当前位置:文档之家› 钻井液的考试内容(含答案)

钻井液的考试内容(含答案)

钻井液的考试内容(含答案)
钻井液的考试内容(含答案)

LED几个重要性能指标分析

LED几个重要性能指标分析 一、LED的颜色 LED的颜色是一项非常重要的指标,是每一个LED相关灯具产品必须标明,目前LED的颜色主要有红色、绿色、蓝色、青色、黄色、白色、暖白、琥珀色等。在我们设计和接单的时候这个参数是千万不能忘记的(尤其是初学者).因为颜色不同,相关的参数也有很大的变化。 二、LED的电流 LED的正向极限(IF)电流多在20MA,而且LED的光衰电流不能大于IF/3,大约15MA和18MA。LED的发光强度仅在一定范围内与IF成正比,当IF>20MA时,亮度的增强已经无法用内眼分出来。因此,LED的工作电流一般选在17—19MA左右比较合理.前面所针对是普通小功率LED()之间的LED而言,但有些食人鱼LED除外(有些在40MA左右的额定值)。 除着技术的不断发展,大功率的LED也不断出现如(IF=150MA),1WLED(IF=350MA),3WLED(IF=750MA)还有其它更多的规格,我不一一进行介绍,你们可以自己去查LED手册。 三、LED的电压 通常所说的LED是正向电压,就是说LED的正极接电源正极,负极接电源负极。电压与颜色有关系,红、黄、黄绿的电压是—之间。白、蓝、翠绿的电压是—之间,这里笔者要提醒的是,同一批生产出的LED电压也会有一些差异,要根据厂家提供的为准,在外界温度升高时,VF将会下降。 四、LED的反向电压VRm 允许增加的最大反向电压。超过数值,发光二极管可能被击穿损坏。 五、LED的色温 以绝对温度K来表示,即将一标准黑体加热,温度升高到一定程度时颜色开始由深红—浅红—橙黄—白—蓝,逐渐改变,某光源与黑体的颜色相同时,将黑体当时的绝对温度称为该光源之色温。 因相关色温度事实上是以黑体辐射接近光源光色时,对该光源光色表现的评价值,并非一种精确的颜色对比,故具相同色温值的二光源,可能在光色外观上仍有些许差异。仅凭色温无法了解光源对物体的显色能力,或在该光源下物体颜色的再现如何。 六、发光强度(I、Intensity) 单位坎德拉,即cd。光源在给定方向的单位立体角中发射的光通量定义为光源在该方向的(发)光强(度),发光强度是针对点光源而言的,或者发光体的大小与照射距离相比比较小的场合。这个量是表明发光体在空间发射的会聚能力的。可以说,发光强度就是描述了光源到底有多“亮”,因为它是光功率与会聚能力的一个共同的描述。发光强度越大,光源看起来就越亮,同时在相同条件下被该光源照射后的物体也就越亮,因此,早些时候描述手电都用这个参数。 现在LED也用这个单位来描述,比如某LED是15000的,单位是mcd,1000mcd=1cd,因此15000mcd就是15cd。之所以LED用毫cd(mcd)而不直接用cd来表示,是因为以前最早LED比较暗,比如1984年标准5mm的LED其发光强度才,因此才用mcd表示。 用发光强度来表示“亮度”的缺点是,如果管芯完全一样的两个LED,会聚程度好的发光强度就高。因此,用户在购买LED的时候不要只关注高I值,还要看照射角度。很多高I值的LED并非提高自身的发射效率来达到,而是把镜头加长照射角度变窄而实现,这尽管对LED手电有用,但可观察角度也受限。另外,同样的管芯LED,直径5mm的I值就比3mm的大一倍多,但只有直径10mm的1/4,因为透镜越大会聚特性就越好。

钻井液组成及作用

钻井液(drilling fluid) 钻井液是钻探过程中,孔内使用的循环冲洗介质。钻井液是钻井的血液,又称钻孔冲洗液。钻井液按组成成分可分为清水、泥浆、无粘土相冲洗液、乳状液、泡沫和压缩空气等。清水是使用最早的钻井液,无需处理,使用方便,适用于完整岩层和水源充足的地区。泥浆是广泛使用的钻井液,主要适用于松散、裂隙发育、易坍塌掉块、遇水膨胀剥落等孔壁不稳定岩层。 旋转钻井初期,钻井液的主要作用是把岩屑从井底携带至地面。目前,钻井液被公认为至少有以下十种作用: (1)清洁井底,携带岩屑。保持井底清洁,避免钻头重复切削,减少磨损,提高效率。 (2)冷却和润滑钻头及钻柱。降低钻头温度,减少钻具磨损,提高钻具的使用寿命。 (3)平衡井壁岩石侧压力,在井壁形成滤饼,封闭和稳定井壁。防止对油气层的污染和井壁坍塌。 (4)平衡(控制)地层压力。防止井喷,井漏,防止地层流体对钻井液的污染。 (5)悬浮岩屑和加重剂。降低岩屑沉降速度,避免沉沙卡钻。 (6)在地面能沉除砂子和岩屑。 (7)有效传递水力功率。传递井下动力钻具所需动力和钻头水力功率。 (8)承受钻杆和套管的部分重力。钻井液对钻具和套管的浮力,可减小起下钻时起升系统的载荷。 (9)提供所钻地层的大量资料。利用钻井液可进行电法测井,岩屑录井等获取井下资料。 (10)水力破碎岩石。钻井液通过喷嘴所形成的高速射流能够直接破碎或辅助破碎岩石。 钻井液的运用历史 很久以前,人们钻井通常是为了寻找水源,而不是石油。实际上,他们偶然间发现石油时很懊恼,因为它把水污染了!最初,钻井是为了获得淡水和海水,前者用于饮用、洗涤和灌溉;后者用作制盐的原料。直到19 世纪早期,由于工业化增加了对石油产品的需求,钻井采油才逐渐普及。 有记载的最早的钻井要追溯到公元前三世纪的中国。他们使用一种叫做绳式顿钻钻井的技术,实现方式是先使巨大的金属钻具下落,然后用一种管状容器收集岩石的碎片。中国人在这项技术上比较领先,中国也被公认为是第一个在钻探过程中有意使用流体的国家。此处所讲的流体是指水。它能软化岩石,从而使钻具更容易穿透岩石,同时有助于清除被称作钻屑的岩石碎片。(从钻孔中清除钻屑这一点非常重要,因为只有这样,钻头才能没有阻碍地继续深钻。)

