当前位置:文档之家› 多路模拟信号采集电路开题报告

多路模拟信号采集电路开题报告

多路模拟信号采集电路开题报告
多路模拟信号采集电路开题报告

中北大学

毕业设计开题报告学生姓名:学号:

学院、系:电子与计算机科学技术学院电子科学与技术系

专业:电子科学与技术

设计题目:多路模拟信号采集电路的设计指导教师:

2010 年11月 30 日

毕业设计开题报告

毕业设计开题报告

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

1. 线形光耦介绍 光隔离是一种很常用的信号隔离形式。常用光耦器件及其外围电路组成。由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。 对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。 模拟信号隔离的一个比较好的选择是使用线形光耦。线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。 市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。这里以HCNR200/201为例介绍2. 芯片介绍与原理说明 HCNR200/201的内部框图如下所示 其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。 1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和 K2,即 K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得 K1和K2相等。在后面可以看到,在合理的外围电路设计中,真正影响输出/输入比值的是二者的比值K3,线性光耦正利用这种特性才能达到满意的线性度的。

一种压电能量收集装置设计

一种压电能量收集装置的设计 研究现状: 压电能量收集模式将压电材料铺设于道路路而结构中,利用压电效应将道路上交通荷载产生的部分机械能转化为电能,继而将产生的电能收集、处理、利用。自从1880年代居里兄弟发现压电效应至今,经过100多年的研究积淀,针对压电材料性能及应用研究己日趋成熟。由于其优良的能量转换能力,压电能量收集系统受到了全球科研机构及企业的普遍关注。 2008年以色列的Innowattech公司与海法理工学院共同研发了应用于道路工程的压电能量收集系统(Innowattech Piezo Electric Venerator,IPEV)。图1,2分别为IPEV的概念模型和现场试验照片。采用该能量收集系统,交通量为600 }eh " h 1的一条双车道道路上能产生0. 4 MW " km 以上的电量,可支持400 ^} 600户家庭的日常用电;且随着交通量、车载的增加,收集的电能也随之增加;IPEV的使用不会增加车辆单位油耗;其使用寿命约为30年。然而,该技术尚处于对外保密阶段,不能给中国研究者提供直接参考。 Lee等口6〕研究了路而动态荷载作用下基于压电效应的能量转化影响因素及其之间的关系;Ye等o;〕提出了一种基于遗传算法的压电换能器自动优化方法,通过该方法设计的换能器可以根据实时路而振动数据自动调节内部频率以收集更多的能量;曹秉刚等mo研发了一种利用公路系统振动能量压电发电的方法和系统;林伟等口月设计了一种应用于沥青混凝土路而的堆叠式压电自发电能量采集与照明装置;Zhao等基于有限元对应用于沥青路而进行能量收集的钱式压电能量收集器参数进行了分析优化,在20 Hz, 0. 7 MPa交通荷载的作用下,按照其设计的钱式换能器,计算机模拟单个钱式压电能量收集器可产出功率为1.2mW的电能;Ky-missis在麻省理工学院将压电晶体置于鞋内,研究出一种发电鞋。测定发现压电晶体产生的峰值电能为80mW ; Rastega等开发了一种可应用于多种平台的针

心电信号采集电路实验报告.doc

心电放大电路实验报告 一概述 心脏是循环系统中重要的器官。由于心脏不断地进行有节奏的收缩和舒张活动,血液才能在闭锁的循环系统中不停地流动。心脏在机械性收缩之前,首先产生电激动。心肌激动所产生的微小电流可经过身体组织传导到体表,使体表不同部位产生不同的电位。如果在体表放置两个电极,分别用导线联接到心电图机(即精密的电流计)的两端,它会按照心脏激动的时间顺序,将体表两点间的电位差记录下来,形成一条连续的曲线,这就是心电图。 普通心电图有一下几点用途 1、对心律失常和传导障碍具有重要的诊断价值。 2、对心肌梗塞的诊断有很高的准确性,它不仅能确定有无心肌梗塞,而且还可确定梗塞的病变期部位范围以及演变过程。 3、对房室肌大、心肌炎、心肌病、冠状动脉供血不足和心包炎的诊断有较大的帮助。 4、能够帮助了解某些药物(如洋地黄、奎尼丁)和电解质紊乱对心肌的作用。 5、心电图作为一种电信息的时间标志,常为心音图、超声心动图、阻抗血流图等心功能测定以及其他心脏电生理研究同步描纪,以利于确定时间。 6、心电监护已广泛应用于手术、麻醉、用药观察、航天、体育等的心电监测以及危重病人的抢救。 二系统设计 心电信号十分微弱,频率一般在0.5HZ-100HZ之间,能量主要集中在17Hz附近,幅度大约在10uV-5mV之间,所需放大倍数大约为500-1000倍。而50hz工频信号,极化电压,高频电子仪器信号等等干扰要求心电信号在放大的过程中始终要做好噪声滤除的工作。下图为整体化框图。 三具体实现 电路图如下: 1 导联输入: 导联线又称输入电缆线。其作用是将电极板上获得的心电信号送到放大器的输入端。心脏

