当前位置:文档之家› ANSYS计算温度场及应力场

ANSYS计算温度场及应力场

ANSYS计算温度场及应力场
ANSYS计算温度场及应力场

基于ANSYS有限元软件实现施工温控仿真的主要技术(1)研究方法和分析流程

本次计算利用ANSYS软件来进行象鼻岭碾压混凝土拱坝全过程温控仿真计算分析。具体分析流程如下:

1)收集资料:包括工程气象水文资料、大坝体型、热力学参数、工程进度、施工措施、防洪度汛和蓄水等。

2)整理分析资料:参数拟合、分析建模方法。

3)建模:采用ANSYS软件进行建模,划分网格。

4)编写计算批处理程序:根据资料结合模型编写计算温度场的ANSYS批处理程序。

5)检查计算批处理程序:首先检查语句,然后导入计算模型检查所加荷载效果。

6)计算温度:使用ANSYS软件温度计算模块进行计算。

7)分析温度结果:主要分析各时刻的温度场分布和典型温度特征值。

8)应力计算建模:模型结构尺寸与温度分析模型相同,需要改变把温度分析材料参数改为应力分析材料参数。

9)计算应力:使用ANSYS软件温度应力计算模块和自编的二次开发软件进行计算。

10)分析应力结果:主要分析应力场分布和典型应力特征值。

11)编写报告:对计算流程和结果实施进行提炼总结,提出可行的温控指标和措施。

(2)前处理

1)建模方法选择。

有限元建模一般有两种方法:一种为通过点线面几何拓扑的方法建模,这种建模方法精确,但是比较费时。对于较大规模的建模任务花费时间太多。另一种为通过其他软件导入,如CAD,通过在其他软件中建模,然后输出为ANSYS 可以识别的文件类型,再导入ANSYS中完成建模过程,这种建模方式精度较直接建模的精度要稍低一些,但是由于要求建模的模型已经在CAD软件中完成了

初步建模,可以直接拿来稍作处理即可应用,时间花费较少。本计算选用从CAD 软件导入ANSYS中来建立模型。

2)建模范围。

建模范围可以分为全坝段建模和单坝段建模,全坝段建模可以全面反映整个坝体的温度和应力情况,但是建模难度高、计算量大;单坝段建模建模难度小,计算量也相对较小,一般情况下单坝段建模即可满足要求。

3)施工模拟层厚。

根据已建碾压混凝土坝经验,碾压层厚一般为0.3m左右,按照0.3m一层建模是最精确的,但是如果按照0.3m一层建模,计算网格数量巨大,计算时间长,对于硬件要求较高,在硬件和时间达不到要求的情况下,按照3m一层以下精度都是可以基本满足要求的。

4)分区模拟。

由于各分区混凝土水化热差别较大,对于温度计算影响较大,因此建模要尽量反映混凝土大坝内部分区变化。基岩由于对混凝土只是导热作用,且影响范围在10m左右,因此在计算时可以认为是均质体,计算热力学参数采用靠近建基面的地层参数。

5)参数选取。

参数一般选择可研阶段的材料试验报告,如果项目部未能提供这些资料,可以在征求同意的前提下,通过查阅相关书籍,尽量采取相似工程的资料。

(3)计算

1)ANSYS计算模块。

ANSYS计算温度场模块由其自带,可以直接进入模块计算。

2)化学产热模拟。

通过ANSYS中产热命令BFE模拟。

3)边界条件模拟。

①对流边界条件通过命令SFA模拟。

②接触散热边界条件通过命令D模拟。

4)浇筑模拟。

通过ANSYS中的生死单元功能实现,初始阶段所有单元均为死单元,死单

元默认弹模为一个很小的值,其对于结构的力学性能基本没有影响。第一步先把地基激活,恢复原有材料属性;然后随着时间推移,激活每一层浇筑的混凝土,以此来模拟浇筑进程。

5)计算方法。

计算通过内部产热的外部边界条件的相互作用,计算热量在材料内部的转移过程,得到不同时刻的温度场分布。应力计算在综合考虑结构作用和荷载作用情况下,得出不同时刻的瞬时应力状态。

(4)后处理。

1)特征点温度变化曲线和温度场分布

对于内部散热较慢点、表面直接散热点和表面附近散热较快点分别取特征结点,并通过ANSYS中历时曲线绘制功能,得出其特征点温度变化曲线和温度场分布,根据其变化规律判断仿真分析是否基本合理。

2)特征点应力变化曲线和应力等值线分布

对于内部散热较慢点、表面直接散热点和表面附近散热较快点分别取特征结点,并通过ANSYS中历时曲线绘制功能,得出其特征点应力变化曲线和应力等值线分布,根据其变化规律判断仿真分析是否基本合理,提出可行的温控方案。