第八章 水基钻井液滤液化学分析

第八章水基钻井液滤液化学分析 一、氯离子含量的测定 钻遇岩盐层或盐水层时,NaCl等无机盐会进入钻井液造成污染,使其性能变坏,因此需要检测钻井液滤液中Cl-浓度。检测方法,取1毫升钻井液滤液,用0.0282M 标准AgNO3溶液滴定,指示剂为K2CrO4,当试样中出现橘红色Ag2CrO4沉淀时为终点。 1、仪器和试剂 (1)硝酸银溶液 : 浓度为0.0282N和0.2820N ; (2)铬酸钾溶液 : 5g/100 ml水; (3)硫酸或硝酸溶液: 0.02N 标准溶液; (4)酚酞指示剂:将1g酚酞溶于100 ml浓度为50%的酒精水溶液中配制而成; (5)沉淀碳酸钙:化学纯; (6)蒸馏水; (7)带刻度的移液管: 1 ml和10 ml的各一支; (8)锥形瓶: 100-150 ml,白色。 (9)搅拌棒。 2、测定步骤 (1)取1ml或几ml滤液于滴定瓶中,加2~3滴酚酞溶液。如果显示粉红色,则边搅拌边用移液管逐滴加入酸,直至粉红色消失。如果滤液的颜色较深,则 先加入2 ml 0.2N硫酸或硝酸并搅拌,然后再加入1g碳酸钙并搅拌。(现 场实际操作中此步意义不大,粗略测定情况下此步可省略)(2)加入25-50 ml蒸馏水和5-10滴铬酸钾指示剂。在不断搅拌下,用滴定管或移液管逐滴加入硝酸银标准溶液,直至颜色由黄色变为橙红色并能保持30s 为止。记录达到终点所消耗的硝酸银的ml数。如果硝酸银溶液用量超过10 ml,则取少一些滤液进行重复测定。如果滤液中的氯离子浓度超过 1000mg/l,应使用0.2820N的浓度的硝酸银溶液。 3、计算 AgNO3 + CL-→ AgCL↓ + NO3- 如果取样1ml滤液,用0.282N当量浓度的AgNO3的标准溶液滴定,0.282N当量浓度的AgNO3摩尔浓度为0.282 mol/L,硝酸银和氯离子反应的关系是1:1,假如滴定时消耗Xml的硝酸银,就消耗了0.282*X mol的硝酸银,就说明有0.282X mol的CL-,在把它转换成自量浓度mg/L,就成了0.282*X*35.45*1000mg/L。(其中35.45为CL-的摩尔质量分数,1000为ml到L的换算系数)

频谱分析仪基础知识性能指标和实用技巧

频谱分析仪基础知识性能指标及实用技巧 频谱分析仪是用来显示频域幅度的仪器,在射频领域有“射频万用表”的美称。在射频领域,传统的万用表已经不能有效测量信号的幅度,示波器测量频率很高的信号也比较困难,而这正是频谱分析仪的强项。本讲从频谱分析仪的种类与应用入手,介绍频谱分析仪的基本性能指标、操作要点和使用方法,供初级工程师入门学习;同时深入总结频谱分析仪的实用技巧,对频谱分析仪的常见问题以Q/A的形式进行归纳,帮助高级射频的工程师和爱好者进一步提高。 频谱分析仪的种类与应用 频谱分析仪主要用于显示频域输入信号的频谱特性,依据信号方式的差异分为即时频谱分析仪和扫描调谐频谱分析仪两种。完成频谱分析有扫频式和FFT两种方式:FFT适合于窄分析带宽,快速测量场合;扫频方式适合于宽频带分析场合。 即时频谱分析仪可在同一时间显示频域的信号振幅,其工作原理是针对不同的频率信号设置相对应的滤波器与检知器,并经由同步多工扫瞄器将信号输出至萤幕,优点在于能够显示周期性杂散波的瞬时反应,但缺点是价格昂贵,且频宽范围、滤波器的数目与最大多工交换时间都将对其性能表现造成限制。 扫瞄调谐频谱分析仪是最常用的频谱分析仪类型,它的基本结构与超外差式器类似,主要工作原理是输入信号透过衰减器直接加入混波器中,可调变的本地振荡器经由与CRT萤幕同步的扫瞄产生器产生随时间作线性变化的振荡频率,再将混波器与输入信号混波降频后的中频信号放大后、滤波与检波传送至CRT萤幕,因此CRT萤幕的纵轴将显示信号振幅与频率的相对关系。 基于快速傅立叶转换(FFT)的频谱分析仪透过傅立叶运算将被测信号分解成分立的频率分量,进而达到与传统频谱分析仪同样的结果。新型的频谱分析仪采用数位,直接由类比/数位转换器(ADC)对输入信号取样,再经傅立叶运算处理后而得到频谱分布图。 频谱分析仪透过频域对信号进行分析,广泛应用于监测电磁环境、无线电频谱监测、电子产品电磁兼容测量、无线电发射机发射特性、信号源输出信号品质、反无线窃听器等领域,是从事电子产品研发、生产、检验的常用工具,特别针对无线通讯信号的测量更是必要工具。另外,由于频谱仪具有图示化射频信号的能力,频谱图可以帮助我们了解信号的特性和类型,有助于最终了解信号的调制方式和机的类型。在军事领域,频谱仪在电子对抗和频谱监测中

