当前位置:文档之家› 光学设计讲义

光学设计讲义

光学设计讲义
光学设计讲义

实验一:单镜头设计(Singlet)

实验目的:

1、学习如何启用Zemax

2、学习如何输入波长(wavelength)、镜头数据(lens data)

3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams),

MTF等。

4、学习如何定义thickness solve以及变量(variables)

5、学习如何进行优化设计(optimization)

实验仪器:微机、zemax光学设计软件

实验步骤:

1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length)为100mm,波长为可见光,

用BK7玻璃为材料。

2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。什么是LDE呢?它

是你要的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜片的radius,thickness,大小,位置等。

3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框wavelength data,

键入你要的波长,在第一行输入0.486,它是以microns为单位,此为氢原子的F-line光谱。在第

二、三行键入0.587及0.656,然后在primary wavelength上点在0.587的位置,primary wavelength

主要是用来计算光学系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。

4、确定透镜的孔径大小。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形

成的effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture 就是100/4=25(mm)。于是从system menu上选general data,aperture type里选择entrance pupil,在apervalue上键入25,然后点击ok。

5、回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源,

STO即孔径光阑aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面(surface),于是点击IMA栏,选取insert,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。

6、输入镜片的材质为BK7。在STO行中的glass栏上,直接键入BK7即可。

7、孔径的大小为25mm,则第一镜面合理的thickness为4,在STO行中的thickness栏上直接键入4。

Zemax的默认单位是mm

8、确定第1及第2镜面的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为

负值。再令第2面镜的thickness为100。

9、现在数据已大致输入完毕。如何检验你的设计是否达到要求呢?选analysis中的fans,然后选择其

中的Ray Aberration,将会出现如图1-1所示的TRANSVERSE RAY FAN PLOT。

图1-1

其中ray aberration是以chief ray为参考点计算的。纵轴为EY的,即是在Y方向的aberration,称为tangential或者YZ plane。同理X方向的aberration称为XZ plane或sagittal。ray fan在原点处的倾斜说明存在离焦defocus

10、Zemax主要的目的,就是帮我们矫正defocus,用solves就可以解决这些问题。solves是一些函数,

它的输入变量为curvatures,thickness,glasses,semi-diameters,conics,以及相关的parameters 等。parameters是用来描述或补足输入变量solves的型式。如curvature的型式有chief ray angle,pick up,Marginal ray normal,chief ray normal,Aplanatic,Element power,concentric with surface 等。而描述chief ray angle solves的parameter即为angle,而补足pick up solves的parameters为surface,scale factor两项,所以parameters本身不是solves,要调整的变量才是solves的对象。

在surface 2栏中的thickness项上点两下,出现solve对话框,把solve type从fixed变成Marginal Ray height,然后OK。这项调整会把在透镜边缘的光在光轴上的height为0,即paraxial focus。

此时surface 2的厚度自动调整为96mm。再次update ray fan,将出现图1-2,defocus不见了。

11、但这是最佳化设计吗?再次调整surface 1的radius项从fixed变成variable,依次把surface 2的

radius从fixed变成variable,及surface 2中thickness的Marginal Ray height也变成variable。12、我们再来定义一个Merit function,什么是Merit function呢?Merit function就是把你理想的光学

要求规格定为一个标准(如此例中focal length为100mm),然后Zemax会连续调整你输入solves 中的各种variable, 把计算得的值与你订的标准相减就是Merit function值,所以Merit function值愈小愈好,挑出最小值时即完成variable设定,理想的Merit function值为0。

如何设Merit function,Zemax 已经default 一个内建的merit function,它的功能是把RMS wavefront error 减至最低,所以先在editors中选Merit function,进入其中的Tools,再按Default Merit Function 键,再按ok,即我们选用default Merit function ,这还不够,我们还要规定给merit

function 一个焦距focal length 为100的限制,因为若不给此限制则Zemax会发现focal length为infinit时,wavefront aberration的效果会最好,当然就违反我们的设计要求。所以在Merit function editor行中往后插入一行,即显示出第2行,代表surface 2,在此行中的type项上键入EFFL(effective focal length),并回车,同行中的target项键入100,并回车,weight项中定为1,并回车。跳出Merit function editor,在Tools中选optimization项,按Automatic键,完毕后跳出来,此时你已完成设计最佳化。重新检验ray fan,将出现图1-3,这时maximum aberration已降至200 microns。

图1-2

图1-3

13、其它检验optical performance还可以用Spot Diagrams及OPD等。从Analysis中选spot diagram中

的standard,则该spot大约为400 microns上下左右交错,与Airy diffraction disk比较而言,后者大约为6 microns交错。

而OPD为optical path difference(跟chief ray作比较),从Analysis中选泽Fans,然后选泽Optical Path,将出现图1-4,其中的aberration大约为20 waves,大都focus,spherical,spherochromatism 及axial color。

Zemax 提供一个确定first order chromatic abberation 的工具,即the chromatic focal shift plot,这是把各种光波的focal length跟用primary wavelength 计算出first order的focal length之间的差异对输出光波的wavelength 作图,图中可指出各光波在paraxial focus上的variation。从Analysis 中Miscellaneous项的Chromatic Focal Shift即可得出图1-5。

图1-4

图1-5

实验二:双胶合镜头(doublet)

实验目的:

1、学习如何画出layouts和field curvature plots

2、学习如何定义edge thickness solves, field angles等

实验仪器:微机、zemax光学设计软件

实验原理:

一个双胶合镜头doublet是由两片玻璃组成,通常粘在一起,所以他们有相同的曲率curvature。

利用不同玻璃的色散性质dispersion,色差the chromatic aberration可以矫正到first order,所以剩下的chromatic aberration主要的贡献为second order,于是我们可以期待在看chromatic focal shift plot图时,应该呈现出抛物线parabolic curve的曲线而非一条直线,此乃second order effect的结果(当然其中variation的scale跟first order比起来必然小很多,应该下降一个order)。

实验步骤:

1、选用BK7和SF1两种镜片,wavelength和aperture如同实验一所设,既然是doublet,你只要在实

验一的LDE上再加入一面镜片即可。所以调出实验一的LDE,在STO后再插入一个镜片,表示为2,或者你也可以在STO前在插入一面镜片标示为1,然后在该镜片上的surface type上用鼠标按一下,然后选择Make Surface Stop,则此第一面镜就变成STO的位置。在第一、第二面镜片上的Glass栏分别键入BK7和SF1。

2、现在把STO和第二面镜的thickness都fixed为3,仅第3面镜的thickness为100且设为variable,

如图2-1所示。

图2-1

3、既然要优化,还要设merit function,注意此时EFFL需设在第三面镜上,因为第3面镜是光线在成

像前穿过的最后一面镜,又EFFL是以光学系统上的最后一块镜片上的principle plane的位置起算。

其它的merit function设定就一切照旧。

4、现在选择Tools,optimization,程序如同实验一,在optimization结束后,点击Exit。你再选择

Analysis中Miscellaneous项的Chromatic Focal Shift即可得出图2-2。你会发现first order的chromatic aberration已经被reduced,剩下的是second order chromatic aberration在主宰,所以图形呈现出来的是一个parabolic curve。现在shift的大小为74 microns,实验一为1540 microns。