(5)结果分析。

按照规范要求和计算结果分析内外温差、基础温差等温控标准,同时结合有限元结果分析危险区域和危险时段,以此为依据提出合理化的温控建议和温控措施。

某工程的温度应力计算

某工程的温度应力计算 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、温差效应理论 1,局部温差不对整体结构产生影响,只考虑整体温差。 2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。 3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。 二、温差取值 对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2: 1,施工阶段最低或最高温度(T2)选取: A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影响,一般不需要计算)。 B,对地上结构,可以认为完全暴露在室外。可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。 2,施工阶段基准温度(T1)选取: 结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。因此后浇带浇注时的温度作为温差效应里的基准温度T1。

当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月份时候,这里的基准温度可取当季或当月的近十年平均气温。当施工进度无法掌握时,基准温度可取近十年月平均气温值T1= (+++++++++++)/12 =。因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。 只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。 探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。 三、混凝土长期收缩的影响 根据王梦铁的《工程结构裂缝控制》中相关计算公式和表格。 混凝土收缩是一个长期的过程,影响最终收缩量的因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。由于竖向构件的约束,水平构件的混凝土收缩会产生拉应变,这种应变可以和混凝土因温度变化产生的应变等效,可用产生等量应变的温度差(当量温差)计入混凝土收缩效应的影响。

大体积混凝土温度应力计算

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h +=(3-1) )1(**)mt c t h e c Q m T --=ρ ((3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取0.97kJ/(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取2.718; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 表3-1 不同品种、强度等级水泥的水化热

表3-2 系数m 根据公式(3-2),配合比取硅酸盐水泥360kg 计算: T h (3)=33.21 T h (7)=51.02 T h (28)=57.99 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T +=(3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃); ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; 表3-3 降温系数ξ

根据公式(3-3),T j 取25℃,ξ(t )取浇筑层厚1.5m 龄期3天6天27天计算, T 1(3)=41.32 T 1(7)=48.47 T 1(28)=27.90 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ=(3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃);

基于ANSYS软件的电机电磁场有限元分析解读

基于ANSYS软件的电机电磁场有限元分析 发表时间:2007-9-11 作者: 黄劭刚夏永洪张景明来源: 万方数据 关键字: APDL语言同步发电机电磁场有限元 介绍了应用ANSYS自带的APDL编程语言进行软件开发,将该软件应用于同步发电机空载磁场分析中,在电机的电磁场计算中实现了电机的自动旋转、自动施加载荷的功能,使用、修改方便,并且计算速度快。通过对电磁场计算结果的后处理,得出了同步发电机的旋转磁场波形和电压波形。样机测试结果验证了分析结果的正确。 1 前言 ANSYS软件是一个功能强大、灵活的,融结构、热、流体、电磁、声学于一体的大型通用有限元分析软件。广泛用于核工业、石油化工、航空航天、机械制造、土木工程等一般工业及科学研究领域的设计分析。 在实际的电机电磁场分析中,电机的转子磁极形状、定子齿槽形状、气隙大小以及铁磁材料均已确定,但是当转子相对十定子齿槽的位置不同时一,其计算结果也不相同。为了分析电机电磁场问题,若把定、转子相对位置固定不变进行求解,再对电磁场计算结果进行傅立叶级数分解来计算电机绕组的电势则误差太大。为此,需要对定、转子不同位置时一分别进行计算,然后通过电磁场的计算结果求出电机何个定子齿部磁通随转角变化的关系,然后根据磁通的变化率求出电机基波绕组的电势。ANSYS软件是目前应用最为广泛、使用最方便的通用有限元分析软件之一,应用ANSYS软件来分析电机电磁场是非常有效的。但是当采用ANSYS软件的图形用户界面( GUI)操作方式时,每次定、转子之间的旋转、网格剖分、施加载荷进行求解、查看计算结果等都需要人工进行重复操作,使用起来非常繁琐,并且效率低。为此,木文采用ANSYS软件的APDL语言编写的软件对同步发电机的空载磁场进行研究,实现了电机定、转子之间的自动旋转,自动网格剖分,自动施加载荷以及自动求解的功能。整个电磁场分析过程无需人工进行干预,使用方便,便于修改,并且大大提高了计算速度。通过对同步发电机电磁场计算结果进行后处理,得出了同步发电机的旋转磁场波形和电压波形。 2 软件实现 ANSYS软件提供了图形用户界面与命令流两种方式来分析电机电磁场问题。在电机电磁场计算中,命令流方式和图形用户界面方式相比,具有以下优点:(1)通用性好,对于同系列、同型号的电机电磁场计算只要对电机的尺寸参数进行修改即可,而采用ANSYS的图形用户界面方式进行电机电磁场计算,每次计算都要重新输入图形,没有通用性;(2)通过合理应用ANSYS的APDL语言编写一个两重循环程序就可实现转子自动旋转和自动施加励磁电流的功能,与ANSYS 的图形用户界面方式相比,减少了人机交互的次数,缩短了计算时间。 2.1软件编写

