当前位置:文档之家› 铝碳化硅锆质耐火材料完整

铝碳化硅锆质耐火材料完整

铝碳化硅锆质耐火材料完整
铝碳化硅锆质耐火材料完整

学生毕业论文(设计)

课题名称:铝碳化硅锆质铁水罐不烧砖

的研制与使用

专业班级:材料工程0501

姓名:利鹏

系部:冶金学院

实习单位:莱芜钢铁集团

指导老师:田华孙华云

2008年05月06日

摘要:随着钢铁企业市场竟争的激烈,“优质、高效、低耗、环保”

的发展战略,是企业生存和发展的必经之路。在这种形势下,莱芜市耐火材料厂,本着“优质、高效、低耗、环保”的八字方针,开发研制出了一种新型的铁水罐砖,铝碳化硅锆质铁水罐不烧砖。这种材质的不烧砖,解决了传统的粘土砖粘铁挂渣现象,使用寿命在进行脱硫、脱硅、脱磷的处理时,仍大于1000次,同时它又是一种不烧砖,既节约了能源,又降低了排污污染,是目前较为理想的耐火材料。

关键词:铝碳化硅锆不烧砖铁水罐冷铁抗渗透

铝碳化硅锆质铁水罐不烧砖的研制与使用

1、铁水罐的构造

根据铁水罐内衬大致可分为3个区域,即上部、渣线部和罐底部。

各部位使用条件差异较大,砖的损毁特点也各有不同:

1.1铁水罐上部

在服役期间与铁水的熔渣接触较少,大部分时间暴露在高温氧化气氛中,由于砖中的石墨易被氧化,往往会导致砖体结构疏松,强度下降。对于上部用罐砖,既要提高其抗氧化性,又要提高对铁水,熔渣抗冲刷性。

1.2渣线部位

铁水罐渣线部位的砖在服役期浸泡在熔渣和铁水中,经受熔渣的长期的化学侵蚀,这是渣线部位铁水罐砖损毁的主要原因。

1.3罐底部及冲击区

罐底首先要承受高温铁水的强烈机械冲击,(高炉铁水口到铁水罐底的高度落差一般都在3-5米)。铁水罐罐底部在服役期间被高温铁水反复浸泡,受到铁水的熔损和热冲刷。在进行“三脱”处理时,在铁水底部喷吹强碱性造渣粉状材料,铁水的强烈搅动,加剧了对罐底的侵蚀,高温铁水的熔损、热冲击和机械冲刷是此部位耐火材料损毁的主要原因。

2、铁水罐的主要技术

2.1由烧成砖改为树脂C链结合不烧砖

制品中虽然含有碳、但不烧工艺使产品的热导率比烧成显著降低,保温性能好,铁水在单位时间内温降小,杜绝了罐内冷铁现象。

2.2材质配方的创新使用

原来铁水罐多是以铝Al2O3、SiC为主成分,根据我们研究和罐衬侵蚀机理,在配方中引入了具有熔态渣铁难以浸润的高温材料C成分,增加了ZrO2质增韧材料,提高制品的韧性。

2.3砖型设计的创新

该铁水罐砖型分为两部分设计:桶形罐衬由原来的万能旋转弧衬衬砖改为以圆扇面按角度分割出每个砖型,罐底球面部分利用球体分割法设计每个砖型,砖与砖之间严丝合缝,最大限度的降低了熔态渣铁渗漏机会,提高其全罐的安全性和耐用性。

3、采用的实验方法和技术路线

3.1对于铁水罐上部用ASZ砖

要考虑其抗氧化性的提高,又要考虑其抗渣性的改善。采用措施:(1)适当增加抗氧化剂的加入量,并调整不同抗氧化剂的加入比例,以达到改善显微结构,降低氧化速度的目的;(2)适当减少石墨的加入量,以提高材料的抗渗透能力,并进一步阻止气体的侵入。

3.2渣线部位ASZ砖:以提高抗熔渣侵蚀性为主

3.2.1利用石墨很难被熔渣浸润的特点,选用结晶大,碳含量高的磷片石墨;

3.2.2骨料选用气孔率低,结晶大的电熔刚玉,以提高砖的抗侵蚀性;

3.2.3强化基质,并且优化制品的组织结构,使之形成莫来石网络。

3.3罐底部、脱硫枪喷粉及铁水冲击区砖过早损毁是本项目重点解决问题

3.3.1适当引入ZrO2质材料,并以多级粒度合理级配的方式加入,以提高制品的韧性;

3.3.2同时适当减少SiC的量,并以较细的粒度加入,以提高制品的机械强度和热震稳定性;

3.3.3骨料采用气孔率低,结晶较小的烧结刚玉,并适当降低石墨的加入量。

铝碳化硅锆质不烧砖工艺路线:

刚玉骨料破粉碎——振动筛三级筛分——细颗粒料除铁处理——各级刚玉骨料配料后——强制式高速恒温混练机慢速混练2分钟——结合剂预热至35-45℃后加入慢速练4分钟——-196鳞片石墨慢速混练5分钟——添加剂、锆质材料、防氧化剂与刚玉细粉预混合粉——高速混练14分钟出料——6000kN液压机高压成型——检验合格后入电烘干窑150-300℃±10℃烘干时间不少于32小时——检验后合格品包装入库。

4、铁水罐砖技术指标

5、铁水罐砖工艺流程

工艺流程图:破粉碎→筛分→配料→混练→烘干→检验包装5.1原料确认:

原料采用烧结良好的一级焦石宝石,应符合以下质量要求

将原料中混入的杂质、欠烧料、含铁料拣出分类放臵。

5.2破碎筛分

将拣选合格的焦宝石用8吨干碾机,配圆孔筛ф5.5-Ф5.6㎜的铁板筛碾碎至≤5㎜的颗粒料。经破碎的统料经过皮带除铁器除铁后,经过1250×2500㎜二层振动筛筛分,分级为5-3㎜,3-1㎜,1-0㎜三级颗粒,大碾操作工应认真观察颗粒粒度情况,发现碾筛底和振动筛损坏要及时更换或维修。

5.3混练

混练用S1120C型碾轮式混砂机,每底按600㎏计算配料加入量,根据本文要求,先将5-3㎜,3-1㎜,1-0㎜的颗粒料加入混练机,混练5-8分钟左右,外加入混料的重量的4%左右的磷酸二氢铝,配制的磷酸二氢铝比重控制在1.48-1.50(具体按照磷酸二氢铝的配制方法),充分混合10分钟,再加入细粉料和混合粉混练10-15分钟后放料,用帆布盖料保温困料,困料时间不少于24小时,用料时再进行二次混练,加入2%左右的磷酸二氢铝,加入量根据泥料成型性能可进行微调。

各个盛料容器、混练机、工作台要彻底清理原有的余料,不得与非同类料混合,回头料和回头砖也不得混放和混淆使用。

采用J93-630、J67-300双盘摩擦压力机成型砖坯,(根据砖坯厚度选择合适的机型),每台压力机配臵显示板,显示板写明当班所产砖型、厚度、坯体单重、加压次数等,加料按砖型单重要求用TGT-50型磅秤准确计量,加压要充分排气,先轻后重,然后出砖检验,无层裂、沾疤现象,不合格的砖坯当班加入砖料中再成型处理。合格的砖坯由检尺工在规定位臵加盖工号,装烘干车要求平衡,板条平整牢固,砖与砖之间要留5㎜的缝隙。