图2-2

5、再看其它的performance效果,调出Ray aberration,如图2-3所示。此时maximum transverse ray

aberration已由实验一的200 microns降至20 microns。而且3个不同波长通过原点的斜率大约一致,这告诉我们对每个wavelength的relative defocus为很小。再者,此斜率不为0 ( 比较实验一图1-2),这告诉我们什么讯息呢?如果斜率为0,则在pupil coordinate原点附近作一些变动则并不产生aberration,代表defocus并不严重,而aberration产生的主要因素为spherical aberration。

图2-3

故相对于实验一(比较它们坐标的scale及通过原点的斜率),现在spherical aberration已较不严重(因为aberration scale已降很多),而允许一点点的defocus出现,而出现在rayfan curve的S形状,是典型的spherical balanced by defocus的情况。

6、现在我们已确定得到较好的performance,但实际上的光学系统长的什么样子呢?选择Analysis,

Layout,2D Layout,除了光学系统的摆设外,你还会看到3条分别通过entrance pupil的top,center,bottom在空间被trace出来,如图2-4。它们的波长是一样的,就是你定的primary wavelength(在此为surface 1)。这是Zemax default的结果。

但是现在还有一个问题,我们凭直觉定出STO的thickness为3,但是真正在作镜片的时候,STO和surface 2镜面会不会互相交错穿出,即在edge的thickness值为正数或负数,还有是不是应该改一下设计使lens的aperature比diameter小,如此我们可预留些边缘空间来磨光或架镜。

图2-4

实验三:施密特-卡塞格伦望远镜Schmidt-Cassegrain和

aspheric corrector非球面矫正

实验目的:

学习使用多项式非球面polynomial aspheric surface,obscurations, apertures, solves, optimization, layouts, MTF plots。

实验仪器:微机、zemax光学设计软件

实验原理:

本实验是完成施密特-卡塞格伦望远镜Schmidt-Cassegrain及多项式非球面矫正片polynomial aspheric corrector plate。这个设计是要在可见光谱中使用。我们要一个10inches的aperture和10inches 的back focus。

实验步骤:

1、点击System, General, 在aperture value中键入10,同在一个screen把单位unit “Millimeters”改为

“Inches”。

2、把Wavelength设为3个,分别为0.486,0.587,0.656,0.587定为primary wavelength。你可以在

wavelength的screen中按底部的“select”键,即可完成所有动作。

3、目前我们将使用default的field angle value,其值为0。

4、依序键入如图3-1所示的数据,此时the primary corrector为MIRROR球镜片。你可以打开2D layout,

呈现出如图3-2之图形。

图3-1

图3-2

5、现在我们在加入第二个corrector,并且决定imagine plane的位置。键入如图3-3的数据,primary

corrector的thickness变为-18,比原先的-30小,这是因为要放second corrector并考虑到其size大小的因素。在surface4的radius设定为variable,通过优化optimization, Zemax可以定下它的值。

图3-3

6、打开2D layout,呈现出如图3-3之图形。

图3-4

7、打开merit function, reset后,改变”Rings” option到5。rings option决定光线的采样密度sampling

density, default value为3,在此设计,我们要求他为5。执行optimization, 点击Automatic即可,你会发现merit function的值为1.3,不是很理想。这是residual RMS wave error所致。

8、退出merit function, 从system中选Update All, 则secondary corrector的radius已变成41.83。从

Analysis, fans,中选Optical Path, OPD plot如图3-5所示,发现其为defocus且为spherical,大概约有4个wave aberration需要矫正。

9、现在利用指定polynomial aspheric cofficients来作aspheric correction。改变surface 1的surface type

双击surface 1的standard,将surface type改为”Even Asphere”,按OK后返回到surface 1 行中,将光标往右移到4th Order Term, 把此项设为变数,同样将6th Order Term, 8th Order Term设为变数,然后再次执行optimization。调出OPD plot update, 其图应如图3-6所示,你会发现spherical aberration 已被大大地减少。仔细观察,不同的三个波长其相对的aberration有不同的spherical amount, 这就是spherichromatism, 是下一个要矫正的目标。依据经验所得,我们要用axial color来矫正

图3-5

图3-6

spherochromatism, 即axial color balance。

10、要怎么引进axial color呢?我们改变surface1的curvature来达到axial color的效果。把surface1

的radius设为variable, 进行optimization,然后看看update后OPD plot图,如图3-7所示,这就是我们所要设计的,残余的像差residual aberration小于1/20波长,这结果良好。

图3-7

11、现在让我们些微改变field angle, 从system, field中,把y方向的field angle的值设为3个,分别

是0.0, 0.3, 0.5。现在y方向的field angle已改变,等于boundary condition已改变,所以你需要复位你的merit function。把merit function的“Rings”改变为“4”后退出,进行optimization, 则新的OPD plot应如图3-8所示,虽有不同的field angle, 但是所有的aberrations却可以接受。说明此设计还不错。

图3-8

12、下面我们看看该光学系统的成像质量如何?我们看看它的MTF(Modulation Transfer Function)如

何?点击analysis的Modulation Transfer Function,即呈现如图3-9。

图3-9

实验四:多结构的激光扩束器multi-configuration laser beam expander

实验目的:

学习使用多结构系统

实验仪器:微机、zemax光学设计软件

实验原理:

设计一个在波长λ=1.053μ下工作的激光扩束器laser beam expander,Input diameter为100mm,而output diameter为20mm,且Input 和output皆为准直collimated。在此设计中,我们遵守下列设计条件:

1、只能使用2个镜片。

2、本设计在形式上必须是伽利略系统Galilean(没有internal focus)。

3、两个透镜之间的距离必须小于250mm。

4、只有一个aspheric surface可以使用。

5、此光学系统必须在λ=0.6328μ下完成测试。

本设计任务不只是要矫正aberration而已,而是在两个不同wavelengths的情况下都要做到。

先谈谈条件2中什么是Galilean呢?Galilean就是光线从入射到离开光学系统,在光学系统内部不能

有focus现象,在本例中即beams在两个镜片之间不能有focus。好在本系统不是同时在2个wavelengths 下操作,所以在操作时我们可以变动某些组合conjugates。

实验步骤:

1、现在开始设计,依据图4-1键入各surface的相关值。其中surface 5的surface type从Standard改为

Paraxial,这时在镜片后面的focal length项才会出现。注意到使用paraxial lens的目的是把collimated light(平行光)给focus。同时把surface 5的thickness及focal length皆设为25,

