当前位置:文档之家› 4液力变矩器的检查

4液力变矩器的检查

4液力变矩器的检查
4液力变矩器的检查

郑州交通技师学院

授课教案首页

课程:自动变速器教师:杨向前第周课次 4

液力变矩器的检查

任务书一、液力变矩器的外观检查:

二、液力变矩器的干涉检查:

三、单向离合器的检查

变矩器特性解读

变矩器的透穿性 变矩器的透穿性(transmittancy of torque converter)变矩器的泵轮力矩系数(λB)随涡轮、泵轮转速比变化的特性。就基本质而言,透穿性是变矩器隔离发动机与工作机,使发动机的工况不受工作机影响的能力,换句话说,如果变矩器不具有透穿性,则工作机的工况变化不能透过变矩器影响发动机的工况,这对发动机是有利的。定性描述变矩器透穿性的指标是透穿度,即工作机的工况变化能透过变矩器影响发动机工况的程度。 由无因次特性可知,对于两个循环圆几何相似但有效直径不等的变矩器(称为同一系列的变矩器),具有相同的无因次特性。相同类型不同系列的变矩器其无因次特性是不同的,但其变矩比和效率随转速比的变化趋势是相同的,而泵轮力矩系数随转速比的变化趋势却是不同的,就是说,他们的透穿性是不一样的,见下图。变矩器的透穿性一般有下述几种。 (c) (d) 变矩器的透穿性 非透穿泵轮力矩系数λB为常数,不随转速比变化,这样的变矩器与发动机共同工作时,发动机的力矩和转速不随变矩器的转速比而变化,因此,输出端(涡轮轴)的工况变化将 不会透过变矩器影响发动机的工况,这样的特性称为非透穿,这类变矩器称为非透穿变矩器。见图(a)。 正透穿泵轮矩系数随转速比的增大而减小,这样的变矩器与发动机共同工作时,发动机的力矩和转速将随输出端(涡轮轴)工况的变化而变化,由于这样的特性对发动机有利,故称为正透穿,这类变矩器称为正透穿变矩器。见图(b)。 负透穿泵轮力矩系数随转速比的增大而增大,由于这样的特性往往会使发动机过载,故称为负透穿,这类变矩器称为负透穿变矩器。见图(c)。

内燃机车上离心涡轮变矩器一般具有复合透穿性,见图(d )。 内燃机车上的离心涡轮变矩器的透穿度T 表示为: 式中,λB ,λB * 为某一工况和计算工况下的泵轮力矩系数。 根据变矩器的透穿性和透穿度,可以比较和评价变矩器的性能,并依确定变矩器和柴油机的共同工作点。 液力变矩器及其与发动机共同工作的性能 液力传动是以液体为工作介质的涡轮式传动机械。它的基本工作原理是通过和输入轴相连接的泵轮,把输入的机械能转变为工作液体的动能,使工作液体动量矩增加。和输出轴相连接的涡轮,把工作液体的动能转变为机械能输出,并使工作液体的动量矩减小。 液力传动的主要特点是:1自动适应性、2防振隔振作用、3 良好的起动性、4 限矩保护性、5 变矩器效率。 第一节 液力变矩器的特性 液力变矩器的特性是表示变矩器各输出和输入参数之间函数关系的曲线。这些函数之间的相互关系,虽可用理论分析和计算来获得,但由于大量引入假设,使计算结果与实际情况有一定的差距。因此,变矩器实际的特性曲线是通过台架试验来取得的。液力变矩器的特性曲线主要有以下三种:输出特性、无因次特性和输入特性。 一、液力变矩器的输出特性 液力变矩器的输出特性是表示输出参数之间关系的曲线。通常是使泵轮轴的转速保持不变,在此工况下求取以涡轮轴转速 2n 为自变量的各输出特性曲线(参看图4-1)。

液力变矩器常见故障诊断

液力变矩器常见故障诊断 朱建山 摘要:本文结合作者在福建可门港物流有限责任公司顶岗实习期间的实践,阐述了装载机液力变矩器的基本结构及其工作原理,在此基础上,对其故障进行分析诊断并提出相应的改进建议。 关键词:故障分析设计改进建议 引言: 装载机是一种广泛用于公路、铁路、建筑、水电、港口、矿山等建设工程的土石方施式机械,它主要用于铲装土壤、砂石、石灰、煤炭等散状物料,也可对矿石、硬土等作轻度铲挖作业。换装不同的辅助工作装置还可进行推土、起重和其他物料如木材的装卸作业。在道路、特别是在高等级公路施工中,装载机用于路基工程的填挖、沥青混合料和水泥混凝土料场的集料与装料等作业。此外还可进行推运土壤、刮平地面和牵引其他机械等作业。由于装载机具有作业速度快、效率高、机动性好、操作轻便等优点,因此它成为工程建设中土石方施工的主要机种之一。 工程机械上使用液力变矩器,具有起步平稳、操作方便、可在较大范围内实现无级变速等优点。因此,液力变矩器在工程机械中得到了广泛的应用。国内轮式装载机上应用的双导轮综合式液力变矩器,具有高效区宽广、变矩过渡至偶合工况平稳的特点。但这种变矩器在使用时间较长以后,易出现过热、工作无力、内部元件损坏等故障。由于变矩器的拆装与维修比较困难,在维修液力变矩器时,必须在弄懂其工作原理和正确地分析故障原因的基础上才能保证维修质量。本文以双导轮综合式液力变矩器为例,介绍液力变矩器的工作原理,分析变矩器工作过程中的常见故障现象、原因和诊断维修方法。