第6章钻井液设计

第8章钻井液设计 本章主要介绍了新疆地区常用的钻井液体系,结合A1-4井及探井资料,设计了A区块井组所使用的钻井液体系、计算了所需钻井液用量,提出了钻井液材料计划等。 8.1 钻井液体系设计 钻探的目的是获取油气,保护地层是第一位的任务,因此,搞好钻井液设计,首先必须以地层类型特性为依据,以保护地层为前提,才能达到设计的目的。 新疆地区常用钻井液体系简介[16]: (1)不分散聚合物钻井液体系:不分散聚合物钻井液体系指的是具有絮凝及包被作用的有机高分子聚合物机理的水基钻井液。该体系的特点是:具有很强的抑制性;具有强的携沙功能;有利于提高钻速;有利于近平衡钻井;可减少对油气层的伤害。 (2)分散性聚合物体系(即聚合物磺化体系):聚合物磺化体系是指以磺化机理及少量聚合物作用机理为主配置而成的水基钻井液。该体系的特点是:具有良好的高温稳定性,使用于深井及超深井;具有一定的防塌能力;具有良好的保护油层能力;可形成致密的高质量泥饼,护壁能力强。 (3)钾基(抑制性)钻井液体系:该体系是以聚合物的钾,铵盐及氯化钾为主处理剂配制而成的防塌钻井液。它主要是用来对付含水敏性粘土矿物的易坍塌地层。该体系特点:对水敏性泥岩,页岩具有较好的防塌效果;抑制泥页岩造浆能力较强;对储层中的粘土矿物具有稳定作用;分散型钾基钻井液有较高的固相容限度。 (4)饱和盐水钻井液体系:该体系是一种体系中所含NaCl达到饱和程度的钻井液,是专门针对钻岩盐层而设计的一种具有较强的抑制能力,抗污染能力及防塌能力的钻井液。该体系特点:具有较强的抑制性,由于粘土在其中不宜水化膨胀和分散,故具有较强的控制地层泥页岩造浆的能力;具有较强的抗污染能力,由于它已被NaCl所饱和,故对无机盐的敏感性较低,可以抗较高的盐污染,性能变化小;具有较强的防塌能力,尤其再辅以KCL对含水敏性粘土矿物的页岩具有较强抑制水化剥落作用;可制止盐岩井段溶解成大肚子井眼。由于钻井液中氯化钠已达饱和,故钻遇盐岩时就会减少溶解,以免形成大井眼;缺点是腐蚀性较强。 (5)正电胶钻井液体系是一种以带正电的混合层状金属氢氧化物晶体胶粒(MMH或MSF)为主处理剂的新型钻井液体该体系的特点:具有独特的流变性;有利于提高钻井速度;对页岩具有较强的抑制性;具有良好的悬浮稳定性;有较

钻井液及滤液分析

钻井液性能测试步骤 一、高温高压滤失量测试方法: 1、把温度计插入钻井液压滤器外加热套的温度计插孔中,接通电源,预热至略高于所需温度(5- 6℃)。 2、将待测钻井液高速搅拌1min后,倒入压滤器中,使钻井液液面距顶部约13mm,放好滤纸,盖 好杯盖,用螺丝固定。 3、将上、下两个阀杆关紧,放进加热套中,把另一支温度计插入压滤器上部温度计的插孔中。 4、连接气源管线,把顶部和底部压力调节至690kPa,打开顶部阀杆,继续加热至所需温度(样品 加热时间不要超过1h)。 5、待温度恒定后,将顶部压力调节至4140kPa,打开底部阀杆并记时,收集30min的滤出液。在试 验过程中温度应在所需温度的±3℃之内。如滤液接收器内的压力超过690kPa,则小心放出一部分滤液以降低压力至690kPa,记录30min收集的滤液体积(单位:ml)。 6、试验结束后,关紧顶部和底部阀杆,关闭气源、电源、取下压滤器,并使之保持直立的状态冷 却至室温,放掉压滤器内的压力,小心取出滤纸,用水冲洗滤饼表面上的浮泥,测量并记录滤饼厚度及质量好坏。洗净并擦干压滤器。 二、坂含的测定: 1、把2ml的钻井液加到盛有10ml水的锥形瓶中。 2、加入15mlH2O2溶液和0.5mlH2SO4溶液,缓慢煮沸10min,但不能蒸干,用水稀释至50ml。 3、以每次0.5ml的量把亚甲基蓝溶液加入锥形瓶中,并旋摇30S。在固体悬浮的状态下,用搅拌 棒取一滴液体在滤纸上,当染料在染色固体周围显出蓝色环时,即以达到滴定终点,当蓝色环从斑点向外扩展时,再旋摇2min,再取一滴滴在滤纸上,如果蓝色环仍然是明显的,则以达到终点。如果色环不出现,则继续滴定,直至摇2min后显出蓝色环为止。 4、计算公式:MBT=1000V1/70V V1—滴定时所用亚甲基蓝溶液体积(ml)。 V—钻井液体积(ml)。 滤液分析 一、氯离子的测定: 1、用移液管移取2ml钻井液滤液于锥形瓶中,加入蒸馏水10ml和酚酞指示液(5g/l)1滴(用 0.1mol/LnaOH或0.1mol/L硝酸溶液调至粉红色刚刚消失),加入铬酸钾溶液(50g/L)1-2滴 (约0.5mL),用0.1mol/L硝酸银标准溶液滴定至刚刚有砖红色沉淀出现为终点,记录消耗硝酸银标准溶液的体积。 2、计算: cl-=3550V/2 V—消耗硝酸银标准溶液的体积,mL。 cl-—滤液中氯离子的含量,ppm。 二、钙离子的测定: 1、用移液管移取2ml钻井液滤液于锥形瓶中,加入1:2三乙醇胺溶液2ml,摇匀,再用 2mol/LnaOH调节至pH值12-14,加入约30mg钙指示剂,用0.01mol/LEDTA标准溶液滴定至由紫红色变为纯蓝色为终点,记录消耗EDTA标准溶液的体积。 2、计算: ca2+=400V/2 V—消耗EDTA标准溶液的体积,ml。 Ca2+—滤液中钙离子的含量,ppm。

控制系统性能指标

控制系统性能指标

第五章线性系统的频域分析法 一、频率特性四、稳定裕度 二、开环系统的典型环节分解 五、闭环系统的频域性能指标 和开环频率特性曲线的绘制 三、频率域稳定判据 本章主要内容: 1 控制系统的频带宽度 2 系统带宽的选择 3 确定闭环频率特性的图解方法 4 闭环系统频域指标和时域指标的转换 五、闭环系统的频域性能指标

