当前位置:文档之家› 累积式放射性气溶胶连续监测仪的实验运行数据处理

累积式放射性气溶胶连续监测仪的实验运行数据处理

累积式放射性气溶胶连续监测仪的实验运行数据处理
累积式放射性气溶胶连续监测仪的实验运行数据处理

图1“人工”放射性气溶胶(U,Pu)和“天然”氡子体

气溶胶的α谱与分区计数

Fig.1Spectrumandcountregionsofartificial(UandPu)andradondaughtersaerosols

第31卷第5期2011年9月辐射防护Radiation Protection

Vol.31No.5Sep.2011

累积式放射性气溶胶连续监测仪的

实验运行数据处理

傅翠明,席萍萍,马英豪,谭玲龙,沈福

(中国辐射防护研究院,太原030006)

摘要:介绍了一种按累积式采样和计数测量方式运行的α/β放射性气溶胶连续监测仪及其实验运行数据的3种处理方法。

用这3种方法分别给出了在只有氡(和Th )子体的天然本底和在核设施工作场所的条件下的实验数据计算结果,并对相关的数据处理结果做出了评价,给出了3种不同数据处理方法的监测仪探测下限的计算公式,并且讨论了3种数据处理方法的优缺点以及与此有关的问题。关键词:放射性气溶胶;累积式采样;数据处理中图分类号:TL81

文献标识码:A

1引言

在可能存在α或(和)

β放射性气溶胶的核设施工作场所,对放射性气溶胶进行监测,甚至进行即时的连续监测,以评价工作场所空气中的放射性污染浓度,是保证核设施运行安全和评估现场工作人员可能受到的放射性吸入危害的重要手段。对核设施工作场所空气中的α/β放射性污染浓度的实时连续监测,方法很

多[1],并有相应比较成熟的监测仪器[2,3]

。监测仪

将α/β气溶胶连续不断地采集在过滤纸上,在滤纸上方固定一种可同时测量α和β放射性的探测器,探测的α和β计数信号经过放大成形等电子学处理,输入到多道分析器进行如图1所示的分区计数。由于空气中存在天然的氡(和Th)及其子体核素形成的α和β气溶胶(通常称为“天然”放射性气溶胶),在采样中这些气溶胶粒子也被同时采集在滤纸上产生α和β计数。为了将“天然”放射性气溶胶所引起的α和β计数(特别是α计数)与“人工”放射性气溶胶形成的α和β计数区分开,可以利用“天然”氡(Th)子体气溶胶与“人工”放射性气

溶胶中的有关α核素的不同能量,用能量甄别

法[1]进行分区计数,原理上即可把“天然”的α或β计数与我们真正需要监测的“人工”放射性气

溶胶形成的α和β计数区分开,

实现“人工”放射性气溶胶的有效监测。

如图2所示的监测仪(CAM-2型气溶胶连

续监测仪)是采用累积式采样并同时不断进行

放射性计数测量的“累积监测”技术[4,5]

,如何不断实时报告空气中的α/β放射性气溶胶污染

浓度、每次报告的污染浓度代表何种意义和相

收稿日期:2010-01-21

作者简介:傅翠明(1968—),女,1991年毕业于南方冶金大学工业电器自动化专业,副研究员。

第31卷第5期

辐射防护图2累积式采样与测量的α/β气溶胶监测仪基本原理结构

Fig.2Schematicdiagramofalpha/betaaerosolmonitorbasedonaccumulationsamplingandmeasuring

应的数据处理方法如何实施,一直是研究和应用这类仪器的人们所关心的问题[6—8]。本文将对这类数据处理方法进行简要介绍,并根据CAM-2型监测仪在实际应用中所得出的实验和监测数据,按不同的数据处理方法处理,并对处理结果和相关问题进行讨论。

2气溶胶浓度监测数据处理方法

图2所示的累积式连续采样和同时进行累积计数测量的放射性气溶胶监测仪,由于其采样和放射性计数测量同时进行,要想实时地将任一个时间段空气中的污染浓度区分出来,对测得的放射性计数进行正确的数据处理是极为重要的。以累积式运行的放射性气溶胶监测仪为例只能给出两种数据信息,所设定的任一时间段(Δt )内的总计数和所有时间段(∑Δt )内的累积总计数。如设每次读取计数的时间段为Δt ,任何一个时间段Δt (i )的相应的计数为N i ,那么截止到第i 个时间段终了的累积总计数则为∑N i 。对这两种计数信息进行正确的数据处理,进而实时地给出代表不同时间段的污染

浓度,有以下3种方法。

2.1方法1

按ISO11929—5的方法[7],若设读取计数的时间段为Δt ,即每隔一个Δt 时间段读取一次相应时间段内的计数,其当前Δt 时间段内的

放射性气溶胶污染浓度C i (Bq/m3

应按如下公式计算:

C i (1

)=N i -N i-1ε·Q ·t s ·t m

=ΔN i ε·V ·Δt (t s =t m =Δt ,i >1)(1)

式中,t s 为设定的采样时间,s;t m 为设定的计数测量时间(也是读取计数的时间段Δt ),s;Q 为采样流量,m3/s,任何一个时间段Δt 内的采样体积为V=Q ·t s ;ε为探测器的探测效率;N i 为当前时间段Δt (i )内的总计数;N i -1为紧邻的前一个时间段Δt (i -1)内的总计数;ΔN i =N i -N i-1表示当前时间段Δt (i )内采样引起的计数增量,这种增量必然是由于当前时间段内的污染浓度所引起。因而C i (1)代表了当前时间段Δt (i )内的平均污染浓度。

但是,这种方法只能在每个Δt 内给出一次监测结果,即报告监测结果的时间间隔是Δt ,

274

··

有Δt=t s=t m。如果设Δt=t s=t m=30min,只能是每

30min报告一次监测结果。为了将报告监测结果的时间间隔缩短,比如缩短为5min甚至1min,就必须同时缩短计数测量时间,这样必然会造成监测仪探测灵敏度(用判断阈Lc和探测限LD表征[5,7])降低(即Lc和LD升高),不利于对污染浓度的识别和监测。因此在方法1的基础上,人们不得不探索在设定足够长的采样时间(如30min)内,多次给出监测结果的方法[5],即下面的方法2和方法3。

2.2方法2

假定式(1)中采样时间为t s,计数测量时间为tm,读取计数的时间间隔为Δt。t s、t m和Δt三者是设定的相互独立参数,与每个Δt相对应的计数依次为N1,N2,…N i-1,N i,N i+1,…。在设定的采样时间t s内读取计数的次数为t s/Δt=j(正整数)。若计数测量时间t m与读取计数的时间间隔Δt设为一致,即t m=Δt,则可用下式计算空气中的放射性气溶胶的污染浓度:

C i(2)=N i-N i-j

ε·Q·t s·t m

(t m=Δt,j=t s/Δt,i>j)(2)式中,N i是当前最新一个Δt(i)时间段内的计数;N i-j是前j个Δt时段内的计数;C i(2)表示的是当前或最新的采样时间t s内的污染浓度。这种计算方法在任何一个采样时间段t s内的计数测量时间为Δt。在任何一个最新的采样时间t s内可以报告j次污染浓度的监测结果,而且是每隔Δt 报告一次。

2.3方法3

如果报告监测结果的时间间隔同样为Δt,如令式(2)中t m=t s,即设定的采样时间与计数测量时间相同,则放射性气溶胶浓度计算公式为:

C i(3)=(N i-N i-1+…+N i-j+1)-(N i-j+N i-j-1+…+N i-2j)

ε·Q·t s·t m

i

i-j+1

ΣNi-i-j

i-2j

ΣNi

ε·Q·ts·tm

(tm=ts,j=ts/Δt,i≥2j)(3)

式中,前一个ΣN i是最新的j个Δt时间段内测得的总计数,后一个ΣN i是紧邻的前j个Δt时间段内测得的总计数,C i(3)同样表示的是当前或最新的采样时间t s内的污染浓度。在任何一个采样时间ts内的计数测量时间为t s,任何一个最新的采样时间t s内可以报告j次污染浓度的监测结果,而且是每隔Δt报告一次。

以上3种方法都可用于累积采样与测量方式的放射性气溶胶监测仪的数据处理,以不断给出最新时间间隔Δt内的污染浓度的监测结果。3种方法得出的污染浓度的具体物理意义有一定差别,各有其优缺点,下面通过对具体的实验运行数据按3种不同方法进行处理,可以比较清楚地看出其间的差别。

3实验数据处理

CAM-2型累积式α/β放射性气溶胶监测仪,在不同实验条件下运行。监测仪分别在只有天然氡子体的实验室条件下和在某可能存在人工α放射性气溶胶的核设施中运行,监测仪在运行中对实验数据按上述3种方法自动进行数据处理。

3.1天然本底条件下的实验运行结果

利用CAM-2型累积式α/β放射性气溶胶监测仪在实验室天然本底条件下进行了累积的连续采样和计数测量,采样流量Q=0.0325m3/min,α探测效率为ε=0.20,每隔Δt=5min得出一次监测结果。监测结果经过3种处理方法得出的结果列于表1。

表13种处理方法得出的监测结果

Tab.1Monitoringresultsprocessedbythe3methods

方法123t s(min)

30

30

t m(min)

30

Cα(Bq/m3)

0.022

0.015

0.013

σ(Bq/m3)

0.565

0.099

0.039

L c(Bq/m3)

0.928

0.164

0.064

L D(Bq/m3)

1.870

0.335

0.132傅翠明等:累积式放射性气溶胶连续监测仪的实验运行数据处理275

··

第31卷第5期

辐射防护图3中(a)、(b)、(c)分别是按方法1、方法2和方法3数据处理方法得到的结果。

由图3可以看出,由于监测仪是在天然本底场所中实施监测,理应有C α=0,但是由于在监测人工放射性气溶胶的“人工”α计数区(见图2)存在少量氡(和Th)子体等核素引起的计数干扰和不可避免的计数统计涨落等,所以,得出的监测结果总是围绕C α=0涨落,而涨落的大小就表示了监测仪达到的灵敏度指标(用判断阈L c和探测限L D表征)。从这组实验运行数据来看,3种数据处理方法所得出的灵敏度指标,方法3好于方法2,更好于方法1。

3.2在核设施工作场所的实验运行结果3.2.1人工α放射性气溶胶的监测

将CAM-2型放射性气溶胶监测仪置于可能存在长寿命α核素气溶胶(主要由铀形成)的

图3CAM-2型气溶胶监测仪在天然本底条件下的α气溶胶监测结果

Fig.3AlphaaerosolmonitoringresultsbyCAM-Ⅱaerosolmonitorundernatural

background

276

··

某核设施现场进行采样与测量。按在实验室运

行时的模式同样运行,每个Δt =5min记录一次相应Δt 时段内的放射性计数N i ,并累积记录相应的∑N i 。分别用上述3种方法处理数据得出的C α(1)、C α(2)和C α(3),如图4所示。图4(a)中,各次监测结果C α(1

)明显在浓度C α=0的上下大起大落,很难判断场所空气中是否有人工α气溶胶;图4(b)中,C α(2

)围绕C α=0的涨落明显减少,基本可以看出空气中某些时段内C α(2

)连续大于0,通过数据检验,空气中在相应时段内确有人工放射性α气溶胶;图4(c)中,其监测结果几乎均有C α(3

)>0,同样用数据检验,表明在某些时段内场所空气中确实出现了“人工”α核素形成的α放射性气溶胶污染物,其浓度随时间的

变化趋势也可看出。

图5是另一组现场监测数据所得出的α污染浓度(只给出了方法2和方法3处理的结果)。这组运行监测数据再次证明,这个核设施的被

监测场所确有

“人工”α放射性气溶胶存在。3.2.2人工β放射性气溶胶的监测

CAM-2型α/β放射性气溶胶监测仪可同时监测α和β放射性气溶胶。按方法3计算的该

场所中被监测到的β放射性气溶胶浓度C β(3

)如图6(a)所示,同时图6(b)给出了实验室天然本底条件下按方法3计算的β放射性气溶胶浓度C β(3

)。因这个核设施现场不存在“人工”放射性气溶胶,由图6可以看出,“人工”β放射性气溶胶的

图4CAM-2型气溶胶监测仪在某核设施现场的α气溶胶监测结果

Fig.4AlphaaerosolmonitoringresultsbyCAM-Ⅱaerosolmonitorinaworkplaceofanuclear

facility

傅翠明等:累积式放射性气溶胶连续监测仪的实验运行数据处理

277

··

第31卷第5期

辐射防护图6CAM-2型气溶胶监测仪β气溶胶监测结果Fig.6BetaaerosolmonitoringresultsbyCAM-Ⅱaerosolmonitor

监测结果与在天然氡子体条件下被监测到的β气溶胶没有什么差别,亦在C β=0上下涨落。3.3监测结果的数据检验及可信性判定

按照标准ISO11929—5每一次的监测值,需要给出其相应的判断阈和探测限,而当监测结果大于判断阈时,则还必须同时给出该监测结果的最佳估计值和置信区间。

对于不同的数据处理方法,被监测的污染浓度相应的标准偏差的计算方法如下:对于方法1,由式(1)可以得出任何一次监测浓度C i (1)的标准偏差:σ1,i =N i +N i -1

s m

1/2

=(N i +N i -1

)1/2

ε·Q ·t s ·t m

(t s =t m =Δt ,i >1)(4)