1液力变矩器的基本结构和工作原理 1.1 双导轮液力变矩器的基本结构 该变矩器主要由泵轮、涡轮、第一导轮、第二导轮及导轮座等组成。 1.2 液力变速器的工作原理 工作过程中,液压油自变速器壳底部通过滤网被油泵吸入,从油泵输出的具有一定压力的液压油通过液压油滤清器、主调压阀后进入导轮座的进油孔,然后流向泵轮。柴油机的动力通过相啮合的齿轮传给泵轮,泵轮的旋转将进入其内部的液压油压入涡轮,冲击涡轮叶片,使涡轮旋转,动力由涡轮轴输出。从涡轮出来的液压油,一部分通过变矩器出口经液压油冷却器后进入离合器壳体,再润滑轴承、齿轮及冷却离合器摩擦片后流回变速器壳底;另一部分经第一、第二导轮传给泵轮,液压油在循环圆内传递动力。当涡轮的液体冲向导轮叶片时,导轮不转,导轮给予液体一定的反作用力矩。这个力矩和泵轮给予液体的力矩合在一起,全部传给涡轮,从而使涡轮起到了增大扭矩的作用,即变矩。当涡轮转速继续增高,涡轮传给导轮的液流方向发生变化至冲击导轮背面时,第一、二导轮在超越离合器的作用下,先后开始旋转,变矩工况变成偶合工况。从主调压阀出来的另一路液压油是流向变速器操纵阀的。 2 液力变矩器的常见故障分析 2.1变矩器过热故障的检查诊断

福伊特液力变矩器的结构及工作原理的使用0

第一章福伊特液力传动箱简介 T211re.4液力传动箱是德国福伊特公司是专门为铁路车辆设计的涡轮传动装置。它是350kW性能级别的轨道车专用传动箱。 第一节 T211re.4液力传动箱的技术指标 一、T211re.4液力传动箱的主要技术参数

: 二、T211re.4液力传动箱的特性参数 第二节 T 211re.4液力传动箱的特点 一、命名规则: T211re.4液力传动箱是铁路工程车辆专用设备,其命名

规则如下: 二、T211re.4液力传动箱的特点 T211re.4液力传动箱其输入功率科大350kW,采用全新的福伊特驱动控制器(VTDC)可以直接安装在传动箱上并录入运行数据。另外还具有监控诊断功能,液力制动可以通过联合制动的方式整合进入车辆制动系统以及性能的高可靠性。

第二章 T211re.4液力传动箱的结构 第一节 T211re.4液力传动箱的组成 一、液力传动箱组成 T211re.4液力传动箱由液力制动、液力液力变扭器、液力耦合器、换向机构、电气控制模块VTIC及部分组成,其外形如图2-1所示。其输入、输出侧分别如图2-2、2-3所示。 图2-1 T211re.4液力传动箱外形图

其液力传动箱包括机械部分和液力部分组件,其结构如图2-4所示。 二、机械组件 机械组件包括增速齿轮、扭转减振器、换向装置、齿轮变速器。 图2-2 T211re.4液力传动箱输入侧 1-输入装置

图2-3 T211re.4液力传动箱输出侧 2-输出装置 图2-4 转动装置组件 1-输出装置;2-增速齿轮;3-输入装置;4-液力偶合器;5-液力变扭器 6-机械部件;7-换向装置的幵关轴 传动箱输入轴(3)直接与柴油机相连,通过一对增速齿轮(2)将转速提升至液力元件的工作转速,变扭器(5)和偶合器(4)的泵轮都装在泵轮轴上,两者的涡轮都装在与传动箱输出相连的涡轮轴上,涡轮轴再通过一系列的机械齿轮最终驱动传动箱输出(1),通过换向离合器(7)的作用,使传动链里机械齿轮(6)的数量增减,实现换向。

液力变矩器的组成和功用教学文稿

液力变矩器的组成和 功用

液力变矩器的导轮有什么作用简单的说就是变矩 液力变矩器和液力耦合器都有泵轮和涡轮,他们的差别就在有无导轮。如果没有导轮,液力变矩器就是一个耦合器。 耦合器泵轮和涡轮的转速不同而转矩相等。由于导论的存在,变矩器能在泵轮转矩不变的情况下,随着涡轮转速不同而改变涡轮转矩的输出值。 在汽车变矩器中当变矩系数达到1之后由于单向离合器的作用,泵轮停止转动,变矩作用消失,变矩器实际上就成为耦合器 导轮在低速时起到增扭的作用,一般安装在单向离合器上不能反转。泵轮由发动机带动旋转带动油液流动形成涡流冲击涡轮旋转将力传给涡轮。在泵轮和涡轮上有导流板,油液形成了环流在泵轮涡轮导轮之间循环流动。泵轮油液冲击涡轮的力FB经涡轮冲击导轮导轮不能反转或固定不动形成反作用力FD作用在涡轮上。蜗轮得到的力FT=FB+FD就是导轮 的增扭作用 1 ?功用 液力变矩器位于发动机和机械变速器之间,以自动变速器油(ATF )为工作介质,主要完成以下功用:(1)传递转矩。发动机的转矩通过液力变矩器的主动元件,再通过ATF传给液力变矩器的从动元件,最后传给变速器。 (2)无级变速。根据工况的不同,液力变矩器可以在一定范围内实现转速和转矩的无级变化。(3)自动离合。液力变矩器由于采用ATF传递动力,当踩下制动踏板

时,发动机也不会熄火,此时相当于离合器分离;当抬起制动踏板时,汽车可以起步,此时相当于离合器接合。 (4)驱动油泵。ATF在工作的时候需要油泵提供一定的压力,而油泵一般是由液力变矩器壳体驱动的。 同时由于采用ATF传递动力,液力变矩器的动力传递柔和,且能防止传动系过载。 2.组成 如图4-6所示,液力变矩器通常由泵轮、涡轮和导轮三个元件组成,称为三元件液力变矩器。也有的采用两个导轮,则称为四元件液力变矩器。液力变矩器总成封在一个钢制壳体(变矩器壳体)中,内部充满ATF。液力变矩器壳体通过螺栓与发动机曲轴后端的飞轮连接,与发动机曲轴一起旋转。泵轮位于液力变矩器的后部,与变矩器壳体连在一起。涡轮位于泵轮前,通过带花键的从动轴向后面的机械变速器输出动力。导轮位于泵轮与涡轮之间,通过单向离合器支承在固定套管上,使得导轮只能单向旋转(顺时针旋转)。泵轮、涡轮和导轮上都带有叶片,液力变矩器装配好后形成环形内腔,其间充满ATF。 液力变矩器的工作原理 1.动力的传递 液力变矩器工作时,壳体内充满ATF,发动机带动壳体旋转,壳体带动泵轮旋转,泵轮的叶片将ATF带动起来,并冲击到涡轮的叶片;如果作用在涡轮叶片上冲击力大于作用在涡轮上阻力,涡轮将开始转动,并使机械变速器的输入轴一起转动。由涡轮叶片流出的ATF经过导轮后再流回到泵轮,形成如图4—7 所示的循环流动。具体来说,上述ATF的循环流动是两种运动的合运动。当液力变矩器工作,泵轮旋转时,泵轮叶片带动ATF旋转起来,ATF绕着泵轮轴线作圆周运动;同样随着涡轮