超长建筑结构温度应力分析

超长建筑结构温度应力分析 夏云峰 (上海中交水运设计研究有限公司, 上海 200092) 摘要:以郑州第二长途电信枢纽工程为例,对超长建筑结构进行整体有限元建模。针对7种不同类型温度荷载的特点,利用有限元分析程序ANSYS计算。给出了结构整体变形特点、结构中各种构件(梁、楼板、柱子及剪力墙)的温度内力变化范围以及分布规律。通过比较得出超长建筑在各种温度作用下的最不利工况。可为超长建筑结构考虑温度作用进行设计和施工提供参考。 关键词:建筑 超长建筑物 温度荷载 温度应力 St udy on t he Te mperature Stress of Super-Lengt h Buil di ng X ia Yunfeng (Shanghai Zhongji a oW ater Transportation Design Institute Co.,L t d., Shanghai 200092) Abst ract:T aking the Second Long D istance Te leco mm unication H ub Pro ject of Zhengzhou for an exa m ple,t h is paperm akesm odels of so lid fi n ite e le m ent to super-length building.A ccord- i n g to characteristics o f te mperature l o ad of7different types and usi n g t h e ANSYS fi n ite e le- m ents ana l y sis progra m,it concl u des the characteristics of the integral structura l defor m ation, the scope and distribution o f ther m a l i n ner force o f different co mponents,such as bea m,floor slab,pillar and shear w a l.l A fter contrasti n g,it su m s up the w orse w orking cond ition for super -length bu il d i n g under d ifferent te m peratures,wh ich cou ld prov ide references to the design and constr uction o f super-length bu il d i n g by consi d ering te m perature acti o ns. K ey w ords:constructi o n super-leng t h buil d i n g te m perature load te m perature stress 建筑工程中,混凝土结构的裂缝较为普遍,类型也很多,按成因可归结为由外荷和变形引起的两大类裂缝。其中由混凝土收缩和温度变形引起的收缩裂缝和温度裂缝,以及由这两种变形共同引起的温度收缩裂缝,则是实际工程中最常见的裂缝。随着建筑向大型化和多功能发展,超长(即超过温度伸缩缝间距)高层或大柱网建筑不断出现。对超长结构的温度变形与温度应力,若在结构设计中处理不当,将使结构产生裂损,严重影响建筑结构的正常使用。我国的建筑结构设计规范中不考虑温度作用[1],只做构造处理。因此,温度应力是超长建筑结构设计中的重要研究课题之一。1 超长高层建筑结构温度问题有限元建模研究 结合工程实例,分析建筑结构各个阶段温度作用的特点,完善温度作用和温差取值的计算原则,并选出在工程设计中起控制作用的温差取值,方便设计采用。根据实际情况建立超长建筑结构的有限元分析模型,采用有限元分析程序ANSYS 有限元计算程序,进行结构整体分析。 郑州第二长途电信枢纽工程主体为超长高层建筑结构。主楼地下1层,地上主体19层。19层之上局部突起2层。柱网9.6 12m,主体结构东西长134m。由于功能要求建筑中间不设缝,南 10 港口科技 港口建设

ANSYS计算温度场及应力场

基于ANSYS有限元软件实现施工温控仿真的主要技术(1)研究方法和分析流程 本次计算利用ANSYS软件来进行象鼻岭碾压混凝土拱坝全过程温控仿真计算分析。具体分析流程如下: 1)收集资料:包括工程气象水文资料、大坝体型、热力学参数、工程进度、施工措施、防洪度汛和蓄水等。 2)整理分析资料:参数拟合、分析建模方法。 3)建模:采用ANSYS软件进行建模,划分网格。 4)编写计算批处理程序:根据资料结合模型编写计算温度场的ANSYS批处理程序。 5)检查计算批处理程序:首先检查语句,然后导入计算模型检查所加荷载效果。 6)计算温度:使用ANSYS软件温度计算模块进行计算。 7)分析温度结果:主要分析各时刻的温度场分布和典型温度特征值。 8)应力计算建模:模型结构尺寸与温度分析模型相同,需要改变把温度分析材料参数改为应力分析材料参数。 9)计算应力:使用ANSYS软件温度应力计算模块和自编的二次开发软件进行计算。 10)分析应力结果:主要分析应力场分布和典型应力特征值。 11)编写报告:对计算流程和结果实施进行提炼总结,提出可行的温控指标和措施。 (2)前处理 1)建模方法选择。 有限元建模一般有两种方法:一种为通过点线面几何拓扑的方法建模,这种建模方法精确,但是比较费时。对于较大规模的建模任务花费时间太多。另一种为通过其他软件导入,如CAD,通过在其他软件中建模,然后输出为ANSYS 可以识别的文件类型,再导入ANSYS中完成建模过程,这种建模方式精度较直接建模的精度要稍低一些,但是由于要求建模的模型已经在CAD软件中完成了

