当前位置:文档之家› 二次函数和一元二次方程的关系

二次函数和一元二次方程的关系

二次函数和一元二次方程的关系
二次函数和一元二次方程的关系

二次函数和一元二次方程的关系教学设计一教学设计思路通过小球飞行高度问题展示二次函数与一元二次方程的联系。然后进一步举例说明,从而得出二次函数与一元二次方程的关系。最后通过例题介绍用二次函数的图象求一元二次方程的根的方法。

教学目标二

1 知识与技能(1).经历探索函数与一元二次方程的关系的过程,体会方程与函数之间的联系。总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根. (2).会利用图象法求一元二次方程的近似解。

2 过程与方法

经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

情感态度价值观三

通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况培养学生自主探索意识,从中体会事物普遍联系的观点,进一步体会数形结合思想.

教学重点和难点四页 1 第

重点:方程与函数之间的联系,会利用二次函数的图象求一

元二次方程的近似解。

难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

教学方法五

讨论探索法六教学过程设计(一)问题的提出与解决问题如图,以20m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线。如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系

h=20t5t2。考虑以下问题

(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?

(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?

(3)球的飞行高度能否达到20.5m?为什么?

?(4)球从飞出到落地要用多少时间分析:由于球的飞行高度h与飞行时间t的关系是二次函数

h=20t-5t2。

所以可以将问题中h的值代入函数解析式,得到关于t的一页 2 第

元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值。

解:(1)解方程15=20t5t2。t24t+3=0。t1=1,t2=3。

当球飞行1s和3s时,它的高度为15m。

(2)解方程20=20t-5t2。t2-4t+4=0。t1=t2=2。

当球飞行2s时,它的高度为20m。

(3)解方程20.5=20t-5t2。t2-4t+4.1=0。因为

(-4)2-44.10。所以方程无解。球的飞行高度达不到20.5m。

(4)解方程0=20t-5t2。t2-4t=0。t1=0,t2=4。

当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出。4s时球落回地面。

由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?

例如:已知二次函数y=-x2+4x的值为3。求自变量x的值。分析可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。反过来,解方程x2-4x+3=0又可以看作已知二次函数

y=x2-4+3的值为0,求自变量x的值。

一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元页 3 第

二次方程ax2+bx+c=0。

问题的讨论)(二二次函数(1)y=x2+x-2;(2) y=x2-6x+9; 。(3) y=x2-x+0 的图象如图26.2-2所示。(1)以上二次函数的图象与x轴有公共点吗?如果有,有多少个交点,公共点的横坐标是多少?

(2)当x取公共点的横坐标时,函数的值是多少?由此,你能

得出相应的一元二次方程的根吗?

先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题。

可以看出:(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1。当x取公共点的横坐标时,函数的值是0。由此得出方程x2+x-2=0的根是-2,1。

(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3。当x=3时,函数的值是0。由此得出方程x2-6x+9=0有两个相等的实数根3。

(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根。

总结:一般地,如果二次函数y= 的图像与x轴相交,那么页 4 第

交点的横坐标就是一元二次方程=0的根。

归纳(三)一般地,从二次函数y=ax2+bx+c的图象可知,(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根。

(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

由上面的结论,我们可以利用二次函数的图象求一元二次方程的根。由于作图或观察可能存在误差,由图象求得的根,一般是近似的。

例题(四)例利用函数图象求方程x2-2x-2=0的实数根(精

确到0.1)。

解:作y=x2-2x-2的图象(如图),它与x轴的公共点的横坐标大约是-0.7,2.7。

所以方程x2-2x-2=0的实数根为x1-0.7,x22.7。

七小结

二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三页 5 第

种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

八板书设计

用函数观点看一元二次方程

抛物线y=ax2+bx+c与方程ax2+bx+c=0的解之间的关系页 6 第

二次函数解析式的确定(10种)

二次函数解析式的确定2 〈一〉三点式。 1,已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点, 求抛物线的解析式。 2,已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。 〈二〉顶点式。 1,已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。 2,已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。 〈三〉交点式。 1,已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。 2,已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21 a(x-2a)(x-b)的解析式。 〈四〉定点式。 1,在直角坐标系中,不论a 取何值,抛物线2225212-+-+-=a x a x y 经过x 轴上一定点Q , 直线2)2(+-=x a y 经过点Q,求抛物线的解析式。 2,抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。 3,抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。