1 控制系统的频带宽度 1 频带宽度 当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,对应的频率称为带宽频率,记为ωb。即当ω>ωb 而频率范围(0,ωb)称为系统带宽。 根据带宽定义,对高于带宽频率的正弦输入信号,系统输出将呈现较大的衰减,因此选取适当的带宽,可以抑制高频噪声的影响。但带宽过窄又会影响系统正弦输入信号的能力,降低瞬态响应的速度。因此在设计系统时,对于频率宽度的确定必须兼顾到系统的响应速度和抗高频干扰的要求。 2、I型和II型系统的带宽 2、系统带宽的选择 由于系统会受多种非线性因素的影响,系统的输入和输出端不可避免的存在确定性扰动和随机噪声,因此控制系统的带宽的选择需综合考虑各种输入信号的频率范围及其对系统性能的影响,即应使系统对输入信号具有良好的跟踪能力和对扰动信号具有较强的抑制能力。 总而言之,系统的分析应区分输入信号的性质、位置,根据其频谱或谱密度以及相应的传递函数选择合适带宽,而系统设计主要是围绕带宽来进行的。 3、确定闭环频率特性的图解方法

1、尼科尔斯图线 设开环和闭环频率特性为 4、闭环系统频域指标和时域指标的转换 工程中常用根据相角裕度γ和截止频率ω估算时域指标的两种方法。 相角裕度γ表明系统的稳定程度,而系统的稳定程度直接影响时域指标σ%、ts。 1、系统闭环和开环频域指标的关系 系统开环指标截止频率ωc与闭环带宽ωb有着密切的关系。对于两个稳定程度相仿的系统,ωc 大的系统,ωb也大;ωc小的系统,ωb也小。 因此ωc和系统响应速度存在正比关系,ωc可用来衡量系统的响应速度。又由于闭环振荡性指标谐振Mr和开环指标相角裕度γ都能表征系统的稳定程度。 系统开环相频特性可表示为

钻井液分析操作

钻井液分析操作规程 一.HTHP失水操作步骤: 1.把温度计插入钻井液压滤器外套加热套的温度计插孔中,接通电源,预热至略高于所需温度(高5-6度); 2.将待测钻井液高搅一分钟,倒入压滤器中,使钻井液液面距顶部13mm,放好滤纸,盖好杯盖,用螺丝顶紧固定; 3.将上下两个阀杆关紧,放进加热套中,把另一温度计放入压滤器上部温度计插孔中; 4.连接气源管线,把顶部和底部压力调节至690Kpa(6.18atm),打开顶部阀杆,继续加热至所需温度(样品加热时间不超过 一小时); 5.待温度恒定后,将顶部压力调至4140Kpa(40.86atm),打开底部阀杆并计时,收集30分钟的滤液。在实验过程中,温 度应在所需温度的正负3度以内,如滤液接收器内的压力超 过690Kpa(6.18atm),记录30分钟收集的滤液体积。 6.实验结束后,关紧底部和顶部阀杆,关闭气源、电源,取下压滤器,并使之保持直立状态冷却至室温,放掉压力器内压 力,取出滤纸,用水冲洗泥饼表面的浮泥,测量并计录泥饼 厚度和滤失量; 7.计算公式: 7.5分钟收集的滤液体积×2=30分钟的滤失量(ml)

二.亚甲基兰含量的测试步骤及坂土含量的计算: 1.取2ml钻井液加入三角烧瓶中,加入10ml蒸馏水,15ml 的3%双氧水,0.5ml的5N(2.5mol/L)硫酸溶液,缓慢煮沸 10分钟,但不能蒸干,然后用水稀释至50ml. 2.以每次0.5ml的量将亚甲基兰溶液(3.74g/L)加入三角烧瓶中,并旋摇30秒,在固体悬浮的状态下,用搅棒取一滴液 体在滤纸上,当染料在染色固体周围显出绿----兰色环时, 摇荡三角瓶2分钟,再用搅拌棒取一滴在滤纸上,若色环仍 不消失,则表明已到滴定终点;若色环消失,则继续上述操 作,记录所耗亚甲基兰溶液的毫升数; 3.坂土含量的计算(MBT): MBC(ml)=消耗的亚甲基兰溶液体积/钻井液体积 MBT(g/L) =14.3*MBC 注:MBC----亚甲基兰容量MBT----坂土含量

钻井液循环处理系统优化分析

第28卷第24期 2012年12月 甘肃科技 Gansu Science and Technology Vol .28No .24Dec .2012 钻井液循环处理系统优化分析 颜晓军 (江苏石油勘探局钻井处,江苏江都225261) 摘 要:随着钻井技术的发展,钻井液处理系统对钻井作业所起的积极作用越来越大,各种固控设备、各种类型的钻 井液循环系统也应运而生。可是无论形式如何变化,它的基本功能(即最大限度地清除钻井液中的有害固相和储存足够的钻井液)是不变的。介绍了钻井液处理系统实际情况,并对钻井液处理系统进行了优化。关键词:钻井液循环系统;优化;设计中图分类号:TE921.1 1钻井液循环罐的优化设计 钻井液循环罐作为钻井液固控设备中的主要设 备,是为了满足钻井过程不同的阶段和不同要求所 进行必要的循环和储备,并为各级固控提供必要的循环条件。其在满足钻井工程需要的情况下,尽量 使罐的尺寸减到最小程度, 这样便于设备的安装和运输,同时也减少了不必要的钻井液成本。 1.1外形尺寸 钻井液循环罐的外形尺寸很大程度上取决于当地的运输条件。公路限高是4.5m ,宽度不超过2.5m 为好。这也就能确定油田所使用的钻井液循环罐的最大外形尺寸。另外还应根据另一种成熟的技术,按照钻机底座和振动筛确定钻井液循环罐的高度,如图1所示。 图1按照钻机底座和振动筛确定钻井液循环罐的高度 根据资料介绍,明槽斜度为4% 7%,暗管斜 度为8% 12%时为最佳状态。根据上述数据,以ZJ50/3150DZ 钻机为例,井口中心到罐边的距离是16m ,钻台跨度是10.31m ,这里假设L =16m (不同的钻机L 的尺寸是不一样的),同一坡度下,越远越低,取暗管斜度为12%,则图1中H 2=H 1+1000+ D /2 1000mm 为预留的操作空间,H2=7617mm ,D 为320mm ,则: H 1=6457mm , 因此, [H 1-(H +800)]/L =12%H =3737mm 由上述计算和运输车辆的条件,可以基本确定适合该井架的钻井液罐理论高度为3m 。但考虑到综合因素,钻井液罐的实际总高约为2.8m ,减去罐面上的附属设施的高度0.5m ,罐体有效实际高度为2.3m 。1.2 罐体整个容积的确定 按照钻井工艺的要求,不同的井深和井径,所需 的最小钻井液的量是不同的,其钻井液的总量Q 总 用下列公式计算: Q 总=Q 井+Q 管+Q 罐 式中:Q 井— ——井筒中储存的钻井液量,m 3;Q 管———地面管汇中储存的钻井液量,m 3;Q 罐———维持砂泵、泥浆泵正常工作时最低液面钻井液罐中储存的钻井液量,m 3。Q 井=∏?d 2?H /4式中:d ———井径,m ;H ———设计井深,m 。 表层套管部分,井眼直径为339.7mm ,深度为0 200m ;技术套管部分,井眼直径为311mm ,深度为200 700m ;油层套管部分,井眼直径为215.9mm ,深度为1000 3000m ;根据上述公式可以计算出: Q 井=∏?(D 表2?H 1/4+D 技2?H 2/4+D 油2? H 3/4) =3.14?(0.342?200/4+0.3112?700/4+0.2162?2100/4)