电路设计常用软件

电路设计常用软件 erica 发表于 2006-9-5 11:29:00 随着计算机在国内的逐渐普及,EDA(Electronic Design Automatic,电路设计自动化)软件在电路行业的应用也越来越广泛,但和发达国家相比,我国的电路设计水平仍然存在着相当大的差距。中国已走到了WTO的门口,随着WTO的加入,电路行业将会受到较大的冲击,许多从事电路设计工作的人员对EDA软件并不熟悉。笔者此文的目的就是让这些同业者对此有些了解,并以此提高他们利用电脑进行电路设计的水平。以下是一些国内最为常用的EDA软件。 PROTEL PROTEL是PORTEL公司在20世纪80年代末推出的电路行业的CAD软件,它当之无愧地排在众多EDA软件的前面,是电路设计者的首选软件。它较早在国内使用,普及率也最高,有些高校的电路专业还专门开设了课程来学习它。几乎所有的电路公司都要用到它。早期的PROTEL主要作为印刷板自动布线工具使用,运行在DOS环境,对硬件的要求很低,在无硬盘286机的1M内存下就能运行。它的功能较少,只有电原理图绘制与印刷板设计功能,印刷板自动布线的布通率也低。现在的PROTEL已发展到PROTEL99(网络上可下载到它的测试版),是个庞大的EDA软件,完全安装有200多MB,它工作在Windows 95环境下,是个完整的全方位电路设计系统,它包含了电原理图绘制、模拟电路与数字电路混合信号仿真、多层印刷电路板设计(包含印刷电路板自动布线)、可编程逻辑器件设计、图表生成、电路表格生成、支持宏操作等功能,并具有Client/Server (客户/服务器)体系结构,同时还兼容一些其它设计软件的文件格式,如ORCAD、PSPICE、EXCEL等。使用多层印制线路板的自动布线,可实现高密度PCB的100%布通率。想更多地了解PROTEL的软件功能或者下载PROTEL99的试用版,可以在Internet上访问它的站点:HTTP:// https://www.doczj.com/doc/0318042263.html,。 ORCAD ORCAD是由ORCAD公司于20世纪80年代末推出的EDA软件。它是世界上使用最广的EDA软件,每天都有上百万的电路工程师在使用它,相对于其它EDA 软件而言,它的功能也是最强大的,由于ORCAD软件使用了软件狗防盗版,因此在国内它并不普及,知名度也比不上PROTEL,只有少数的电路设计者使用它。早在工作于DOS环境的ORCAD 4.0,它就集成了电原理图绘制、印制电路板设计、数字电路仿真、可编程逻辑器件设计等功能,而且它的界面友好且直观。它的元器件库也是所有EDA软件中最丰富的,在世界上它一直是EAD软件中的首选。ORCAD公司在去年7月与CADENCE公司合并后,更成为世界上最强大的开发EDA软件的公司,它的产品ORCAD世纪集成版工作于Windows 95与Windows NT环境下,集成了电原理图绘制,印刷电路板设计、模拟与数字电路混合仿真等功能。它的电路仿真的元器件库更达到了8500个,收入了几乎所有的通用型电路元器件模块。它的强大功能导致了它的售价不菲,在北美地区它的世纪加强版就卖到了7995美元,对ORCAD有兴趣的读者可以去访问它的站点:HTTP:

LinearLTC压电能量收集电源方案

Linear LTC3588-1压电能量收集电源方案 关键字:电源管理,能量收集器,DC/DC转换器Linear 公司的LTC3588-1是压电能量收集电源,集成了低噪音全波整流和高效降压转换器,组成完整的能量收集解决方案,最适合高输出阻抗的能量源如压电传感器.输入电压2.7V-20V,输出电流高达100mA,可选输出电压1.8V, 2.5V, 3.3V和3.6V,可用于压电能量收集,电-机械能量收集,无线HVAC传感器,轮胎压里传感器,遥控光开关,毫微瓦降压稳压器.本文介绍LTC3588-1主要特性,方框图以及多种应用电路图,包括 100mA压电能量收集电源电路图, 最小尺寸的1.8V低压输入压电能量收集电源电路图, 电场能量和热电能量收集器电路图等. LTC3588-1: Piezoelectric Energy Harvesting Power Supply The LTC.3588-1 integrates a low-loss full-wave bridge rectifier with a high efficiency buck converter to form a complete energy harvesting solution optimized for high output impedance energy sources such as piezoelectric transducers. An ultralow quiescent current

undervoltage lockout (UVLO) mode with a wide hysteresis window allows charge to accumulate on an input capacitor until the buck converter can effi ciently transfer a portion of the stored charge to the output. In regulation, the LTC3588-1 enters a sleep state in which both input and output quiescent currents are minimal. The buck converter turns on and off as needed to maintain regulation. Four output voltages, 1.8V, 2.5V, 3.3V and 3.6V, are pin selectable with up to 100mA of continuous output current; however, the output capacitor may be sized to service a higher output current burst. An input protective shunt set at 20V enables greater energy storage for a given amount of input capacitance. LTC3588-1主要特性: 950nA Input Quiescent Current (Output in Regulation – No Load) 450nA Input Quiescent Current in UVLO