〈五〉平移式。 1,把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解析式。 2,抛物线32-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式. 〈六〉距离式。 1,抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。 2,已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物 线的解析式。 〈七〉对称轴式。 1、抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2 倍,求抛物线的解析式。 2、已知抛物线y=-x 2+ax+4, 交x 轴于A,B (点A 在点B 左边)两点,交 y 轴于点C,且OB-OA=4 3OC ,求此抛物线的解析式。 〈八〉对称式。 1,平行四边形ABCD 对角线AC 在x 轴上,且A (-10,0),AC=16,D (2,6)。AD 交y 轴于E ,将 三角形ABC 沿x 轴折叠,点B 到B 1的位置,求经过A,B,E 三点的抛物线的解析式。 2,求与抛物线y=x 2+4x+3关于y 轴(或x 轴)对称的抛物线的解析式。

二次函数常见关系式符号的判定

二次函数常见关系式符号的判定 例1如图1是抛物线的图像,则① 0;② 0;③ 0; ④ 0;⑤ 0;⑥ 0;⑦ 0。 图3 例 2如图2,已知二次函数的图像与轴相交于( ,0 ),( , 0)两点,且,与轴相交于(O ,-2),下列结论:① ; ② ;③ ; ④;⑤ 。. 其中正确结论的个数为( ) A .1个 B .2个 C .3个 D .4个 练习1、如图3,的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)2 40b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0. 你认为其中错误..的有( ) A .2个 B .3个 C .4个 D .1个 2、函数)0(2≠++=a c bx ax y 图象如图4,下列结论正确的是:__________ ① 0>abc ; ② c a b +<; ③ 4a +2b +c >0; ④ 2c <3b; ⑤ 2a +b =0; ⑥ a +b >m (am +b ); ⑦042 <-ac b 图5 图4 图6

3、二次函数y=ax2+bx+c(a≠0)的图象如图5,给出下列结论:①b2-4ac>0;② 2a+b<0; ③ 4a-2b+c=0;④a︰b︰c=-1︰2︰3.其中正确的是( ) A.①②B.②③C.③④D.①④ 4、如图6为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0②2a+b=0③a+b+c>0④当-1<x<3时,y>0其中正确的个数为( ) A.1 B.2 C.3 D.4 压轴题训练:如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y 轴交于点C(0,﹣3)(1)求抛物线的解析式; (2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积. (3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B 和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

运用口诀判断二次函数的系数关系式.docx

运用口诀判断二次函数的系数关系式 学生对二次函数中字母系数a、b、c及其关系式的符号判断常有些不知所措,这里介绍儿个口诀来帮助同学们解惑. 1.基础四看 “基础四看”是指看开口,看对称轴,看与y轴的交点位置,看与x轴的交点个数.“四看”是对二次函数y=ax? + bx+c (aHO)的图象最初步的认识,而且这些判断都可以通过图彖直接得到,同时还可以在此基础上进行一些简单的组合应用. 例1二次函数y = ax2+bx+c(aH0)的图象如图1所示,则下列说法不正确的是( ) (A)b2-4ac>0 (B)a>() (C)c>0 (D)b<0 分析根据“基础四看”,由抛物线开口向上,故a>0;由对称 轴在y轴的右侧,则a、b异号,故bvO:由抛物线与y轴交于 负半轴,故c<0; 由抛物线与x轴有两个交点,故b2-4ac>0. 所以本题答案是C. 分析对于几个函数图象组合的辨别,笔者常用的一种方法是“才盾排除法”. 对A屮的图象分析可得:在抛物线 屮, a>().b>0,c>0 ; 在直线 屮, a>0,b>0,无矛 盾, 可为备选答案. 对B中的图象分析可得:在抛物线 中,a<0,b<0,c<0 ; 在直线 中, a>0.b=0,有矛 盾, 故排除. 对C中的图象分析可得:在抛物线 中,a>0,b<0,c>0 ; 在直线中, a<0,b>0,有矛 盾, 故排除. 对D中的图象分析可得,在抛物线 中, av(),b>0,c<0 ; 在直线中, av(),b<(),有矛 盾,故排除. 所以本题答案是A. 注从上面介绍中可以看到,对于某个二次函数y=ax2+bx+c(aH0)的图象我们可以 对单独的a、b、c与△进行直接判断,同时也可以对a、b、c的简单乘除组合式进行符号