钻井液体系

国内外钻井液技术发展概述 (2012-05-2711:05:36)摘要:本文主要论述了国内外钻井液的发展状况及发展趋势,介绍了近年来国内外发展起来的16种新型钻井液技术,国内外钻井液技术仍以抗高温、高压、深井复杂地层的钻井液技术为主攻目标,指出了钻井液处理剂的发展方向是高效廉价、一剂多效、保护油气层、尽可能减轻环境污染,并寻求技术更先进、性能更优异、综合效益更佳的钻井液体系及钻井液处理剂。对钻井液技术发展进行了展望,由于深井、复杂井、特殊工艺井以及特殊储藏的开发、环境保护的重视,对钻井液完井液的要求越来越高,所以抗高温、高压、深井复杂地层、油气层保护仍是钻井液完井液技术发展的重要方向。 关键词:钻井液技术发展 一、国内外钻井液技术新发展概述 钻井液作为服务钻井工程的重要手段之一。从90年代后期钻井液的主要功能已从维护井壁稳定,保证安全钻进,发展到如何利用钻井液这一手段来达到保护油气层、多产油的目的。一口井的成功完井及其成本在某种程度上取决于钻井液的类型及性能。因此,适当地选择钻井液及钻井液处理剂以维护钻井液具有适当的性能是非常必要的。钻井液及钻井液处理剂经过80年代的发展高潮以后,逐渐进入稳定期,亦即技术成熟期。可以认为,由于钻井液及钻井液处理剂都有众多的类型及产品可供选择,因此现代钻井液技术已不再研究和开发一般钻井液及钻井液处理剂产品,而是在高效廉价、一剂多效、保护油气层、尽可能减轻环境污染等方面进行深入研究,以寻求技术更先进、性能更优异、综合效益更佳的钻井液及钻井液处理剂。 1.抗高温聚合物水基钻井液 所使用的聚合物在其C-C主链上的侧链上引入具有特殊功能的基团如:酰胺基、羧基、磺酸根(S03H)、季胺基等,以提高其抗高温的能力。不论是其较新的产品,如磺化聚合物P OLYDRILL,或早己生产的产品如S.S.M.A.(磺化苯乙烯与马来酸酐共聚物)均是如此,并采取下列措施:

控制系统性能指标

第五章线性系统的频域分析法 一、频率特性四、稳定裕度 二、开环系统的典型环节分解 五、闭环系统的频域性能指标 和开环频率特性曲线的绘制 三、频率域稳定判据 本章主要内容: 1 控制系统的频带宽度 2 系统带宽的选择 3 确定闭环频率特性的图解方法 4 闭环系统频域指标和时域指标的转换 五、闭环系统的频域性能指标

1 控制系统的频带宽度 1 频带宽度 当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,对应的频率称为带宽频率,记为ωb。即当ω>ωb 而频率范围(0,ωb)称为系统带宽。 根据带宽定义,对高于带宽频率的正弦输入信号,系统输出将呈现较大的衰减,因此选取适当的带宽,可以抑制高频噪声的影响。但带宽过窄又会影响系统正弦输入信号的能力,降低瞬态响应的速度。因此在设计系统时,对于频率宽度的确定必须兼顾到系统的响应速度和抗高频干扰的要求。 2、I型和II型系统的带宽 2、系统带宽的选择 由于系统会受多种非线性因素的影响,系统的输入和输出端不可避免的存在确定性扰动和随机噪声,因此控制系统的带宽的选择需综合考虑各种输入信号的频率范围及其对系统性能的影响,即应使系统对输入信号具有良好的跟踪能力和对扰动信号具有较强的抑制能力。 总而言之,系统的分析应区分输入信号的性质、位置,根据其频谱或谱密度以及相应的传递函数选择合适带宽,而系统设计主要是围绕带宽来进行的。 3、确定闭环频率特性的图解方法

1、尼科尔斯图线 设开环和闭环频率特性为 4、闭环系统频域指标和时域指标的转换 工程中常用根据相角裕度γ和截止频率ω估算时域指标的两种方法。 相角裕度γ表明系统的稳定程度,而系统的稳定程度直接影响时域指标σ%、ts。 1、系统闭环和开环频域指标的关系 系统开环指标截止频率ωc与闭环带宽ωb有着密切的关系。对于两个稳定程度相仿的系统,ωc大的系统,ωb也大;ωc小的系统,ωb也小。 因此ωc和系统响应速度存在正比关系,ωc可用来衡量系统的响应速度。又由于闭环振荡性指标谐振Mr和开环指标相角裕度γ都能表征系统的稳定程度。 系统开环相频特性可表示为

长庆油田钻井液现状分析

延安职业技术学院毕业论文 题目:长庆油田钻井液现状分析 所属系部:石油工程系 专业:钻井技术 年级/班级:07(五)钻井班 作者:赵文田 学号:071395002023014 指导教师: 评阅人: 2012年5 月27日

目录 第1章绪论 (1) 第2章长庆油田储层特征和钻井难点 (3) 2.1 长庆油田储层特征 (3) 2.2 长庆油田钻井问题分析 (4) 第3章长庆油田常用钻井液体系分析 (6) 3.1 低固相聚合物钻井液 (6) 3.1.1 体系的配方 (6) 3.1.2 体系的特点 (6) 3.1.3 现场应用分析 (7) 3.2 双钾离子聚合物钻井液 (7) 3.2.1 体系的配方 (7) 3.2.2 体系的特点 (7) 3.2.3 现场应用分析 (8) 3.3 无土相低伤害暂堵钻井液 (9) 3.3.1 体系的配方 (9) 3.3.2 体系的特点 (9) 3.3.3 现场应用分析 (10) 3.4 环保钻井液体系 (10) 3.4.1 体系配方处理剂 (10) 3.4.2 体系特点 (10) 3.4.3 现场应用分析 (11) 第4章结论 (12) 致谢 (13) 参考文献 (14)