5.4烘干

5.4.1采用燃煤高温隧道干燥窑,先进低温洞,温度不超过120℃,24小时后进高温洞,温度不低于300℃,总烘干时间不少于32小时,进出车过程烘干车不能碰撞。

5.4.2自然冷却后检验,合格品由检验工加盖检验工号,不合格品根据不合格的性质和程度,采取降级使用或返回破碎工序,具体依据《不

合格品处臵标准》执行。

5.5包装

合格品入库干燥存放,做好产品的防护。根据砖型定臵管理,根据顾客要求采取不同包装方式,包装要标明砖型号、数量、生产批号,日期及电话等信息。

6、铝碳化硅锆质不烧砖铁水罐的砌筑及烘烤过程

6.1根据罐体球面专门设计制作了Q1 Q2系列罐底砖Q1系列厚度为100mm,Q2系列厚度为250mm和B型系列罐壁砖,B系列砖厚度为200mm,各类型砖的厚度都是因实际使用过程中的损毁成效而决定的。

6.2先将罐体永久衬用粘土T4砖环行两层贴起来,厚度为85mm。

6.3贴完永久衬砖后在罐底球型部位将铝碳化硅锆砖按Q1系列和Q2系列分别砌筑,砖与砖之间要挤紧,用少量专用镁铝质火泥粘接,砌筑完成后恰好组成一个平台。

6.4砌筑完罐底后再砌筑罐壁砖,同样罐壁砖也要挤紧,用专用火泥粘接,砖与砖之间的缝隙不能大于2mm。

6.5罐沿子用砖楔子挤紧打实,然后用铝镁浇注料封口,以不裸露铁罐罐沿子为宜。

6.6新罐完成后自然干燥24小时,然后进行升温烘烤,升温过程在200℃以下再缓慢进行48小时千万不要急热,以免出现爆裂,再进行大火烘烤24小时待用。

7、莱钢140t铁水罐试验情况总结

自07年下半年开始,针对140t罐寿命低的问题,莱耐与洛耐院张三华工程师合作,与07年8月份开始陆续实验砌筑4个罐,使用至08年3月18号全部下线,寿命最低1071次,最高1201次,并对以上4个罐的使用过程和残砖厚度均做了记录,试验结果完全达到预期目标。

现将4个罐使用情况作一下总结

跟踪观察:2号 37号罐表面不宜挂渣罐壁表面呈现鱼鳞状当2号罐用到800次时Q2-2 Q2-3部位的罐底砖出现弧形坑,相对其他部位较严重。为了得到却凿数据,当2号罐用到1070次时下线,拆除残砖测量,残砖厚度约50-70mm,Q1系列完好。罐壁残砖厚度为140-160mm。当37号罐用到800次时罐壁表面与2号罐没有多大区别,罐底Q2-1 Q2-5部位的罐底砖出现弧形坑与2号罐的弧形坑基本相似,由于2号罐残砖下线时还有45mm厚度,对37号罐的使用相对增加,当寿命达到1301次时Q2-2 Q2-3部位的砖出现穿透现象,钢水波及到Q1系列,被迫下线。

15号罐在1220次时下线,罐底残砖最薄处不足20mm罐壁残砖90-110mm

11号罐在1237次时下线,罐底残砖最薄处不足20mm罐壁残砖90-110mm

四个罐平均寿命为(1070+1301+1220+1237)/4=1207次

浸蚀速率为1207次/250mm=0.21mm/次

前面试验的两个罐效果都比较理想,与以前粘土砖寿命500次以内相比寿命提升了一倍多,当15号和11号罐达到1000次时罐壁部位无明显变化。

结论:

1、铝碳化硅锆质铁水罐底砖在平均寿命1200次时第一层完好无损,第二层罐底为最严重部位,残砖为零。

2、铝碳化硅锆质铁水罐不烧砖壁砖在平均寿命1200次时,残砖厚度最薄处。

8、提高铁水罐使用寿命的措施

8.1现用罐体情况分析:

8.1.1从现在使用的罐体情况分析,罐壁工作衬侵蚀较轻,侵蚀较明显的主要是罐底Q2-1—Q2-5部位,根据罐壁和罐底的对照测量:当寿命达到800次时,其最大侵蚀厚度大约在160-170㎜,也就是说我

们目前这种铝-碳化硅-锆质不烧砖在该使用条件下的最大侵蚀速率为(160-170)/800炉次≈0.213/炉计算、该铁水罐的使用寿命应该是: 250/0.213>1000炉。

8.2.2据了解铁水罐的使用条件

8.2.2.1罐底首先要承受高温铁水的强烈机械冲击,高炉铁水出口到铁水罐底的高度落差大约在7-8米。

8.2.2.2铁水罐罐底部在运行期间受到铁水的熔损和铁流浸泡、冲刷,“脱硫”处理,喷吹强碱性造渣材料,铁水的强烈搅动,加剧了对罐底的蚀损。

8.2.2.3铁水罐工作衬在反复冷热大温差条件下使用,也是耐火材料损毁的主要原因。

上述因素都有会引起罐衬意外侵蚀和某个部位的严重侵蚀。

根据以上使用情况,应采取如下措施来提高铁水罐罐底砖的使用寿命,以达到与罐壁同步,提高铁水罐整体使用寿命的目的。

措施一、保证罐底砖用料的质量,从厂家原料进货质量上都严格筛选把关。对罐体的砌筑:根据不同的损毁情况,重点针对性的加强薄弱部位(Q2-1—Q2-5),采取综合砌筑,达到寿命同步。

措施二、提高产品自身性能。使用高吨位压砖机,把产品常温耐压强度由现在的50Mpa左右提高至70-80Mpa。

措施三、提高砌筑完成后用于灌底的浇注料材质。

措施四、如使用过程中允许,应对浸蚀较严重的部位适当加厚度或修补,以达到同步浸蚀和提高寿命。

总结:本文主要讲述了铝碳化硅锆质铁水罐不烧砖。这种材质的不烧砖,解决了传统的粘土砖粘铁挂渣现象,使用寿命在进行脱硫、脱硅、脱磷的处理时,仍大于1000次,同时它又是一种不烧砖,既节约了能源,又降低了排污污染,是目前较为理想的耐火材料。

致谢

毕业论文完成之即,最应该感谢的要数我的指导老师田华老师和孙华云老师,她们总是兢兢业业的耐心帮助我们,就是为了我们的每一篇论文都能通过,在这我想持以真诚的心对老师说一声:谢谢您,老师!我们会永远记得您!同时还要感谢我的同事王振和我的同学张超给于我的帮助和支持,衷心地谢谢你们!

参考文献:

[1] 冯润棠,秦岩,邓永超,覃显鹏. 含锆原料及其在耐火材料中的应用[J]. 稀有金属快报, 2004,(06).

[2] 胡宝玉,张宏达,李丹. 氧化锆特种耐火材料在工业中的应用[J]. 稀有金属快报, 2004,(06).

[3] 魏明坤,张丽鹏,张广军. 碳化硅耐火材料的发展与性能[J]. 硅酸盐通报, 2001,(03).

[4] 崔春姬,杨笛. 碳化硅质耐火材料的开发与应用[J]. 硅酸盐通报, 2001,(06).

[5] 康建红,秦刚刚,申向利. 玻璃工业用硅酸铝耐火材料[J]. 建材技术与应用,

2001,(03).

[6] 宋辉,陈晖,冯润棠. 新型耐火材料用含锆原料及应用[J]. 新材料产业, 2004,(10).

[7] 杨丽荣,李秋菊,曲月华. 铝硅质耐火材料的XRF分析法[J]. 鞍钢技术, 2001,(02).

[8] 钟香崇. 新世纪我国耐火材料的发展[J]. 钢铁研究, 2001,(06).

[9] 张玮,曾大凡. 我国玻璃窑用耐火材料的发展历程与今后的任务[J]. 中国建材科技, 2001,(03).

[10] 李静,李健,杨大正. 不烧Al_2O_3-C质耐火材料在水蒸气中的抗氧化性能[J]. 鞍

钢技术, 2001,(03).