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

初三数学一元二次方程与二次函数测试题

初三数学第二次月考 班级 姓名 学号 一.选择题(每小题3分,共24分) 1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D. 2. 函数y=x 2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3.抛物线3)2(2+-=x y 的对称轴是( ) 4.关于的一元二次方程有实数根,则( ) (A)<0 (B)>0 (C)≥0 (D)≤0 1. A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2 =x 5.已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是( ) A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0 6.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位, 所得图象的解析式是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 7. 二次函数y=ax 2+bx+c 的图象如图所示,则点在第___ 象限( ) A. 一 B. 二 C. 三 D. 四 8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次 函数y=ax 2+bx 的图象只可能是( )

二.填空题(每小题4分,共32分) 2. 9.若将二次函数y=x 2-2x+3配方为y=(x-h)2+k 的形式,则y=________. 10. 若抛物线y=x 2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________. 11. 抛物线y=x 2+bx+c ,经过A(-1,0),B(3,0)两点,则这条抛物线的解析 式为_____________. 12.已知抛物线c bx ax y ++=2与x 轴有两个交点,那么一元二次方程02=++c bx ax 的 根的情况是______________________. 13..若关于的方程 的根是整数,则k 的值可以是______.(只要求写出一个) 14.已知抛物线c x ax y ++=2与x 轴交点的横坐标为1-,则c a +=_________. 15.已知二次函数的图象开口向上,且与y 轴的正半轴相交,请你写出一个满足条件的二次 函数的解析式:_____________________. 16.如图,抛物线的对称轴是1=x ,与x 轴交于A 、B 两点,若B 点坐标是)0,3(,则A 点 的坐标是________________. O x y A B 1 1 三.解答题 1.用适当的方法解方程: (1)(2x-1)2-7=3(x+1); (2)(2x+1)(x-4)=5;

二次函数解析式的确定教案

二次函数解析式的确定教案 0.3二次函数解析式的确定 一.知识要点 若已知二次函数的图象上任意三点坐标,则用一般式求 解析式。 若已知二次函数图象的顶点坐标,则应用顶点式,其中为顶点坐标。 若已知二次函数图象与x轴的两交点坐标,则应用交点式,其中为抛物线与x轴交点的横坐标 二.重点、难点: 重点:求二次函数的函数关系式 难点:建立适当的直角坐标系,求出函数关系式,解决实际问题。 三.教学建议: 求二次函数的关系式,应恰当地选用二次函数关系式的形式,选择恰当,解题简捷;选择不当,解题繁琐;解题时,应根据题目特点,灵活选用。 典型例题 例1.已知某二次函数的图象经过点A,B,c三点,求其函数关系式。 分析:设,其图象经过点c,可得,再由另外两点建立

关于的二元一次方程组,解方程组求出a、b的值即可。 解:设所求二次函数的解析式为 因为图象过点c,「? 又因为图象经过点A, B,故可得到: ???所求二次函数的解析式为 说明:当已知二次函数的图象经过三点时,可设其关系式为,然后确定a、b、c的值即得,本题由c可先求出c的值,这样由另两个点列出二元一次方程组,可使解题过程简便。 例2.已知二次函数的图象的顶点为,且经过点 求该二次函数的函数关系式。 分析:由已知顶点为,故可设,再由点确定a的值即可解:,则 ???图象过点, 即: 说明:如果题目已知二次函数图象的顶点坐标,一般设,再根据其他条件确定a的值。本题虽然已知条件中已设,但我们可以不用这种形式而另设这种形式。因为在这种形式中,我们必须求a、b、c的值,而在这种形式中,在顶点已知的条件下,只需确定一个字母a的值,显然这种形式更能使我们快捷地求其函数关系式。