三相电信号采集电路设计方案

引言 当前,电力电子装置和非线性设备的广泛应用,使得电网中的电压、电流波形发生畸变,电能质量受到严重影响和威胁;同时,各种高性能家用电器、办公设备、精密试验仪器、精密生产过程的自动控制设备等对供电质量敏感的用电设备不断普及对电力系统供电质量 的要求越来越高,电能质量问题成为近年来各个方面关注的焦点,电能质量监测是当前国际上的一个研究热点[1],有必要对三相电信号进行高精度采集,便于进一步分析控制,提高电能质量。对电力参数的采样方法主要有两种,即直流采样法和交流采样法。直流采样法采样的是整流变换后的直流量,软件设计简单,计算方便,但测量精度受整流电路的影响,调整困难。交流采样法则是按一定规律对被测信号的瞬时值进行采样,再按一定算法进行数值处理,从而获得被测量,因而较之直流采样法更易获得高精度、高稳定性的测量结果[2]。 三相电信号采集电路设计 三相电信号采集电路框架 三相电信号采集电路的框架如图1所示。三相电压电流信号经过电压电流互感器转换为较低的电压信号。其中A相的电压信号经过波形调整成为频率与A相电压信号相同的方波信号,用于测量频率。同时将转换后方波频率信号进行频率的整数倍放大作为A/D转换的控

制信号。经过六路互感器降压后,将信号送入AD7656进行A/D转换,转换完的数字信号就可以供于DSP/MCU进行数据分析。 电压电流互感器的选用 电压/电流互感器均采用湖北天瑞电子有限公司TR系列检测用 电压输出型变换器。电压互感器采用检测用电压输出型电压变换器TR1102-1C,如图2为其结构图,规格为300V/7.07V,非线性度比差<+/-0.1%,角差<=+/-5分。电流互感器采用检测用电压输出型电流变换器TR0102-2C,规格为5A/7.07V,非线性度比差<+/-0.1%,角差<=+/-5分。 电源电路 AD7656共有两种模拟信号输入模式,一是模拟输入信号为二倍的参考电压(2.5V)即+/-5V之间,另一种是四倍的参考电压即+/-10V 之间。为提高采样的精度,本电路采用输入信号为+/-10V之间,因此需要+/-10V~+/-16.5V之间电源供电。AD7656同时需要5V的AVCC

基于单片机的多路信号采集

信号采集输入电路的设计 与实现 电信1302班 刘志威 0121309340310

摘要 本设计主要完成了基于AT89S51单片机控制的数据采集系统的硬件电路设计以及相应的软件设计。 本系统的硬件设计主要包括:多路转换开关及前置放大电路的设计,采样保持电路的设计,模数转换电路的设计,PC机通信的技术,键盘和显示的设计,系统电源的设计。多路转换开关及前置放大电路的设计中重点介绍了多路开关的选择、AD521放大倍数的计算以及多路开关CD4051和放大器AD521硬件连接电路。采样保持电路的设计中重点介绍了采样保持电路的原理和主要参数以及采样保持器的选择和连接电路。模数转换电路的设计中重点介绍了系统A/D通道的选择和A/D转换器的各项误差分析以及A/D转换器AD574的介绍、输入方式和连接电路。单片机与pc机通信主要是利用MAX232单芯片RC-232标准的接口通信电路。键盘和显示的设计采用八个独立键盘并通过串行通信的方式传输到12864中并显示。电源部分的设计通过采用6V*2的变压器对220V的输入交流电进行降压,经二极管全波整流,通过三端稳压器的稳压,输出5V直流电压。利用555时基电路输出 15V的双电源电压。 关键词:数据采集;AT89S51单片机;CD4051;MAX232

