分析的设置和观察仿真输出结果。 一、实验任务 1.检测与作业 (1)查看自己家里的总电源是空气开关还是刀闸开关,其规格参数的额定电流是(63A )。(2)视频2中电路实验室的总电源正常供电,如果实验台的直流电压源没电,可能产生故障的原因有 哪些? 直流电压源发生接地短路,直流电压源内部发生故障开路,总电源到实验台之间的线路断路。 (3)绘制仿真电路图时,有关输入电路图名称说明正确的是:A A. 电路图名称可由英文字符串或数字组成,不能存在汉字。 B. 电路图名称可由英文字符串或数字组成,可以存在汉字。 C. 电路图名称可由英文字符串或数字或汉字组成。 (4)绘制仿真电路图时,必须要有一个电位为零的接地符号,否则被认为出错。接地符号为:B A. B. (5)填空题:PSpice在绘制电路图时可以放置波形显示标示符Marker(又称探针),以便在分析之 后直接确定要显示的信号曲线,以下波形显示标示符的功能是: A. : 显示电压/电平波形曲线。 B. : 显示电位差波形曲线。 C. : 显示电流波形曲线。 (6)下图所示受控源的符号中,1、2两接线端为控制端,应按照参考方向 1 2 接入电路,3、4两接线端为输出端,控制系数为 2 。 1 23 4 (7)下图所示电压探针测量的是节点n1和n2之间电压。

回转器电路设计(完整版,包括pspice仿真电路以及实验大数据)

南京航空航天大学电路实验报告 回转器电路设计 姓名:李根根 学号:031220720

目录 一、实验目 的………………………………………………………………………………………. 2 二、实验仪 器………………………………………………………………………………………. 2 三、实验原 理………………………………………………………………………………………. 2 四、实验要 求………………………………………………………………………………………. 3 五、用pspice软件进行电路仿真并分析……………………………………………..…. 5 六、实验内 容……………………………………………………………………………………… 9 七、实验心 得………………………………………………………………………….….….….. 11 八、附件(Uc – f 图) (12)

一、实验目的 1.加深对回转器特性的认识,并对其实际应用有所了解。 2.研究如何用运算放大器构成回转器,并学习回转器的测试方法。 二、实验仪器 1.双踪示波器 2.函数信号发生器 3.直流稳压电源 4.数字万用表 5.电阻箱 6.电容箱 7.面包板 8.装有pspice软件的PC一台 三、实验原理 1.回转器是理想回转器的简称。它是一种新型、线性非互易的双端口元件,其电路符号如图所示。其特性表现为它能够将一端口上的电压(或者电流)“回转”成另一端口上的电流(或者电压)。端口变量之间的关系为 I1 = gu2 u1 = -ri2 I2 = gu1 u2 = ri1 式子中,r,g称为回转系数,r称为回转电阻,g称为回转电导。

运算放大器的仿真实验

实 验 报 告 册 指导教师邱刚 课程名称模拟电子技术基础 实验名称集成运算放大器的设计 实验类型设计 学院名称电子与信息工程专业电子与信息工程 年级班级 2011级电信3班学生姓名赵明贵 学号 201107014314 成绩 2012年11月29日

实验四集成运算放大器的设计 运算放大器应用电路的设计与制作 一.实验目的 1.掌握运算放大器和滤波电路的基本工作原理; 2.掌握运用运算放大器实现滤波电路的原理方法; 3.会用Multisim10对电路进行仿真分析; 二.实验内容 1.讲解运算放大器和滤波电路的基本工作原理; 2.讲解用运算放大器实现滤波电路的原理方法; 3.用Multisim10对二阶有源低通滤波电路进行仿真分析; 三.实验仪器 Multisim10软件;电阻若干,导线若干,线路板一块,ua741运放两个,万用表,实验箱。 四.实验原理 集成运算放大器是高增益的直流放大器。在它的输入端和输出端之间加上不同的反馈网络,就可以实现各种不同的电路功能。可实现放大功能及加、减、微分、积分、对数、乘、除等模拟运算及其他非线性变换功能;将正、负两种反馈网络相结合,还可具有产生各种模拟信号的功能。 本实验着重以输入和输出之间施加线性负反馈网络后所具有的运算功能进行研究。理想运放在线性运用时具有以下重要特性: (1)理想运放的同相和反相输入端电流近似为零,即。 (2)理想运放在作线性放大时,两输入端电压近似相等,即:。 1.反相放大器 信号由反相端输入,电路如图3-1所示。在理想条件下,放大器的闭环增益。 增益要求确定之后,与的比值即确定,在选择其值时需注意:与不