二次函数与方程的关系

淇滨区第一中学教案 九年级班执课教师:执课时间:年月日课题二次函数与方程的关系课时安排第课时 教学课型新授课□实(试)验课□复习课□实践课□其他□ 教学目标1理解一元二次函数与一元二次方程的关系,并会求有关字母的值。 2. 会用一次函数与二次函数的图象的交点求方程组的解及由方程组的解求交点坐标 教学重点 利用一元二次函数与一元二次方程的关系,并会求有关字母的值教学难点 抛物线图象与x轴交点的位置来判断方程的根. 课前准备二次函数的解析式中的一般式是: y = a x2+ bx +c (a≠0) 顶点式:y = a(x-h) 2+ k 交点式:y = a(x-x1)(x-x2) 教学环 节 内容设计意图 教学构架 一、知识梳理二、错题再现三、知识新授四、小结与 预习 一、一元二次函数与一元二次方程的关系 1、从形式上看: 二次函数:y=ax2+bx+c (a≠0) 一元二次方程:ax2+bx+c=0 (a≠0) 2、从内容上看: 二次函数表示的是一对(x,y)之间的关系,它有无数对解; 一元二次方程表示的是未知数x的值,最多只有2个值 3、相互关系: 二次函数与x轴交点的横坐标就是相应的一元二次方程的 根。 如:y=x2-4x+3与x轴的交点是(1,0)、(3,0),则一元二 次方程x2-4x+3=0的根是x=1或x=3 (1)二次函数y=a x2+bx+c的图象和x轴交点有三种情况: a、有两个交点, b、有一个交点, c、没有交点. (2)当二次函数y=a x2+bx+c的图象和x轴有交点时,交点的横 坐标就是当y=0时自变量x的值, 即 一元二次方程a x2+bx+c=0的根.

一元二次方程、二次函数知识点总结

一元二次方程重要知识点 1. 一元二次方程的定义及一般形式:)0(2≠++=a c bx ax y (1) 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次) 的方程,叫做一元二次方程。 (2) 一元二次方程的一般形式: 20(0)ax bx c a ++=≠。其中a 为二次项系数,b 为 一次项系数,c 为常数项。 注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。 2. 一元二次方程的解法 (1)配方法:将方程整理成(x+p)2 =q ,方程的根是x=-p ±q 注:x 2系数是1和不是1时配方注意事项;x 2系数是负数时配方注意事项。 (2)公式法:242b b ac x a -±-=(240b ac -≥) (3)因式分解:十字相乘法:0)(2=+++pq x q p x 0))((=++?q x p x 3.一元二次方程根的判别(2 4b ac ?=-) (1)△>0,方程有两个不相等的实数根 (2)△=0,方程有一个实数根或者两个相等的实数根 (3)△<0,方程没有实数根,方程无解 4.韦达定理(根与系数关系) 一元二次方程ax 2+bx+c =0,设它的两个根是1x 和2x ,则1x 和2x 与方程的系数a ,b ,c 之间有如下关系: 1x +2x =b a -; 1x .2x =c a 5.一元二次方程的应用 ①“审”,弄清楚已知量,未知量以及他们之间的等量关系; ②“设”指设元,即设未知数,可分为直接设元和间接设元; ③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式 ④“解”就是求出说列方程的解; ⑤“答”就是书写答案,检验得出的方程解,舍去不符合实际意义的方程 二次函数重要知识点 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 注意 :和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零. 2. 平移规律:

《二次函数解析式的确定》说课稿

《二次函数解析式的确定》说课稿 王焕义 尊敬的各位、老师: 大家好!很高兴能有这样一个机会与大家一起学习、交流,希望大家多多指教!今天,我说课的课题是《专题复习之二次函数解析式的确定》 教材分析:求函数解析式是初中数学主要内容之一,求二次函数的解析式也是联系高中数学的重要纽带。求函数的解析式,应恰当地选用函数解析式的形式,选择得当,解题简捷,若选择不当,解题繁琐。在新课标里求函数解析式也是中考的必考内容 通过教学,让学生掌握:(1)已知图象上任意三点坐标的二次函数解析式;(2)已知图象的顶点和另一点的坐标的二次函数解析式;(3)已知图象与x轴的两个交点和另一点的坐标的二次函数解析式;(4)会通过对简单现实情境的分析,确定二次函数的解析式。 教学目标:

能根据具体情况确定二次函数的解析式,在学习过程中发展学生的转化、化归思维方式。 教学重点难点 重点:求二次函数的函数关系式 难点:如何选择合理的求函数解析式的方法。 4、突破重难点办法: 通过做题总结归纳待定系数法、顶点式适用的题目 二、学生分析(说学情) 从认知状况来说,学生在此之前已经学习了用待定系数法确定一次函数的关系式,对求函数解析式已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于顶点式和两根式,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。 三、教法分析(说教法) 本节课主要采用师生合作的学习方式,引导学生运用类比的方式,动手解决问题。 四、教学设计(说过程) 一、导入 1、本节课一起来学习二次函数解析式的确定。二次函数的确定是历年中考的一个重要考点,更

是有些二次函数的中考压轴题后续问题得以解决的先决条件,因此,希望通过这节课的学习,每个同学都能熟练的掌握确定二次函数解析式的方法。 二、自主学习,探究新知 (一)二次函数解析式常见的几种形式 1. 二次函数解析式常见的形式有哪些?各自有何特点?一般式,顶点式,交点式, 2、每种解析式各有几个待定系数,各需几个条件? 设计意图:通过表格回顾二次函数表示方法,为探究如何确定函数解析式服务。 (二) 典例分析 例题: 已知一个二次函数的图像经过A(-1,0)B(3,0)C(1,-4)三点,求此二次函数的解析式。 (1)学生自主完成并集体交流。 (2)学生可能有三种设法: 设一般式、设交点式、顶点式。 (3)通过比较分析发现一般式适用面广,但解法较复杂;交点式与两根式解法简单,但需要特

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

一元二次方程与二次函数专题

二次函数与一元二次方程专题 一、知识要点: 二次函数图象与x 轴交点情况: 二、经典例题: 1.y=(m-2)22-m x +x -3=0是关于x 的二次函数,则m 的值是 2.(1)关于x 的二次函数y=22(1)1a x x a -++-经过坐标原点,则=a (2)二次函数y=2 (0)ax bx c a ++≠与x 轴两交点的横坐标分别为1和1-,则=++c b a ,=+-c b a (3)等腰ABC △三边的长都是二次函数y=x 2-5x+6与x 轴两交点的横坐标,则周长是 . 3.求下列二次函数与x 轴交点坐标. (1)2222y x mx m n =-+- (2)2()2y m n x nx m n =++-+ (0≠+n m ) 4.已知:关于x 的二次函数y=269kx x -+与x 轴有两个交点,则k . 5.已知关于x 的二次函数2 3y x m x m =-+()- 求证:该函数与x 轴必有两个交点.

6.若关于x 的二次函数y=x 2-x+m 和y=(m-1)x 2-2x+1都与x 轴有两个交点,求m 的整数值. 7.当k 为何整数时,关于x 的二次函数y=kx 2-4x +4和y=x 2-4kx +4k 2-4k -5都与x 轴交于整数点. 8.已知:m 为整数,且二次函数y=x 2-3x +m +2与x 轴正半轴有两个交点,求m 值. 9.已知:抛物线21y (32)22mx m x m =-+++开口向上. (1)求证:该二次函数与x 轴必有两个交点; (2)设抛物线与x 轴交点为A (1x ,0),B (2x ,0)(A 在B 左侧).若2y 是关于m 的函数,且2212y x x =-, 求这个函数的解析式; (3)若AB=3,求抛物线的解析式.

一元二次方程根的差别式

典型例题一 例 求证:如果关于x 的方程922+=+m x x 没有实数根,那么,关于y 的方程0522=+-+m my y 一定有两个不相等的实数根. 分析:由已知,可根据一元二次方程的根的判别式证之. 证明 设方程922+=+m x x 即0922=--+m x x 的根的判别式为1?,方程 0522=+-+m my y 的根的判别式为2?,则 . 36)4( 208)25(4. 440)9(42222221-+=-+=--=?+=++=?m m m m m m m ∵方程922+=+m x x 无实数根, 01+∴m ,即036)4(2>-+m . 故方程0522=+-+m my y 有两个不相等的实数根. 说明:上述证明中,判定02>?用到了01