摘要:根据长庆油田储层特征,认为在油气田开采过程中涉及的钻井液性能,必须注意以下几点:(1)对储层伤害小;(2)必须有较好的抑制性能和滤失性能;(3)低毒或无毒,对环境污染小;(4)对油品污染小。通过对现有钻井液进行归纳,并对长庆油田近年来使用的钻井液进行总结,将长庆油田钻井液体系归纳为:一开时,钻穿表层黄土层,主要用清水或低固相聚合物钻井液,提高钻井速度,钻井液主要组成有膨润土、高分子聚合物(如KPAM、PAC-H、HV-CMC)等,防止坍塌及有效清洗井眼,使表层套管下入顺利;二开以防塌、防漏、安全快速钻进为目的,以低固相聚合物体系或双钾聚合物钻井液体系为主;若遇水平井段,使用无土相低伤害暂堵钻(完)井液体系。在此基础上分别对各个钻井液体系的组成、特点及应用进行了分析。 关键字:长庆油田;储层特征;钻井

钻井液技术总结

钻井液技术总结 《钻井液技术总结》的范文,。篇一:钻井液施工技术总结TH12533井钻井液技术总结 一、工程概况 1.基本情况: TH12533井是位于库车县境内阿克库勒凸起西北斜坡构造的一口三开结构制的开发井,地面海拔高度958.316m,设计井深6591m,目的层位奥陶系一间房组。 该井于20XX年8月25日8:00一开,20XX年9月3日7:00二开,20XX年11月4日00:00三开,20XX年11月6日7:00完钻,完钻井深6591m。钻井周期72.96天,平均机械钻速 9.72m/h。二开井径平均扩大率3.6%,最大井斜1.69°。三开井径平均扩大率0.15,最大井斜1.84°。井身质量优、固井质量合格,试压合格,无任何人身、设备事故发生。2.井身结构: 二、钻井液技术难点及重点 1.钻井液技术难点: (1) 一开、二开井段重点解决:①大井眼携砂问题;②上部交接疏松,地层欠压实钻井液渗透性漏失;③由漏失引起井壁形成厚泥饼造成缩颈问题;④提高地层承压减少复杂。 2+ (2)康村组与吉迪克组存在石膏,钻进时加强钻井液性能检测,特别是Ca离子的检测,并防止和及时处理石膏污染钻井液。

(3)侏罗系、三叠系、二叠系、石炭系和泥盆系易剥蚀掉块、坍塌,形成不规则井径,增大钻井液的携屑难度,造成起下钻阻卡、电测阻卡、影响固井质量等问题。应使用与地层温度匹配的沥青类防塌剂、聚合醇等,同时加入足量的抗高温处理剂,范文写作严格控制高温高压滤失量,充分保证钻井液的防塌性能。 (4)本井二叠系火成岩(5540~5688.5m)段长140m,易发生井漏、井塌,易造成卡钻,并严重影响下套管、固井施工。钻遇二叠系前,应调整好钻井液性能,适当降低排量,采用超细碳酸钙、单向压力封闭剂、随钻堵漏剂等封堵地层裂缝,降低井漏风险;同时严格控制高温高压滤失量,加足防塌剂,将钻井液密度控制在设计上限,适当降低转速,保持井壁稳定。 (5)石炭系卡拉沙依组深灰、灰黑色泥岩,灰色、褐色泥岩(胶粘性很强),易造成PDC钻头泥包,对机械钻速和施工进度造成较大影响。应使用好固控设备尽可能清除无用固相,适当降低钻井液粘切,提高大分子聚合物包被剂用量,使用润滑剂降低泥岩对钻头及扶正器的黏附,同时增大泵排量,提高钻头清洗效果,防止钻头泥包。 (6)泥盆系东泥塘组岩性以灰白色细粒砂岩为主,渗透性好,地层压力低,易发生粘卡。应调节好钻井液流变性,加足抗温材料,严格控制高温高压滤失量,使用超细碳酸钙、高软化点沥青、聚合醇、润滑剂等封堵、润滑材料,改善泥饼质量,降低

CPU性能指标的判定标准分析

CPU性能指标的判定标准分析: CPU的内部结构分为控制单元,逻辑单元和存储单元三大部分。CPU的性能大致上反映出了它所配置的那部微机的性能,因此CPU的性能指标十分重要。CPU主要的性能指标有以下几点: 一、主频 一个时钟周期完成的指令数是固定的,所以主频越高,CPU的速度也就越快了。不过由于各种CPU 的内部结构也不尽相同,所以并不能完全用主频来概括CPU的性能。至于外频就是系统总线的工作频率;而倍频则是指CPU外频与主频相差的倍数。用公式表示就是:主频=外频×倍频。我们通常说的赛扬433、PIII550都是指CPU的主频而言的。 二、外频 内存总线的速度对整个系统性能来说很重要,由于内存速度的发展滞后于CPU的发展速度,为了缓解内存带来的瓶颈,所以出现了二级缓存,来协调两者之间的差异,而内存总线速度就是指CPU与二级(L2)高速缓存和内存之间的工作频率。 三、工作电压 工作电压指的也就是CPU正常工作所需的电压。早期CPU由于工艺落后,它们的工作电压一般为5V,发展到奔腾586时,已经是3.5V/3.3V/2.8V了,随着CPU的制造工艺与主频的提高,CPU的工作电压有逐步下降的趋势,Intel最新出品的Coppermine已经采用1.6V的工作电压了。低电压能解决耗电过大和发热过高的问题,这对于笔记本电脑尤其重要。 四、乱序执行和分枝预测 乱序执行是指CPU采用了允许将多条指令不按程序规定的顺序分开发送给各相应电路单元处理的技术。分枝是指程序运行时需要改变的节点。分枝有无条件分枝和有条件分枝,其中无条件分枝只需要CPU 按指令顺序执行,而条件分枝则必须根据处理结果再决定程序运行方向是否改变,因此需要“分枝预测”技术处理的是条件分枝。 五、L1高速缓存 在CPU里面内置了高速缓存可以提高CPU的运行效率。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。采用回写结构的高速缓存。它对读和写操作均有可提供缓存。而采用写通结构的高速缓存,仅对读操作有效。在486以上的计算机中基本采用了回写式高速缓存。 六、L2高速缓存 PentiumPro处理器的L2和CPU运行在相同频率下的,但成本昂贵,所以PentiumII运行在相当于CPU 频率一半下的,容量为512K。为降低成本Intel公司曾生产了一种不带L2的CPU名为赛扬。 七、制造工艺