轮式装载机液力变矩器故障与维修

工程机械上使用液力变矩器,具有起步平稳、操作方便、可在较大范围内实现无级变速等优点。因此,液力变矩器在工程机械中得到了广泛的应用。国内轮式装载机上应用的双导轮综合式液力变矩器,具有高效区宽广、变矩过渡至偶合工况平稳的特点。但这种变矩器在使用时间较长以后,易出现过热、工作无力、内部元件损坏等故障。由于变矩器的拆装与维修比较困难,在维修液力变矩器时,必须在弄懂其工作原理和正确地分析故障原因的基础上才能保证维修质量。本文以双导轮综合式液力变矩器为例,介绍液力变矩器的工作原理,分析变矩器工作过程中的常见故障现象、原因和诊断维修方法。 1 双导轮综合式变矩器的工作原理 该变矩器主要由泵轮、涡轮、第一导轮、第二导轮及导轮座等组成。 工作过程中,液压油自变速器壳底部通过滤网被油泵吸入,从油泵输出的具有一定压力的液压油通过液压油滤清器、主调压阀后进入导轮座的进油孔,然后流向泵轮。柴油机的动力通过相啮合的齿轮传给泵轮,泵轮的旋转将进入其内部的液压油压入涡轮,冲击涡轮叶片,使涡轮旋转,动力由涡轮轴输出。从涡轮出来的液压油,一部分通过变矩器出口经液压油冷却器后进入离合器壳体,再润滑轴承、齿轮及冷却离合器摩擦片后流回变速器壳底;另一部分经第一、第二导轮传给泵轮,液压油在循环圆内传递动力。当涡轮的液体冲向导轮叶片时,导轮不转,导轮给予液体一定的反作用力矩。这个力矩和泵轮给予液体的力矩合在一起,全部传给涡轮,从而使涡轮起到了增大扭矩的作用,即变矩。当涡轮转速继续增高,涡轮传给导轮的液流方向发生变化至冲击导轮背面时,第一、二导轮在超越离合器的作用下,先后开始旋转,变矩工况变成偶合工况。从主调压阀出来的另一路液压油是流向变速器操纵阀的。 2 液力变矩器的故障诊断 液力变矩器的故障通常表现在三个方面:装载机动力不足,高速档起步困难;油温过高;液力变矩器不工作。液力变矩器出现故障时,一般从液压油路方面(包括液压油路是否通畅、密封是否良好等)开始检查。

液力变矩器的结构与工作原理

液力变矩器的结构与工作原理 (一)液力变矩器的结构 液力变矩器以液体作为介质,传递和增大来自发动机的扭矩 液力变矩器由可转动的泵轮和涡轮,以及固定不动的导轮三元件构成。各件用铝合金精密铸造或用钢板冲压焊接而成。泵轮与变矩器壳成一体。用螺栓固定在飞轮上,涡轮通过从动轴与传动系各件相连。所有工作轮在装配后,形成断面为循环圆的环状体。 (二)液力变矩器的工作原理 导涡泵 液力变矩器工作原理可以用两台电风扇作形象描述,两风扇对置,一台通电转动,产生的气流可吹动不通电的风扇,如果给其添加一个管道这就成了液力偶合器,它能传轴,并不增扭。 变矩器工作时,发动机带动泵轮转动,叶轮带动液流冲向涡轮,从而驱动涡轮转动,刚起动时扭矩最大,此时冲击力为F1,冲到涡轮的液流驱动涡轮后,由于叶片形状,冲向导轮,而导轮不动,冲击导轮的液流受到阻碍,可使涡轮受到反作用力F2,由于F1、F2都作用于涡轮,所以使涡轮所受扭矩得到增大。 涡轮转速升高后,液流变向会冲击导轮叶背,而失去增扭,并有一定阻力。所以现在所用导轮都使用单向离合器,使去冲击叶背时,导轮转过一个角度,使其继续增扭。 导轮下端装有单向离合器,可增大其变扭范围。 (三)锁止式 变矩器是用液力来传递汽车动力的,而液压油的内部摩擦会造成一定的能量损失,因此传动效率较低。为提高汽车的传动效率,减少燃油消耗,现代很多轿车的自动变速器采用一种带锁止离合器的综合式液力变矩器。这种变矩器内有一个由液压油操纵的锁止离合器。锁止离合器的主动盘即为变矩器壳体,从动盘是一个可作

轴向移动的压盘,它通过花键套与涡轮连接(如图2.3).压盘背面(如图2.3右侧)的液压油与变矩器泵轮、涡轮中的液压油相通,保持一定的油压(该压力称为变矩器压力);压盘左侧(压盘与变矩器壳体之间)的液压油通过变矩器输出轴中间的控制油道与阀板总成上的锁止控制阀相通。锁止控制阀由自动变速器电脑通过锁止电磁阀来控制。 自动变速器电脑根据车速、节气门开度、发动机转速、变速器液压油温度、操纵手柄位置、控制模式等因素,按照设定的锁止控制程序向锁止电磁阀发出控制信号,操纵锁止控制阀,以改变锁止离合器压盘两侧的油压,从而控制锁止离合器的工作。当车速较低时,锁止控制阀让液压油从油道B进入变矩器,使锁止离合器压盘两侧保持相同的油压,锁止离合器处于分离状态,这时输入变矩器的动力完全通过液压油传至涡轮,如图2.4所示。 当汽车在良好道路上高速行驶,且车速、节气门开度、变速器液压油温度等因素符合一定要求时,电脑即操纵锁止控制阀,让液压油从油道C进入变矩器,而让油道B与泄油口相通,使锁止离合器压盘左侧的油压下降。由于压盘背面(图中右侧)的液压油压力仍为变矩器压力,从而使压盘在前后两面压力差的作用下压紧在主动盘(变矩器壳体)上,如图2.5所示,这时输入变矩器的动力通过锁止离合器的机械连接,由压盘直接传至涡轮输出,传动效率为100%. 另外,锁止离合器在结合时还能减少变矩器中的液压油因液体摩擦而产生的热量,有利用降低液压油的温度。有些车型的液力变矩器的锁止离合器盘上还装有减振弹簧,以减小锁止离合器在结合时瞬间产生的冲击力。 第二节行星齿轮变速器的工作原理 液力变矩器虽能在一定范围内自动、无级地改变转矩比和转速比,但存在传动