初步建模,可以直接拿来稍作处理即可应用,时间花费较少。本计算选用从CAD 软件导入ANSYS中来建立模型。 2)建模范围。 建模范围可以分为全坝段建模和单坝段建模,全坝段建模可以全面反映整个坝体的温度和应力情况,但是建模难度高、计算量大;单坝段建模建模难度小,计算量也相对较小,一般情况下单坝段建模即可满足要求。 3)施工模拟层厚。 根据已建碾压混凝土坝经验,碾压层厚一般为0.3m左右,按照0.3m一层建模是最精确的,但是如果按照0.3m一层建模,计算网格数量巨大,计算时间长,对于硬件要求较高,在硬件和时间达不到要求的情况下,按照3m一层以下精度都是可以基本满足要求的。 4)分区模拟。 由于各分区混凝土水化热差别较大,对于温度计算影响较大,因此建模要尽量反映混凝土大坝内部分区变化。基岩由于对混凝土只是导热作用,且影响范围在10m左右,因此在计算时可以认为是均质体,计算热力学参数采用靠近建基面的地层参数。 5)参数选取。 参数一般选择可研阶段的材料试验报告,如果项目部未能提供这些资料,可以在征求同意的前提下,通过查阅相关书籍,尽量采取相似工程的资料。 (3)计算 1)ANSYS计算模块。 ANSYS计算温度场模块由其自带,可以直接进入模块计算。 2)化学产热模拟。 通过ANSYS中产热命令BFE模拟。 3)边界条件模拟。 ①对流边界条件通过命令SFA模拟。 ②接触散热边界条件通过命令D模拟。 4)浇筑模拟。 通过ANSYS中的生死单元功能实现,初始阶段所有单元均为死单元,死单

温度应力计算

第四节 温度应力计算 一、温度对结构的影响 1 温度影响 (1)年温差影响 指气温随季节发生周期性变化时对结构物所引起的作用。 假定温度沿结构截面高度方向以均值变化。则 12t t t -=? 12t t t -=?该温差对结构的影响表现为: 对无水平约束的结构,只引起结构纵向均匀伸缩; 对有水平约束的结构,不仅引起结构纵向均匀伸缩,还将引起结构内温度次内力; (2)局部温差影响 指日照温差或混凝土水化热等影响。 A :混凝土水化热主要在施工过程中发生的。 混凝土水化热处理不好,易导致混凝土早期裂缝。 在大体积混凝土施工时,混凝土水化热的问题很突出,必须采取措施控制过高的温度。如埋入水管散热等。 B :日照温差是在结构运营期间发生的。 日照温差是通过各种不同的传热方式在结构内部形成瞬时的温度场。 桥梁结构为空间结构,所以温度场是三维方向和时间的函数,即: ),,,(t z y x f T i = 该类三维温度场问题较为复杂。在桥梁分析计算中常采用简化近似方法解决。 假定桥梁沿长度方向的温度变化为一致,则简化为二维温度场,即: ),,(t z x f T i = 进一步假定截面沿横向或竖向的温度变化也为一致,则可简化为一维温度场。如只考虑竖向温度变化的一维温度场为: ),(t z f T i = 我国桥梁设计规范对结构沿梁高方向的温度场规定了有如下几种型式:

2 温度梯度f(z,t) (1)线性温度变化 梁截面变形服从平截面假定。 对静定结构,只引起结构变形,不产生温度次内力; 对超静定结构,不但引起结构变形,而且产生温度次内力; (2)非线性温度变化 梁在挠曲变形时,截面上的纵向纤维因温差的伸缩受到约束,从而产 。 生约束温度应力,称为温度自应力σ0 s 对静定结构,只产生截面的温度自应力; 对超静定结构,不但产生截面的温度自应力,而且产生温度次应力; 二、基本结构上温度自应力计算 1 计算简图 2 3 ε 和χ的计算 三、连续梁温度次内力及温度次应力计算 采用结构力学中的力法求解。