【CN210003223U】一种简易的泥浆水循环系统【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920546475.9 (22)申请日 2019.04.20 (73)专利权人 中国华西工程设计建设有限公司 地址 610031 四川省成都市金牛区沙湾东 二路一号世纪加州一幢一单元四至六 楼 (72)发明人 吴鑫泷 周益云 张斌 王永健  刘选  (51)Int.Cl. E21B 21/01(2006.01) (54)实用新型名称一种简易的泥浆水循环系统(57)摘要本实用新型涉及市政设备技术领域,尤其是涉及一种简易的泥浆水循环系统,包括泥浆池、回收池、回流管、冷却管、套管以及水泵,套管竖直设置在泥浆池内部,回收池设置在泥浆池的一侧,套管的侧壁与回收池之间通过回流管连通,套管的上端口与回收池之间通过冷却管连通,水泵设置在冷却管上,回流管与冷却管分别与回收池内部连通,回流管沿着从靠近到远离回收池逐渐向上倾斜,在回收池的底壁上均匀设置有多个分隔板,分隔板的上端面高度低于回流管靠近回收池的端头最低点的高度,在分隔板的两侧设置有用于对污泥进行收集的清理组件,达到了减少回收池内部泥浆水中的泥土量,保证系统持续运 行的效果。权利要求书1页 说明书5页 附图2页CN 210003223 U 2020.01.31 C N 210003223 U

权 利 要 求 书1/1页CN 210003223 U 1.一种简易的泥浆水循环系统,包括泥浆池(1)、回收池(2)、回流管(3)、冷却管(4)、套管(5)以及水泵(6),套管(5)竖直设置在泥浆池(1)内部,回收池(2)设置在泥浆池(1)的一侧,套管(5)的侧壁与回收池(2)之间通过回流管(3)连通,套管(5)的上端口与回收池(2)之间通过冷却管(4)连通,水泵(6)设置在冷却管(4)上,其特征在于:回流管(3)与冷却管(4)分别在回收池(2)的两端面上与回收池(2)内部连通,回流管(3)沿着从靠近到远离回收池(2)逐渐向上倾斜,回流管(3)靠近回收池(2)的一端靠近回收池(2)的上表面设置,在回收池(2)的底壁上均匀设置有多个分隔板(21),分隔板(21)所在平面与回收池(2)的两个端面平行,分隔板(21)的上端面高度低于回流管(3)靠近回收池(2)的端头最低点的高度,在分隔板(21)的两侧设置有用于对泥土进行收集的清理组件(7)。 2.根据权利要求1所述的一种简易的泥浆水循环系统,其特征在于:清理组件(7)包括收集箱(71),收集箱(71)的两侧分别与两个分隔板(21)相抵接,收集箱(71)的一端面与回收池(2)的外表面相平齐。 3.根据权利要求2所述的一种简易的泥浆水循环系统,其特征在于:在收集箱(71)的端面上设置有拉手(72),拉手(72)设置在回收池(2)的外侧。 4.根据权利要求3所述的一种简易的泥浆水循环系统,其特征在于:在收集箱(71)靠近分隔板(21)的两个侧面上设置有引导面(73),引导面(73)的最高点与收集箱(71)的上表面相平齐,引导面(73)沿着从靠近到远离分隔板(21)逐渐向下倾斜。 5.根据权利要求1所述的一种简易的泥浆水循环系统,其特征在于:在回流管(3)的一侧设置有用于对回流管(3)进行清洗的清洗组件(8)。 6.根据权利要求5所述的一种简易的泥浆水循环系统,其特征在于:清洗组件(8)包括储水箱(81)、清洗管(82)、第二控制阀(83)以及清洗泵(84),储水箱(81)设置在回流管(3)的一侧,清洗管(82)的两端分别与储水箱(81)以及回流管(3)内部连通,清洗泵(84)设置在清洗管(82)上,第二控制阀(83)设置在清洗管(82)上。 7.根据权利要求6所述的一种简易的泥浆水循环系统,其特征在于:在回流管(3)靠近套管(5)的一端设置有与回流管(3)相适配的过滤网(31)。 8.根据权利要求7所述的一种简易的泥浆水循环系统,其特征在于:在回流管(3)上设置有第一控制阀(32),第一控制阀(32)设置在清洗管(82)靠近回收池(2)的一侧。 2

钻井液加重系统使用说明书

LFZ-24型钻井液加重系统 使用说明书 川庆钻探工程公司油建公司石油容器制造厂 二○○九年二月

提示!!! 钻井液加重系统储罐设计、制造、检验、验收符合《钢制压力容器》GB150-1998及《压力容器安全技术监察规程》(1999)标准规定,在安装使用前应该按照相关法律及安全规定经当地锅炉压力容器安全监察机构登记、注册,并发给注册编号后方能投入使用。 该设备使用单位及其主管部门,必须及时安排压力容器的定期检验工作,并将压力容器年度检验计划报当地安全监察机构及检验单。 该设备在储存重晶石粉期间,需每周造灰一次,以防止重晶石粉板结。

目录 1概述 (4) 1.1制造商简介 (4) 1.2安全预防 (4) 2 工艺流程 (5) 2.1工作原理 (5) 2.3型号说明 (7) 2.5 LFZ-24型钻井液加重系统储罐设计参数 (8) 2.6LFZ-24型钻井液加重储罐结构简述 (8) 3 操作规程 (9) 3.1安装及使用前的检查: (9) 3.2 装灰储存作业: (10) 3.3、造灰作业: (10) 3.4 卸灰加重作业: (11) 4 维护保养 (12) 5安装 (12) 5.1地基要求 (12) 6.2环境要求 (13) 7 故障处理 (13) 7.1配气系统 (13) 7.2 卸灰系统 (13) 7.3 卸灰缓慢且剩灰多 (13) 8 装箱单 (14) 8.1随机备件 (14) 8.2随机文件 (14) 9 吊装和运输 (15) 件1 用户意见反馈表 (16)