对于方法2,由式(2)可以得出C i (2

)的标准偏差:

σ2,i =

(N i +N i -j )1/2

s m

(t m =Δt ,i>j )(5)同理,对于方法3,C i (3

)的标准偏差为:σ3,i =

(N i +N i-1+…+N i-j+1)+(N i-j +…+N i-2j )1/2

s m

i

i-2j

ΣN i

1/2

ε·Q ·t s ·t m

(t s =t m ,i ≥2j )(6)

以上3种方法由各自的标准偏差可估算出

图5CAM-2型气溶胶监测仪在某核设施现场的

α气溶胶监测结果另一例

Fig.5AlphaaerosolmonitoringresultsbyCAM-Ⅱaerosol

monitorinanotherworkplaceofanuclear

facility

278

··

相应的监测结果的判断阈(L c ):

方法1:

L c ,i (1)=K ασ1,i =K α(2N i -1)1/2

ε·Q ·t s ·t m

(7)

方法2:

L c ,i (2)=K ασ2,i =K α

(2N i -j

)1/2s m

(8)

方法3:L c ,i (3)=K ασ3,i

=K α

2(N i-j +N i-j-1+…+N i-2j !"

)1/2

ε·Q ·t s ·t m

(9)

针对核设施工作场所的实测结果C α,i (1),C α,i (2)及C α,i (3)估算了相应的判断阈L c ,i (1),L c ,i (2)和L c ,i (3

),如表1所列。对每一次监测结果,当监测的污染浓度C α

大于或等于相应的判断阈L c 时,才能以相应的置信度(置信度取决于式(7) ̄(9)所用的因子K α值,当K α=1.645时,其置信度为95%)判断该次监测结果确有人工α放射性气溶胶污染。当监测结果小于相应的判断阈时,即便有C α>0,该次监测结果仍然无法判断是否确有污染。

4讨论

目前,包括放射性气溶胶监测在内的气载

流出物监测(如PIG监测)和液态流出物监测(如液态水监测)的各类监测仪,如果采用累积式采样和测量的运行方法,对如何给出某一时

段的实时污染浓度、

不断显示监测结果以及监测结果的数据处理方法是否正确和代表何种含义,必须予以正确理解和对待,才可能对监测结果进行正确的应用。

本文所介绍的3种方法,虽然都在不断(每5min)给出放射性气溶胶浓度监测结果,其实三者给出的结果有较大的差别。但是,这3种方法最终所给出的结果,在大大超过由于计数统计涨落引起的误差的情况下是一致的。3种方法各有其优缺点,也存在一些共性问题,归纳如下:

(1)监测灵敏度不一样。从表征灵敏度的判断阈L c的比较来看,在报告监测结果的时间间隔均为Δt 的情况下,方法1因设定为t s =t m =Δt ,灵

敏度很差。因此,

在许多情况下,污染浓度比较低时,采用方法1是无法判断空气中所出现的

污染的。方法2则要好一些,

方法3最佳。(2)响应时间不一样。对于临时出现的污

染浓度变化,从理论上说任何方法都可能

“即时”反映出来。但三者相比,方法1最快,其响应时间为Δt ;方法2的响应时间为t s ,必须经过设定的采样时间t s 以后才有可能监测出所出现的污染浓度的最大值;方法3最慢,其响应时间为2t s ,必须经过2倍的设定采样时间t s 以后才有可能监测出所出现的污染浓度的最大值。

(3)报告监测结果的起始时刻不一样。按正确的操作模式,当监测仪启动运行以后,不可能在起始以后的第一个Δt 时段内报告监测结果。对于方法1,应在2Δt 以后;对于方法2,应在

(j +1

)Δt 以后;对于方法3,应在(2j +1)Δt 以后。这些都可从监测结果对比看出,具体推导参见文献[6]。

(4)正确设定运行参数非常重要。由以上3

种方法可见,正确设定t s ,

t m 和Δt 三者及相应的数据处理方法是累积式监测仪能否正确给出监测结果与能否达到预期监测的关键。总体来

说t s ,t m (Δt )越大,最小判断阈越小(监测灵敏度越好),但t s 或t m 越大将使得对污染浓度变化的响应越滞后,报告监测结果的起始时刻也越靠后,这是不利的。因此,必须根据监测仪的具体特性参数正确地设定t s ,t m 和Δt 。

(5)实时应用采样流量。对于累积式的连续监测仪,通常在一固定滤纸位置,要连续累积采样6~8小时甚至更长时间。随着采样时间的增长,滤纸上累积的气溶胶量不断增加,滤纸阻力逐渐增大,导致采样流量Q 不断下降。因此,上述的浓度计算中的采样流量Q ,其实不是常数,而是一个随运行次数i 增大而不断减小的量。所以,监测仪在运行中,其采样流量应被不断监测,对任何一个读取计数的时段Δt (i ),相应时段的采样流量Q i 应同时被记录。那么,上述计算污染浓度C 的公式,应引入采样时间内的平均采样流量,分别按下列公式计算:C i (1

)=2(N i -N i -1)ε·(Q i +Q i-1)·t s ·t m

,(t s =t m =Δt ,i >1)(10)

C i (2

)=2(N i -N i -j

)i i-j s m

(t m =Δt ,j =t s /Δt ,i >j )

(11)

傅翠明等:累积式放射性气溶胶连续监测仪的实验运行数据处理

279

··

第31卷第5期

辐射防护

C i (3

)=2(N i +N i-1+…+N i-j+1)-(N i-j +N i-j-1+…+N i-2j-1!")ε·(Q i-j+1+Q i-j )·t s ·t m

(t s =t m ,j =t s /Δt ,i >2j )(12)

参考文献:

卢正永.气溶胶科学引论:第十章核工业中的放射性气溶胶[M].北京:原子能出版社,2000:185—194.

卢正永,李爱武,苟全录,等.α-β放射性气溶胶快速监测仪[J].原子能科学与技术,1996,30(2):112—117.

李爱武,张志龙,傅翠明,等.高灵敏度的放射性气溶胶连续监测仪[J].核电子学与探测技术,2001,21(5):356—361.