第一章系统硬件设计 本系统的硬件设计主要包括:多路转换开关及前置放大电路的设计,采样保持电路的设计,模数转换电路的设计,PC通信,电源的设计。 1.多路开关的选择 多路转换开关在模拟输入通道中的作用是实现多选一操作,即利用多路转换开关将多路输入中的一路接至后续电路。切换过程可在CPU或数字电路的控制下完成。常用的模拟开关大都采用CMOS工艺,如8选1开关CD4051、双4选1开关CD4052、三3选1开关CD4053等。本设计是实现8路数据采集,所以只选择1片8选1的模拟开关。 模拟多路开关中,不可避免导通电阻R ON 的存在。R ON 使信号电压产生跌落, 跌落量与流过开关的电流成正比。设计中希望R ON 越小越好,但是R ON 越小的器件 价格越高。所以根据器件的价格和系统的容忍度,选择R ON 的值。 多路开关的主要参数是精度和速度。多路开关的精度以传输误差的大小来间接表示。多路开关的速度以信号通过多路开关的通过率来间接表示。 传输误差是衡量多路开关的一个指标,多路开关的传输误差包括两个方面。 (1)多路开关导通电阻加上信号源阻抗与负载阻抗构成了分压器。当要求精度为0.01%时,负载阻抗就应至少是开关导通电阻与信号源阻抗之和的104倍。在数据采集系统中,多路开关的负载一般是采样/保持器。因为典型的多路开关的导通电阻为200欧姆~200千欧姆,所以,如果信号源阻抗在几百欧姆以下,则作为负载的采样/保持器,其输入阻抗应在108欧姆以上。 (2)多路开关的漏电流在信号源阻抗上产生偏移电压,而漏电流与工作温度关系很大。因此,应该根据最高工作温度时的漏电流来计算偏移误差。 通过率是衡量多路开关的另一个指标,是多路开关从一个通道切换并使下一个通道建立到规定精度所能达到的最高切换率。它一方面取决于多路开关建立时间,并与规定的建立精度有关,另一方面为了避免两个通道同时接通,多路开关被设计为“先断后通”,这增加了断开到接通的延时,影响了通过率的提高。在确定多路开关的通过率时,要跟据系统的采样速率来考虑。 根据上面的分析,本设计选用的是采用CMOS工艺的8选1开关CD4051。 CD4051的模拟信号范围为±7.5V,导通电阻R ON 为125欧姆,关断漏电流为0.1μA,

基于压电材料的振动能量收集试验研究

第27卷第3期2010年6月 现代电力 M oder n Electr ic P ower Vol127No13 June2010 文章编号:100722322(2010)0320070205文献标识码:A 基于压电材料的振动能量收集试验研究 任思源,何青 (华北电力大学能源动力与机械工程学院,北京102206) Experimental S tudy on Vibration Energy Collection Based on Piezoelectric Material Ren Siyuan,H e Q ing (School of Energy,P ower and Mechanical Engineering,North China Elect ric Power Univer sity,Beijing102206,China) 摘要:针对设备状态监测与故障诊断实时监测的要求,以应用于无线传感器网络节点供电为目的,根据材料的压电特性及其等效电模型,设计出将振动能转化成电能的能量收集的试验系统。该试验系统由压电片、振动台、整流转换、充电电路以及可充电锂离子电池等组成。以整流电路、开关控制部分,结合超级电容,设计出基于压电材料的振动能综合转换收集试验方案,制作出小型设备,通过试验验证其应用的可行性,记录并分析试验数据。试验表明,振动能量能够被有效地转化为电能并先储存于超级电容中,后由开关系统控制充电芯片实现断续充电,将电能储存至锂电池中。 关键词:压电材料;振动;能量收集;超级电容;锂电池 Abstract:Based on the piezoelectric characteristics and e2 quivalent electrical model of the material,an experimental system has been designed to convert the energy of vibration into the elect ric power.The experimental system takes the real time requirement of condition monitoring and faults di2 agnosis as background and aims at the application of the power supply for wireless sensor network nodes.It consists of piezoelectric ceramics,vibration shaker,rectifier con2 verter,charge circuit,Lithium battery,etc.,the experi2 mental scheme is accomplished to convert and collect the vi2 brat ion energy of the piezoelectric material with synthesizing rectifier,switching part and super capacitor.A small device has been analyzed and verified with experiments and the re2 corded data.The experiment shows that vibration energy can be converted to electrical energy and then electrical en2 ergy is stored in Super Capacitor,intermittently charged through switching part into charge chip,and stored in a lith2 ium battery. Key w ords:piezoelectric;vibration;energy harvesting; Super Capacitor;Lithium Battery 0引言 随着无线设备的广泛应用,其供电问题受到人们的广泛关注。在许多使用电池供电的场合,电池的频繁更换不仅会增加使用费用,而且会造成环境污染,特别在一些人类无法到达、无法接触的特殊场合,其电池更换更难。另外在设备监测与故障诊断的应用中,电池电量用完且又无法及时更换会造成严重的后果[1]。为解决这些问题,人们开始考虑把周围环境中的能量,如化学能、光能及机械振动能等,转换成电能收集并存储起来。 在工矿、电力、石油等行业内部,大型机械设备的应用极为广泛。与此同时,随着联合能量收集技术的发展,大型机械设备的振动能量收集利用也随之广泛发展起来。 研究人员目前已经开发出从振动中收集能量的装置。这些装置可采用电磁式、静电式或压电式将机械运动转换为电能。这3种机电转换方式的能量贮存密度比较如表1所示。而且,现在一些公司开始生产振动能量转换器,每一种转换器各有优缺点。一般来说,静电式转换器需要保持一很小的空气间隙,且功率密度较低,电磁转换器常常输出电压低,而压电式转换器却要依赖于较脆的陶瓷[2]。依据理论、仿真和实验,对大部分应用来说,3种转换器中压电式转换器是最有潜力的。 表1能量贮存密度比较 类型实际最大值/(mJ#cm-3)理论最大值/(mJ#cm-3) 压电式3514335 静电式444 电磁式2418400 本文所介绍的是一种基于压电片的压电振动能量收集技术试验,该能量收集技术试验是由振动台作为动力源,压电片产生电流可以存放在超级电容