铝碳化硅锆质耐火材料完整

学生毕业论文(设计) 课题名称:铝碳化硅锆质铁水罐不烧砖 的研制与使用 专业班级:材料工程0501 姓名:利鹏 系部:冶金学院 实习单位:莱芜钢铁集团 指导老师:田华孙华云 2008年05月06日 摘要:随着钢铁企业市场竟争的激烈,“优质、高效、低耗、环保”

的发展战略,是企业生存和发展的必经之路。在这种形势下,莱芜市耐火材料厂,本着“优质、高效、低耗、环保”的八字方针,开发研制出了一种新型的铁水罐砖,铝碳化硅锆质铁水罐不烧砖。这种材质的不烧砖,解决了传统的粘土砖粘铁挂渣现象,使用寿命在进行脱硫、脱硅、脱磷的处理时,仍大于1000次,同时它又是一种不烧砖,既节约了能源,又降低了排污污染,是目前较为理想的耐火材料。 关键词:铝碳化硅锆不烧砖铁水罐冷铁抗渗透 铝碳化硅锆质铁水罐不烧砖的研制与使用 1、铁水罐的构造 根据铁水罐内衬大致可分为3个区域,即上部、渣线部和罐底部。

各部位使用条件差异较大,砖的损毁特点也各有不同: 1.1铁水罐上部 在服役期间与铁水的熔渣接触较少,大部分时间暴露在高温氧化气氛中,由于砖中的石墨易被氧化,往往会导致砖体结构疏松,强度下降。对于上部用罐砖,既要提高其抗氧化性,又要提高对铁水,熔渣抗冲刷性。 1.2渣线部位 铁水罐渣线部位的砖在服役期浸泡在熔渣和铁水中,经受熔渣的长期的化学侵蚀,这是渣线部位铁水罐砖损毁的主要原因。 1.3罐底部及冲击区 罐底首先要承受高温铁水的强烈机械冲击,(高炉铁水口到铁水罐底的高度落差一般都在3-5米)。铁水罐罐底部在服役期间被高温铁水反复浸泡,受到铁水的熔损和热冲刷。在进行“三脱”处理时,在铁水底部喷吹强碱性造渣粉状材料,铁水的强烈搅动,加剧了对罐底的侵蚀,高温铁水的熔损、热冲击和机械冲刷是此部位耐火材料损毁的主要原因。 2、铁水罐的主要技术 2.1由烧成砖改为树脂C链结合不烧砖 制品中虽然含有碳、但不烧工艺使产品的热导率比烧成显著降低,保温性能好,铁水在单位时间内温降小,杜绝了罐内冷铁现象。 2.2材质配方的创新使用 原来铁水罐多是以铝Al2O3、SiC为主成分,根据我们研究和罐衬侵蚀机理,在配方中引入了具有熔态渣铁难以浸润的高温材料C成分,增加了ZrO2质增韧材料,提高制品的韧性。 2.3砖型设计的创新 该铁水罐砖型分为两部分设计:桶形罐衬由原来的万能旋转弧衬衬砖改为以圆扇面按角度分割出每个砖型,罐底球面部分利用球体分割法设计每个砖型,砖与砖之间严丝合缝,最大限度的降低了熔态渣铁渗漏机会,提高其全罐的安全性和耐用性。 3、采用的实验方法和技术路线

铝碳化硅

铝碳化硅(Al/SiCp)系第三代电子封装材料,这种SiC颗粒增强铝基复合材料具有的高比强度、高比模量、耐磨损及抗腐蚀性等优良的性能使得其在航空、航天、医疗、汽车等领域获得了广泛的应用前景,也使得其制备、加工以及应用成为当今世界科技发展的一个研究热点。 增强体颗粒SiC比常用的刀具如高速钢刀具和硬质合金钢刀具的硬度高, 在机械加工过程中能引起剧烈的刀具磨损, 因此,复合材料的难加工性和昂贵的加工成本限制了铝基碳化硅复合材料的广泛应用。目前, 在进一步扩大铝基碳化硅复合材料的应用方面, 材料的切削加工是最重要的研究课题之一。随着SiCp/Al复合材料在航空、航天等领域应用的不断增加,出现了越来越多的带有直线、曲线形状的深窄沟槽、小尺寸孔、螺纹且需要对它们进行精密加工的零件。如何突破这种难加工材料的加工工艺方法,有效的降低其加工成本,使其得到广泛的应用,对我国国防事业有着重要意义。 基于当前世界的机械制造水平,我国有部分科研院所针对这个课题作了部分研究,人们尝试了多种加工方法:有金刚石刀具高速加工、金刚石砂轮进行高效磨削、电火花加工、激光加工、超声振动切削加工等等。这么多的方法总而言之,各有利弊,铝碳化硅材料的加工工艺方法还处于摸索总结阶段。 我公司于2009年启动该项目,经过不断地摸索实验与总结,已经取得了一系列研究成果,促进了SiCp/Al复合材料加工技术的发展和应用。我们认为采用金刚石刀具高速切削和采用金刚石砂轮进行高效磨削以及结合电火花加工能有效的保证设计尺寸精度要求。但是,要有效的降低其加工成本还有很多的路要走。其加工制造的瓶颈主要有三点: 1.高精度、高转速、高效率的切削机床。这是实现铝碳化硅复合材料高效加工的根 本,是金刚石刀具高速加工及金刚石砂轮高效磨削的前提条件。 2.金刚石刀具及金刚石砂轮的制造。如何提高金刚石刀具及金刚石砂轮的使用寿 命,降低其制造成本,实际上也就决定了铝碳化硅复合材料的加工成本。 3.切削参数。合理的切削参数能有效的保护机床和刀具,提高加工效率。 针对以上三点,在十二五期间,我们计划再用2年时间解决。首先机床在资金允许的前提下,购买国内外满足使用性能的机床;进一步加大对金刚石刀具的制造和再次刃磨研究;进一步改进电镀金刚石砂轮和钎焊金刚石砂轮的研究;加强对切削参数的优化与总结。同时也进一步展开对其他工艺方法的研究。

耐火材料各性质

耐火材料的力学性质 耐火材料的力学性质是指材料在不同温度下的强度、弹性、和塑性性质。耐火材料在常温或高温的使用条件下,都要受到各种应力的作用而变形或损坏,各应力有压应力、拉应力、弯曲应力、剪应力、摩擦力、和撞击力等。 此外,耐火材料的力学性质,可间接反映其它的性质情况。 检验耐火材料的力学性质,研究其损毁机理和提高力学性能的途径,是耐火材料生产和使用中的一项重要工作内容。 4.1 常温力学性质 4.1.1 常温耐压强度σ压 定义;是指常温下耐火材料在单位面积上所能承受的最大压力,也即材料在压应力作用下被破坏的压力。 常温耐压强度σ压=P/A ,(pa) 式中;P—试验受压破坏时的极限压力,(N); A—试样的受压面积,(m2)。 一般情况下,国家标准对耐火材料制品性能指标的要求,视品种而定。其中,对常温耐压强度σ压的数值要求为50Mpa左右(相当于500kg/cm2);而耐火材料的体积密度一般为2.5g/cm3左右。据此计算,因受上方砌筑体的重力作用,导致耐火材料砌筑体底部受重压破坏的砌筑高度,应高达2000m以上。 可见,对耐火材料常温耐压强度的要求,并不是针对其使用中的受压损坏。而是通过该性质指标的大小,在一定程度上反映材料中的粒度级配、成型致密度、制品烧结程度、矿物组成和显微结构,以及其它性能指标的优劣。 体现材料性能质量优劣的性能指标的大小,不仅反映出来源于各种生产工艺因素与过程控制,而且反映过程产物气、固两相的组成和相结构状态以及相关性质指标间的一致性。一般而言,这是一条普遍规律。 4.1.2 抗拉、抗折、和扭转强度 与耐压强度类似,抗拉、抗折、和扭转强度是材料在拉应力、弯曲应力、剪应力的作用下,材料被破坏时单位面积所承受的最大外力。与耐压强度不同,抗拉、抗折、和扭转强度,既反映了材料的制备工艺情况和相关性质指标间的一致性,也体现了材料在使用条件下的必须具备的强度性能。抗折强度σ折按下式计算。