液力叉车发动机与液力变矩器的匹配及传动系统参数的优化_百度文讲解

维普资讯 https://www.doczj.com/doc/035483508.html, ?44?2rO一机械科学与技术M.—s。第l卷6{M一)一一)(/(I 1~≥M≥M.≥ ^(54)fo.一H≤{H一")(一n)(一/H…L【1rO≤n.…≤,H≤… M(64);一(一M11)(.M一/06)M06.M.06.MM(74)43多目标模糊优化问题求解.该多目标模糊优化问题常转化为求解如下的单目标模糊优化问题。FidnmaxX一(,,,l2asf..()焉0XNjX)((一12,,5,34?)(;l23,.)0≤ 1式中,为辅助变量;。x)(g(=12345.,.,)为式(34)~(7给出的模糊约束条件。4)为解上式,采用最优水平裁集将其转化为非模糊优化问题。可限于篇幅?解模型在此求略去。问题变为普通优化问题,采用相应方法求解。该可传动系统参数的多目标模糊优化的处理同上。I01Dl0l0H200锄?0。3910400e0

0lD20}00620fⅧ …【1『=捌5算倒某集装箱叉车,一1tG一2tI]=3khEg]=02.Q2.2…v0m/,ro.0f=00.nt.2[一=0O,.2[]=005r=06m。.2,.563QK,10ⅣH一18W1k=20rmi,一=00/n70?m0N按本文模型,目标函数取相同重要程度,到:且得发动机:液力变矩器:353K=28YJ7o,n.,一09.1 维普资讯 https://www.doczj.com/doc/035483508.html, 第3期邓斌:渡力叉车发动机与液力变矩器的匹配及传动系缱参数的优化?45?2发动机与液力变矩器的共同工作输入特性和输出特性分别如图1图2示。、所传动系统参数为:S一3q=17.1:91/n.t,.6I2mirz=15rmii=5...1.4ri62/n48=76。lZ34S6789参GinLuaZrt.doyacTaraotHyrdnmi考文献PrmeesOpiztnSaatrtmiai.AEppr705oae757王彩毕,宋连天.模榴论方法学.北京;中国建筑工业出版杜,9818黄宗益.薛瑞祺,阎以诵.工程矾槭C.AD上海:同济大学出版杜.9119陆植.叉车设计.北京机槭工业出艇杜,9119凌忠社.车用液力变矩器的选择与匹配.叉起重运输机槭.981)218(2;~9胡修章.车用柴油机的废气捧放及其与液力变矩器匹配的关系.工程机械.91】)2 ̄318(0:40孙大刚,请文农,杜涛,李刚.液力机饿传动式重型汽车传动比的优选.建筑机械.955:019()】~I4王彩华,朱煜东.多目标优化模蝴解法中目标权重的处理方法.重庆大学学报.9()9~912l6:2795于光远.程软设计理论.京:工北科学出敝社+9219OpiztnoohMacigadPaaeesornmisotmiaifBtthnnrmtrfTassinoSseoyruicvtrFokitytmfrHdalcExaaor

液力变矩器评价指标及与发动机共同工作特性

液力变矩器评价指标 反映液力变矩器主要特征的性能有如下一些:变矩性能,自动适应性能,经济性能(效率特性),负荷特性,透穿特性和容能特性。 一、变矩性能 变矩性能是指液力变矩器在一定范围内,按一定规律无级地改变由泵轮轴传至涡轮轴的转矩值的能力。变矩性能主要用无因次的变矩比特性曲线)(i f K =来表示。 作为评价液力变矩器变矩性能好坏的指标是如下两种工况的K 值:一是i =0时的变矩比值0K ,通常称之为起动变矩比(或失速变矩比);二是变矩比K =1 时的转速比i 值,以M i 表示,通常称作偶合器工况点的转速比,它表示液力变矩 器增矩的工况范围。 一般认为0K 值和M i 值大者,液力变矩器的变矩性能好。但实际上不可能两 个参数同时都高,一般0K 值高的液力变矩器,M i 值小。因此,在比较两个液力 变矩器的变矩性能时,应该在0K 值大致相同的情况下,来比较M i 值;或者在M i 近似相等的情况下,来比较0K 值。 二、自动适应性 自动适应性是指液力变矩器在发动机工况不变或变化很小情况下,随着外部阻力的变化,在一定范围内自动地改变涡轮轴上的输出力矩T M -和转速T n ,并处于稳定工作状态的能力。液力变矩器由于变矩性能均可获得单值下降的)(T T n f M =-的曲线,而具有自动适应性。自动适应性是液力变矩器最重要的性能之一,因为利用液力变矩器的这一性能,就可以制造自动的液力机械变速箱。

三、经济性能(或效率特性) 经济性能是指液力变矩器在传递能量过程中的效率。它可以用无因次效率特性()f i η=来表示。 一般评价液力变矩器经济性能有两个指标:最高效率值max η和高效率区范围 的宽度。后者一般用液力变矩器效率不低于某一数值(如对对工程机械取75%η=,对汽车取80%η=)时所对应的转速比i 的比值21 i d i η=来表示。1i 、2i 分别为η不小于某一值的最低和最高转速比。通常认为,高效率范围d η越宽,最高效率值max η的值越高,则液力变矩器的经济性能越好。但实际上,对各种液力变矩器来说,这两个要求往往是矛盾的。 四、负荷特性 液力变矩器的负荷特性是指它以一定的规律对发动机施加负荷的性能。 由于发动机与液力变矩器的泵轮相连,并驱动泵轮旋转,因此,液力变矩器施加于发动机的负荷性能完全可由泵轮的转矩变化特性决定。 52B B B M gD n λρ= 在工作油一定,有效直径D 一定时,液力变矩器在任一工况i 时5B gD c λρ=为常数,因此,泵轮的转矩B M 与其转速B n 的平方成正比。即 2B B M cn = 这是一条通过原点的抛物线,通常称之为液力变矩器泵轮的负荷抛物线。负荷抛物线比较清楚地表明随着泵轮B n 的不同所能施加于发动机的负荷。 五、透穿性能 液力变矩器的透穿性能是指液力变矩器涡轮轴上的转矩和转速变化时,泵轮轴上的扭转和转速相应变化的能力。