ANSYS热应力分析经典例题

ANSYS热应力分析例题 实例1圆简内部热应力分折: 有一无限长圆筒,其核截面结构如图13—1所示,简内壁温度为200℃,外壁温度为20℃,圆筒材料参数如表13.1所示,求圆筒内的温度场、应力场分布。 该问题属于轴对称问题。由于圆筒无限长,忽略圆筒端部的热损失。沿圆筒纵截面取宽度为10M的如图13—2所示的矩形截面作为几何模型。在求解过程中采用间接求解法和直接求解法两种方法进行求解。间接法是先选择热分析单元,对圆筒进行热分析,然后将热分析单元转化为相应的结构单元,对圆筒进行结构分析;直接法是采用热应力藕合单元,对圆筒进行热力藕合分析。 /filname,exercise1-jianjie /title,thermal stresses in a long /prep7 $Et,1,plane55 Keyopt,1,3,1 $Mp,kxx,1,70 Rectng,0.1,0.15,0,0.01 $Lsel,s,,,1,3,2 Lesize, all,,,20 $Lsel,s,,,2,4,2 Lesize,all,,,5 $Amesh,1 $Finish /solu $Antype,static Lsel,s,,,4 $Nsll,s,1 $d,all,temp,200 lsel,s,,,2 $nsll,s,1 $d,all,temp,20 allsel $outpr,basic,all solve $finish /post1 $Set,last /plopts,info,on Plnsol,temp $Finish /prep7 $Etchg,tts Keyopt,1,3,1 $Keyopt,1,6,1 Mp,ex,1,220e9 $Mp,alpx,,1,3e-6 $Mp,prxy,1,0.28 Lsel,s,,,4 $Nsll,s,1 $Cp,8,ux,all Lsel,s,,,2 $Nsll,s,1 $Cp,9,ux,all Allsel $Finish /solu $Antype,static D,all,uy,0 $Ldread,temp,,,,,,rth Allsel $Solve $Finish /post1 /title,radial stress contours Plnsol,s,x /title,axial stress contours Plnsol,s,y /title,circular stress contours Plnsol,s,z /title,equvialent stress contours Plnsol,s,eqv $finish

超长结构温度应力分析与控制措施

超长结构温度应力分析与控制措施 摘要:随着人们对建筑物使用功能的要求越来越高,一些公共建筑正逐渐向大 型化、舒适化发展,大量超长、超宽的大型公共建筑随之涌现。由于季节变化的 影响,超长结构的温度应力问题会导致混凝土楼板产生裂缝,严重影响建筑的使 用功能和结构安全,因此温度作用在设计中必须予以考虑。本文以某钢筋混凝土 框架-剪力墙结构为例,对超长结构的温度应力问题采用有限元分析程序MidasGen进行了计算分析并给出了控制措施。 关键词:超长结构;温度应力;后浇带;有限元分析 1、前言 超长结构,由于季节变化等因素的影响,会让超长结构的混凝土发生变形, 当混凝土的变形受到墙体等构件的约束,楼板内便会产生较大的温度应力,当温 度应力高出混凝土的抗拉强度时,就会导致混凝土楼板会产生裂缝,通常情况下,若在结构中采用低收缩混凝土材料、设置后浇带以及采用预应力钢筋等措施时, 温度应力及收缩应力对结构的影响一般可以忽略。但超长混凝土结构中,如若不 进行合理的温度效应控制,柱、墙等竖向构件将产生显著的温度内力,影响结构 的承载能力;楼板则很有可能开裂并形成有害的贯通裂缝,对建筑防水和结构的 耐久性很不利,影响建筑的正常使用,因此,如何降低温度应力的影响是超长结 构设计的关键问题。 2、工程概况 某五星级酒店主楼部分采用钢筋混凝土框架-剪力墙结构,楼盖采用现浇钢 筋混凝土梁板体系,底部裙楼为两层宴会大厅,并设有斜圆柱形主出入口。框架 柱截面尺寸600mmx600mm~900mmx1200mm,墙截面尺寸200~500mm。 现行GB50010-2010《混凝土结构设计规范》中对房屋建筑工程结构伸缩缝 的最大间距做如下规定:对于现浇式结构,普通砖混结构50m,框架结构55m, 剪力墙结构45m,框架-剪力墙结构根据框架和剪力墙的具体布置情况取45~55m 之间,通常可取50m。该酒店结构不设缝轴线尺寸为167.2m,超过了规范要求。 3、温度工况 (1)温度荷载。假设该建筑从当年7月开始地上部分施工,第1~3层施工分 别需要一个月,从4层开始每层半个月,至次年二月半完工。按照该假定施加的 温度荷载始终为降温作用,为最不利工况。 (2)有限元模型。针对温度应力建立四组模型(M0、M1、M2、M3),均考虑施 工模拟和收缩徐变的作用;其中,部分模型考虑了地下室顶板的转动弹性嵌固, 弹簧刚度计算按照柱所连接的梁柱刚度进行计算,为近似值。模型的具体设计参 数见表1所示。 结构二层的后浇带设置如图1所示,其余各层M0、M1、M2后浇带设置均同;M3与 M2相比,仅在结构第二层增设后浇带c,其余部位后浇带设置均同M0~M2模型。温度有 限元模型为保证结构成立,将一跨内的所有次梁和板均设置为后浇带。 4、温度应力分析 本工程采用有限元分析程序MidasGen对本模型进行温度应力计算分析,分别探讨温度应力对框剪结构中的柱、剪力墙、梁板等主要构件的影响,并给出控制措施及建议。 (1)柱内力。通过对比框架柱主要集中区域的温度应力,其中:①主楼最外侧柱(区域1);