铝基复合材料综述

铝基复合材料综述 XXXXXXXXXXX 摘要铝基复合材料凭借密度小、耐磨、热性能好等优点在航天航空等领域占有优势地位。文中综述了铝基复合材料的种类、铝基复合材料性能、各种铝基复合材料的制备和应用以及发展前景。 关键词铝基复合材料种类性能制备应用 Abstract Al-based alloys have advantages in the field of the aerospace by the advantages of small density , anti-function ,good thermal performance and so on. This article discussed the kinds ,performance ,approach , use and development prospect of Al-based alloys. Key words Al-based alloys kind performance approach use

1.引言 自20世纪80年代金属基复合材料大规模研究与开发以来,铝基复合材料在航空,航天,电子,汽车以及先进武器系统等领域得到迅速发展。铝基复合材料的制备工艺设计高温、增强材料的表面处理、复合成型等复杂工艺,而复合材料的性能、应用、成本等在很大程度上取决于其制造技术。因此,研究和开发心的制造技术,在提高铝基复合材料性能的同时降低成本,使其得到更广泛的应用,是铝基复合材料能否得到长远发展的关键所在。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。2.铝基复合材料分类 按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等。 3.铝基复合材料的基本成分 铝及其合金都适于作金属基复合材料的基体,铝基复合材料的增强物可以是连续的纤维,也可以是短纤维,也可以是从球形到不规则形状的颗粒。目前铝基复合材料增强颗粒材料有SiC、AL2O3、BN等,金属间化合物如Ni-Al,Fe-Al和Ti-Al也被用工作增强颗粒。 4.铝基复合材料特点 在众多金属基复合材料中,铝基复合材料发展最快且成为当前该类材料发展和研究的主流,这是因为铝基复合材料具有密度低、基体合金选择范围广、热处理性好、制备工艺灵活等许多优点。另外,铝和铝合金与许多增强相都有良好的接触性能,如连续状硼、AL2O3\ 、

碳化硅主要用途__碳化硅用于耐火材料时特性

碳化硅主要用途__碳化硅用于耐火材料时特性 碳化硅主要用途是什么呢?碳化硅用于耐火材料时有哪些特性呢?碳化硅又名金刚砂,包括黑碳化硅和绿碳化硅,其中:黑碳化硅是以石英砂,石油焦和硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。那么碳化硅的主要用途有哪些? 【碳化硅主要用途】 一、磨料--主要是因为碳化硅具有很高的硬度,化学稳定性和一定的韧性,所以碳化硅能用于制造固结磨具、涂附磨具和自 由研磨,从而来加工玻 璃、陶瓷、石材、铸铁 及某些非铁金属、硬质 合金、钛合金、高速钢 刀具和砂轮等。 二、耐火材料和耐腐蚀 材料---主要是因为碳 化硅具有高熔点(分解 度)、化学惰性和抗热振性,所以碳化硅能用于磨具、陶瓷制品烧成窑炉中用的棚板和匣钵、炼锌工业竖缸蒸馏炉用的碳化硅砖、铝电解槽衬、坩锅、小件炉材等多种碳化硅陶瓷制品。 三、化工--因为碳化硅可在溶融钢水中分解并和钢水中的离氧、金属氧化物反应生成一氧化碳和含硅炉渣。所以它可作为冶炼钢铁的净化剂,即用作炼钢的脱氧剂和铸铁组织改良剂。这一般使用低纯度的碳化硅,以降低成本。同时还可以作为制造四氯化硅的原料。 四、电工--用作加热元件、非线性电阻元件和高半导体材料。加热元件如硅碳棒(适用于1100~1500℃工作的各种电炉),非线性电阻元件,各式的避雷阀片。

五、其它--配制成远红外辐射涂料或制成碳化硅硅板用远红外辐射干燥器中。【碳化硅用于耐火材料时特性】 1、还原气氛下使用温度一般可达1760℃; 2、抗热震性能好,能承受温度急剧变化,防止炉衬出现裂纹或断裂 3、因热态强度高,中高温条件时可承受一定应力,可作为结构材料 4、耐磨性能好,在一定温度下,可作为耐磨衬体 5、能耐受一定熔渣或热态金属,包括碱金属熔液的侵蚀和渗透 6、可承受一些炉气的作用,能用于气氛炉。 其中,碳化硅应用于耐火材料的关键技术有以下四种方式: 1、氧化物结合:以硅酸铝、二氧化硅等为结合剂; 2、氮化物结合:氮化硅、氧氮化硅和赛隆结合; 3、自结合:按碳化硅的当量比例加入石墨和金属硅,高温下反应生成;

碳化硅颗粒增强铝基复合材料

碳化硅颗粒增强铝基复合材料 碳化硅颗粒增强铝基复合材料, 是目前普遍公认的最有竞争力的金属基复合材料品种之一。尽管其力学性能尤其是强度难与连续纤维复合材料相匹敌, 但它却有着极为显著的低成本优势, 而且相比之下制备难度小、制备方法也最为灵活多样, 并可以采用传统的冶金工艺设备进行二次加工, 因此易于实现批量生产。冷战结束后的20 世纪90 年代, 由于各国对国防工业投资力度的减小, 即使是航空航天等高技术领域, 也越来越难以接受成本居高不下的纤维增强铝基复合材料。于是, 颗粒增强铝基复合材料又重新得到普遍关注。特别是最近几年来, 它作为关键性承载构件终于在先进飞机上找到了出路, 且应用前景日趋看好, 进而使得其研究开发工作也再度升温。碳化硅颗粒增强铝基复合材料主要由机械加工和热处理再结合其的性质采用一定的方法制造。如铸造法、粘晶法和液相和固相重叠法等。 碳化硅颗粒增强铝基复合材料碳化硅和颗粒状的铝复合而成,其中碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成,再和增强颗粒铝复合而成,增强颗粒铝在基体中的分布状态直接影响到铝基复合材料的综合性能,能否使增强颗粒均匀分散在熔液中是能否成功制备铝基复合材料的关键,也是制备颗粒增强铝基复合材料的难点所在。纳米碳化硅颗粒分布的均匀与否与颗粒的大小、颗粒的密度、添加颗粒的体积分数、熔体的粘度、搅拌的方式和搅拌的速度等因素有关。纳米颗粒铝

的分散的物理方法主要有机械搅拌法、超声波分散法和高能处理法。对复合材料铸态组织的金相分析表明,碳化硅复合材料挤压棒实物照片 颗粒在宏观上分布均匀,但在高倍率下观察,可发其余代表不同粒度、含量的复台材料现SiC颗粒主要分布在树枝问和最后凝固的液相区,同时也有部分SiC颗粒存在于初生晶内部,即被初生晶所吞陷。从凝固理论分析,颗粒在固液界面前沿的行为与凝固速度、界面前沿的温度梯度及界面能的大小有很大关系,由于对SiC颗粒的预处理有效地改善了它与基体合金的润湿性,且在加入半固态台金浆料之前的预热温度大大低于此时的合金温度,故而部分SiC颗粒就可能直接作为凝固的核心而存在于部分初生晶的内部,但是太多数SiC在枝晶相汇处或最后凝固的液相中富集,这便形成了上述的组织形貌。金属中弥敷分布的铝对金属中的品界运动,位错组态及位错运动都有响.纳米碳化硅颗粒增强复合材料具有细小而均匀的组织其原因应该是细小而均匀分布的纳米颗粒高教率地占据空间,颗粒间距较小.有效地控制晶粒的长大;微米碳化硅颗粒增强复台材料中.颗粒尺寸较大,它在空间的分布间距也较大,由于基体热膨胀系数的差异而引起的局部应力也越大,造成了颗粒附近与远离颗粒处基体状态的差异.这种差异是造成微米颗粒增强复合材料组织不均匀的原因。 碳化硅颗粒增强铝基复合材料的航空航天工程应用;1、在惯导系统中的潜在应用;在我国自行研制的诸多型号机载、弹载惯性导航系统中, 不同程度地存在着现用的铸造铝合金结构件比刚度不足、热