自动变速箱与液力变矩器工作原理

自动变速箱 自动变速箱简称AT,全称Auto Transmission,它是由液力变扭器、行星齿轮和液压操纵系统组成,通过液力传递和齿轮组合的方式来达到变速变矩。 和手动挡相比,自动变速箱在结构和使用上有很大不同。手动挡主要通过调节不同齿轮组合来更换挡位,而自动变速箱是通过液力传递和齿轮组合的方式来达到变速的目的。其中液力变扭器是自动变速箱最具特点的部件,它由泵轮、涡轮和导轮等构件组成,泵轮和涡轮是一对工作组合,泵轮通过液体带动涡轮旋转,而泵轮和涡轮之间的导轮通过反作用力使泵轮和涡轮之间实现转速差并实现变速变矩功能,对驾驶者来说,您只需要以不同力度踩住踏板,变速箱就可以自动进行挡位升降。由于液力变矩器自动变速变矩范围不够大,因此在涡轮后面再串联几排行星齿轮提高效率,液压操纵系统会随发动机工作变化自行操纵行星齿轮,从而实现自动变速变矩。为了满足行驶过程中的多种需要(如泊车、倒车)等,自动变速箱还设有一些手动拨杆位置,像P挡(停泊)、R挡(后挡)、N挡(空档)、D挡(前进)等。 从性能上说自动变速箱的挡位越多,车在行驶过程中也就越平顺,加速性也越好,而且更加省油。除了提供轻松惬意的驾驶感受,自动变速箱也有无法克服的缺陷。自动变速箱的动力响应不够直接,这使它在“驾驶乐趣”方面稍显不足。此外,由于采用液力传动,这使自动挡变速箱传递的动力有所损失。 手自一体自动变速箱 手自一体变速箱的出现其实就是为了提高自动变速箱的经济性和操控性而增加的设置,让原来电脑自动决定的换挡时机重新回到驾驶员手中。同时,如果在城市内堵车情况下,还是可以随时切换回自动挡。

液力变矩器的工作原理就像两个风扇相对,一个风扇工作,然后将另一个不工作的风扇吹动。这个比喻可以很形象的解释液力变矩器中泵轮和涡轮之间的工作关系。不过详细解释其工作原理,则有些复杂。 动力输出之后,带动与变矩器壳体相连的泵轮,泵轮搅动变矩器中的自动变速箱油(以下简称ATF),带动涡轮转动,ATF在壳体中是一个循环的动作,由于泵轮旋转时的离心力,ATF会在泵轮的作用下,甩向外侧,冲向前方的涡轮,再流向轴心位置,回到泵轮一侧,如此周而复始的循环,将动力传向与齿轮箱连接的涡轮。 不过只有该零部件和传动方式,只能称为液力耦合器,若想成为液力变矩器,必然要改变涡轮叶片的形状,这样一来,ATF在经过涡轮再循环回泵轮时,会与泵轮旋转方向相反,因而造成冲击,所以为了成为液力变矩器还需另一个部件:导轮。导轮是存在于泵轮和涡轮之间的一个部件,用于调节壳体中ATF液流方向,通过单向离合器与箱体固定。 有了导轮,才有了“变矩”的灵魂所在,在泵轮与涡轮转速差较大时,动力输出的扭矩也变大了,此时的变矩器想当一个无级变速器,通过转速差来提升扭矩,此时导轮处于固定状态,用以调节ATF回流;而当转速差降低,涡轮泵轮耦合或锁止时,扭矩接近对等,无需增矩,导轮随泵轮和涡轮同向转动,避免自身搅动ATF,造成动力的损耗。 至此我们了解到了液力变矩器的最大特点——软连接,而这种动力的传输方式起到了两大功能:1、从静止到低速时的平稳起步;2、在加速过程中,较大动力输出时,起到增大扭矩的作用。如果与MT上的离合器相比较,则需注意的是,第一条起到了并优化了MT 上离合器的功能,但第二条则是离合器无法实现的。

液力变矩器故障和工作原理

4.1 液力变矩器构造和工作原理 4.1.1液力变矩器构造 1、三元一级双相型液力变矩器 三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。双相是指液力变矩器的工作状态分为变矩区和偶合区。 * 图4-1为液力变矩器三个主要元件的零件图。 2、液力变矩器的结构和作用 泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的 主动元件。 *

1-变速器壳体2-泵轮3-导轮4-变速器输出轴5-变矩器壳体 6-曲轮7-驱动端盖8-单向离合器9-涡轮 涡轮装在泵轮对面,二者的距离只有3~4mm,在增矩工况时悬空布置,被泵轮的液流驱动,并以它特有的速度转动。在锁止工况时它被自动变速器油挤到离合器盘上,随变矩器壳同步旋转。它是液力变矩器的输出元件。涡轮的花键毂负责驱动变速器的输入轴(涡轮轴)。它将液体的动能转变为机械能。 导轮的直径大约是泵轮或涡轮直径的一半。并位于两者之间。导轮是变矩器中的反作用力元件,用来改变液体流动的方向。 导轮叶片的外缘一般形成三段式油液导流环内缘。分段导流环可以引导油液平稳的自由流动,避免出现紊流。 导轮支承在与花键和导轮轴连接的单向离合器上。单向离合器使导轮只能与泵轮同向转动。涡轮的油液流经导轮时改变了方向,使液流返回泵轮时,液流的流向和导轮旋转方向一致,可以使泵轮转动更有效。 *