图4-1

2、entrance pupil的diameter定为100,wavelength只选一个1.053 microns即可,记住不要再设第二个

wavelength。

3、弹出merit function,在第1行中把type改为REAY这表示real ray Y将用来作为一种约束constraint,

在本设计中,我们被要求Input diameter为100而output diameter为20,其比值为100:20=5:1,即入射beam被压缩了5倍,在surf中键入5,表示在surface中我们要控制他的ray height,而Py 上则键入1.00。把target value定为10,这将会给我们一个diameter collimated为20mm的output beam。

为什么呢?因为Py是normalized的pupil coordinate,即入射光的semi-diameter为50。Py=1即现在的入射光is aimed to the top of the entrance pupil,把target value定为10,就是输出光的semi-diameter为10,所以50:10=5:1,光被压缩了5倍,达到我们的要求。现在选Tools,Update,你会看到在value column上出现50的值,这就是entrance pupil radius即表示coordinates是座落在一个单位圆(unit circle)上,而其半径为50,当Px=0,Py=1即表示在y轴的pupil大小为50,而在x轴的则为0。

4、从edit menu bar选Tools,Default Merit Function,按Reset后把“Start At” 的值改为2,这表示以

后的operands会从第二行开始,而不会影响已建立的REAY operand。执行optimization后,把OPD plot调出来,如图4-2所示,你会发现performance很差,大约为7个waves。

图4-2

5、这个aberration主要来自spherical aberration,所以我们要把surface 1改为spheric,把surface 1行中的Conic设为variable,再次执行optimization,你会看到较好的OPD plot,如图4-3。

图4-3

6、现在把所有的variable都去掉,然后将此系统存盘,因为你已完成wavelength在1.053μ下的beam

expander设计。但是wavelength在0.6328μ的情况怎么办呢?我们进行另一个主题,也就是multi-configuration可以在同一系统中同时设定不同的结构configuration,以适应不同的工作环境或要求,先前我们已完成了wavelength为 1.053μ的configuration,把它看做configuration 1,而wavelength 0.6328为configuration 2。

把wavelength从1.053改为0.6328,再看看OPD plot,如图4-4,出现非常差的performance,这是因为玻璃色散glass dispersion的缘故。

图4-4

7、我们调整镜片间距lens spacing来消除此离焦defocus,把surface 2的thickness设为variable,执行

optimization后,update OPD plot,如图4-5,此时的aberration大约为一个wave。接下来消掉surface

2 thickness的variable。

图4-5

8、现在我们来使用Zemax的multi-configuration capability功能,从main menu上选Editors,再选

Multi-configuration,选其中的Edit,Insert Config,如此我们就可以加入一个新的configuration,在第一行的第一项中双击,在弹出的对话框中选“wave”,同时在”Wavelength#”中选为1,这表示在不同的configuration,我们使用不同的wavelengths。在Config 1下键入1.053,Config 2下键入0.6328。

9、现在在键盘上按“Insert”, 插入新的一行,在新的一行的第一列中双击,在弹出的对话框中的

operand type选“THIC”,这会让我们在各自的configuration中定义不同的thickness,从”surface” list 中选2后按OK。在surface中选2即表示在LDE中surface 2的thickness是当作mult-configuration 的一项oprand value。

10、在第一行的Config 1下键入250,Config 2下也键入250,把Config 2下surface 2的thickness设

为variable。回到merit function editor,选Tools,Default Merit Function,把”Start At”的值改为1,使default merit function会从第一行开始考虑。

11、现在先前设定的REAY constraint条件必须加到此新的multi-config merit function,在merit function

的第一行中,有一个CONFoperand且在”Cfg#”项中定为1,表示现在configuration 1是avtive。在此行之下有三个OPDX operands ,在第一个OPDX之上插入一个新行,把其operand type 改为“REAY”,“Srf#”键入5 。表示我们要控制的ray height是对surface 5而言,Py 键入1.00, target value设为10。如同先前的file让输出beam的diameter为20mm。在CONF 1的要求设定完毕,在CONF 2则不设任何operand,因为我们不可能在两种wavelengths操作下要求exact 5:1的beam。

12、回到LED,把surface 1,2,4的radius及surface 1的conic皆设为variable,进行optimization(现

在有5个variable为active,3个curvatures,1个conic,1个multi-config thickness)。调出OPD plot,你可以在mulit-configuration editor上在”Config 1”或”Config 2”上双击,则OPD plot会显示其对应的configuration,或者你可用Ctrl-A的hot key,在不同的configuration间作变换,你会发现两者的performance都很好,表示我们所设计的系统在wavelength 1.053或0.6328μ的laser之下皆可以工作。如图4-6和4-7。

图4-6

图4-7

(整理)各种光学设计软件介绍-学习光学必备-peter.

光学设计软件介绍 ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 CODE V是美国著名的Optical Research Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用1994年,ORA公司聘请北京理工大学光电工程系为其中国服务中心。与国际上其它商业性光学软件相比,CODE V的优越性突出地表现在以下几个方面: 1.CODE V可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地

光学系统设计作业

显微物镜光学参数要求为:β=2?,NA =0.1,共轭距离为195mm 。 1)根据几何光学计算相应参数; 2)运用初级像差理论进行光学系统初始结构计算; 3)使用光学设计软件对初始结构进行优化,要求视场角o 5±; 4)根据系统的特点列出优化后结构的主要像差分析; 5)计算优化后结构的二级光谱色差。 一、显微物镜的基本参数计算 为有效控制显微镜的共轭距离,显微镜设计时,一般总是逆光路设计,即按1/β进行设计。该显微物镜视场小,孔径不大,只需要校正球差、正弦差和位置色差。因此,采用双胶合物镜。 '''' 1 2 195111l l l l l l f β==- -=-= 解,得 ''6513043.33l l f ==-= 正向光路 根据 '' ' J nuy n u y == sin NA n u = 在近轴情况下 NA nu = ' 2y y β== 由此可求解 ''' 0.05NA n u == 由此可知逆向光路的数值孔径 综上,该显微物镜的基本参数为 NA 'f 'l l 0.05 43.33 65 130- 二、求解初始基本结构

1)确定基本像差参量 根据校正要求,令'0L δ=、'0SC =、' 0FC L ?=,即 0C S S S I ∏ I ===∑∑∑,即 43332220 00 z C S h P S h h P Jh W S h C φφφφI I ∏ I ===+===∑∑∑ 解,得 0P W C I === 将其规化到无穷远 11sin 0.1NA n u ==,11n = 则 11sin 0.1/2u U β=?=-,11 6.5h l u mm =?= 规化孔径角为 110.1 20.3333071 6.543.33 u u h φ-== =-? 由公式 () ()() 21141522P P W u W W u μμ∞∞ =++++=++可求得规化后的基本像差参量 代入可得 0.36560.8832 P W ∞∞ ==- 2)选择玻璃组合 取冕牌玻璃在前 得 ( ) 2 00.850.1 0.155792P P W ∞ ∞ =-+=- 根据0P 和C I ,查表选取相近的玻璃组合为BaK7-ZF3,其参数为 Bak7:56,5688.111==v n ZF3:5.29,7172.122==v n 0010.11520, 4.295252, 2.113207P Q ?=-=-= 2.397505A =, 1.698752K = 3)求形状系数Q