碳化硅主要的四大应用领域

碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道、叶轮、泵室、旋流器、矿斗内衬的理想材料,具耐磨性能是铸铁,橡胶使用寿命的5-20倍,也是航空飞行跑道的理想材料之一。碳化硅主要有四大应用领域,即:功能陶瓷、耐火材料、磨料及冶金原料。碳化硅粗料已能大量供应,不能算高新技术产品,而技术含量极高的纳米级碳化硅粉体的应用短时间不可能形成规模经济。 (碳化硅-图片) 1、作为磨料,可用来做磨具,如油石、磨头、砂瓦类等。 2、作为冶金脱氧剂和耐高温材料。 3、高纯度的单晶,可用于制造半导体、制造碳化硅纤维。 主要用途:用于3-12英寸单晶硅、多晶硅、砷化钾、石英晶体等线切割。太阳能光伏产业、半导体产业、压电晶体产业工程性加工材料。 用于半导体、避雷针、电路元件、高温应用、紫外光侦检器、结构材料、天文、碟刹、离合器、柴油微粒滤清器、细丝高温计、陶瓷薄膜、裁切工具、加热元件、核燃料、珠宝、钢、护具、触媒担体等领域。 折叠磨料磨具

主要用于制作砂轮、砂纸、砂带、油石、磨块、磨头、研磨膏及光伏产品中单晶硅、多晶硅和电子行业的压电晶体等方面的研磨、抛光等。 折叠化工 折叠"三耐"材料 利用碳化硅具有耐腐蚀、耐高温、强度大、导热性能良好、抗冲击等特性,碳化硅一方面可用于各种冶炼炉衬、高温炉窑构件、碳化硅板、衬板、支撑件、匣钵、碳化硅坩埚等。 另一方面可用于有色金属冶炼工业的高温间接加热材料,如竖罐蒸馏炉、精馏炉塔盘、铝电解槽、铜熔化炉内衬、锌粉炉用弧型板、热电偶保护管等;用于制作耐磨、耐蚀、耐高温等碳化硅陶瓷材料;还可以制做火箭喷管、燃气轮机叶片等。此外,碳化硅也是高速公路、##飞机跑道太阳能热水器等的理想材料之一。 (碳化硅-图片) 折叠有色金属 利用碳化硅具有耐高温,强度大,导热性能良好,抗冲击,作高温间接加热材料,如坚罐蒸馏炉,精

耐火材料

一、填空题 1,硅酸盐矿物显微结构:硅酸盐结合物胶结晶体颗粒晶体颗粒直接结合 成结晶网2,熔渣让耐火材料破坏的三种方式:单纯溶解、反应溶解、侵入变质溶解 3,让坯料重新分布的力:静电引力、机械结合力、内摩擦力 4,镁砖的分类:烧 成镁砖、不烧镁砖、再结合镁砖5,颗粒料的组成原则:两头大,中间小 6,氧化铝含量:<%72(莫来石) >%72(莫来石,刚玉) 7,测耐火材料的抗拉性的 两种方法:动态法、静态法 8,ZrO2增韧机理:①应力诱导相变增韧 ②微裂纹增韧 ③裂纹分支增韧④裂纹偏转和弯曲增韧 9,铬镁质材料:方镁石,尖晶石 其基质有三种:M2S 、 CMS 、 C3MS2 1.耐火材料的概念:指主要由无机非金属材料构成的且耐火度不低于1580℃的材料和 制品。耐火材料的品种和质量取决与耐火材料的原料和其生产工艺。 2.耐火材料 分类Ⅰ、化学矿物组成分类:氧化硅质、硅酸盐质、刚玉质、镁质、白云石质、橄榄 石质、尖晶石质、含炭质、含锆质、特殊等耐火材料。Ⅱ、按耐火度高低分为:①普 通耐火制品(耐火度1580-1770℃)、②高级耐火制品(耐火度1770-2000℃)、特级 耐火制品(耐火度2000℃以上)。Ⅲ、按制品形状和尺寸分为:标准砖、异形砖、特 异型砖等。Ⅳ、按化学性质分类:酸性耐火材料、中性耐火材料、碱性耐火材料。 (化性分类对了解耐火材料的化学性质,判断在使用过程中它们之间及耐火材料与接 触物间化学作用情况有着重要意义)3、氧化硅耐火材料为典型的酸性耐火材料, 其矿物组成为:主晶相为磷石英和方石英,基质为石英玻璃相。 4、两种矿物组成:①结晶相(主晶相和次晶相):主晶相是耐火制品结构的主体而且熔点较高的结晶相。其性质、数量、结合状态直接决定着耐火材料的性质。次晶相又称第二固相,也是熔 点较高的晶体,提高耐火制品中固相间的直接结合,改善制品性能。②玻璃相:基质 是指填充于主晶相之间的不同成分的结晶矿物(次晶相)和玻璃相,也称结合相。硅 砖的主晶相:磷石英、方石英粘土砖的主晶相:莫来石、方石英5、耐火材料的气孔 存在形态分类:封闭在制品中不与外界想通的闭口气孔,一端封闭另一端与外界相通 的开口气孔,两端都与外界相通的贯通气孔。气孔的存在主要影响材料的致密度,显 气孔率高时,材料结构疏松,强度低,抗渣性能弱。 耐火材料的化学组成是决定其矿物组成、组织结构的基础。根据各种化学成分的含量 和作用分为:主成分、杂质和外加成分三种。。主成分:指耐火材料中占绝大多数的,对材料高温性质起决定性作用的化学成分。杂质:指耐火材料中不同于主成分的,含 量微少而对耐火材料的抵抗高温性质带来危害的化学成分。外加成分:常称为外加剂,是在耐火制品生产中为特定目的另外加入的少量成分。 矿物:由相对固定的化学组分构成的有确定的内部结构和物理性质的单质或化合物 密度分为:体积密度、视密度、真密度。①体积密度d b:指材料的质量M与其含材料 的实体积Vb和全部气孔体积之和的总体积V b之比 d b=M/V b=M/(Vt+Vc+Vo)。②视密度(表观)da:指材料的质量与其含材料的实体积和封闭气孔体积之和的体积之比。 da=M/(Vt+Vc)③真密度dt:指材料质量与其实体积之比.dt=M/Vt 主晶相:指构成结构结构的主体且熔点较高,对材料的性质起支配作用的一种晶相,(其性质,数量,分布和结合状态直接决定耐火制品性质)。次晶相:又称第二晶相 或第二固相,指耐火材料中在高温下与主晶相和液相并存的,一般其数量较少和对材 料高温性能的影响较主晶相为小的第二种晶相。基质:指在耐火材料大晶体间隙中 存在,或由大晶体嵌入其中的那部分物质,也可认为是大晶体之间的填充物质或胶结物。 耐火度:耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性能,表征材料 抵抗高温作用的性能。其意义与熔点不同。熔点是结晶体的液相与固相处于平衡时的