分析:运用根的判别式判定根的情况时,要首先把方程变形为一元二次方程的一般形式,然后从求出的判别式的值来判定根的判别式的符号,尤其是当方程系数中含有字母时,一般利用配方法将“?”化成完全平方式或完全平方式加上(或减去)一个常数,再根据完全平方式的非负性判断“?”的符号,从而判定方程的根的情况,有时还需要对字母进行讨论.这是不解方程判别根的情况的关键. 解:(1)),1(4,2,1-=-==k c k b a )1(414)2(422-??--=-=?∴k k ac b )2(4)44(416 16422 2≥-=+-=+-=k k k k k ∴方程有两个实数根. (2)0≠a , ∴方程02=+bx ax 是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项,将常数项看作零. ∴2204b a b =?-=?. ∴不论b 取任何实数,2b 均为非负数, 02≥=?b 恒成立. ∴方程有两个实数根. (3)0≠a , ∴方程02=+c ax 是缺少一次项的不完全的一元二次方程,它的一次项系数0=b . ac a 40402-=?-=?, ∴需要讨论a 、c 的符号,才能确定?的符号. 当0=c 时,0=?,方程有两个相等的实数根; 当a 、c 异号时,0>?,方程有两个不相等的实数根; 当a 、c 同号时,0

一元二次方程与二次函数的应用题精选题

一、一元二次方程的应用题 1.(2010年长沙)长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售. (1)求平均每次下调的百分率; (2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠? 解:(1)设平均每次降价的百分率是x ,依题意得 ………………………1分 5000(1-x )2= 4050 ………………………………………3分 解得:x 1=10% x 2= 19 10 (不合题意,舍去) …………………………4分 答:平均每次降价的百分率为10%. …………………………………5分 (2)方案①的房款是:4050×100×0.98=(元) ……………………6分 方案②的房款是:4050×100-1.5×100×12×2=(元) ……7分 ∵< ∴选方案①更优惠. ……………………………………………8分 2.(2010年成都)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆. (1)求2007年底至2009年底该市汽车拥有量的年平均增长率; (2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆. 答案:26.. 解:(1)设该市汽车拥有量的年平均增长率为x 。根据题意,得 2 150(1)216 x += 解得10.220%x ==,2 2.2x =-(不合题意,舍去)。 答:该市汽车拥有量的年平均增长率为20%。 (2)设全市每年新增汽车数量为y 万辆,则2010年底全市的汽车拥有量为21690%y ?+万辆,2011年底全市的汽车拥有量为(21690%)90%y y ?+?+万辆。根据题意得 (21690%)90%231.96y y ?+?+≤ 解得30y ≤ 答:该市每年新增汽车数量最多不能超过30万辆。

二次函数解析式的确定

二次函数解析式的确定(5) 1、已知抛物线y=ax2经过点A(1,1).求这个函数的解析式; 2.已知二次函数y=ax2+bx+c的图象顶点坐标为(-2,3),且过点(1,0), 求此二次函数的解析式. 3.抛物线y=ax2+bx+c的顶点坐标为(2,4),且过原点, 求抛物线的解析式. 4.已知二次函数y=ax2+bx+c,当x=-1时有最小值-4,且图象经过(1,3),求函数解析式. 5.已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1. 求a、b、c,并写出函数解析式. 6.已知二次函数为x=4时有最小值 -3且它的图象与x轴交点的横坐标为1, 求此二次函数解析式. 7.抛物线y=ax2+bx+c经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.

8.把抛物线y=(x-1)2沿y轴向上或向下平移后所得抛物线经过点Q(3,0),求平移后的抛物线的解析式. 25求二次函数解析式.9.二次函数y=x2-mx+m-2的图象的顶点到x轴的距离为, 16 2的最小值为1,求m的值. 10.已知二次函数m - =6 y+ x x 11.已知抛物线y=ax2经过点A(2,1). (1)求这个函数的解析式; (2)写出抛物线上点A关于y轴的对称点B的坐标; (3)求△OAB的面积; 12.若抛物线沿y轴向上平移2个单位后,又沿x?轴向右平移2个单位,得到的抛物线的函数关系式为y=5(x-4)2+3,求原抛物线的函数关系式. 13.已知一次函数y=-2x+c与二次函数y=ax2+bx-4的图象都经过点A(1,-1),二次函数的对称轴直线是x=-1,请求出一次函数和二次函数的表达式. 14.直线y=2x+3与抛物线y=ax2交于A、B两点,已知点A的横坐标是3,求A、B两点 坐标及抛物线的函数关系式.