光学设计讲义

实验一:单镜头设计(Singlet) 实验目的: 1、学习如何启用Zemax 2、学习如何输入波长(wavelength)、镜头数据(lens data) 3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams), MTF等。 4、学习如何定义thickness solve以及变量(variables) 5、学习如何进行优化设计(optimization) 实验仪器:微机、zemax光学设计软件 实验步骤: 1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length)为100mm,波长为可见光, 用BK7玻璃为材料。 2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。什么是LDE呢?它 是你要的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜片的radius,thickness,大小,位置等。 3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框wavelength data, 键入你要的波长,在第一行输入0.486,它是以microns为单位,此为氢原子的F-line光谱。在第 二、三行键入0.587及0.656,然后在primary wavelength上点在0.587的位置,primary wavelength 主要是用来计算光学系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。 4、确定透镜的孔径大小。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形 成的effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture 就是100/4=25(mm)。于是从system menu上选general data,aperture type里选择entrance pupil,在apervalue上键入25,然后点击ok。 5、回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源, STO即孔径光阑aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面(surface),于是点击IMA栏,选取insert,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。 6、输入镜片的材质为BK7。在STO行中的glass栏上,直接键入BK7即可。 7、孔径的大小为25mm,则第一镜面合理的thickness为4,在STO行中的thickness栏上直接键入4。 Zemax的默认单位是mm 8、确定第1及第2镜面的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为 负值。再令第2面镜的thickness为100。

光学工程

光学工程 光学工程专业 是一门历史悠久而又年轻的学科。它的发展表征着人类文明的进程。它的理论基础——光学,作为物理学的主干学科经历了漫长而曲折的发展道路,铸造了几何光学、波动光学、量子光学及非线性光学,揭示了光的产生和传播的规律和与物质相互作用的关系。 六十年代初第一台激光器的问世,实现了高亮度和高时一空相干度的光源,使光子不仅成为了信息的相干载体而且成为了能量的有效载体,随着激光技术和光电子技术的崛起,光学工程已发展为光学为主的,并与信息科学、能源科学、材料科学、生命科学、空间科学、精密机械与制造、计算机科学及微电子技术等学科紧密交叉和相互渗透的学科。 主要课程 光学设计,激光原理和技术,导波光学,薄膜光学,光学材料与工艺,辐射度学和色度学,傅里叶光学,光学信息处理,非线性光学,量子光学,光通讯原理,计量、检测和传感技术,光学计量与测试。 就业前景 近些年来,在一些重要的领域,信息载体正在由电磁波段扩展到光波段,从而使现代光学产业的主体集中在光信息获取、传输、处理、记录、存储、显示和传感等的光电信息产业上。

这些产业一般具有数字化、集成化和微结构化等技术特征。在传统的光学系统经不断地智能化和自动化,从而仍然能够发挥重要作用的同时,对集传感、处理和执行功能于一体的微光学系统的研究和开拓光子在信息科学中作用的研究,将成为今后光学工程学科的重要发展方向。 有专业人士把光学工程分为两类,一类从横向看,光学工程可以选择的研究所好公司相对来讲还是比较少的,就业面要窄一些,相比之下就远不如机械、电子等专业好就业。从纵向来看,以上几大类型的专业的就业面,相对来讲都差不多,就业前景以及就业面都比较好。 就业方向 1.光电成像器件及宽束电子光学:主要从事各种光电成像器件的原理与技术、设计、检测及应用技术,宽束电子光学系统及设计等方面的研究工作。 2.虚拟现实与增强现实技术:主要从事虚拟现实与增强现实算法、技术、系统,及其在各领域的应用等方面的研究工作。 3.微光与红外热成像技术:主要从事微光与红外成像探测理论、技术与系统的设计、测试、模拟仿真及总体技术,目标与环境光学特性,图像目标探测、识别与跟踪技术等方面的研究工作。 4.图像工程与视频处理技术:主要从事图像信息与视频信号采集、提取、处理、压缩、融合、传输及其实时实现等技术,以及质量评价等方面的研究工作。

LED照明系统设计指南完全版

照明系统设计指南完全版 本文详细讨论照明系统设计的六个设计步骤:(1)确定照明需求;(2)确定设计目标估计光学;(3)热和电气系统的效率;(4)计算需要的数量;(5)对所有的设计可能都予以考虑,从中选择最佳设计;(6)完成最后步骤。虽然本文以一个室内照明设计为例,但所述的设计过程可以用于任何照明设计中。 现在的照明应用,具有普通照明所需的亮度、效率、使用寿命、色温以及白点稳定性。因此,绝大多数普通照明应用设计中都采用这类,包括路面、停车区以及室内方向照明。在这些应用中,由于无需维护(因为的使用寿命比传统灯泡的要长得多)且能耗降低,所以基于的照明降低了总体拥有成本()。 全世界有200亿以上的灯具使用白炽、卤素或荧光灯。其中许多灯具用作方向照明,但都是采用在所有方向发光的灯。美国能源部()称,在新住宅建筑里,嵌顶灯是安装最普遍的照明灯。此外,报告称,采用非反射灯的嵌顶灯一般效率只有50%,就是说,这类灯所产生光的一半都浪费到灯具内了。 相反,照明级具有至少50,000小时的高效、方向性照明。利用照明级的所有优点设计的室内照明有以下优点: 1 功效超过所有白炽灯和卤素灯具 2 能与甚至最好的(紧凑荧光)嵌顶灯的性能相媲美 3 与这些灯具相比,需要维修前的寿命要长5到50倍 4 降低光对环境的影响:不含汞、电站污染小、垃圾处理费用低。 照明还是灯? 在普通照明中设计需要在两种方法间作出选择,是设计基于的完整的照明,还是设计安装到已有灯具上的基于的灯。一般来说,一个完整的照明设计,其光学、热和电气性能要好于式样翻新的灯,因为现有灯具不会约束设计。对目标应用,到底是新照明的总体系统性能重要还是式样翻新的灯的方便性更重要,这要由设计师来决定。 针对已有照明的设计方法 如果目标应用采用构造新型照明更好,那么就设计照明的光输出,使其相当于或者超过现有照明匹配具有多种优点。首先,现有设计已经针对目标应用进行了优化,可以在围绕有关光输出、成本和工作环境而确定设计目标时提供指导。其次,现有设计的外形尺寸已经得到认可。如果外形尺寸相同,终端用户转换成照明更容易一些。 遗憾的是,有些照明制造商错误报告或者夸大了照明的效率和使用寿命特性。在替换灯泡的早期的数年,照明业也遇到了类似问题。行业标准的缺乏,以及早期产品质量的巨大差异将技术的采用推迟了很多年。美国能源部意识到了早期照明也可能存在相同的标准和质量问题,并且这些问题可能以类似的方式延迟了照明的使用。作为应对措施,美国能源部发起了“ 商用产品测试计划()”,对照明制造商声称的指标进行测试。该计划以匿名方式测试照明的下列4个特性:照明光输出(流明)、 照明效率(流明每瓦)、相关色温(开氏度)、显色指数。 的将关注点放在了照明可用光输出上,而不仅仅是照明的光输出上,这为照明设计设定了一个很好的先例。灯的概念可能过时了

光学设计报告

湖北第二师范学院《光学系统设计》 题目:望远镜的设计 姓名:刘琦 学号:1050730017 班级:10应用物理学

目录 望远系统设计............................................................................................... 第一部分:外形尺寸计算 .......................................................................... 第二部分:PW法求初始结构参数(双胶合物镜设计) ....................... 第三部分:目镜的设计 .............................................................................. 第四部分:像质评价 .................................................................................. 第五部分心得体会 ..................................................................................