运算放大器的设计与仿真

集成运算放大器放大电路仿真设计 1集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 2 电路原理分析 2.1 电路如图1所示 R1 10kΩV1 500mV U1A TL082CD 3 2 4 8 1 R2 9.1kΩ RF 100kΩ V2 12 V V3 12 V XMM1 1 此电路为反向比例运算电路,这是电压并联负反馈电路。输入电压V1通过电阻R1作用于集成运放的反相输入端,故输出电压V0与V1反相。 图2 仿真结果图 输入输出关系理论输仿真输出值电路功能

其中 1 //2R RF R = 2.2电路如图3所示 R1 10kΩ Ui2 200mV U1A TL082CD 3 2 4 8 1 R24.7kΩ RF 100kΩ V212 V V312 V XMM1 Ui1 100mV R310kΩ 3 此电路为反相求和运算电路,其电路的多个输入信号均作用于集成运放的反相输入端,根据“虚短”和“虚断”的原则,0==p N u u ,节点N 的电流方程为F i i i =+31 所以)1 2 31( 0R Ui R Ui RF U +-= 输入输出关系 理论输出值 仿真输出值 电路功能 )1 2 31( 0R Ui R Ui RF U +-= -3V 2.999V 反相求和放大电路 其中RF R R R //3//12= 2.3电路如图5所示 出值 11 0V R RF V -= -5V -5V 反相比例运算电路

Pspice仿真报告(串并联振荡电路分析)

第三次高频电子线路小班课Pspice电路仿真实验报告 此处为校徽 研究题目:串并联振荡电路分析 班级:电子信息工程1402班 组别:第六组 组员: ***:主讲人 ***:仿真运行 ***:PPT制作 ***:文档整理

一、仿真实验题目: 6.将第4题中R1的电阻值改为4KΩ,试观察振荡电路输出波形,此时将电阻R2改为具有负温度系数的热敏电阻,(设此电阻值仍为10K Ω,随温度呈线性变化关系,在电阻模型参数中取Tc1=-0.13),设电路工作在28度,再次分析电路,记录输出波形,并分析原因。 图PSP-1-(1) 热敏电阻值的计算: R2=R ES=R*r*[1+Tc1*(T-T0)+Tc2*(T-T0)*2]=10*1*[1-0.13*(28-27) ]=8.7KΩ 环路增益:T(w0)=(R1+R2) / 3R1 二.仿真电路原理图:

图PSP-2-(1)三.参数 图PSP-3-(1)输入文件 图PSP-3-(2)

图PSP-3-(3) 四代码: **** 11/03/16 23:11:30 ******* PSpice 10.5.0 (Jan 2005) ******* ID# 0 ******** ** Profile: "SCHEMATIC1-DCSweep" [ F:\pspice jinshzuhen-pspicefiles\schematic1\dcsweep.sim ] **** CIRCUIT DESCRIPTION ****************************************************************************** ** Creating circuit file "DCSweep.cir" ** WARNING: THIS AUTOMATICALLY GENERATED FILE MAY BE OVERWRITTEN BY SUBSEQUENT