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) a

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧 12,x m x n <>,(图形分别如下)需满足的条件是 (1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 若()0f m =或()0f n =,则此时()()0f m f n

(完整版)二次函数解析式的确定(10种).docx

二次函数解析式的确定 2 〈一〉三点式。 1,已知抛物线 y=ax 2+bx+c经过A(3,0),B(2 3,0),C(0,-3)三点,求抛物线的解析式。 2,已知抛物线 y=a(x-1) 2+4,经过点A(2,3),求抛物线的解析式。 〈二〉顶点式。 1,已知抛物线 y=x 2-2ax+a 2+b顶点为A(2,1),求抛物线的解析式。 2,已知抛物线y=4(x+a) 2-2a的顶点为(3,1),求抛物线的解析式。 〈三〉交点式。 1,已知抛物线与x 轴两个交点分别为( 3 ,0 ),(5,0), 求抛物线 y=(x-a)(x-b)的解析式。 2,已知抛物线线与x 轴两个交点( 4, 0 ),(1,0 )求抛物线 y= 1 a(x-2a)(x-b) 的解析式。2 〈四〉定点式。 1,在直角坐标系中,不论 a 取何值,抛物线y 1 x25 a x 2a 2 经过x轴上一定点Q, 22直线 y (a 2) x 2 经过点Q,求抛物线的解析式。

1

2,抛物线 y= x 2 +(2m-1)x-2m与x轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。3,抛物线 y=ax 2+ax-2过直线y=mx-2m+2上的定点A,求抛物线的解析式。 〈五〉平移式。 1,把抛物线 y= -2x 2向左平移 2 个单位长度,再向下平移 1 个单位长度,得到抛物线 y=a( x-h) 2 +k, 求此抛物线解析式。 2,抛物线y x2x 3 向上平移,使抛物线经过点C(0,2), 求抛物线的解析式 . 〈六〉距离式。 1,抛物线 y=ax 2+4ax+1(a ﹥ 0) 与 x 轴的两个交点间的距离为2,求抛物线的解析式。 2,已知抛物线 y=m x 2+3mx-4m(m﹥0)与x轴交于A、B两点,与轴交于C点,且AB=BC,求此抛物线的解析式。 〈七〉对称轴式。 1、抛物线 y=x 2 -2x+(m 2-4m+4) 与 x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距

二次函数表达式三种形式的联系与区别

二次函数表达式三种形式的联系与区别 二次函数的表达式有三种形式,即一般式、顶点式、交点式。它们之间各不相同,而又相互联系。 一、一般式:)0(2≠++=a c bx a y x 优点:二次项系数a ,一次项系数b ,常数项c ,三系数一目了然。 缺点:不容易看出顶点坐标和对称轴 二、顶点式:)0(4422)2(≠-+=+a a ac a y b a b x 优点:很容易看出顶点坐标和对称轴 缺点:不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 三、交点式:))((2 1x x x x a y --= 优点:很容易看出图像与x 轴的交点坐标(x 1,0)和(x 2 ,0) 缺点:(1)不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 (2)当图像不与x 轴相交时,此式不成立。 四、三种表达式之间的联系 (1)一般式转化为顶点式 利用配方法转化(一提、二配、三整理) a ac a a ac a a c a x a b a x a b a x a b a c bx a y b a b x b a b x a b a b x x x x 44444][[)2222222222)2()2()2()2(-+=+-=+-++=++ =+ =++=++(

(2)顶点式转化为一般式 展开整理即可 c bx a a ac bx a a ac a bx a a ac x a b a a a ac a y x x b b x b a b x b a b x ++=++=-+++=-+++=≠-+=+222222222224444444)4()0(44)2( (3)交点式转化为一般式 展开,利用韦达定理整理可得 二次函数)0(2≠++=a c bx a y x 与x 轴有两交点(x 1,0)和(x 2,0) 则x 1 和x 2为方程02=++c bx a x 的两个根 ] )([)())((212122121221x x x x x x x x x x x x x a x x a x x a y ++-=+--=--= 由韦达定理得: a c a b x x x x =-=+2121 代入得: c bx a a c x a b a x a y x x x x x x x ++=+--=++-=2221212])([] )([ 三种表达式视情况而定; (1)不知道特殊点的坐标时,常用一般式来表示; (2)知道顶点坐标,常用顶点式来表示; (3)如果知道图像与x 轴的交点坐标,常用交点式来表示。 上述三种情况要灵活运用才能更好地理解二次函数的解析式。