望远镜设计 第一部分:外形尺寸计算 一、各类尺寸计算 1、计算'f o 和'f e 由技术要求有:1 '4 o D f = ,又30D mm =,所以'120o f mm =。 又放大率Γ=6倍,所以' '206o e f f mm ==。 2、计算D 出 30 3056 D D D mm =∴= = =Γ物出物 3、计算D 视场 2'2120416.7824o o D f tg tg mm ω==??=视场 4、计算'ω(目镜视场) ''45o tg tg ωωωΓ?=?≈ 5、计算棱镜通光口径D 棱 (将棱镜展开为平行平板,理论略) 该望远系统采用普罗I 型棱镜转像,普罗I 型棱镜如下图: 将普罗I 型棱镜展开,等效为两块平板,如下图:

《光电仪器原理与设计》

《光电仪器原理与设计》 MEA04007 本课程是一门专业技术课,适合于近测控技术与仪器,光学工程类各专业。本课程的目的是通过光电仪器原理与设计课程的学习,培养学生光电仪器原理分析、仪器使用和仪器系统设计能力。 本课程的任务是使学生以现有光、机、电、算基础知识为起点,通过常用光电仪器工作原理及设计原则的理论和方法的学习,从普遍规律和具体经验两方面提高对于光电仪器原理和设计的认知和掌握;熟知常用光电仪器的工作原理;掌握光电仪器重要组成部件的结构、功能及参数设计方法;培养学生进行总体设计的能力;为后续课程的学习和工程设计奠定理论基础和工程实践基础。 《Optoelectronic Instrument Principle and Design》 MEA04007 The objective of this course is to familiarize students with principles and basic design methods of commonly used optoelectronic instruments. Students will be trained to master the operating procedure of the instruments, distinguish the structure and function of each component, and present preliminary results of both overall design and parameter design. This course starts from basic physical principles adopted in optoelectronic instruments, and covers accuracy analysis of measuring instrument and modern instrument design methods such as ergonomics or optimum design. The focused functional contents include light sources, optical elements, detectors and metrical standards. Micro displacement technology for precision instruments and common alignment schemes are also introduced. Examples of conventional instruments like interferometers or microscopes are proposed to train the students to solve specific practical problems.

光学设计报告

光学设计课程报告 班级: 学号: 姓名: 日期:

目录 双胶合望远物镜的设计 (02) 摄远物镜的设计 (12) 对称式目镜的设计与双胶合物镜的配合 (20) 艾尔弗目镜的设计 (30) 低倍消色差物镜的设计 (38) 无限筒长的高倍显微物镜的设计 (47) 双高斯照相物镜的设计 (52) 反摄远物镜的设计 (62) 课程总结 (70)

双胶合望远物镜的设计 1、设计指标: 设计一个周视瞄准镜的双胶合望远物镜(加棱镜),技术要求如下:视放大率: 3.7?;出瞳直径:4mm ;出瞳距离:大于等于20mm ;全视场角:210w =?;物 镜焦距: ' =85f mm 物;棱镜折射率:n=(K9);棱镜展开长:31mm ;棱镜与物镜的 距离40mm ;孔径光阑为在物镜前35mm 。 2、初始结构计算 (1) 求 J h h z ,, 根据光学特性的要求4.728.142=== D h : 44.75tan 85tan ''=?=?=οωf y 0871 .0''==f h u 648.0'''==y u n J (2)计算平行玻璃板的像差和数 C S S S I I I I ,, 平行玻璃板入射光束的有关参数为 0871.0=u 0875.0)5tan(-=-=οz u 005 .1-=u u z 平行玻璃板本身的参数为 d=31mm ; n=; 1.64=ν 带入平行玻璃板的初级像差公式可得: 000665.01.51631-1.5163×0.0871×-3113 24 432-==--=I du n n S 0.0006682=(-1.005)×-0.000665=u u × =z I I I S S 000824.0087.05163.11.6415163.131122 22-=??-?-=--=I u n n d S C υ

光学工程师笔试题目

光学工程师岗位笔试题目 1.135相机镜头焦距50mm(底片尺寸36×24㎜) (1)相机视场角如何计算?(可只列公式)(2)想将焦距扩大到100㎜,如何处理? 2.变焦距镜头需要满足什么要求?轴上移动一个镜片或镜组(镜组中间无固定镜片)最多能形成几个视场? 3.简述七种像差的含义及对成像质量的影响? 4,如何控制球差? 5,那些光学系统为大像差系统?大像差系统如何评价像质量 6,简述光学系统损耗光能得原因和提高光学系统透光率的方法? 7,ZEMAX软件中像差评价函数SPHA与实际像差有什么差别? 8, 简述ZEMAX软件如何进行公差分析? 9,简述非球面,衍射光学面在光学系统中有什么作用?

10,谈谈你用光学软件ZEMAX软件进行光学系统优化的体会? 08年北交光学工程复试笔试题目光电子学一,解释下列概念(8分/个) 1,受激辐射:当原子处于激发态E2时,如果恰好有能量(这里E2 )E1)的光子射来,在入射光子的影响下,原子会发出一个同样的光子而跃迂到低能级E1上去,这种辐射叫做受激辐射。 2,增益饱和:在抽运速率一定的情况下,当入射光的光强很弱时,增益系数是一个常数; 当入射光强增大到一定程度后,增益系数随光强的增大而减小。 3,谐振腔作用:1,提供光学正反馈作用,在腔内建立并维持激光振荡过程。2,产生对实际振荡光束的限制作用,即模式限制作用。 4,拉曼-乃兹声光效应 5,夫兰茨-凯尔迪什效应 6,非线性光学 7,光电导效应 8,散粒噪声 9,光波导色散特性 10,主动锁模:主动锁模指的是通过由外部向激光器提供调制信号的途径来周期性地改变激光器的增益或损耗从而达到锁模目的。 二,简答 1,光电探测器的本质 2, CCD由哪几部分构成,和作用 3,电光调Q的基本方法