ANSYS热应力分析实例

ANSYS热应力分析实例 当一个结构加热或冷却时,会发生膨胀或收缩。如果结构各部分之间膨胀收缩程度不同,和结构的膨胀、收缩受到限制,就会产生热应力。 7.1热应力分析的分类 ANSYS提供三种进行热应力分析的方法: 在结构应力分析中直接定义节点的温度。如果所以节点的温度已知,贝U可以 通过命令直接定义节点温度。节点温度在应力分析中作为体载荷,而不是节点自由度 间接法。首先进行热分析,然后将求得的节点温度作为体载荷施加在结构应力分析中。 直接法。使用具有温度和位移自由度的耦合单元,同时得到热分析和结构应力分析的结果。 如果节点温度已知,适合第一种方法。但节点温度一般是不知道的。对于大多数问题,推荐使用第二种方法一间接法。因为这种方法可以使用所有热分析的功能和结构分析的功能。如果热分析是瞬态的,只需要找出温度梯度最大的时间点,并将此时间点的节点温度作为荷载施加到结构应力分析中去。如果热和结构的耦合是双向的,即热分析影响结构应力分析,同时结构变形又会影响热分析(如大变形、接触等),则可以使用第三种直接法一使用耦合单元。此外只有第三种方法可以考虑其他分析领域(电磁、流体等)对热和结构的影响。 7.2间接法进行热应力分析的步骤 首先进行热分析。可以使用热分析的所有功能,包括传导、对流、辐射和表面效应单元等,进行稳态或瞬态热分析。但要注意划分单元时要充分考虑结构分析的要求。例如,在有可能有应力集中的地方的网格要密一些。如果进行瞬态分析,在后处理中要找出热梯度最大的时间点或载荷步。 表7-1热单元及相应的结构单元

重新进入前处理,将热单元转换为相应的结构单元,表7-1是热单元与结构 单元的对应表。可以使用菜单进行转换: Mai n Menu>Prep roeessor>Eleme nt Typ e>Switeh Eleme nt Type ,选择Thermal to Struetual 。 但要注意设定相应的单元选项。例如热单元的轴对称不能自动转换到结构单元中,需要手工设置一下。在命令流中,可将原热单元的编号重新定义为结构单元,并设置相应的单元选项。 设置结构分析中的材料属性(包括热膨胀系数)以及前处理细节,如节点耦 合、约束方程等。 读入热分析中的节点温度, GUI: Solution>Load Apply>Temperature>From Thermal Analysis 。输入或选择热分析的结果文件名*.rth。如果热分析是瞬态的,则还需要输入热梯度最大时的时间点或载荷步。节点温度是作为体载荷施加的,可通过Utility Men u>List>Load>Body Load>On all nodes 列表输出。 设置参考温度,Mai n Men u>Solutio n>Load Setti ng>Refere nee Temp 。 进行求解、后处理。 7.3间接法热应力分析实例 7.3.1 问题描述 图7-1冷却栅示意图

ansys分析电磁场

三维螺线管静态磁场分析 要求计算螺线管,如下图所示,衔铁所受磁力,线圈为直流激励,产生力驱动衔铁。线圈电流为6A,500匝。由于对称性,只分析1/4的模型,如图1所示: 图1螺线管制动器 在仿真分析时,空气相对磁导系数为1.0;使用智能网格划分(LVL=8);设定全部面为通量平行,这是自然边界条件,自动得到满足。因为是采用的1/4对称模型,所以磁力的计算结果要乘以4。

施加边界条件: ! /SOLU D,2,MAG,0 ! !SOLVE ! ALLSEL,ALL MAGSOLV,3,,,,,1 FINISH ! 建立的模型如下图所示:

对模型进行智能网格划分,如下图所示: 仿真分析所得磁场强度分布图为:

衔铁所受磁力分布图为: 衔铁所受磁力分布图为:

计算所得衔铁所受磁力为: SUMMARY OF FORCES BY VIRTUAL WORK Load Step Number: 2. Substep Number: 1. Time: 0.2000E+01 Units of Force: ( N ) Component Force-X Force-Y Force-Z ARM 0.14339E+02 0.11359E+02 -0.12846E+02 ___________________________________________________ SUMMARY OF FORCES BY MAXWELL STRESS TENSOR Units of Force: ( N ) Component Force-X Force-Y Force-Z ARM 0.79007E+01 0.55769E+01 -0.11511E+02 _____________________________________________________ Note: Maxwell forces are in the Global Cartesian coordinate system. Virtual work forces are in the element ESYS coordinate system.