基于仪表放大的传感器信号采集电路

基于仪表放大器的传感器信号采集电路设计
2010-2-5 20:10:00 来源:中国自动化网

1 引言 传感器及其相关电路被用来测量各种不同的物理特性,例如温度、力、压力、流 量、 位置、 光强等。 这些特性对传感器起激励的作用。 传感器的输出经过调理和处理, 以对物理特性提供相应的测量。 数字信号处理是利用计算机或专用的处理设备, 以数值计算的方式对信号进行采 集、变换、估计与识别等加工处理,从而达到提取信息和便于应用的目的。仪表放大 器具有非常优越的特性,能将传感器非常微弱的信号不失真的放大以便于信号采集。 本文介绍在一个智能隔振系统中,传感器数据采集系统具有非常多的传感器,而且信 号类型都有很大的差别的情况下如何使用仪表放大器将传感器信号进行调理以符合 模数转换器件的工作范围。 2 仪表放大器在传感器信号调理电路中的应用 仪表放大器是一种高增益、直流耦合放大器,他具有差分输入、单端输出、高输 入阻抗和高共模抑制比等特点。差分放大器和仪表放大器所采用的基础部件(运算放 大器)基本相同,他们在性能上与标准运算放大器有很大的不同。标准运算放大器是 单端器件,其传输函数主要由反馈网络决定;而差分放大器和 仪表放大器在有共模信号条件下能够放大很微弱的差分信号, 因而具有很高的共模抑 制比(CMR)。他们通常不需要外部反馈网络。 仪表放大器是一种具有差分输入和其输出相对于参考端为单端输出的闭环增益 单元。输入阻抗呈现为对称阻抗且具有大的数值(通常为 109 或更大)。与由接在反 向输入端和输出端之间的外部电阻决定的闭环增益运算放大器不同, 仪表放大器使用 了一个与其信号输入端隔离的内部反馈电阻网络。 利用加到两个差分输入端的输入信 号,增益或是从内部预置,或是通过也与信号输入端隔离的内部或外部增益电阻器由 用户设置。典型仪表放大器的增益设置范围为 1~1000。 仪表放大器的特点: (1)高共模抑制比 共模抑制比 (CMRR) 则是差模增益 (Ad) 与共模增益 (Ac) 之比, CMRR=20lg 即: (Ad/Ac)dB;仪表放大器具有很高的共模抑制比,CMRR 典型值为 70~100 dB 以 上。 (2)高输入阻抗 要求仪表放大器必须具有极高的输入阻抗, 仪表放大器的同相和反相输入端的阻 抗都很高而且相互十分平衡, 其典型值为 109~1012 低噪声由于仪表放大器必须能 够处理非常低的输入电压,因此仪表放大器不能把自身的噪声加到信号上,在 1 kHz 条件下,折合到输入端的输入噪声要求小于 10 nV/Hz。 (3)低线性误差 输入失调和比例系数误差能通过外部的调整来修正, 但是线性误差是器件固有缺 陷,他不能由外部调整来消除。一个高质量的仪表放大器典型的线性误差为 0.01%, 有的甚至低于 0.0001%。 (4)低失调电压和失调电压漂移 仪表放大器的失调漂移也由输入和输出两部分组成, 输入和输出失调电压典型值 分别为 100 uV 和 2 mV。

4~20mA电流模拟量输入RS485数据采集模块

M-IF16C用户手册V1.1 基于Modbus的16路电流型模拟量输入模块 1 产品简介 M-IF16C(基于Modbus的16路电流型模拟量输入模块)作为通用型模拟量量采集模块广泛应用于冶金、化工、机械、消防、建筑、电力、交通等工业行业中,可接入16路温度、湿度、液位、压力、流量、PH值等传感器输出的0~20mA 或4~20mA模拟量信号。支持标准的Modbus RTU 协议,并具有通讯超时检测功能,可同其它遵循Modbus RTU 协议的设备联合使用。 1.1 系统概述 M-IF16C模块的原理框图如图1.1所示,模块主要由电源电路、模拟量输入采样电路、隔离RS485收发电路及MCU等部分组成。采用高速ARM处理器作为控制单元,拥有隔离的RS485通讯接口,具有ESD、过压、过流保护功能,避免了工业现场信号对模块通讯接口的影响,使通讯稳定可靠。 图1.1 原理框图 1.2 主要技术指标 1)系统参数 供电电压:5~40VDC,电源反接保护 功率消耗:0.5W