耐火材料标准

耐火材料标准精选(最新) G2273《GB/T 2273-2007 烧结镁砂》 G2608《GB/T 2608-2012 硅砖》 G2992.1《GB/T 2992.1-2011 耐火砖形状尺寸 第1部分:通用砖》 G2992.2《GB/T 2992.2-2014 耐火砖形状尺寸 第2部分:耐火砖砖形及砌体术语》 G2994《GB/T 2994-2008 高铝质耐火泥浆》 G2997〈GB/T2997-2000 致密定形耐火制品体积密度,显气孔率〉 G2998〈GB/T2998-2001 定形隔热耐火制品体积密度和真气孔率试验方法〉 G2999《GB/T2999-2002 耐火材料颗粒体积密度试验方法》 G3000〈GB/T3000-1999 致密定形耐火制品透气度试验方法〉 G3001《GB/T 3001-2007 耐火材料 常温抗折强度试验方法》 G3002《GB/T3002-2004 耐火材料 高温抗折强度试验方法》 G3003《GB/T 3003-2006 耐火材料 陶瓷纤维及制品》 G3007《GB/T 3007-2006 耐火材料 含水量试验方法》 G3994《GB/T 3994-2013 粘土质隔热耐火砖》 G3995《GB/T 3995-2014 高铝质隔热耐火砖》 G3997.1《GB/T3997.-1998 定形隔热耐火制品重烧线变化试验方法》 G3997.2《GB/T3997.2-1998 定形隔热耐火制品常温耐压强度试验方法》 G4513《GB/T4513-2000 不定形耐火材料分类》 G4984《GB/T 4984-2007 含锆耐火材料化学分析方法》 G5069《GB/T 5069-2007 镁铝系耐火材料化学分析方法》 G5070《GB/T 5070-2007 含铬耐火材料化学分析方法》 G5071《GB/T 5071-2013 耐火材料 真密度试验方法》 G5072《GB/T 5072-2008 耐火材料 常温耐压强度试验方法》 G5073《GB/T5073-2005 耐火材料 压蠕变试验方法》 G5988《GB/T 5988-2007 耐火材料 加热永久线变化试验方法》 G5989《GB/T 5989-2008 耐火材料 荷重软化温度试验方法 示差升温法》 G5990《GB/T 5990-2006 耐火材料 导热系数试验方法(热线法)》 G6646《GB/T 6646-2008 温石棉试验方法》 G6900《GB/T 6900-2006 铝硅系耐火材料化学分析方法》 G6901《GB/T 6901-2008 硅质耐火材料化学分析方法》 G6901.10《GB/T6901.10-2004 硅质耐火材料化学分析方法:火焰原子吸收光谱法测定氧化锰量》 G6901.11《GB/T6901.11-2004 硅质耐火材料化学分析方法:钼蓝光度法测定五氧化二磷量》 G7320《GB/T 7320-2008 耐火材料 热膨胀试验方法》 G7321《GB/T7321-2004定形耐火制品试样制备方法》 G7322《GB/T 7322-2007 耐火材料 耐火度试验方法》 G8071《GB/T 8071-2008 温石棉》 G8931《GB/T 8931-2007 耐火材料 抗渣性试验方法》 G10325《GB/T 10325-2012 定形耐火制品验收抽样检验规则》 G10326《GB/T10326-2001 定形耐火制品尺寸、外观及断面的检查方法》

电子封装中的铝碳化硅及其应用

电子封装中的铝碳化硅及其应用 1 引言 铝碳化硅AlSiC(有的文献英文所略语写为SiCp/Al或Al/SiC、SiC/Al)是一种颗粒增强金属基复合材料,采用Al合金作基体,按设计要求,以一定形式、比例和分布状态,用SiC颗粒作增强体,构成有明显界面的多组相复合材料,兼具单一金属不具备的综合优越性能。AlSiC研发较早,理论描述较为完善,有品种率先实现电子封装材料的规模产业化,满足半导体芯片集成度沿摩尔定律提高导致芯片发热量急剧升高、使用寿命下降以及电子封装的"轻薄微小"的发展需求。尤其在航空航天、微波集成电路、功率模块、军用射频系统芯片等封装分析作用极为凸现,成为封装材料应用开发的重要趋势。 2 封装AlSiC特性 封装金属材料用作支撑和保护半导体芯片的金属底座与外壳,混合集成电路HIC的基片、底板、外壳,构成导热性能最好,总耗散功率提高到数十瓦,全气密封性,坚固牢靠的封装结构,为芯片、HIC提供一个高可靠稳定的工作环境,具体材料性能是个首选关键问题。 在长期使用中,许多封装尺寸、外形都已经标准化、系统化,存在的主要缺陷是无法适应高性能芯片封装要求。例如,Kovar(一种Fe-Co-Vi合金)和Invar(一种Fe-Ni合金)的CTE低,与芯片材料相近,但其K值差、密度高、刚度低,无法全面满足电子封装小型化、高密度、热量易散发的应用需求合金是由两种或两种以上的金属元素或金属与非金属元素所组成的金属材料,具有其综合的优势性能。随之发展的Mo80 Cu20、Cu/Invar/Cu、Cu/Mo/Cu等合金在热传导方面优于Kovar,但期比重大于Kovar,仍不适合用作航空航天所需轻质的器件封装材料。 常用金属封装材料与CaAs的微波器件封装需求存在性能上的差距,使得研发一种新型轻质金属封装材料,满足航空航天用器件封装成为急需,引发相关部门调试重视。经过近些年来的深入研究,AlSiC取得产业化进展,相继推动高硅铝合金Si/Al实用化进程,表2示出其主要性能与常用封装材料的对比。将SiC与Al合金按一定比例和工艺结合成AlSiC后,可克服目前金属封装材料的不足,

铝碳化硅散热材料及散热解决方案

铝碳化硅介绍及产品设计 西安创正新材料公司是一家集研发、生产和销售为一体的高科技企业。主要致力于第三代电子封装材料——铝碳化硅的研发、生产与销售,根据用户需求,开发了多种AlSiC产品,为微波器件、大功率器件、微电子器件等制造商提供专业的热管理材料及技术方案。 公司产品广泛应用于轨道交通、新能源汽车、航空航天、军事等领域,是新一代大功率电子器件最佳选择。 公司将持续加强与用户的交流与合作,不断满足国内外用户的市场需求,力争以先进的工艺技术、严格的质量管控、一流的性能水平、最高的性价比优势服务用户、持续为客户创造价值。 铝碳化硅介绍 铝碳化硅AlSiC(Al/SiC,SiC/Al)是一种颗粒增强铝基复合材料,采用铝合金作为基体,SiC作为增强体,充分结合了陶瓷和金属铝的不同优势,实现了封装了轻便化、高密度化等要求。 AlSiC密度在2.95~3.1g/cm3之间,热膨胀系数(CTE)6.5~9ppm/℃,具有可调的体积分数,提高碳化硅体积分数可以使材料的热膨胀系数显著降低。同时,铝碳化硅还具有高的热导率和比刚度,表面能够镀镍、金、银、铜,具有良好的镀覆性能。 铝碳化硅复合材料的比刚度是所有电子材料中最高的:是铝的3倍,W-Cu 和Kovar的5倍,铜的25倍,另外铝碳化硅的抗震性好,因此是恶劣环境(震动较大,如航天、汽车等领域)下的首选材料。铝碳化硅复合材料已成为航空航

天、国防、功率模块和其他电子元器件所需求的新型封装材料。用于航空航天微波、功率放大模块等电子器件及模块的封装壳体或底座。 与其他材料性能对比:

铝碳化硅产品设计 ◆板类产品 用AlSiC制成各种板类的产品,用于各类电路的热沉、基板、封盖、过渡片等,可替代目前在使用的氧化铍、氮化铝、钼片、钨铜合金及其它金属材料。 板类产品,可分为裸材和表面覆铝。 ◇产品成型尺寸 长度宽度厚度外形加工内部加工 最大24524510可加工各种 形状可打孔、攻丝、台阶 孔等 最小330.5 在特殊要求下,可以制造最大245*350*80mm的材料,但制造成本将会很高。过厚的材料内部致密度会受到影响。 最大尺寸可以是裸材或表面覆铝,也可在裸材或表面铝上加工各种形状(拱面,伞面等);最小尺寸一般为裸材,在特殊条件下,厚度可加工到0.3mm;而 最小尺寸表面覆铝厚度应不小于0.8mm和外形10mm。 可在某些部位镶嵌其他材料(钛合金、不锈钢、可伐合金等或其他难熔的非 金属)。 孔、台阶孔等处为铝合金材料,可以满足螺丝固定设计,孔、台阶孔可以在 铝碳化硅材料上直接加工,但成本比在铝合金上加工成本高。而螺纹孔需在铝合 金上做成,能过保证螺纹牙的完整性。 倒角、倒边、圆角以及各种设计的加工轮廓,均可在材料上加工。 ◇产品加工精度 一般要求可以做到平面度0.01mm/cm、尺寸精度±0.1mm的要求; 关键尺寸精度可以做在0.05mm以内。 ◇产品表面处理 表面可按设计覆盖各种镀层,如:镍、金、银等; ◆管壳类产品 用AlSiC制造的各类封装管壳产品,用于各种电路的外壳、底座、管件等,可替代目前在使用的可伐合金、铝、钼及其它金属材料外壳。 管壳类产品,可分为裸材和表面覆铝。 ◇产品成型尺寸 长度宽度高度壁厚外形加工内部加工 最大24524512010 可加工各种形 状可打孔、攻丝、台阶 孔等 最小8831 在特殊要求下,可以制造最大245*350*80*10mm的材料,但制造成本会比较

耐火材料

第七章含锆耐火材料 锆英石质耐火材料 以为主要成分的。品种有、锆质砖和特种锆英石砖(如锆英石-氧化铝砖、锆英石-氧化铝-氧化铬砖、锆英石-叶蜡石砖、锆英石-碳化硅砖、高硅质锆英石砖、锆英石质不定形耐火材料、熔铸锆英石砖等)。 含65%左右。1825℃以上。荷重软化开始温度近1500℃。具有优良的耐腐蚀性,良好的、和,较小的。以锆英石砂为原料,加少量可塑黏土,经、、成团块。团块再经粉碎,加入少量可塑或其他有机结合剂,经混合、成型、烧成而制得。煅烧和烧成温度均不应超过1600℃,一般可采用1400℃下长时间保温来烧成。适用于砌筑内衬、高温、炼铝炉。也可用于玻璃池窑易于损坏的部位。 7.1.1 锆英石原料 称锆英砂、锆英石,是一种以锆的硅酸盐(ZrSiO4)为主要组成的矿物。纯净的锆英砂为无色透明晶体,常因产地不同、含杂质的种类与数量不同而染成黄、橙、红、褐等色,结晶构造属四方晶系,呈四方锥柱形,比重~,比重的变化有时与成分和蚀变状态有关锆英石解理不完全,均匀莫氏硬度为7~8级,折射率-,熔点随所含杂质的不同在2190~2420℃内波动。 主要化学组成为ZrO2;SiO2,及少量Fe2O3、CaO、AI2O3等杂质。锆英砂的理论组成为ZrO2:%;SiO2:%。它是ZrO2-SiO2系唯一的化合物。但天然锆砂仅含约57~66%ZrO2。 锆英石是一种主要由火成岩形成时从岩浆中结晶出来的锆、硅和氧组成的矿物。锆英石也产于岩脉和变质岩中。它属四方晶系,常呈发育良好的锥状小四方柱体,也成不规则粒状。性脆,断口贝壳状。是优质的耐火材料。多与钛铁矿、

金红石、独居石、磷钇矿等共生于海滨砂中,经水选、电选、磁选等选矿工艺分选后而得到。 锆英砂是最重要的含锆矿物,在锆矿物中分布最广、储量最大、类型最多,是一种以锆的硅酸盐为主要组成的矿物。锆英砂是制取锆、铪及多种锆制品的主要原料,具有熔点高、热导率低、线膨胀系数小等特点,广泛用于冶金、铸造等行业。目前世界年产锆英砂为130万吨。 1. ZrO2—SiO2 物系 以锆英石为主要原料烧成的耐火制品。锆英石是ZrO2-SiO2。系统中唯一的化合物,其化学式为ZrSiO4。锆英石的理论化学组成为ZrO267.2%,SiO232.8%。 其二元系相图见 168 页图 7—1 (分析) 2. 锆英石加热分解 图 7—2 锆英石加热至一定温度时可分解为隐晶质ZrO2和无定形SiO2。由于锆英石的纯度和所含杂质的不同、原料粒度和保温时间的不同,锆英石的分解温度亦不相同。其分解温度范围为1540~2000℃(图。锆英石在1600℃下加热2h,只有少量锆英石分解;在1750℃下加热2h,锆英石的分解率为50%,当加热至1900℃~2000℃时,分解率可达100%。 ZrSiO4——>ZrO2+SiO2 Al2O3CaO等杂质的存在使锆英石的分解温度降低。因此,制备锆英石熟料时,其预烧温度须低于锆英石的分解温度(1540℃)。 对于粒度较细的锆英石精矿粉可采用两种方法进行处理:(1)将锆英石进行筛分,选取符合粒度要求的筛上料作粗颗粒,筛下料可加工成细粉;(2)采用熟料制造工艺,以锆英石细粉和粘土为原料,按工艺流程加工成熟料,再破碎至适当的粒度以备用。

2016-2020年碳化硅增强铝基复合材料市场深度调研及投资战略咨询报告

碳化硅增强铝基复合材料市场深度调研及投资战略咨询报告 2016-2020

核心内容提要 产业链(Industry Chain) 狭义产业链是指从原材料一直到终端产品制造的各生产部门的完整链条,主要面向具体生产制造环节; 广义产业链则是在面向生产的狭义产业链基础上尽可能地向上下游拓展延伸。产业链向上游延伸一般使得产业链进入到基础产业环节和技术研发环节,向下游拓展则进入到市场拓展环节。产业链的实质就是不同产业的企业之间的关联,而这种产业关联的实质则是各产业中的企业之间的供给与需求的关系。 市场规模(Market Size) 市场规模(Market Size),即市场容量,本报告里,指的是目标产品或行业的整体规模,通常用产值、产量、消费量、消费额等指标来体现市场规模。千讯咨询对市场规模的研究,不仅要对过去五年的市场规模进行调研摸底,同时还要对未来五年行业市场规模进行预测分析,市场规模大小可能直接决定企业对新产品设计开发的投资规模;此外,市场规模的同比增长速度,能够充分反应行业的成长性,如果一个产品或行业处在高速成长期,是非常值得企业关注和投资的。本报告的第三章对手工工具行业的市场规模和同比增速有非常详细数据和文字描述。 消费结构(consumption structure) 消费结构是指被消费的产品或服务的构成成份,本报告主要从三个角度来研究消费结构,即:产品结构、用户结构、区域结构。1、产品结构,主要研究各类细分产品或服务的消费情况,以及细分产品或服务的规模在整个市场规模中的占比;2、用户结构,主要研究产品或服务都销售给哪些用户群体了,以及各类用户群体的消费规模在整个市场规模中的占比;3、区域结构,主要研究产品或服务都销售到哪些重点地区了,以及某些重点区域市场的消费规模在整个市场规模中的占比。对消费结构的研究,有助于企业更为精准的把握目标客户和细分市场,从而调整产品结构,更好地服务客户和应对市场竞争。