卢正永,李爱武,张志龙,等,放射性气溶胶连续监测仪检测技术的研究[J].原子能科学与技术,2001,35(6):518—524.

LuZhengyong,JeffreyJ,Whicker.Considerationsfordataprocessingbycontinuousairmonitorsbasedonaccumulationsamplingtechniques[J].TheRad-iationSafetyJournal,2008,94(1):s4—s15.

MGPInstrumentsInc.ABPM302particulatemonit-or:user,smanual[R].46095CA.Smyma,Georgia30082,USA,1995.

InternationalStandardizationOrganization(ISO).Determinationofthedetectionlimitanddecisionthresholdforionizingradiationmeasurements———Part5:Fundamentalsandapplicationstocountingmeasurementsonfiltersduringaccumulationofra-dioactivematerial[S].ISOStandard11929—5.Gen-eva:ISO,2005.

卢正永.电离辐射测量的判断阈与探测限确定———ISO11929标准简介[R].中国辐射防护研究院,2006.

[1]

[2]

[3]

[4]

[5]

[6][7]

[8]Processing Methods for Operation Test Data of Radioactive Aerosols

Monitor Based on Accumulation Techniques

Fu Cuiming ,Xi Pingping ,Ma Yinghao ,Shen Fu ,Tan Linglong

(China Institute for Radiation Protection ,Taiyuan 030006)

Abstract :This article introduces a radioactive aerosol continuous monitor based on accumulation

sampling and measuring and three methods for processing the operation data.The monitoring results are processed by the 3methods which are applied both under the conditions of natural background and at workplaces of a nuclear facility.How the monitoring results are assessed and how to calculate the detection limit when using the 3different methods are explained.Moreover,the advantages and disadvantages of the 3methods are discussed.

Key words :Radioactive Aerosol ;Accumulation Sampling ;Data Processing

280

··

气溶胶总放测试的分析

气溶胶总放测试结果随时间变化的分析 陈玮 【摘要】气溶胶总放测试中样品取样后的放臵时间直接影响着测试结果,灰化法和直接测试法的结果也存在差异,本文通过实验验证了气溶胶总放测试中时间和测试方法对测试结果的影响。结果表明气溶胶采样初期总α、总β放射性水平衰减剧烈,测试值在3天后才趋于稳定,在同一时间刻度下灰化法测试气溶胶总α、总β放射性水平的结果略小于直接法测试结果。 【关键词】气溶胶,总α、总β放射性水平,灰化法,时间衰变 1 引言 气溶胶监测,已成为辐射环境监测的重要途径之一。当需要监测大气的放射性物质时,首先通过滤膜收集气溶胶,再通过仪器测试其中放射性活度,然后在通过能谱监测系统,最终确认气溶胶样本中附着有哪些放射性物质。进而分析空气中含有放射性核素的固体或液体微粒。 在气溶胶样品采样过程中,采样器收集长寿命放射性气溶胶粒子的同时,把短寿命的Rn,Th子体形成的α和β放射性粒子也收集在滤膜样品上,这些天然存在的、短寿命的α和β放射性粒子可能会严重干扰需要监测的长寿命放射性粒子,进而对测试结果产生影响。目前,我国辐射环境监测质量方案对气溶胶监测有明确的要求,但对于具体监测方法却没有细致说明。 2 实验及结果 对于放射线活度的测试,根据监测目的的不同需要采取不同的方法。目前环境质量监测中气溶胶的测试一般先将气溶胶样品灰化然后再测量,该方法即干式灰化法,将气溶胶滤膜放在电炉上于较低温度条件下炭化至不再冒烟时,转移到马福炉内于约500℃条件下灰化。样品在灰化的同时也通过时间衰变消除了段寿命的α和β放射性粒子干扰,使其中短寿命的粒子衰变到可以忽略的程度再进行长寿命的放射性活度测量。然而,要快速了解有无人工核素污染进行比值测量时,应使用直接测量法。需即时、快速了解工作场所的污染状况,必须采用快速监测仪对样品即时进行放射性测量。 但不管采样何种方法,气溶胶样品采集后放臵的时间都会影响到测试结果。本文将采集的气溶胶样品采用直接测量法、灰化法进行了总放的测量,每小时读取一次数据,测试数据如表1、表2,测试结果随时间变化如下图。

γ射线的吸收实验报告

γ射线的吸收 一、实验目的: 1. 了解γ射线在物质中的吸收规律。 2. 掌握测量γ吸收系数的基本方法。 二、实验原理: 1. 窄束 γ射线在物质中的吸收规律。 γ射线在穿过物质时,会与物质发生多种作用,主要有光电效应,康普顿效应和电子对效应,作用的结果使 γ射线的强度减弱。 准直成平行束的 γ射线称为窄束 γ射线,单能窄束 γ射线在穿过物质时,其强度的减弱服从指数衰减规律,即: x x e I I μ-=0 (1) 其中 0I 为入射 γ射线强度, x I 为透射 γ射线强度,x 为 γ射线穿透的样品厚度, μ为线性吸收系数。用实验的方法测得透射率 0/I I T x =与厚度 x 的关系曲线,便可根据(1)式 求得线性吸收系数 μ值。 为了减小测量误差,提高测量结果精度。实验上常先测得多组 x I 与 x 的值,再用曲线拟 合来求解。则: x I I x μ-=0ln ln (2) 由于 γ射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数 μ都有贡献, 可得: p c ph μμμμ++= (3) 式中 ph μ为光电效应的贡献, c μ为康普顿效应的贡献, p μ为电子对效应的贡献。它们的值不但与 γ光子的能量E r 有关,而且还与材料的原子序数、原子密度或分子密度有关。对于能量相同的 γ射线不同的材料、 μ也有不同的值。医疗上正是根据这一原理,来实现对人体内部组织病变的诊断和治疗,如 x 光透视, x 光CT 技术,对肿瘤的放射性治疗等。图1表示 铅、锡、铜、铝材料对 γ射线的线性吸收系数μ随能量E γ变化关系。

图中横座标以 γ光子的能量 υh 与电子静止能量mc 2的比值为单位,由图可见,对于铅低能 γ射线只有光电效应和康普顿效应,对高能 γ射线,以电子对效应为主。 为了使用上的方便,定义μm =μ/ρ为质量吸收系数,ρ为材料的质量密度。则(1)式可改写成如下的形式: m m x x e I I μ-=0 (4) 式中x m =x·ρ,称为质量厚度,单位是g/cm 2。 半吸收厚度x 1/2: 物质对 γ射线的吸收能力也常用半吸收厚度来表示,其定义为使入射 γ射线强度减弱到一半所需要吸收物质的厚度。由(1)式可得: μ2 ln 2 1= x (5) 显然也与材料的性质和 γ射线的能量有关。图2表示铝、铅的半吸收厚度与E γ的关系。若用实验方法测得半吸收厚度,则可根据(4)求得材料的线性吸收系数μ值。 三、实验内容与要求 1.按图3检查测量装置,调整探测器位置,使放射源、准直孔、探测器具有同一条中心线。 2.打开微机多道系统的电源,使微机进入多道分析器工作状态(UMS )。 3.选择合适的高压值及放大倍数,使在显示器上得到一个正确的60Co γ能谱。 4.测量不同吸收片厚度x 的60Co 的能谱,并从能谱上计算出所要的积分计数 x I 。 5.测量完毕,取出放射源,在相同条件下,测量本底计数 b I 。 6.把高压降至最低值,关断电源。 7.用最小二乘法求出 γ吸收系数μ及半吸收厚度d ?