光学设计资料

光学设计复习 1.球差的概念 不同倾角的光线交光轴于不同位置上,相对于理想像点的位置有不同的偏离。这是单色光的成像缺陷之一,称为球差。 2.色球差 F 光的球差和C 光的球差之差称为色球差。 3.波像差 实际波面相对于理想球面波的偏离就是波像差。(实际波面与理想波面在出瞳处相切时,两波面间的光程差。) 4点列图 由一点发出的许多光线经光学系统后,因像差使其与像面的的交点不再集中同一点,而形成了一个散布在一定范围的弥散图形,称为点列图。 5.单个折射球面的三个无球差点 ①L =0,L ′=0,物、像点与球面顶点重合(球心处) ②sin I ?sin I′=0,I =I ′=0,L ′=r ,物、像点与球面中心重合。(顶点处) ③sin I′?sin U =0或I ′=U ,此时不管孔径角多大,都不产生球差,此时对应的物像点位置分别为 L =n +n 'n r ,L ′=n +n 'n ' r 。(齐明处) 6.光学传递函数 光学传递函数是指以空间频率为变量,表征成像过程中调制度和横向相移的相对变化的函数。(光学传递函数是一定空间频率下像的对比度与物的对比度之比。能反映不同空间频率、不同对比度的传递能力。) T(s,t)调制传递函数;θ(s,t)相位传递函数。 7.子午平面、弧矢面 子午平面:包含物点和光轴的平面。 弧矢面:包含主光线并与子午平面垂直的面。 8.七种像差,哪些与孔径有关?哪些与视场有关?哪些与两者均有关? 与孔径有关:球差、位置色差 与视场有关:像散、场曲、畸变、倍率色差 与视场孔径都有关:彗差 9.二级光谱 消色差系统只能对二种色光校正位置色差,它们的公共焦点或像点相对于中间色光的焦点或像点的偏离称为二级光谱。 10.解释五种塞德和数 第一塞德和数:初级球差系数 第二塞德和数:初级彗差 第三塞德和数:初级像散 第四塞德和数:匹兹凡面弯曲 第五塞德和数:初级畸变 11.子午场曲、弧矢场曲 ()()(),,exp ,H s t T s t i s t θ??=-??

浙江大学光学工程复试参考题目

[原创]浙江大学光学工程复试参考题目 CMOS-下面是叫我用英语介绍我们学校给美国客人激光....三能级系统...4能级系统....二者的比较.,... 一进去先读和翻译一段文章。五六十字吧,单词都认识就是不知道意思--__--还有就是立方的英文忘了。 文章的大概内容是买一个检测器件,有一些要求比如多少钱以内,检测范围。1、谈一下光通信的优点。2、谈一下Arm单片机的优点。(这个是我的毕设相关的了)这两个问题比较空泛了。英语好的话用英文说最好了。偶烂所以用的中文3、说下激光的空间相干性是什么含义4、WDM是什么意思,英文全称是什么5、用一个实验证明光的波粒二相性。(用单光子的杨氏干涉实验证明) 光电信息导论 1.激光的工作原理, .近红外的波长范围 .问的是半导体的能带结构 4.问了下单个光子通过杨氏干涉实验的现象是什么 问了一下常用的光电转换器件是什么。 固体激光器和气体激光器哪种比较好,问什么好?

1。透镜折射率与哪写参数有关2。提高显微镜的放大率,目镜和物镜的焦距任何变化3。显微镜的分辨率与那些有关4。光纤的折射率任何分布的5,当光纤纤芯直径小于光线波长时,能不能传输该光线,为什么6,基本常识,普浪克常数是多少,单位是什么。 什么是成像?有哪些光电转换器件,各自的原理是什么,灵敏度哪个高哪个低各种传感器的反应时间比较,ccd的为多少倍增管的二次发射原理是什么…… 关于焦距可调的液晶透镜问题, 翻译文章时,不会的单词一定要老老实实问老师,激光测距的具体原理是什么? 在时域或者空域上采集了n个采样点,傅氏变换后,变成几个点? 解释一下拉氏不变量的具体含义? 让用英文说自己学过的课程 7.问了一下对哪些方面有兴趣,是否想读博士等。我说是光电检测方面,于是又问了一下 散射的原因.... 调q激光器....Q-switch的principle 学的最好的科是什么. 我觉得面试中做得比较好的地方就是一直保持微笑,还有用眼神与每一位老师交流,再有火星探测器上的热探测仪 IR是什么东东。(红外探测仪!)

最新光学系统设计

光学系统设计

用ZEMAX实现对光源的仿真 要精确地模拟一个照明系统,实现对光源的精确模拟是关键。 这里讨论三个问题: 一、如果只知道有关的光源的简单数据,如何模拟? 二、如果已知关于光源的详细数据,又如何模拟? 三、如何模拟一个几何形状复杂的光源? 下面从第一个问题开始讨论:若仅知道光源的简单数据,如何对光源进行仿真? 打开ZEMAX,将其切换到非序列模式: 接下来,完成单位的设置,执行system>general>units

有关光能及其计算的问题,要特别注意物理单位。本例中光照度单位采用勒克司。 将缺省的非序列物的类型设为source_radial。在ZEMAX中,source_radial 代表一个矩形或椭圆形平面光源,它能向半球面空间内发射光线。在半球面内,光线关于本地Z轴呈对称分布,并且光线的强度随角度的分布属立方样条拟合。将null object定义为source_radial是将光源数据输入到ZEMAX的最简单直接的方式。 右键单击null object: 如下图所示,是美国Lumileds(流明)公司的LED产品LXML-PWW1说明书中提供的发光强度分布曲线。它呈明显的余弦分布。

根据上述曲线,我们可以构造这样出表2: 表2 LXML-PWW1的空间强度分布 度相对强度(任意单 位) 0 100 5 99 10 98 15 96 20 94 25 90 30 86 35 82 40 74 45 68 50 63 55 53 60 45 65 38 70 28 75 23 80 16 85 10 90 5 说明书上还注明,LXML-PWW1的直径是6mm,典型输出功率是120 lumens。设layout rays数量为30,analysis rays 数量为10000000。将上述参数输入到ZEMAX中: 我们得到光源的外形图和灰度度:

LED照明灯具与光学系统设计

LED照明技术陕西科技大学 电气与信息工程学院 王进军

第七章LED照明光学系统设计 7.1 LED照明光学系统设计CAD软件 7.2 LED照明光学系统的设计原理 7.3 LED照明数据与计算 7.2 LED照明光学系统的选择 7.3 LED矿灯设计 7.4 应用于博物馆文物展示的白光LED照明系统设计 7.5 白光LED射灯设计

第七章LED照明光学系统设计 LED光学系统设计包括LED发光管内的光学设计和LED 发光管外的光学设计,前者通常称为一次光学设计,而后者则称为二次光学设计。 LED内通常由芯片、反射杯和透明环氧树脂制成的光学透镜组成。LDE芯片、反射杯和透镜的几何形状决定了LED出光后的空间光强分布。