碳化硅增强铝基复合材料界面改善对力学性能的影响

碳化硅增强铝基复合材料界面改善对力学性能的影响3 徐金城1,邓小燕1,2,张成良1,田亮亮1 (1 兰州大学物理科学与技术学院,兰州730000;2 西北民族大学电气工程学院电子材料实验室,兰州730030) 摘要 用粉末冶金法制备了致密度较好的镀铜碳化硅增强铝基复合材料,并对碳化硅的表面化学镀工艺进行了分析。通过化学镀前后复合材料力学性能的对比研究表明,碳化硅表面镀铜较好地解决了碳化硅与基体的相容性问题,使复合材料的力学性能得到明显提高。 关键词 粉末冶金法 碳化硅 复合材料 化学镀 E ffect of Improved Interface on Mechanic Properties of SiC Particles R einforced Aluminum Matrix Composites XU Jincheng 1,D EN G Xiaoyan 1,2,ZHAN G Chengliang 1,TIAN Liangliang 1 (1 School of Physical Science and Technology ,Lanzhou University ,Lanzhou 730000;2 Key Laboratory for Electronic Materials , College of Electrical Engineering ,Northwest University for Nationality ,Lanzhou 730030) Abstract The SiC particles reinforced aluminum matrix composite is prepared by powder metallurgy.And the technology of electroless plating copper on SiC surfaces is investigated.The comparison of mechanic properties of com 2posites reinforced by coated and uncoated SiC particles indicates that the copper coating on SiC particles preferably im 2proves the compatibility between SiC particles and aluminum matrix and improves the mechanic properties of the com 2posite. K ey w ords powder metallurgy ,SiC particles ,composite ,electroless plating  3甘肃省自然科学基金资助项目(3ZS0512A252048)  徐金城:男,1945年生,教授,目前主要从事金属材料、金属基复合材料及环境材料方面的研究 邓小燕:女,通讯作者,博士生,讲师,研究方向为金属材料、金属基复合材料 E 2mail :dengxy02@https://www.doczj.com/doc/0b4422760.html, 0 引言 碳化硅颗粒增强铝基复合材料是金属基复合材料 (MMC )中最具应用前景的一种新型高技术材料。由于其具 有优异的高温强度、高耐磨性、高比刚度等力学性能和良好的可加工性等优点[1-3],已在航空航天、汽车和其它制造业作为结构材料得到了应用。 由于碳化硅陶瓷颗粒与金属基体界面的结合强度低而恶化复合材料的性能,如果在陶瓷表面涂覆金属镀层,不仅可以促进陶瓷粒子在基体金属中的均匀分布,还能改善基体与增强体的界面结合强度,而且这种方法的成本低廉、工艺简单易行,因而成为增强颗粒表面处理中的一种常用方法[4,5]。目前,国内外研究得比较成熟的包裹工艺有沉淀法、溶胶2凝胶法、溶胶法、醇盐水解法、非均相凝固法等[6],其中,化学镀法制备的包裹粉体包裹层与粉体基体结合比较紧密,包裹层厚度容易控制,采用的设备比较简单。 本文用传统粉末冶金方法和化学镀处理粉末的方法制备了SiC 颗粒增强Al 2Cu 2Mg 基复合材料,并研究了化学镀过程中粉末的形貌微观结构和性能的变化,以及它对复合材料力学性能的影响。 1 实验 1.1 原材料 实验中使用纯度为99.5%的Al 粉、Cu 粉和Mg 粉,粒 度均为200目,SiC 粉末为3~5 μm ,纯度为98.5%。1.2 样品的制备 实验先将碳化硅进行化学镀铜处理,化学镀实验中HF 作为净化剂,氯化亚锡作为敏化剂,硝酸银作为活化剂,硫酸铜作为主盐,酒石酸钾钠作为络合剂,甲醛作为还原剂,用氢氧化钠调节镀液的p H 值进行化学镀铜[7]。由于碳化硅镀铜后干燥时间过长,铜膜易氧化,须在200℃下氢气还原3h 。化学镀后SiC 与Cu 质量比为4∶1。 再将原始碳化硅和化学镀铜后的碳化硅分别与铝基合金粉料在研体中混合均匀,然后加入到模具中,制备出SiCp/Al 24%Cu 21.2%Mg (质量分数)复合材料。碳化硅的体积分数依次取0%、3%、6%、9%、12%,同时,SiC 颗粒表面涂覆的Cu 质量计入合金元素百分比。而后用Q Y L50250吨油压千斤顶加压到250MPa ,保压15min ,再将压力加到400MPa 保压30min ,卸载后得到条状试样60mm ×10mm ×3.5mm 。 在氩气保护下,先在400℃预烧60min ,然后升温到560℃进行烧结,保温1.5h ,炉冷得到试样。将烧结试样在氩 ? 52?碳化硅增强铝基复合材料界面改善对力学性能的影响/徐金城等

定径水口为什么一定是锆质的

定径水口为什么一定是锆质的 锆质定径水口作为连铸工艺中间包耐火材料之一,主要用于小方坯连铸,可以起到控制钢水流量的作用。定径水口必须具备优良的抗热震稳定性和耐侵蚀性能,以保证钢水可以通过定径水口均匀稳定的流入结晶器内,从而保证连铸工艺的正常进行,调高生产效率。 锆质定径水口采用稳定的氧化锆经特殊工艺稳定后,由高压成型,高温烧制而成。可根据用户不同的炼钢环境和使用要求定制。锆质定径水口特点:定径水口具有耐火度高,热震性能好,抗侵蚀、耐冲刷,扩径变化小、使用寿命长等特点。 炉窑是用耐火材料砌成的用以煅烧物料或烧成制品的设备称之为炉窑。炉窑的类型很多,可以分为一般工业炉窑、回转炉窑、炼焦炉窑、感应炉窑等。但一般炉窑内部温度都要达到350℃以上,高温炉窑温度的可以达到2000℃左右。 炉窑是用耐火材料砌成的用以煅烧物料或烧成制品的设备称之为炉窑。炉窑的类型很多,可以分为一般工业炉窑、回转炉窑、炼焦炉窑、感应炉窑等。但一般炉窑内部温度都要达到350℃以上,高温炉窑温度的可以达到2000℃左右。 一般炉窑加热多为通过电、煤、油、气或是电磁感应方式加热升温,炉窑热量的传递以3种方式进行,即传导传热、对流传热和辐射传热。在低温阶段,热交换以对流传热为主,而在高温阶段(800℃以上),则以辐射传热为主。随着温度的升高,辐射传热所起的作用越来越大。 由于炉窑的特殊性能和高温,这就要求炉窑的结构和隔热保温做的很好。随着世界各国工业的进步,炉窑也朝着大型化、高效化和长寿化发展,逐步炉窑结构的优化,节能率的提高的提高,单位产能对能耗的下降,而炉窑材料的使用年限的增长,这对于耐高温功能涂料性能提出更高的要求,志盛威华耐高温功能涂料品种多样,功能性突出,对于高温窑炉节能显著。 锆质定径水口以高耐侵蚀耐火材料制成,在整个连续铸钢过程中直径基本保持不变的水口。用于小方坯连铸中间罐无塞棒浇注系统,可保证连铸过程有稳定的拉速。通常用锆质(ZrO2为60%~95%)材料制作。 锆质定径水口理化指标: 水口理化指标 physical and che mical indexes 项目ltem 指标 锆芯 ZIRCONIUM CORE 外套 COAT XF-94Z XF-95Z WG-65 ZRO2 ≥94 95 —

相关主题
文本预览
相关文档 最新文档