放射性物质的源处理

1、放射性的基本概念 某些物质的原子核能发生衰变,放出我们肉眼看不见也感觉不到,只能用专门的仪器才能探测到的射线。物质的这种性质叫放射性。 2、放射性污染来源及分类 1)、核武器试验的沉降物(在大气层进行核试验的情况下,核弹爆炸的瞬间,由炽热蒸汽和气体形成大球(即蘑菇云)携带着弹壳、碎片、地面物和放射性烟云上升,随着与空气的混合,辐射热逐渐损失,温度渐趋降低,于是气态物凝聚成微粒或附着在其它的尘粒上,最后沉降到地面。 2)、核燃料循环的“三废”排放原子能工业的中心问题是核燃料的产生、使用与回收、核燃料循环的各个阶段均会产生“三废”,能对周围环境带来一定程度的污染。 3)、医疗照射引起的放射性污染目前,由于辐射在医学上的广泛应用,已使医用射线源成为主要的环境人工污染源。同位素治疗和诊断产生放射性污水。放射性同位素在衰变过程中产生a-、β-和γ-放射性,在人体内积累而危害人体健康。 4)、其它各方面来源的放射性污染其它辐射污染来源可归纳为两类:一工业、医疗、军队、核舰艇,或研究用的放射源,因运输事故、遗失、偷窃、误用,以及废物处理等失去控制而对居民造成大剂量照射或污染环境;二是一般居民消费用品,包括含有天然或人工放射性核素的产品,如放射性发光表盘、夜光表以及彩色电视机产生的照射,虽对环境造成的污染很低,但也有研究的必要。 3、放射性对人体的危害 在大剂量的照射下,放射性对人体和动物存在着某种损害作用。如在400rad的照射下,受照射的人有5%死亡;若照射650rad,则人100%死亡。照射剂量在150rad以下,死亡率为零,但并非无损害作用,住往需经20年以后,一些症状才会表现出来。放射性也能损伤遗传物质,主要在于引起基因突变和染色体畸变,使一代甚至几代受害。 4、放射性“三废”处理 放射性废物中的放射性物质,采用一般的物理、化学及生物学的方法都不能将其消灭或破坏,只有通过放射性核素的自身衰变才能使放射性衰减到一定的水平。而许多放射性元素的半衰期十分长,并且衰变的产物又是新的放射性元素,所以放射性废物与其它废物相比在处理和处置上有许多不同之处。 1).放射性废水的处理 放射性废水的处理方法主要有稀释排放法、放置衰变法、混凝沉降法、离子变换法、蒸发法、沥青固化法、水泥固化法、塑料固化法以及玻璃固化法等。 2).放射性废气的处理 (1)铀矿开采过程中所产生废气、粉尘,一般可通过改善操作条件和通风系统得到解决。

工程测量实验报告

实验报告 课程名称:工程测量实验报告 专业班级:D测绘131 姓名学号:戴峻2013132911 测绘工程学院 实验报告一、精密角度测量 一、实验名称:精密角度测量 二、实验性质:综合性实验 三、实验地点:淮海工学院苍梧校区 时间:2016.6.02 四、实验目的: 1. 掌握精密经纬仪(DJ1或DJ2)的操作方法。 2. 掌握方向法观测水平角水平角的观测顺序,记录和计算方法。 五、仪器和工具: 全站仪一台,三脚架一个,记录板一块,自备铅笔,记录手薄和观测目标物。

六、实验内容及设计: 在实验之前,需要做的工作是:了解实验内容,以及读数的多种限差,并选择好实验地点,大略知道实验数据的处理。 1.实验步骤: (1)架设全站仪,完成对中、整平; (2)调清楚十字丝,选择好起始方向,消除视差; (3)一个测站上四个目标一测回的观测程序 2. 度盘配置: 设共测4个测回,则第i个测回的度盘位置略大于(i-1)180/4. 3. 一测回观测: (1) 盘左。选定一距离较远、目标明显的点(如A点)作为起始方向,将平读盘读数配置在稍大于0 o处,读取此时的读数;松开水平制动螺旋,顺时针方向依次照准B、C、D三目标读数;最后再次瞄准起始点A并读数,称为归零。

以上称为上半侧回。两次瞄准A点的读数之差称为“归零差”,检核是否超限,超限及时放弃本测回,重新开始本测回。 (2)盘右。先瞄准起始目标A,进行读数;然后按逆时针放线依次照准D、C、B、A各目标,并读数。 以上称之为下半测回,其归零差仍要满足规范要求。 上、下半测回构成了一个测回,检核本测回是否满足各项限差,如超限,重新开始本测回,合限,进行下一测回工作。 4.记录、计算 (1)记录。参考本指南所附的本次实验记录表格。盘左各目标的读数按从上往下的顺序记录,盘右各目标读数按从下往上的顺序记录。 (2)两倍照准误差2C的计算。按照下式计算2C 对于同一台仪器,在同一测回内,各方向的2C值应为一个定值。若有变化,其变化值不超过表1.1中规定的范围 表1.1 水平角方向观测法的技术要求

氡测量实验报告

本科生实验报告实验题目氡测量得设计 学院名称核技术与自动化工程学院专业名称辐射防护与环境工程 学生姓名 学生学号 任课教师 设计(论文)成绩 教务处制 2016年1月3日

编写说明 1、专业名称填写为专业全称,有专业方向得用小括号标明; 2、格式要求:格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1、5倍行距,页边距采取默认形式(上下2、 54cm,左右2、54cm,页眉1、5cm,页脚1、75cm)。字符间距为默认值(缩 放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要得文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开, 小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0、5行) 1、1 ×××××小三号黑体×××××(段前、段后0、5行) 1、1、1小四号黑体(段前、段后0、5行) 参考文献(黑体小二号居中,段前0、5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