图4-3为液力变矩器油液流动示意图。 观看液力变矩器油液流动 图上通过箭头示意液体流动方向。油液由泵轮的外端传入涡轮的外端,经涡轮内端传到导轮时改变了油液的流动方向,经导轮传给泵轮的油液的流动方向恰 好和泵轮的旋转方向一致。 * 3、液力变矩器的锁止和减振 液力变矩器用油液作为传力介质时,即使在传递效果最佳时,也只能传递90%的动力。其余的动力都被转化为热量,散发到油液里。为提高偶合工况的传动效率,变矩器设置了锁止离合器。液力变矩器进入偶合工况后,变矩器内的闭锁离合器就有可能进入锁止工况。而变矩器一旦进入锁止工况,发动机的动力就可以100%的传给传动系。可以避免液力传动过程中不可避免的动力损失,提高液力变 矩器的工作效率。 液力变矩器根据锁止形式的不同,负责锁止的闭锁离合器分为液力锁止、离

汽车用液力变矩器设计及性能仿真(机械CAD图纸)

摘要 本文的研究是以汽车用液力变矩器为研究对象,基于三维流场理论,借助于UG、GAMBIT、FLUENT等软件,对液力变矩器的内流场进行了仿真计算。本课题研究的目的和意义就在于,通过CFD软件的模拟仿真,对液力变矩器的流道的压力和速度进行有效分析计算。本文主要有以下内容: (1)首先介绍了课题研究的背景,液力变矩器在国内外的应用情况和流场理论的发展现状,指出了液力变矩器设计计算的发展方向是三维流场理论;然后对液力变矩器的组成以及工作原理进行了阐述,并指出了主要研究内容。 (2)阐述了计算流体力学的基本理论。首先列出了控制方程包括连续性方程和动量守恒方程,由于本课题研究的是不可压缩流体,热交换量可以忽略不计,敌不考虑能量守恒方程,然后介绍了将控制方程离散化的方法;接着详细介绍了有限体积法的基本原理,常用的离散格式:分析了网格的生成技术,分别对结构网格、非结构网格以及混合网格作了阐述;最后介绍了常用的湍流模型,湍流流动的近壁处理方法和流场数值计算的算法。介绍了反求发测绘液力变矩器。 (3)介绍了常用的一些CFD软件,并选择FLUENT对本课题进行研究;为了能够顺利地得到收敛解,提出了研究液力变矩器流场的一些假设,并对流场进行了一定的简化;然后通过CAD 软件UG建立叶轮流道的几何模型,并使用GAMBIT生成计算网格,为了提高计算精度,使用六面体网格;选择分离求解器隐式格式进行求解,使用绝对速度方程,湍流模型选择标准k一£模型,同时使用标准壁面函数;离散格式采用二阶迎风格式(这样可以提高解算精度),压力一速度耦合选用SIMPLE算法,入口边界条件使用压力入口,出口边界条件使用压力出口,其余壁面使用非滑移壁面边界条件;在叶轮之间的交互面上使用混合平面模型。 (4)对计算结果进行了分析,并与实验结果进行了比较,二者基本吻合证明了三维流场分析的

液力变矩器的故障检测与维修方法

液力变矩器的故障检测与维修方法 液力变矩器常见的故障主要有:油温过高、供油压力过低、漏油、机器行驶速度过低或行驶无力,以及工作时内部发出异常响声等5种。 1、油温过高 油温过高表现为机器工作时油温表超过120°C或用手触摸感觉汤手,主要有以下几种原因:变速器油位过低;冷却系中水位过低;油管及冷却器堵塞或太脏;变矩器在低效率范围内工作时间太长;工作轮的紧固螺钉松动;轴承配合松旷或损坏;综合式液力变矩器因自由轮卡死而闭锁;导轮装配时自由轮机构化机构缺少零件。 液力变矩器油温过高故障的诊断和排除方法如下:出现油温过高时,首先应立即停车,让发动机怠速运转,查看冷却系统有无泄漏,水箱是否加满水;若冷却系正常,则应检查变速器油位是否位于油尺两标记之间。若油位太低,应补充同一牌号的油液;若油位太高,则必须排油至适当油位。如果油位符合要求,应调整机器,使变矩器在高效区范围内工作,尽量避免在低效区长时间工作。如果调整机器工作状况后油温仍过高,应检查油管和冷却器的温度,若用手触摸时温度低,说明泄油管或冷却器堵塞或太脏,应将泄油管拆下,检查是否有沉积物堵塞,若有沉积物应予以清除,再装上接头和密封泄油管。若触摸冷却器时感到温度很高,应从变矩器壳体内放出少量油液进行检查。若油液内有金属末,说明轴承松旷或损坏,导致工作轮磨损,应对其进行分解,更换轴承,并检查泵轮与泵轮毂紧固螺栓是否松动,若松动应予以紧固。以上检查项目均正常,但油温仍高时,应检查导轮工作是否正常。将发动机油门全开,使液力变矩器处于零速工况,待液力变矩器出口油温上升到一定值后,再将液力变矩器换入液力耦合器工况,以观察油温下降程度。若油温下降速度很慢,则可能是由于自由轮卡死而使导轮闭锁,应拆解液力变矩器进行检查。 2、供油压力过低 现象为:当发动机油门全开时,变矩器进口油压仍小于标准值。主要由以下几种原因引起:供油量少,油位低于吸油口平面;油管泄漏或堵塞;流到变速器的油过多;进油管或滤油网堵塞;液压泵磨损严重或损坏;吸油滤网安装不当;油液