工作温度:-10℃~60℃ 存储温度:-40℃~85℃ 相对湿度:5%~95%不结露 2)模拟量输入参数 输入路数:16路单端输入 正常输入范围:0~20mA,4~20mA 最大输入范围:0~21mA 隔离电压:2500VDC 输入电阻:120Ω ADC分辨率:12位 采样精度:0.5% 采样速率:100次/s 3)通讯接口 通讯接口:RS485 接口,隔离1500VDC,±15kV ESD 保护、过流保护 隔离电压:1500V 通讯协议:Modbus RTU 协议 波特率:1.2k,2.4k,4.8k,9.6k,19.2k,38.4k,57.6k,115.2k 通讯数据格式:1个起始位,8个数据位,无、奇或偶校验,1个或2个停止位 1.3 外形及尺寸 外壳材料:ABS工程塑料 尺寸大小:145mm(长) * 90mm(宽) * 40mm(高) 安装方式:标准DIN35导轨安装和螺钉安装 模块外形如图1.2所示,安装尺寸如图1.3所示。

采样调理电路

3.4 A/D采样电路及信号调理电路 对连续信号) x,按一定的时间间隔s T抽取相应的瞬时值(即通常所 (t 说的离散化),这个过程称为采样。) x经过采样后转换为时间上离散的模拟 (t 信号) x,简称为采样信号。 (s s nT 本系统中采集的模拟量主要是交流电压/电流(计算功率用)、整流输出直流电压/电流(用作脉冲调整)等交流量和直流量,此外加调理电路的作用是把采样信号进行硬件上的定标,变成DSP的A/D口可以识别的0~电平以内的信号。 3.4.1互感器电路原理及选型 图电压互感器原理图 如图,电流型电压互感器采用星格SPT204A(2mA/2mA),R1是熔断电阻防止电流过大烧坏互感器,R2为限流电阻将电压信号转化为2mA电流信号,R3为压敏电阻起过电压保护作用,二次侧输出为2 mA电流信号送至采样模块。 5A输入 2.5mA输出 图电流互感器原理图 如图,电流互感器采用互感器采用星格SCT254AZ,将一次侧5A交流输入转化为输出送至采样板。 3.4.2交流电压/电流采样电路 交流电压/电流采样电流采样信号来自同步变压器经霍尔电压/电流传感器的电压电流源。

为了更清楚的阐述采样电路的工作原理,首先需对电路中的重要器件LM358作简要说明: LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。 (1)交流电压采样电路整流器的输入是三相三线制,无中线,交流电压采集的是经过电流型电压互感器后的交流电流信号,以A相采样电路为例,如下图所示,输入电压经过放大电路电压跟随之后,叠加+的直流量,确保正弦电压的负半周上移到DSP能处理的单极性电压信号+电压范围之内: 图交流采样电路 Rd0为熔断电阻,防止电流过大;Rd1, Rd2为限流电阻,LM358作电压跟随。滑动变阻器Wd0另一侧输入+电压,将电压信号变为单极性信号;电容Cd2、Cd3起去耦作用;电阻Rd3为限流电阻,限定电路的工作电流.,使电路在一个合适的工作状态下运行。稳压管Dd0电压设为3V,使得ADCINB1口的输出电压基本稳定在3V及其以下。采样之后的信号送至TMS320F2812的A/D口进行处理。 (2) 交流电流采样电路交流电流采样电路与电压采样原理基本相同,但相比较而言,电流采样电路更为复杂,同样以A相电流采样为例,采样电路图如下图所示:

模拟信号运算电路

模拟信号运算电路 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

第六章模拟信号运算电路典型例题 本章习题中的集成运放均为理想运放。 分别选择“反相”或“同相”填入下列各空内。 (1)比例运算电路中集成运放反相输入端为虚地,而比例运算电路中集成运放两个输入端的电位等于输入电压。 (2)比例运算电路的输入电阻大,而比例运算电路的输入电阻小。 (3)比例运算电路的输入电流等于零,而比例运算电路的输入电流等于流过反馈电阻中的电流。 (4)比例运算电路的比例系数大于1,而比例运算电路的比例系数小于零。 解:(1)反相,同相(2)同相,反相(3)同相,反相 (4)同相,反相 填空: (1)运算电路可实现A u>1的放大器。 (2)运算电路可实现A u<0的放大器。 (3)运算电路可将三角波电压转换成方波电压。 (4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。 (5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。 (6)运算电路可实现函数Y=aX2。 解:(1)同相比例(2)反相比例(3)微分(4)同相求和 (5)反相求和(6)乘方 电路如图所示,集成运放输出电压的最大幅值为±14V,填表。