室内氡得主要来源及其对人体健康得危害 人得一生中有70%~90%得时间就是在室内度过得,室内环境质量如何,直接关系到人体健康。室内氡就是影响室内环境得主要因素,人们应该对其有所了解,以便采取适当措施减少氡对自身健康得危害。 一、什么就是氡? 氡普遍存在于我们得生活环境中。氡就是由镭、钍衰变产生得自然界唯一得天然放射性惰性气体,它没有颜色,也没有任何气味。氡在空气中得衰变产物被称为氡子体。常温下氡及其子体在空气中能形成放射性气溶胶而污染空气,很容易被呼吸系统截留,并在局部区域不断累积。 二、氡对人体有多大危害? 据美国国家安全委员会估计,美国每年因为氡而死亡得人数高达 30000 人。早在上个世纪80年代,美国卫生部就宣布,氡就是肺癌得第二大诱因。我国也存在着严重得氡污染问题。据部分调查结果显示,室内氡浓度远高于室外,为室外氡浓度得数倍,有得室内氡含量最高得达到国家标准得 6 倍!据不完全统计,我国每年因氡致肺癌为 50000 例以上。因此,氡已被国际癌症研究机构列入室内重要致癌物质,排在世界卫生组织所确认得三类人类致癌物中得第一类物质当中,必须引起我们得注意。中国疾病预防控制中心辐射防护与核安全医学所研究员王作元率领得研究小组在经过长达9年得调查研究之后,首次拿出了室内氡污染所造成得肺癌危险度指数:0、19。它意味着当室内空气中氡浓度每增加100贝克/立方米时,在这种环境里居住得人患肺癌得几率就会增加19%。 三、室内氡就是怎么来得? 室内氡主要有以下几种来源: 1、从房基土壤中析出得氡。在地层深处含有铀、镭、钍得土壤、岩石中人们可以发现高浓度得氡。这些氡可以通过地层断裂带,进入土壤与大气层。建筑物建在上面,氡就会沿着地得裂缝扩散到室内。 2、从建筑材料中析出得氡。1982 年联合国原子辐射效应科学委员会得报告中指出,建筑材料就是室内氡得最主要来源。如花岗岩、砖沙、水泥及石膏之类,特别就是含有放射性元素得天然石材,易释放出氡。另外还有从户外空气中进入室内得

放射科辐射监测方案

放射科辐射监测方案 为加强对放射源管理与放射工作人员健康管理,控制放射性物质的照射,规范放射工作防护管理,保障相关员工健康和环境安全,根据《放射性同位素与射线装置安全和防护条例》要求,结合我院实际,特制定本方案。 一、个人剂量监测 1、我院辐射环境监测工作由放射防护领导小组组织,放射科、核医学科具体实施,医院预防保健科负责联系有剂量监测资质的机构对我司参与放射源管理人员进行个人剂量监测。 2、个人剂量监测期内,个人剂量计每三个月检测一次。佩戴周期第三个月份的月底各有关部门放射防护管理人员收齐本部门放射工作人员的个人剂量监测仪后交至预防保健科更换佩戴个人剂量计,预防感染科统一将个人剂量计送至有资质机构检测并领取新的个人剂量计。 3、剂量监测结果一般每季度由预防保健科向各有关部门通报一次;当次剂量监测结果如有异常,预防感染科通知具体放射工作人员及部门分管领导。 4、预防保健科和放射防护领导小组负责建立我院放射工作人员的个人剂量档案。 二、放射工作人员健康检查 我院预防保健科科联系有放射人员体检资质的医院,组织相关放射工作人员每年进行一次健康检查,并建立健康档案。未经体检和体检不

合格者,不得从事放射性工作。 三、工作场所监测 后勤设备管理科负责联系有放射设备性能、工作场所防护监测资质的机构对我院放射设备进行每年一次的设备性能与防护监测。 1、外部监测:根据需要联系有监测资质的机构对我院放射工作设备性能与场所辐射防护进行监测或环境评价。 2、内部监测:由核医学科每季度初指定专人对我院存放放射物质场所进行监测,并记录档案。 3、应急监测:应急情况下,为查明放射性污染情况和辐射水平进行必要的内部或外部监测。

等厚干涉牛顿环实验报告材料97459

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一.实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二.实验仪器 读数显微镜钠光灯牛顿环仪

三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得

R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为 λMR r m =2 λnR r n =2 两式相减可得 λ)(22n m R r r n m -=-

《工程测量》课程实验报告

《工程测量》课程实验报告 课程编号:-5 实验编号:9 实验内容:钢尺量距与直线定向 选课班级:____________________________ 组别:No._________________________ 组长:___________ 学号:______________ 组员:___________ 学号:______________ ___________ ______________ ___________ ______________ ___________ ______________ ___________ ______________ 报告日期:________年_________月________日深圳大学土木工程学院

《工程测量》实验任务书 实验九:钢尺量距与直线定向 一、目的与要求 1.掌握钢尺量距的基本步骤,熟练掌握量距的技术要领与计算方法; 2.掌握用经纬仪直线定线的操作步骤及方法; 3.理解直线定向的原理,并理解直线定向的基本方法; 4.本次实验要求距离丈量的容许相对误差[K] = 1/3000。 二、计划与仪器准备 1.实验学时:2学时 2.主要设备:5″级电子经纬仪1台 三角架1副 钢卷尺(30m)1把 花杆3根 测钎4根 记录板1块 三、方法与步骤 (一)平坦地面的(水平)距离丈量 1.在较平坦的地面上选择相距大约80~100m的A、B两点,并用标杆桩定; 2.直线定线(采用经纬仪定线):在AB连线上用经纬仪和标杆进行直线定线, 分别用测钎桩定好AB连线上的各标志点(两点间距离应等于或小于钢卷尺的名义长度30m); 3.钢尺量距主要步骤: 1)后尺手持钢卷尺“0”刻度对准起点A。前尺手持钢卷尺末端和一组测钎 沿丈量方向前进,到达直线定线时桩定好的第一个标志点,然后将钢卷 尺拉直; 2)前、后尺手同时将钢卷尺适当拉紧(钢尺应没有明显曲垂现象),第三位 组员用目测方式指挥前、后尺手调整钢卷尺的高度直至钢卷尺绷直水平。 后尺手钢尺的“0”刻度应对准A点,前尺手取一根测钎对准钢尺30m 刻度处垂直插入地面(此时,为了避免测量干扰和误测,应将之前直线 定线时桩定的测钎拔出收起); 3)量完第一尺段后,前、后尺手抬尺前进,直至后尺手到达第一根测钎处; 4)重复以上第2点操作步骤,丈量第二个整尺段,依次继续向前丈量。测