液力变矩器的组成

液力变矩器的组成: 常见的两级三元件综合式液力变矩器由泵轮总成、涡轮总成、导轮总成、闭锁离合器总成和后盖组成,导轮通过单向离合器与变速箱壳体固定连接。泵轮与后盖焊接成一个整体里面充满了传动油,并与发动机连接,起主动作用。涡轮与变速箱输入轴连接,起动力输出作用。变矩器工作时,泵轮在发动机带动下将传动油冲入涡轮,从而带动涡轮转动,实现了动力由发动机向传动系统的传递。导轮总成中,如果单向离合器工作,液力变矩器则起变矩器作用,从而增加扭矩的输出;如果单向离合器不工作(导轮反转),此时变矩器起到了偶合器的作用。 液力变矩器的作用: 1、液力变矩器能够自动无级的根据负载变化改变涡轮的转速,提高车辆的通过能力; 2、液力变矩器通过液体连接泵轮和涡轮,减少发动机对传动系统的冲击载荷,提高传动系统的寿命; 3、液力变矩器在起步时,能够提高车辆的起动变矩比,从而提高车辆的动力性能; 4、起步平稳柔和,提高乘坐舒适性。 液力变矩器的组成结构 液力变矩器由泵轮,涡轮,导轮组成。安装在发动机和变速器之间,以液压油为工作介质,起传递转矩,变矩,变速及离合的作用。以液体为工作介质的一种非刚性扭矩变换器,是液力传动的型式之一。YJH340变矩器,它有一个密闭工作腔,液体在腔内循环流动,其中泵轮、涡轮和导轮分别与输入轴、输出轴和壳体相联。 动力机带动输入轴旋转时,液体从离心式泵轮流出,顺次经过涡轮、导轮再返回泵轮,周而复始地循环流动。泵轮将输入轴的机械能传递给液体。高速液体推动涡轮旋转,将能量传给输出轴。液力YJH340变矩器靠液体与叶片相互作用产生动量矩的变化来传递扭矩。液力变矩器不同于液力耦合器的主要特征是它具有固定的导轮。 导轮对液体的导流作用使液力变矩器的输出扭矩可高于或低于输入扭矩,因而称为变矩器。输出扭矩与输入扭矩的比值称变矩系数,输出转速为零时的零速变矩

液力变矩器的故障检测与维修

编订:__________________ 单位:__________________ 时间:__________________ 液力变矩器的故障检测与 维修 Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4356-70 液力变矩器的故障检测与维修 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 液力变矩器常见的故障主要有:油温过高、供油压力过低、漏油、机器行驶速度过低或行驶无力,以及工作时内部发出异常响声等5种。 1、油温过高 油温过高表现为机器工作时油温表超过120°C 或用手触摸感觉汤手,主要有以下几种原因:变速器油位过低;冷却系中水位过低;油管及冷却器堵塞或太脏;变矩器在低效率范围内工作时间太长;工作轮的紧固螺钉松动;轴承配合松旷或损坏;综合式液力变矩器因自由轮卡死而闭锁;导轮装配时自由轮机构化机构缺少零件。

液力变矩器油温过高故障的诊断和排除方法如下:出现油温过高时,首先应立即停车,让发动机怠速运转,查看冷却系统有无泄漏,水箱是否加满水;若冷却系正常,则应检查变速器油位是否位于油尺两标记之间。若油位太低,应补充同一牌号的油液;若油位太高,则必须排油至适当油位。如果油位符合要求,应调整机器,使变矩器在高效区范围内工作,尽量避免在低效区长时间工作。如果调整机器工作状况后油温仍过高,应检查油管和冷却器的温度,若用手触摸时温度低,说明泄油管或冷却器堵塞或太脏,应将泄油管拆下,检查是否有沉积物堵塞,若有沉积物应予以清除,再装上接头和密封泄油管。若触摸冷却器时感到温度很高,应从变矩器壳体内放出少量油液进行检查。若油液内有金属末,说明轴承松旷或损坏,导致工作轮磨损,应对其进行分解,更换轴承,并检查泵轮与泵轮毂紧固螺栓是否松动,若松动应予以紧固。以上检查项目均正常,但油温仍高时,应检查导轮工作是否正常。将发动机油门全开,使液力变矩器处于

变速箱拆装工艺流程

变速箱拆装工艺流程 一概述 变速箱安装在液力变矩器的后面,来自变矩器的动力通过变速箱的输入轴传递到变速箱,再有驱动轴传递到前后驱动轴。 二变速箱常见故障 故障现象检查结果故障分析故障排除 在某一档位行车无力或者无法行驶变速箱油底壳油发黑 并有异味 1.变速箱长期处于超 载工作 2.变速箱没有按运行 时间进行换油 3.频繁的突然变速操 纵 对离合片进行更换 变速箱壳体上有渗油 迹象变速箱前后盖有裂纹深沟轴承磨损,变速 箱在运行时,轴体发 生圆跳动,频繁冲击 壳体 换新的深沟轴承 三需修装载机验收 经过技术员对故障机器进行故障检查并确诊验收。四装载机大修前期处理 左 边 : 主 动 摩 擦 片 右 边 ; 从 动 摩 擦 片 均 已 经 受 到 严 重 划伤 和 磨 损

将机器停在坚硬平整的地面上,将工作装置降至地面,并且堵塞住轮子,防止车辆移动,之后拆除司机室下面的外围挡板,再用高压水枪认真清洗机器表面和内部的泥土和油污,尤其是变速箱外围件。 六变速箱外围件拆除 1.拆除并移走司机室。 2.解除变速箱上面的相关联的管路和电线。 3.取下发动机与变速箱的联结螺栓,两人配合用吊具吊出变速箱。 注意: a)在吊取变速箱时一定要确保变速箱平衡并且晃动小。 b)拆除的管道口要用布头堵住。 c)用遮布盖住发动机飞轮。 七变速箱安置 将变速箱平稳安置在修理车间的特定位置,确保空旷平整清洁。 八变速箱总成分解 1.拆解变速箱外围件。 2.解体变速箱的前后壳体。 3.两人配合取出变速箱三根主轴,之后拆除变矩器和停车制动离合器。 4.两人配合拆解各档位离合器和变矩器和壳体上各轴承。 注意: a)在拆解时一定要把零件进行分类分开摆放防止错乱。 b)在拆解停车制动中的保持器是一定要与壳体之间做好记号。 九零件清洗和除油 将拆解的各个零件用超声波清洗机清洗(没有条件可用清洁柴油清洗),之后用压缩空气吹干净。 十技术员对零件鉴定并分类,同时记录需更换的零件号和数量 1.技术员对清洁后的所有零件进行鉴定并分类为报废零件,可用零件,需修零件。 2.对需修零件进行修理,对报废零件进行记录,申报新的零件。 十一总成装配 安装前准备工作: 在安装前预先把所有从动摩擦片浸入变速箱油中至少2分钟以上,确保油浸透整个摩擦片。液力变矩器组件的装配: 1.在装配前预先把所有液力变矩器组件再用超声波清洗机清洗(没有条件可用清洁柴油清洗),并用压缩空气吹干。 2. ①轴承:把齿轮18平稳放置干净纸板上,取轴承10并压装到齿轮上。