图 u I /V u O 1/V u O 2/V 解:u O 1=(-R f /R ) u I =-10 u I ,u O 2=(1+R f /R ) u I =11 u I 。当集成运放工作到非线性区时,输出电压不是+14V ,就是-14V 。 u I /V u O 1/V -1 -5 -10 -14 u O 2/V 11 14 设计一个比例运算电路, 要求输入电阻R i =20k Ω, 比例系数为-100。 解:可采用反相比例运算电路,电路形式如图(a)所示。R =20k Ω, R f =2M Ω。 电路如图所示,试求: (1)输入电阻; (2)比例系数。 解:由图可知R i =50k Ω,u M =-2u I 。 即 3 O M 4M 2M R u u R u R u -+=- 输出电压 I M O 10452u u u -== 图 电路如图所示,集成运放输出电压的最大幅值为±14V ,u I 为2V 的直流信号。分别求出下列各种情况下的输出电压。 (1)R 2短路;(2)R 3短路;(3)R 4短路;(4)R 4断路。 解:(1)V 4 2I 1 3 O -=-=-=u R R u (2)V 4 2I 1 2 O -=-=- =u R R u (3)电路无反馈,u O =-14V (4)V 8 4I 1 3 2O -=-=+- =u R R R u

多路模拟信号采集电路毕业论文

多路模拟信号采集电路毕业论文 1 绪论 1.1 课题来源及研究的目的和意义 近年来,数据采集与处理的新技术、新方法,直接或间接地引发其革新和变化,实时监控(远程监控)与仿真技术(包括传感器、数据采集、微机芯片数据、可编程控制器PLC、现场总线处理、流程控制、曲线与动画显示、自动故障诊断与报表输出等)把数据采集与处理技术提高到一个崭新的水平。 “数据采集”是指将温度、压力、流量、位移等模拟量采集转换成数字量后,再由计算机进行存储、处理、显示或打印的过程。相应的系统称为数据采集系统。 从严格意义上说,数据采集系统应该是用计算机控制的多路数据自动检测或巡回检测,并且能够对数据实行存储、处理、分析计算,以及从检测的数据中提取可用的信息,供显示、记录、打印或描绘的系统。总之,不论在哪个应用领域中,数据的采集与处理越及时,工作效率就越高,取得的经济效益就越大。 数据采集系统的任务,具体地说,就是传感器从被测对象获取有用信息,并将其输出信号转换为计算机能识别的数字信号,然后送入计算机进行相应的处理,得出所需的数据。同时,将计算得到的数据进行显示、储存或打印,以便实现对某些物理量的监视,其中一部分数据还将被生产过程中的计算机控制系统用来进行某些物理量的控制。 数据采集系统性能的好坏,主要取决于它的精度和速度。在保证精度的条件下,应有尽可能高的采样速度,以满足实时采集、实时处理和实时控制的要求[1]。 现场可编程门阵列(FPGA,Field Programmable Gate Array)的出现是超大规

模集成电路(VLSI)技术和计算机辅助设计(CAD)技术发展的结果,是当代电子设计领域中最具活力和发展前途的一项技术,它的硬件描述语言的可修改性、高集成性、高速低功耗、开发周期短、硬件与软件并行性决定了它的崛起是必然的趋势。现场可编程门阵列FPGA器件是Xilinx公司1985年首家推出的,它是一种新型的高密度PLD,采用CMOS-SRAM工艺制作,其部由许多独立的可编程逻辑模块(CLB)组成,逻辑块之间可以灵活的相互连接。CLB的功能很强,不仅能够实现逻辑函数,还可配置成RAM等复杂的形式。配置数据存放在片的SRAM或者熔丝图上,基于SRAM的FPGA器件工作前需要从芯片外部加载配置数据。配置数据可以存储在片外的EPROM 或者计算机上,设计人员可以控制加载过程,在现场修改器件的逻辑功能,即所谓现场可编程[2][3]。 1.2 数据采集系统研究现状 随着数字化进程的加快,工业生产和科学研究等各个领域对数据采集提出了更高的要求。数据采集作为信息处理系统的最前端,从广义上讲,主要包括以下几个方面:数据的采集、数据的存储、数据的初步处理等,并且一般需要通过PC接口总线将数据送入计算机,根据不同的需要进行相应的算法处理。简言之,数据采集系统的主要任务就是把输入的模拟信号转换成数字信号,并对其进行处理,为进一步操作做准备。 数据采集技术已经在雷达系统、通信设备、水声探测、遥感探测、语音处理、智能仪器设备、工业自动化系统以及生物医学工程等众多领域得到广泛的应用,并取得了巨大的经济效益和提高了工作效率。随着工业化和现代化水平的不断发展,以数据采集系统为核心的设备迅速在国外得到了广泛的应用,且对数据采集的要求日益提高。