第七章LED照明光学系统设计 LED发光管外的二次光学设计主要是根据不同的实际应用需求使LED出光后的空间光强分布发生改变,即光能量的分布发生变化,从而更有效、更合理地利用有限的光能量。 因此,LED照明光学系统设计主要指的是LED发光外的二次光学设计。

§7.1 LED照明光学系统设计CAD软件 计算机辅助设计(CAD)技术的飞速发展,使得照明光学系统的研究方法发生了巨大的变化,这主要表现在光学机构仿真软件在照明产业中的普及。 目前,国际上采用的照明光学系统的设计软件主要下面有三种:

§7.1 LED照明光学系统设计CAD软件 ?TarcePro光学机构仿真软件、 ?AASP高级系统分析程序、 ?Lighttoo1s照明系统设计软件。 在我国大陆用的较多的是TarcePro ,而台湾地区则以AASP较为流行。

光学设计cad答案

光学系统设计(三) 一、单项选择题(本大题共 20小题。每小题 1 分,共 20 分) 在每小题列出的四个备选项中只有一个是正确的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.系统的像散为零,则系统的子午场曲值( )。 A.大于零 B.小于零 C.等于零 D.无法判断 2.双胶合薄透镜组,如果位置色差校正为零,则倍率色差值为 ( )。 A.大于零 B.小于零 C.等于零 D.无法判断 3.下列像差中,对孔径光阑的大小和位置均有影响的是( )。 A.球差 B. 彗差 C. 像散和场曲 D.畸变 4.除球心和顶点外,第三对无球差点的物方截距为 ( ) 。 A.r n n n L '+= B. r n n n L ''+= C. r n n n L '-= D. r n n n L ''-= 5.下列像差中,属于轴外点细光束像差的是( )。 A.球差 B.子午彗差 C.子午场曲 D.畸变 6.瑞利判据表明,焦深是实际像点在高斯像点前后一定范围内时,波像差不会超过 ( )。 A.λ21 B. λ31 C. λ41 D. λ51 7.对于目视光学系统,介质材料的阿贝常数定义为 ( )。 A.C F D D n n 1n --=ν B. C F D D n n 1n ++=ν C. C F D D n n 1n -+=ν D. C F D D n n 1n +-=ν 8.9K 玻璃和6ZF 玻璃属于 ( )。 A.冕牌玻璃和火石玻璃 B.火石玻璃和冕牌玻璃 C.均属火石玻璃 D.均属冕牌玻璃 9.在ZEMAX 软件中进行显微物镜镜设计,输入视场数据时,应选择 ( )。

浙江大学光学工程复试参考题目

[ 原创] 浙江大学光学工程复试参考题目 CMOS?面是叫我用英语介绍我们学校给美国客人激光....三能级系统...4 能级系统二者的比较.,... 一进去先读和翻译一段文章。五六十字吧,单词都认识就是不知道意思--__-- 还有就是立方的英文忘了。文章的大概内容是买一个检测器件,有一些要求比如多少钱以内,检测范围。1、谈一下光通信的优点。2、谈一下Arm单片机的优点。 (这个是我的毕设相关的了)这两个问题比较空泛了。英语好的话用英文说最好了。偶烂所以用的中文3、说下激光的空间相干性是什么含义4、WDM是什么意思,英文全称是什么5、用一个实验证明光的波粒二相性。(用单光子的杨氏干涉实验证明) 光电信息导论 1. 激光的工作原理, . 近红外的波长范围 . 问的是半导体的能带结构 4. 问了下单个光子通过杨氏干涉实验的现象是什么问了一下常用的光电转换器件是什么。 固体激光器和气体激光器哪种比较好,问什么好

1。透镜折射率与哪写参数有关2。提高显微镜的放大率,目镜和物 镜的焦距任何变化3。显微镜的分辨率与那些有关4。光纤的折射率任何分 布的5,当光纤纤芯直径小于光线波长时,能不能传输该光线,为什么6,基本常识,普浪克常数是多少,单位是什么。 什么是成像有哪些光电转换器件,各自的原理是什么,灵敏度哪个高哪个低各种传感器的反应时间比较,ccd 的为多少倍增管的二次发射原 理是什么…… 关于焦距可调的液晶透镜问题,翻译文章时,不会的单词一定要老老实实问老师,激光测距的具体原理是什么在时域或者空域上采集了n 个采样 点,傅氏变换后,变成几个点解释一下拉氏不变量的具体含义让用英文说自己学过的课程 7.问了一下对哪些方面有兴趣,是否想读博士等。我说是光电检测方 面,于是又问了一下 散射的原因.. 调q 激光器.Q-switch 的principle 学的最好的科是什么. 我觉得面试中做得比较好的地方就是一直保持微笑,还有用眼神与每一位老师交流,再有火星探测器上的热探测仪 IR 是什么东东。(红外探测仪!) cad : 计算机辅助设计.goodafternoon,'d like to bribe you by saying happy medautumn wish you a happy night with your family and have moon cakes i wish myself success.

(整理)光学与光学设计讲义

-與光學設計基本概念 1. 一般稱為可見光是位於光波帶中400~770 nm (0.1~0.77μ ),而波長較短為藍光,波長較長的為紅光。波長比可見光短的紫外光(UV),而波長比可見光長的稱為紅外光(IR),一般的光學玻璃或塑膠材料可應用之400~1500nm,而波長更長的IR區域(1.5~15μ )使用的光學材料為鍺或矽。 2. 光學鏡片置於空氣界面中,當光線經過透鏡時,光線會產生穿透與反射現像,而其中一部份會被光學材料吸收。所以折射率n之材料於空氣中的反射率計算式如下: R(反射率)={(n-1) / (n+1)}2 T(穿透率)=(1-R)X X為透鏡的面數,而此計算值時是忽略材料的吸收率。 3. 當鏡片產生反射現像,而此時反射光被別的面再反射或鏡筒內面產生反射而到達成像面時,這會造成降低像質之有害光,而有害光擴大至像面整體時,則會產生某種像,我們稱為鬼影(像)。而防止鬼影的產生與界面反射的方法:(1)鏡片鍍膜(Coating)( 2)鏡片塗墨。 光線射入n和n’的交界處的情形,有些光線被反射,有些被折射,而產生反射線和折射線,而反射線在同介質中依據光程的極值行進方向,這就是反射現象。另外折射線在折射率為n的介質裡斜射入折射率為n’的介質時,由於光在不同介質裡的速率不相同,因此就改變了進行方向,這就是折射現象。如下圖: 這些光線都遵守下面這些光學基本原則: ?入射線、反射線、折射線和法線在同一平面上。 ?入射角i等於反射角r(反射律)。 ?入射角i至折射角t的關係必遵循Snell's law 由於折射率是波長的函數n(λ),因各單色光的折射率各不相同,所以造成折射方向有所差異,或是說不同波長的光在介質內行進的速度不同所造成,這個現象,稱之為色散(dispersion)。