工程的温度应力计算

一、温差效应理论 1,局部温差不对整体结构产生影响,只考虑整体温差。 2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。 3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。 二、温差取值 对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2: 1,施工阶段最低或最高温度(T2)选取: A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影响,一般不需要计算)。 B,对地上结构,可以认为完全暴露在室外。可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。 2,施工阶段基准温度(T1)选取: 结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。因此后浇带浇注时的温度作为温差效应里的基准温度T1。 当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月

份时候,这里的基准温度可取当季或当月的近十年平均气温。当施工进度无法掌握时,基准温度可取近十年月平均气温值T1=(0.0+2.4+6.4+11.9+17.0+20.9+24.4+25.2+22.1+16.9+9.2+3.5)/12 =13.3。因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。 只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。 探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。 三、混凝土长期收缩的影响 根据王梦铁的《工程结构裂缝控制》中相关计算公式和表格。 混凝土收缩是一个长期的过程,影响最终收缩量的因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。由于竖向构件的约束,水平构件的混凝土收缩会产生拉应变,这种应变可以和混凝土因温度变化产生的应变等效,可用产生等量应变的温度差(当量温差)计入混凝土收缩效应的影响。 参考王梦铁的《工程结构裂缝控制》中的相关计算方法,混凝土收缩应变的形式和发展与混凝土龄期密切相关,任意时间t (天数)时混凝土已完成的收缩应变为:)1(1024.3)1(1024.3)(01.042101.04t n t y e M M M e t -----?≈???-?=ε

温度应力计算

6.1混凝土施工裂缝控制6.1.1混凝土温度的计算 ①混凝土浇筑温度:T j =T c +(T q -T c )×(A 1 +A 2 +A 3 +……+A n ) 式中:T c —混凝土拌合温度(℃),按多次测量资料,在没有冷却措施的条件下,有日照时混凝土拌合温度比当时温度高5-7 ℃,无日照时混凝土拌 合温度比当时温度高2-3 ℃,我们按3 ℃计;、 T q —混凝土浇筑时的室外温度(考虑最夏季最不利情况以30 ℃计); A 1、A 2 、A 3 ……A n —温度损失系数,A 1 —混凝土装、卸,每次A=0.032(装 车、出料二次);A 2 —混凝土运输时,A=θt查文献[5]P 33表3-4得6 m3滚动式搅拌车运输θ=0.0042,运输时 间t约30分钟,A=0.0042×30=0.126;A 3 —浇捣过程中A=0.003t, 浇捣时间t约240min, A=0.003× 240=0.72; T j =33+(T q -T c )×(A 1 +A 2 +A 3 )=33+(30-33)×(0.032×2+0.126+0.72) =33+(-3)×0.91=30.27 ℃ ②混凝土的绝热温升:T(t)=W×Q×(1-e-mt)/(C×r) 式中:T(t)—在t龄期时混凝土的绝热温升(℃); W—每m3混凝土的水泥用量(kg/m3),取350kg/m3; Q—每公斤水泥28天的累计水化热(KJ/kg), 采用425号矿渣水泥Q =335kJ/kg(文献[5] P 14 表2-1); C—混凝土比热0.97 KJ/(kg·K) ; r—混凝土容重2400 kg/m3; e—常数,2.71828; m—与水泥品种、浇筑时温度有关,可查文献[5]P 35 表3-5; t—混凝土龄期(d)。 混凝土最高绝热温升T h =W×Q/(C×r)=350×335/(0.97×2400)=50.37(℃) ③混凝土内部中心温度:T max (t)=T j + T 1 (t) 式中:T max (t)—t龄期混凝土内部中心温度; T j —混凝土浇筑温度(℃);

工程的温度应力计算

工程的温度应力计算文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

一、温差效应理论 1,局部温差不对整体结构产生影响,只考虑整体温差。 2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。 3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。 二、温差取值 对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2: 1,施工阶段最低或最高温度(T2)选取: A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影 响,一般不需要计算)。 B,对地上结构,可以认为完全暴露在室外。可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。 2,施工阶段基准温度(T1)选取: 结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。因此后浇带浇注时的温度作为温差效应里的基准温度T1。

当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月份时候,这里的基准温度可取当季或当月的近十年平均气温。当施工进度无法掌握时,基准温度可取近十年月平均气温值T1= (0.0+2.4+6.4+11.9+17.0+20.9+24.4+25.2+22.1+16.9+9.2+3.5)/12 =13.3。因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。 表1 2000年~2009年青岛月平均气温 只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。 探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。 三、混凝土长期收缩的影响 根据王梦铁的《工程结构裂缝控制》中相关计算公式和表格。 混凝土收缩是一个长期的过程,影响最终收缩量的因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。由于竖向构件

大体积混凝土温度应力计算

大体积混凝土温度应力计 算 Last revision on 21 December 2020

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h += (3-1) )1(**)mt c t h e c Q m T --=ρ ( (3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 T h (3)= T h (7)= T h (28)= 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T += (3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃);

ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; j (t )T 1(3)= T 1(7)= T 1(28)= 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ= (3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃); λ——混凝土导热系数,取(m ·K); T max ——计算的混凝土最高温度(℃); 计算时可取T 2-T q =15~20℃,T max -T 2=20~25℃; K b ——传热系数修正值,取~,查表3-5。