EJT631-1992 放射性气溶胶采样器

F 81 EJ/T 631—1992 放射性气溶胶采样器 1992-03-16发布 1992-07-01实施 中国核工业总公司发布 附加说明: 本标准由中国核工业总公司提出。 本标准由中国辐射防护研究院负责起草。 本标准主要起草人:卢正永。 1 主题内容与适用范围 本标准规定了放射性气溶胶采样器的设计要求、技术特性及试验方法。 本标准适用于各种抽气式放射性气溶胶采样器;抽气式非放射性气溶胶采样器也可参照执行。 本标准不适用于静电式气溶胶采样器。 2 引用标准 GB 8993.2 核仪器环境试验基本要求与方法 温度试验 GB 8993.3 核仪器环境试验基本要求与方法 潮湿试验 GB 8993.4 核仪器环境试验基本要求与方法 振动试验 GB 8993.5 核仪器环境试验基本要求与方法 冲击试验 GB 8993.8 核仪器环境试验基本要求与方法 自由跌落试验 GB 8993.9 核仪器环境试验基本要求与方法 包装运输试验 GB 10257 核仪器与核辐射探测器质量检验规则 3 术语 3.1 气溶胶 固体或液体微粒物质在空气或其他气体介质中形成的分散系。 含有放射性核素的气溶胶,称为放射性气溶胶。 3.2 气溶胶采样器 利用抽吸的方法把气溶胶粒子收集或阻留在采样介质上的装置。 3.3 采样介质 能将气溶胶粒子收集或阻留下来进行分析测量的部件或介质。各类过滤纸或滤布是常用的采样介质。 3.4 气溶胶样品 收集或阻留有气溶胶粒子的部件或介质。 3.5 代表性样品 所采集的样品与被采样对象从监测的内容看,其性质和特点相同。 3.6 空气动力学直径 某个气溶胶粒子在空气中的空气动力学特性,与一个密度为1g/cm3的球形粒子的空气动力学特性相同时,此球形粒子的直径称为该气溶胶粒子的空气动力学直径,用Dae表示。如果在所分析的气溶胶样品中,空气动力学直径大于和小于某空气动力学直径的粒子各占总活度、总质量或总粒子数的一半,这些直径分别称为活度中位空气动力学直径(AMAD)、质量中位空气动力学直径(MMAD)或粒子数中位空气动力学直径(CMAD)。 3.7 几何标准偏差 对于某一服从对数正态分布的气溶胶体系的某一物理量,表征与粒子大小分布关系的几何标准偏差为:

γ射线的能谱测量和吸收测定 实验报告

g射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,g 射线产生的原因正是由于原子核的能级跃迁。我们通过测量g射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用g闪烁谱仪测定不同的放射源的g射线能谱。同时学习和掌握g射线与物质相互作用的特性,并且测定窄束g射线在不同物质中的吸收系数m。 【关键词】g射线/能谱/g闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 g射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

牛顿环实验报告

北京师范大学珠海分校大学物理实验报告 实验名称:牛顿环实验测量 学院工程技术学院 专业测控技术与仪器 学号 1218060075 姓名钟建洲 同组实验者 1218060067余浪威 1218010100杨孟雄 2013 年 1 月 17日

实验名称 牛顿环实验测量 一、实验目的 1.观察牛顿环干涉现象条纹特征; 2.学习用光的干涉做微小长度的测量; 3.利用牛顿环干涉测量平凸透镜的曲率半径; 4.通过实验掌握移测显微镜的使用方法 二、实验原理 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点 o 附近就形成一层空 气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以 o 为圆心的明暗相间的环状干涉图样,称为牛顿环。如果已知入射光波长,并测得第 k 级 暗环的半径 r k ,则可求得透镜的曲率半径 R 。但 实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。第m 环与第n 环 用直径 D m 、 D n 。 () λ n m n D m D R +-= 42 2此为计算 R 用的公式,它与附加厚度、

圆心位置、绝对级次无关,克服了由这些因素带来的系统误差,并且D m 、 D n 可以是弦长。 三、实验内容与步骤 用牛顿环测量透镜曲率半径 (1).按图布置好实验器材,使用单色扩展光源,将牛顿环装置放在读数显微镜工作台毛玻璃中央,并使显微镜筒正对牛顿环装置中心。 (2).调节读数显微镜。 1.调节目镜,使分划板上的十字刻度线清晰可见,并转动目镜,使十字刻度线的横线与显微镜筒的移动方向平行。 2.调节45度反射镜,使显微镜视觉中亮度最大,这时基本上满足入射光垂直于待测量透镜的要求。 1.转动手轮A,使显微镜平移到标尺中部,并调节调焦手轮B,使物镜接近牛顿环装置表面。 2.对显微镜调焦。缓慢地转动调焦手轮B,使显微镜筒由下而上移动进行调焦,直到从目镜中清楚地看到牛顿环干涉条纹且无视差为止;然后移动牛顿环装置,使目镜中十字刻度线交点与牛顿环中心重合 (1).观察条纹的特征。 观察各级条纹的粗细是否一致,其间距有无差异,并做出解释。观察牛顿环中心是亮斑还是暗斑? (2).测量暗环的直径 转动读数显微镜的读数鼓轮,同时在目镜中观察,使十字刻度线由牛顿环中心缓慢地向一侧移动到43环;然后再回到第42环。自42环起,单方向移动十字刻度,每移3环读数一——直到测量完成另一侧的第42环。并将所测量的第42环到第15环各直径的左右两边的读数记录在表格内。 四、数据处理与结果 1.求透镜的曲率半径。 测出第15环到第42环暗环的直径,取m-n=15,用逐差法求出暗环的直径平方 差的平均值,按算出透镜的曲率半径的平均值R。 R1=(d422-d272)/[4(42-27]λ= 895.85 mm R2=(d392-d242)/[4(39-24]λ= 896.97 mm R3=(d362-d212)/(4(36-21)λ= 887.94mm R4=(d332-d182)/(4(33-18)λ= 893.30mm