电子元器件与实用电路设计 制作报告

电子设计报告 第14组 组员: 姓名学院学号班级 郑起佳(组长) 机电20101000382 073101 向世明地空20091003249 061094 张敏地空20101004418 061102 姜志伟地空20091004063 061093 制作成果一.音乐卡片 制作原理: 音乐电路主要有三部分:电池、音乐芯片、喇叭。连接如下: 所需材料包括:电池、音乐IC、薄型喇叭、电线、开关。详细电路:

电路结构:

扬声器是把音频电流转换成声音的电声器件,扬声器俗称喇叭。 。 制作成果二.LED跑马灯 制作原理:

八路发光二极管轮流点亮的实验,也就是通常所说的跑马灯实验,硬件部分包括8个发光二极管和8个限流电阻,下面是我们的原理图和实物图像,LED是有极性的,引脚长的为正极,引脚短的为负极,负极和电阻一侧连接。 下面是我们完成的软件编程设计 输出I/O: P2。 /***********************文件包含***************************/ #include #include//_crol_函数头文件 /************************宏定义****************************/ #define uchar unsigned char #define uint unsigned int

/***********************变量定义***************************/ uchar temp; /***********************延时函数***************************/void delay(uint z) /***********************主函数*****************************/ void main() 代码: ORG 0000H START:MOV P1,#01111111B;最下面的LED点亮 LCALL DELAY;延时1秒 MOV P1,#10111111B;最下面第二个的LED点亮 LCALL DELAY;延时1秒 MOV P1,#11011111B;最下面第三个的LED点亮(以下省略) LCALL DELAY MOV P1,#11101111B LCALL DELAY MOV P1,#11110111B LCALL DELAY MOV P1,#11111011B LCALL DELAY

小型光伏电池在能量收集中的应用

小型光伏电池在能量收集中的应用 作者:Jeff Gruetter 上网时间:2010年12月08日所属类别: 电源管理I 电源管理I 技术方案 关键字: 光伏电池DC/DC 无线传感器能量收集 超低功率解决方案可用于众多的无线系统,包括交通运输基础设施、医疗设备、轮胎压力检测、工业检测、楼宇自动化和贵重物品追踪。此类系统通常在其服役生涯的大部分时间里都处于待机睡眠模式,仅需极低的μW级功率。当被唤醒时,传感器将测量诸如压力、温度或机械偏转等参数并以无线的方式把这些数据传送至一个远程控制系统。整个测量、处理和传送时间通常只有几十ms,但在此短暂期间内有可能需要几百mW的功率。由于这些应用的占空比很低,因此必须收集的平均功率也会相对较低。电源可能就是一节电池而已。然而,电池将不得不以某种方式进行再充电,最终还得更换。在许多此类应用中,实际更换电池的成本之高使其缺乏可行性。这使得环境能量源成为了一种更具吸引力的替代方案。 新兴的毫微功率无线传感器应用 就楼宇自动化而言,诸如占有传感器、温度自动调节器和光控开关等系统能够免除通常所需的电源或控制线路,而代之以一个机械或能量收集系统。除了可以免除首先进行线路安装(或在无线应用中定期更换电池)的需要之外,这种替代方法还能减低有线系统往往存在的例行维护成本。 类似地,运用能量收集技术的无线网络能够将一幢建筑物内任何数目的传感器链接到一起,以通过在建筑物内无人居住时关断非紧要区域的供电来降低采暖、通风和空调(HV AC)以及照明成本。 典型的能量收集配置或无线传感器节点由4个模块组成(见图1)。它们是:1、一个环境能量源,比如:太阳能电池;2、一个用于给节点的其余部分供电的功率转换组件;3、一个将节点链接到现实世界的感测组件以及一个计算组件(由微处理器或微控制器组成,负责处理测量数据并将这些数据存贮到存储器中);4、一个由短程无线单元组成的通信组件,用于实现与相邻节点及外部世界的无线通信。 环境能量源的实例包括连接到某个发热源(例如:HV AC管道)的热电发生器(TEG)或热电堆,抑或是连接至某个机械振动源(如:窗玻璃)及太阳能电池的压电换能器。在存在发热源的情况下,紧凑的热电器件(常被称为“换能器”)能够将很小的温差转换为电能。而当存在机械振动或应变时,则压电器件能够用来把很小的振动或应变差转换为电能。最后,在存在光源的场合中,光伏电池在峰值日照条件下每平方厘米的面积能产生50W以上的电功率,而在室内照明条件下则可产生高达100μW的电功率。

相关主题
文本预览
相关文档 最新文档