超长结构温度应力计算探讨

超长结构温度应力计算探讨 一、温度作用的特点: 温度作用是在规定时期内结构或结构构件由于温度场变化所引起的作用,具有以下特点:1)温度作用是由结构材料“热胀冷缩”效应被结构内、外约束阻碍而在结构内产生的内力作用,属于间接作用;2)温度作用随外界环境的变化而变化,有明显的时间性,属于可变作用;3)建筑结构从开始建造到拆除都会受到所处温度场影响,因而温度作用伴随着结构的生命全周期过程;4)引起结构温度变化因素很多,有气候季节变化、太阳暴晒辐射和其它人为因素(如火灾)等,诱因多样性使温度作用有别于其它(荷载)作用。 二、温度作用的规范规定: 2.1什么时候需要进行温度作用计算 根据温度作用的特点可知,结构中产生的温度作用大小主要与结构材料线膨胀系数和结构长度有关。表1为常用材料线膨胀系数αT,可见结构钢和混凝土的线膨胀系数非常接近。正因为如此,在计算钢筋混凝土结构的温度作用时才可以只按混凝土一种材料近似考虑。材料确定的情况下,长度越长,温度作用越大。 在完全没有约束的情况下,总长为100m、截面为600x600的普通混凝土梁温度每升高或降低20℃,梁长度将增加或减少20mm; 如果端部的变形完全受到约束,将在梁内部产生约2160KN(按强

度等级为C30计算)的轴向压力或拉力,该力约为混凝土轴向抗拉强度标准值的3倍。 T 实际结构不可能没有约束,总会在结构中产生温度应力,当结构长度较小时,可忽略温度应力和温度变形对结构的影响。现行规范根据不同的结构形式给出该长度(温度区段长度)经验值,详见表2,当结构超出该长度时才有必要进行温度作用计算。 表2: 钢筋混凝土结构伸缩缝最大间距(m) 建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。当结构或构件在温度作用和其他可能组合的荷载共同作用下产生的效应(应力或变形)可能超过承载能力极限状态或正常使用极限状态时,比如结构某一方向平面尺寸超过伸缩缝最大间距或温度区段长度、结构约束较大、房屋高度较高等,结构设计中一般应考虑温度作用。

ANSYS热应力分析命令流

/FILNAME,Double,1 !定义工作文件名。 /TITLE,Temperature Analysis !定义工作标题。 !* /PREP7 !定义单元。 ET,1,SOLID70 !* !定义材料属性。 MPTEMP,,,,,,,, !定义材料1。 MPTEMP,1,0 MPDATA,KXX,1,,238*3.6 !定义材料1的传热系数KXX1。MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,C,1,,500 !定义材料1的比热C1。MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,DENS,1,,3e-6 !定义材料1密度DENS1。 !* MPTEMP,,,,,,,, !定义材料2。 MPTEMP,1,0 MPDATA,KXX,2,,15*3.6 !定义材料2的传热系数KXX2。MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,C,2,,100 !定义材料2的比热C2。MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,DENS,2,,2.2e-6 !定义材料2密度DENS2。 !* !建立几何模型。 BLC4,-80,-10,160,20,700 VOFFST,3,20, , !* !网格划分。 FLST,5,20,4,ORDE,2 FITEM,5,1 FITEM,5,-20 CM,_Y,LINE LSEL, , , ,P51X

CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1,10, , , , , , ,1 !定义网格大小。 !* TYPE, 1 MAT, 1 REAL, ESYS, 0 SECNUM, CM,_Y,VOLU VSEL, , , , 1 CM,_Y1,VOLU CHKMSH,'VOLU' CMSEL,S,_Y VSWEEP,_Y1 CMDELE,_Y CMDELE,_Y1 CMDELE,_Y2 TYPE, 1 MAT, 2 REAL, ESYS, 0 SECNUM, CM,_Y,VOLU VSEL, , , , 2 CM,_Y1,VOLU CHKMSH,'VOLU' CMSEL,S,_Y VSWEEP,_Y1 CMDELE,_Y CMDELE,_Y1 CMDELE,_Y2 !定义网格大小完成。 !* FINISH /SOL ANTYPE,4 !定义瞬态分析类型。

大体积混凝土温度应力计算

大体积混凝土温度应力 计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h += (3-1) )1(**)mt c t h e c Q m T --=ρ ( (3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 T h (3)= T h (7)= T h (28)= 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T += (3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃);

ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; j (t )T 1(3)= T 1(7)= T 1(28)= 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ= (3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃); λ——混凝土导热系数,取(m ·K); T max ——计算的混凝土最高温度(℃); 计算时可取T 2-T q =15~20℃,T max -T 2=20~25℃; K b ——传热系数修正值,取~,查表3-5。

相关主题
文本预览
相关文档 最新文档