一元二次方程根的两个特性及简单运用

一元二次方程根的两个特性及简单运用 我们知道方程的解是由方程的系数(包括常数项)决定的。因此,一元二次方程的根与其系数有着密切的联系。教材中我们探索了一元二次方程的二次项系数为1的情况下的两根之和、两根之积与系数的关系。现在我们接着来探索一般形式下的一元二次方程20(0) ax bx c a ++=≠的两根之和、两根之积与系数的关系。 例1、先阅读,再填空解题: (1)方程:x2-4x-12=0 的根是:x 1=6, x 2 =-2,则x 1 +x 2 =4,x 1 ·x 2 =-12; (2)方程2x2-7x+3=0的根是:x 1= 1 2 , x 2 =3,则x 1 +x 2 = 7 2 ,x 1 ·x 2 = 3 2 ; (3)方程3x2+6x-2=0的根是:x 1= , x 2 = .则x 1 +x 2 = , x 1·x 2 = ; 根据以上(1)(2)(3)你能否猜出:如果关于x的一元二次方程ax2+bx+c=0 (a≠0且a、b、c为常数)的两根为x 1、x 2 ,那么x 1 +x 2 、x 1 x 2 与系数a、b、c有 什么关系?请写出来你的猜想并说明理由。 解析:方程3x2+5x-2=0的根是:x 1= 1 3 x 2 =-2。则x 1 +x 2 = 5 3 -,x1·x2= 2 3 -。 能猜出:如果关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c为常数) 的两根为x 1、x 2 ,那么x 1 +x 2 a b - =、x1x2 a c =。理由如下: 根据求根公式可知,关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c 为常数)的两根为: a ac b b x 2 4 2 1 - + - =, a ac b b x 2 4 2 2 - - - = 所以x 1+x 2 = a ac b b 2 4 2- + - + a ac b b 2 4 2- - - a b - = x 1x 2 = a ac b b 2 4 2- + - · a ac b b 2 4 2- - - a c = 也就是说,对于任何一个有实数根的一元二次方程,这个方程的两个根与系数的关系是:两根之和,等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积,等于常数项除以二次项系数所得的商.

二次函数与一元二次方程的关系及解析式求法

1.一元二次方程ax 2 +bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2 +bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。抛物线y=ax 2 +bx+c(a ≠0)与x 轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有: (1)抛物线y=ax 2 +bx+c 与x 轴有两个公共点(x 1,0)(x 2,0)一元二次方程ax 2 +bx+c=0有两个不等实根 △ =b 2 -4ac>0。 (2)抛物线y=ax 2 +bx+c 与x 轴只有一个公共点时,此公共点即为顶点 一元二次方程ax 2 +bx+c=0有两 个相等实根, (3)抛物线y=ax 2 +bx+c 与x 轴没有公共点 一元二次方程ax 2 +bx+c=0没有实数根 △=b 2 -4ac<0. (4)事实上,抛物线y=ax 2 +bx+c 与直线y=h 的公共点情况方程ax 2 +bx+c=h 的根的情况。 抛物线y=ax 2 +bx+c 与直线y=mx+n 的公共点情况方程ax 2 +bx+c=mx+n 的根的情况。 2.二次函数解析式求法 例1、二次函数与一元二次方程 1、抛物线2 283y x x =--与x 轴有 个交点,因为其判别式2 4b ac -= 0,相应二次方程2 3280 x x -+=的根的情况为 . 2、函数2 2y mx x m =+-(m 是常数)的图像与x 轴的交点个数为( ) A .0个 B .1个 C .2个 D .1个或2个 3、关于二次函数2 y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图 像开口向下时,方程2 0ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是244ac b a -;④当0b =时, 知识梳理 新课讲解

相关主题
文本预览
相关文档 最新文档