PSPICE优缺点

PSPICE软件具有强大的电路图绘制功能、电路模拟仿真功能、图形后处理功能和元器件符号制作功能,以图形方式输入,自动进行电路检查,生成图表,模拟和计算电路。它的用途非常广泛,不仅可以用于电路分析和优化设计,还可用于电子线路、电路和信号与系统等课程的计算机辅助教学。与印制版设计软件配合使用,还可实现电子设计自动化。被公认是通用电路模拟程序中最优秀的软件,具有广阔的应用前景。这些特点使得PSPICE受到广大电子设计工作者、科研人员和高校师生的热烈欢迎,国内许多高校已将其列入电子类本科生和硕士生的辅修课程。 电路设计软件有很多,它们各有特色。如Protel和Tango,它对单层/双层电路板的原理图及PCB图的开发设计很适合,而对于布线复杂,元件较多的四层及六层板来说ORCAD更有优势。但在电路系统仿真方面,PSPICE可以说独具特色,是其他软件无法比拟的,它是一个多功能的电路模拟试验平台,PSPICE软件由于收敛性好,适于做系统及电路级仿真,具有快速、准确的仿真能力。 (1)图形界面友好,易学易用,操作简单 由Dos版本的PSPICE到Windows版本的PSPICE,使得该软件由原来单一的文本输入方式而更新升级为输入原理图方式,使电路设计更加直观形象。PSPICE 6.0以上版本全部采用菜单式结构,只要熟悉Windows操作系统就很容易学,利用鼠标和热键一起操作,既提高了工作效率,又缩短了设计周期。即使没有参考书,用户只要具备一定的英语基础就可以通过实际操作很快掌握该软件。 (2)实用性强,仿真效果好 在PSPICE中,对元件参数的修改很容易,它只需存一次盘、创建一次连接表,就可以实现一个复杂电路的仿真。如果用Protel等软件进行参数修改仿真,则过程十分繁琐。在改变一个参数时,哪怕是一个电阻阻值的大小都需要重新建立网络表的连接,设置其他参数更为复杂。 (3)功能强大,集成度高 在PSPICE内集成了许多仿真功能,如:直流分析、交流分析、噪声分析、温度分析等,用户只需在所要观察的节点放置电压(电流)探针,就可以在仿真结果图中观察到其“电压(或电流)-时间图”。而且该软件还集成了诸多数学运算,不仅为用户提供了加、减、乘、除等基本的数学运算,还提供了正弦、余弦、绝对值、对数、指数等基本的函数运算,这些都是其他软件所无法比拟的。 另外,用户还可以对仿真结果窗口进行编辑,如添加窗口、修改坐标、叠加图形等,还具有保存和打印图形的功能,这些功能都给用户提供了制作所需图形的一种快捷、简便的方法。因此,Windows版本的PSPICE更优于Dos版本的PSPICE,它不但可以输入原理图方式,而且也可以输入文本方式。无疑是广大电子电路设计师的好帮手。 Pspice的缺点 不能导出所求值的表达式。

PSpice仿真(二)实验报告

实验报告 课程名称:电路与模拟电子技术实验 指导老师: 张冶沁 成绩: 实验名称: PSpice 的使用练习2 实验类型: EDA 同组学生姓名: 一、实验目的和要求: 1.熟悉ORCAD-PSPICE 软件的使用方法。 2.加深对共射放大电路放大特性的理解。 3.学习共射放大电路的设计方法。 4.学习共射放大电路的仿真分析方法。 二、实验原理图: 图1 三极管共射放大电路 三、实验须知: 1. 静态工作点分析是指: 答:求解静态工作点Q,在输入信号为零时,晶体管和场效应管各电极间的电流和电压就是Q 点。可用估算法和图解法求解 2. 直流扫描分析是指: 答:按照预定范围设置直流电压源变化值,观察电路的直流特性 3. 交流扫描分析是指: 答:按照预定范围设置交流电压源变化值,观察电路的交流特性 4. 时域(瞬态)分析是指: 答:控制系统在一定的输入下,根据输出量的时域表达式,分析系统的稳定性、瞬态和稳态性能 5.参数扫描分析是指: 答:在基本电路特性分析中,每个元器件的参数都取确定值,而在参数扫描分析中,将考虑由于参数变化引起的电路特性变化情况 6.温度扫描分析是指: 专业: 姓名: 学号: 日期: 地点:

答:在电路参数固定的情况下,测试温度是对电路性能的影响大小 7.写出PSpice仿真中调用元器件的模型库位置: 答:在安装目录下的\tools\capture\library\pspice中,软件内使用place part可以调用 8.PSpice仿真电路图中节点号为0(即接地)的参考节点的作用:为计算其他节点的电 位值提供了计算标准。参考节点通常取何种元器件:电源负极。 解决电路负载开路引起的悬浮节点的方法是:在开路节点和参考节点之间连接一个大阻值电阻。 9.电路图中设置节点别名的好处是: 答:通过节点别名描述电路中各个元器件之间的连接关系,生成电连接网表文件;电路中不同位置的节点,只要节点名相同就表示在电学上是相连的;PSpice在模拟结束后,采用节点名表示电路特性分析的结果。 10.放置电源端子符号的好处是: 答:放置端子的作用是把外部的输入信号通过端子引入到电路中,把电路上的输出信号通过端子引到外部的负载上。 四、实验步骤: 1.静态工作点分析设置:

相关主题
文本预览
相关文档 最新文档