走向光学工程师的必由之路

在论坛上看到不少光学设计已经入门或者刚刚入门的同行的苦恼和压抑,我就不由自主地想起自己目前同样的窘境。正如论坛上一位同行说的,当光学软件较为熟悉了之后,突然发现自己进入了一个平台或者高原期,那就是脑子中间一片空白。 在光学设计行业以外,有这么一种趋势:认为镜头设计是一个已经被解决的问题,那些人相信只要你买上一套光学设计软件,然后按一下“全局优化”的按钮,你就可以解决所有镜头设计的问题。当然,现实情况是相反的。光学设计软件无法提供设计结果:软件的标准内置功能是不充分的,它需要在设计者的指导下工作。 “寻找专利,用软件优化,能否达到设计目标基本上靠运气”以及“苦恼于光焦度分配等等设计”似乎成为了最现实两大障碍。于是很多同仁发出呼声:走向光学工程师的路在何方?我想在这里以一位光学初学者的角色和大家浅探一下光学工程师的成长之路,希望对这些同行、光学朋友有所裨益。 很遗憾的说,以上两大障碍并不是一名成为光学工程师最根本的障碍,虽然这也许是我们满腔热忱信心十足的投入到一个光学系统的优化中所面临的最直接的困难。实际上,缺乏实习,对于能否实现我们的光学设计所缺乏的必要的基本了解,是造成我们迅速进入“技术困境”的本质原因。 我参与过一个项目,设计一款“10X变焦,相对孔径在1:1.4、焦距范围20~200mm”的侦察用照相镜头。这个项目是在一位顶尖级别的光学方面的研究员指导完成的。众所周知,当接到这个任务的时候,首先我就是去寻找一个完全有潜力、并且有一定余量的初始系统。然而,很悲观的是,公开的专利中很少有“大相对孔径、高变倍、焦距范围从短焦到中长焦的好结构”。我觉得这应该是最困难的地方了。然而到了镜头出样出来的时候,我才发现,这个东西的设计困难不是因为我在使用软件优化时候的困难、也不是进行光焦度分配的困难,而是如何在工程上实现它。这成为了我这个“镜头设计工程师”最最困窘的地方。 因为,通过计算就可以知道,第一组镜片的尺寸在143mm以上,这个尺寸,一个镜片就足有1斤重,通常3~4片的话,前固定组就足有2公斤。要知道,这还不包括外面的镜筒。 镜头调焦是通过前组微量的前后移动实现的。设计后才发现,支撑变焦组、凸轮、主镜筒、补偿组那么一个笨重的结构是一件非常困难的事情。前组和支撑后面一系列镜组的主镜筒之间会由于支撑的原因出现下沉的问题,导致光轴出现偏差。 凸轮曲线槽的设计,可能是整个这个变焦镜头的难点之一了。直径达到140mm的凸轮,是一个不折不扣的笨重东西。0.5mm的壁厚增量,都相当于100克以上的增重。然而,即算是达到了5mm的厚度,对于整个庞然大物来说也是薄壁零件。在薄壁零件上要加工出两条没有位置变形的曲线槽,可是一件非常困难的事情。尤其是其中一条在低倍端带有一段负的升角的曲线槽的加工,国内自产的铣床很困难去除丝杠空回的误差。最后,我们在天津一家研究所找到了一台日本产的能够自动补偿空回的数控铣床,完成了这个工作。 曲线槽的形状、压力角、凸轮的材料、设计精度、强度等等,都是凸轮设计要考虑的问题。我曾经开发过一个这个方面的程序,结果经过完成这个项目之后才发现,因为我对实现光学机械结构的一知半解,就是造成实现一个光学系统的最大困境所在。 在这款镜头检测的时候,我和光学检测人员一块待了一段时间。一段时间的探讨和学习,我

ZEMAX光学设计报告材料

ZEMAX 光学设计报告 一、设计目的 通过对设计一个双胶合望远物镜,学会zemax 软件的基本应用和操作。 二、设计要求 设计一个全视场角为1.56°,焦距为1000mm ,且相对孔径为1:10的双胶合望远物镜,要求相高为y`=13.6mm 。 三、设计过程 1.双胶合望远物镜系统初始结构的选定 1.1选型 由于该物镜的全视场角较小,所以其轴外像差不太大,主要校正的像差有球差、正弦差和位置色差。又因为其相对孔径较小,所以选用双胶合即可满足设计要求。本系统采用紧贴型双胶合透镜组,且孔径光阑与物镜框相重合。 1.2确定基本像差参量 根据设计要求,假设像差的初级像差值为零,即球差0'0=L δ;正弦差0'0s =K ;位置色差 0'0=FC l δ。那么按初级像差公式可得0===∑∑∑I I I I C S S ,由此可得基本像差参量为 0===I ∞ ∞C W P 。 1.3求0P )(() ?? ?? ?+-+-=∞∞∞∞ 火石玻璃在前时 冕牌玻璃在前时 2 2 02.085.01.085.0W P W P P 因为没有指定玻璃的种类,故暂选用冕牌玻璃进行计算,即0085.00-=P 。 1.4选定玻璃组合 鉴于9K 玻璃的性价比较好,所以选择9K 作为其中一块玻璃。查表发现当000.0=I C ,与 0085.00-=P 最接近的组合是9K 与2ZF 组合,此时对应的038.00=P 。此系统选定9K 与

2ZF 组合。 9 K 的 折 射 率 5163 .11=n , 2 ZF 的折射率 6725 .12=n , 038319.00=P ,284074.40-=Q ,06099.00-=W ,009404.21=?,44.2=A ,72.1=K 。 1.5求形状系数Q 一般情况下,先利用下式求解出两个Q 的值: A P P Q Q 00-±=∞ 再与利用下式求的Q 值相比较,取其最相近的一个值: ) (1 20 0+-+ =∞ A P W Q Q 因为 0P P ≈∞ ,所以可近似为284074.40-==Q Q ,06099.00-==∞ W W 。 1.6求归一化条件下的透镜各面的曲率 ()()?????????-=--+-==-=-+=+===-+-?=+-==77370.011 1127467 .2284074.4009404.21 61726.1284074.415163.1009404 .25163.111221233 12211111n Q n n r Q r Q n n r ?ρ?ρ?ρ 1.7求球面曲率半径 ???? ?????-=-='=-=-='==='=491.129277370.01000 624.43927467.21000330.61861726.110003322 11ρρρf r f r f r 1.8整理透镜系统结构数据 视场0136.0tan -=ω(负号表示入射光线从光轴左下方射向右下方),物距-∞=L (表示物体在透镜组左侧无穷远处),入瞳半径mm h 50=,光阑在透镜框上,即入瞳距第一折射

相关主题
文本预览
相关文档 最新文档