液力变矩器的结构

1、三元一级双相型液力变矩器 三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。双相是指液力变矩器的工作状态分为变矩区和偶合区。 图4-1为液力变矩器三个主要元件的零件图。 2、液力变矩器的结构和作用 泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的主动元件。 观看液力变矩器油液流动 图上通过箭头示意液体流动方向。油液由泵轮的外端传入涡轮的外端,经涡轮内端传到导轮时改变了油液的流动方向,经导轮传给泵轮的油液的流动方向恰好和泵轮的旋转方向一致。 * 3、液力变矩器的锁止和减振 液力变矩器用油液作为传力介质时,即使在传递效果最佳时,也只能传递90%的动力。其余的动力都被转化为热量,散发到油液里。为提高偶合工况的传动效率,变矩器设置了锁止离合器。液力变矩器进入偶合工况后,变矩器内的闭锁离合器就有可能进入锁止工况。而变矩器一旦进入锁止工况,发动机的动力就可以100%的传给传动系。可以避免液力传动过程中不可避免的动力损失,提高液力变矩器的工作效率。 液力变矩器根据锁止形式的不同,负责锁止的闭锁离合器分为液力锁止、离心力锁止和粘液离合器锁止三种形式。 (1)液力锁止离合器 液力锁止的闭锁离合器出现于20世纪70年代,是目前使用最为广泛的变矩器锁止形式。 液力锁止的结构是在涡轮背面加装一个摩擦式压盘(被习惯称之为离合器盘),压盘上粘有一圈摩擦环。液力锁止离合器进入锁止工况的示意图,见图4-4。进入锁止工况时,变矩器内工作油液压加

液力变速箱结构原理详解资料

液力变速箱结构原理 详解

·YD13 793 104· YD130 液力变速器结构原理详解Hydromedia Transmission 使用说明书 SERVICE MANUAL 杭州前进齿轮箱集团有限公司 (杭州齿轮箱厂) HANGZHOU ADVANCE GEARBOX GROUP CO.,LTD.

(HANGZHOU GEARBOX WORKS) 目录 说明 (3) 第一节基本参数 (3) 第二节简介 (3) 第三节结构原理 (7) 3.1变矩器 (7) 3.2动力换挡变速箱 (7) 3.3取力器 (7) 3.4控制系统 (7) 3.5输出端与辅件 (9) 第四节安装与连接 (10) 第五节操作 (11) 5.1加油 (11) 5.2操纵和换挡 (11) 5.3停车和停放 (11) 5.4拖行 (11) 5.5检查 (12) 5.6其它 (12) 第六节维护和保养 (12) 6.1 油品 (12)

6.2 油量 (12) 6.3 换油 (12) 6.4 滤清器的更换 (13) 6.5 使用要求 (13) 6.6 保养 (13) 6.7 拆装、维修简明事项 (13) 6.8 挡位选择器 (13) 6.9 常见易耗件及密封胶清单 (14) 第七节常见故障的分析及排除方法 (14)

图1 YD130系列液力变速器

说明 本说明书将主要介绍YD130系列液力变速器的结构、工作原理、使用规程及日常维护注意事项等。对与其结构或工作原理相近的变速器同时也有指导作用。 说明书中所涉及的一些数据或原理等均为常规情况下的YD130系列配置。由于 YD130为一系列化产品,结构或外形上可能存在着多样性,在未特殊说明的情况下,均以本说明书做为作业指导书。 本说明书的物料编号为YD13 793 104,使用时请注意核对。 我们将尽量确保手册中的内容正确无误,同时本公司将保留改进和修改产品及说明书的权利,恕不事先通知。 用户在使用前请仔细阅读本说明书。正确的使用是保证液力变速器长期正常运行的前提! 第一节基本参数 最大输入功率:130kW 最高输入转速:2600r/min 涡轮轴最大扭矩:1000Nm 注:以上参数均为理论设计的额定值,由于发动机及车辆配置等参数在不同型式车辆上存在着多样性,变速器实际匹配数据与上述理论值可能有所差异。 第二节简介 YD130系列液力变速器由一个液力变矩器和一个具有整体箱式的多挡动力换挡变速箱组成,能实现前后桥驱动。

液力变矩器效率

液力变矩器效率 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

对于工程机械液力变矩器传动损失的研究 《液气压世界》2007年第3期孟亚/刘长生/戴奇明/李胜健阅读次数:816摘要:液力变矩器在现代工程机械传动中被广泛采用,它不仅可以传递力矩而且可以改变力矩的大小。对于现代大型工程机械,其能耗非常大,但其效率往往比较低。因此,我们总希望能够尽量地提高工程机械的效率。因此,对于液压传动能量损失的研究就显得尤为重要了。作者从流体力学的角度对现代工程机械中液力变矩器的损失进行了研究。 关键词:工程机械液力变矩器液力损失机械损失容积损失 1 前言 <在工程机械传动系中,一般采用液力机械式传动,它能够满足现代工程机械要求的牵引力大、速度低、牵引力和行驶速度变化范围大、进退自如等特点。而在液力机械式传动中加装了液力变矩器,则具有自动变矩、变速,防振隔振,良好的启动性能,和限矩保护的作用,更能适应现代工程机械的需要。 流体在变矩器中沿泵轮、涡轮、导轮组成的循环圆流道流动一周,从泵轮获得能量、并将能量传给涡轮。当导轮不动的时候,流体经过导轮时没有能量交换。但流体在循环圆中流动具有黏性,必然有摩擦损失,且损失大小与其速度有直接关系。工作轮流道为非原型断面且有弯曲、扩散等,因此,其摩擦损失比圆管流道要大得多。另外在非设计工况,在涡轮及导轮进口处要产生冲击损失。因此,一般液力变矩器的效率最大为85%~92% [1]。而对于一般的工程机械,由于其负载大、作业条件恶劣、零件磨损严重,其效率普遍比较低。因此,对于液力变矩器能量损失的研究具有很强的现实意义。 2 液力变矩器的工作原理

相关主题
文本预览
相关文档 最新文档