1概述 1.1制造商简介 川庆钻探工程公司油建公司石油容器制造厂始建于一九六四年,是石油系统在西南地区唯一取得国家一、二、三类压力容器制造许可证(A1、A2) D1/D2设计许可和球形压力容器现场组焊许可证(A3)、压力管道元件制造单位安全注册证书,ASME U钢印及NB认证的厂家。 为了使用户全面、清楚地了解及正确使用型钻井液加重系统,特编写了本使用教程。 本使用教程主要介绍了加重系统的工艺流程、操作规程、维护保养、安装及故障处理等内容。 系统的正确操作直接关系到设备的使用效果、寿命及操作人员安全。在使用加重系统之前,用户应认真阅读本使用教程。 1.2安全预防 警示! 加重系统应在规定的使用条件下使用。在超过其使用范围或使用条件不符合设计要求时,应停止使用加重系统!否则,就有可能导致人身伤害或其它破坏。 贯穿于本手册中的危险、警示和小心提示对人和设备的安全是至关重要的。在操作、维护或修理加重系统时,应对全部的危险、警示、小心和说明提示有全面的了解并熟记。 每个提示用于指出危害的程度,定义如下: 危险:表示直接导致人身伤害或死亡,或设备的严重损坏。在本手册中列为非常严重的危害。 警示:表示可能导致人身伤害或死亡,或设备的严重损坏。 小心:表示可能对人体造成轻微伤害或对设备造成损坏的不安全因素。 说明:这是正常的忠告不是警示。说明对涉及到具体的操作、工具的使用或维修人员完成具体的任务有帮助的信息。 在对加重系统进行操作和维修时,操作人员必须对下列的安全措施全部熟练掌握。这些措施遍布手册的每一章节中。如不注意这些安全提示,将导致设备损坏、人身伤

钻井液的作用

聚 乙 烯 醇 在 钻 井 液 中 的 应 用 班级:10油田化学三班 姓名:李涛涛

聚乙烯醇,英文名称2: polyvinyl alcohol,viny)alcohol polymer,poval,简称PVA,分子式: [C2H4O]n 摘要:主要讲述了聚乙烯醇胶乳对油井水泥浆的失水、稠化性能、游离水和水泥石抗压强度等参数的影响。结果表明,胶乳加量增大时,油井水泥浆的失水量迅速变小,稠化时间延长,初始稠度减小,游离水得到有效的控制,水泥石的抗压强度减小而柔性增大。试验证明,聚乙烯醇胶乳通过成膜、吸附、水化等作用能有效地控制油井水泥浆的液相运移情况,调节其稠化性能,改善水泥石的物理力学性能。自行设计了一套测定水泥石胶结强度的装置,实验证明所提出的测定方法是可行的。 首先聚乙烯醇(PVA)是一种水溶性聚合物,分子中有大量的羟基存在。因此,可以把它作为油井水泥降失水剂的原料。文章研究了在不同的聚合度和醇解度的PVA作为油井水泥降失水剂的滤失性能,研究发现PVA17-88是以PVA作为油井水泥降失水剂的最好原料。并对PVA17-88作为油井水泥降失水剂与分散剂和消泡剂的配伍性、耐温、抗盐以及水泥浆的综合性能进行了系统的研究。 高分子聚合物材料作为油井水泥外加剂在油田固井工程中的应用,其地位日益突出,对提高固井质量起到了重要的作用.该文较详强的介绍了固井工程与油井水泥外加剂的关系以及相关的概念,综述了前人的研究成虹,研制出了新型聚合物胶乳水泥体系,同时设计了相应的特种实验仪器.该文重点研究了水溶性聚合物-聚乙烯醇作为油井水泥外加剂的一些行为特征,同时研究了配套组分对聚合物水泥浆体系的性能影响.聚乙烯醇水溶液与硼砂在碱性条件下交联是该文 研究应用的最基本原理之一,聚乙烯醇与硼砂交联形成了一定的网状结构,加入的有机酸组分参加进一步的交联,使之形成了立体柔性的网状交联结构,这种结构吸附到水泥颗粒上,阻碍和束缚了水泥浆中自由水的运移,同时这种交联吸附性质使水泥浆体系在压差作用下能够在滤失界的目的,减少了水泥石的表观和 内部体积由于失水而造成的收缩,同时也对地层流体的外窜起到了封堵作用,保证了水泥浆在井下的正常凝固.另外聚乙烯醇与其他组分的配合作用,使水泥浆体系还具备了"直角稠化","零自由水"和剪切稀释等特性.该文发展了油田固井工程中的防窜理论,在水泥外加剂的研究方面达到了一个新的水平.在现场试验和推广应用过程中为解决大庆油田的高压层固井、水平井固井,地矿部浅气层固井和渤海海上深层气层固井问题起到了重要作用. 聚乙烯醇用作石油及天燃气钻井、固井过程中的降失水添加剂增强水泥浆保水作用防止水泥浆在渗透性地层中先期脱水,对缓凝时间和抗压强度影响小,并有效防止气窜用作石油及天然气钻井过程中的防塌添加剂,能有效阻止钻井液滤液浸入泥页岩,从而达到防止井壁失稳甚至井壁坍塌的作用聚乙烯醇的抑制防塌性能是长久有效。聚乙烯醇等是我国近年来研究应用最广的堵水调剖剂,包括合成聚合物、自然改性聚合物、生物聚合物等。它们的共同特点是溶于水,在水中有优良的增粘性,线性大分子链上都有极性基团,能与某些多价金属离子或有机基团(交联剂)反应,天生体型的交联产物冻胶,粘度大幅度增加,失往活动性和水溶性,显示较好的粘弹性。 聚丙烯酰胺的大量应用,给化学堵水调剖技术开创了新局面。将聚丙烯酰胺水解后溶于水,混进甲醛或306树脂(多羟基的三聚氰胺酰化物),在酸性条件下,缩聚天生冻胶。本剂适合层间或层内纵向渗透率差异较大但油层无裂缝

相关主题
文本预览
相关文档 最新文档