放射性物质监测仪

放射性物质监测仪 REN300在线x-γ辐射安全报警仪是一种新型的x- γ辐射连续 监测报警装置,它采用特殊设计的前置放大电路,具有灵敏度高、 操作方便、自动显示、数据存储和超阈报警等特点,能实时给出x γ 辐射剂量率。考虑到现场操作、应急快速响应的需要,主机安装在 辐射现场, 实现实时监测与就地报警,通过RS485 通讯实现总控 制室自动监控。可根据现场要求,选配RenRiArea 辐射区域监测软 件,该软件可连续存储30 个探头 5 年以上的历史数据, 提供实 时数据采集和图谱等。 该仪器广泛应用于放射性废物库、工业无损探伤、医院γ刀治疗、同位素应用、γ辐照、医院X 射线诊断、钴治疗、核电站等放射性场所,提醒工作人员就放射源或射线装置已处于工作或泄漏状态,使其免受辐射危害。 一、 1、采用高速嵌入式微处理器、图形点阵式液晶显示、人性化输入。 2、中、英文双语操作界面。 3、三种报警模式,适用于各种辐射安全报警场所的需要。 4、一个主机可下挂30个以上的探测器。 5、多种接口输出和输入,可与X-Ray或铅门等组成联锁系统。 6、实时采样,数据每秒快速处理刷新。 7、日历时钟功能、具有故障自恢复功能。 8、探测器故障指示 9、数据可输出到其它装置 10、挂壁式主控箱、安装方便。 11、通讯方式: (1) 标准RS485接口,MODBUS通信协议,传输距离可达800米。 (2) 可选工业无线网络通信方式,通信最远通信距离可达3千 米 (3) 可选GPRS无线网络传输,可实现远程联网(可选) 12、可与RenRiArea辐射区域监测软件组成在线x-γ辐射监测系统。 二、控制器技术指标: 1、显示方式:5.7寸LCD显示器,中文/英文界面。 2、探头配置:可与REN系列x-γ探头连接, 最多可连接30个探头。 3、显示单位:uGy/h 或 uSv/h 。 4、状态指示:正常/过载/故障。 5、报警方式:声、光同时报警方式,也可外机多个报警灯。 6、报警模式:模式一/模式二/模式三等三种方式。 7、存储功能: 自动存储超过阈值的剂量率值,和探头的异常状态。 8、报警阈值: 2.5uGy/h(出厂默认),且自行可调,具有高、低双阈值 报警功能 9、使用环境:温度-10℃~+45℃。 10、相对湿度:(在40℃温度下) ≤98%。 11、系统供电:市电220V标配。

放射毒理学

1、一般毒性作用急性、亚急性、慢性毒性。 2、特殊毒性作用致突变、致癌、致畸性。 3、氡及其子体是铀矿工肺癌的病因。 4、吸入氡及其子体诱发肺癌的危险度为 2*10(-3)Sv-1,年摄入量限值(ALI)为 0.02J,导出空气浓度(DAC)为 8*10(-6)J/m3 。 5、放射性核素在体内的吸收、分布、滞留、排泄称生物转运,在机体内的代谢过程称生物转化,大部分化学物质以简单扩散通过生物膜。 6、跨膜转运方式有被动转运、特殊转运,被动转运又包括简单扩散、滤过、水溶扩散,特殊转运包括主动转运、易化扩散、膜动转运。 7、按摄入方式对时量关系的影响,分为4种模式:单次摄入、短期多次摄入、一次摄入后在长时期内递减性吸收、长期均匀摄入(持续摄入)。 8、隔室模型分为单室模型、双室模型,还可分为开放性隔室、闭合隔室。 9、呼吸道吸收是放射性核素进入人体内最危险、最主要的途径,尤其肺吸收是最危险的途径。 10、气溶胶进入呼吸道并附着在其表面经以下三种作用惯性冲击或离心力作用、重力或沉降作用、布朗运动或扩散。2nm 以下粒子,才具有布朗运动,大于 5nm 的粒子几乎全部沉积于鼻和支气管树,小于5nm 支气管树的外周分支,小于等于1nm 主要在肺泡内。 11、放射毒理学上以活性中值直径(AMD)表示放射性气溶胶粒子大小。 12、粒子空气动力学等效直径,在相同的空气动力学条件下,具有和它一样的终末沉积速度。 13、密度为 1g/cm3 的球形粒子直径,不足1 g/cm3的球形粒子换算:空气动力学直径=该粒子的几何直径*该粒子密度。 呼吸道模型四区:胸腔外区(ET)(上皮基底细胞)、支气管区(BB)(基底细胞、分泌细胞)细支气管区(bb)(分泌细胞)、肺泡-间质区(AI)(内皮细胞、分泌细胞、Ⅱ型肺泡上皮细胞)。 14、沉寂于呼吸道内的核素粒子廓清途径主要有向血液转移、通过吞咽转入胃肠道、通过机械清除机制转运到其他部位。 15、向血液转移的物质分为快物质(F)、中等物质(M)、慢物质(S)三类。半排期F100%为10min,M10%为10min,其余90%为140d,极难溶S0.1%为10min,其余99.9%为7000d。 16、溶解度高,水解度低,元素在胃肠道吸收率则高。减少肠蠕动则增加吸收率。 17、胃肠道模型分为胃、小肠、上段大肠、下段大肠四段。 放射性核素在血液内的形式常见的有离子状态、核素与血浆蛋白结合、形成复合离子或络合离子、形成氢氧化物胶体。 18、放射性核素的分布类型:相对均匀分布、亲肝型或亲网内系统分布、亲骨型分布、亲肾型分布、亲其他器官和组织分布。 稀土族放射性核素在肝内的滞 留量随离子半径增大而增多,而在骨内的滞留量随离子半径的减少而增多。 19、滞留模型分单隔室、多隔室。

放射性流出物的监测与控制报告..

环境监测总结报告放射性流出物的监测与控制 第二组:梁文法程争波尹翔伟钱根生许凯峰 2016-3-11

1 目录 1 基本概念和管理要求 (3) 1.1 放射性流出物的概念 (3) 1.2 放射性流出物的特点 (3) 1.3 管理要求 (3) 2 流出物的污染物种类 (4) 2.1 放射性物质 (4) 2.2 化学物质 (5) 2.3 热量 (5) 3 流出物的来源 (5) 3.1 核燃料的循环 (5) 3.2 核技术利用活动 (6) 3.3 伴生放射性矿 (6) 4 流出物在环境中的转移弥散途径 (6) 4.1 辐射源与人的关系 (6) 4.2 气载放射性核素照射途径 (7) 4.3 液体流出物照射途径 (8) 5 控制流出物排放的原则 (9) 5.1 剂量控制,充分保护公众安全 (9) 5.2 年排放量实行总量控制 (10) 5.3实行最优化政策 (11) 5.4可核查性原则 (11)

2 6 流出物排放要求和排放准则 (12) 6.1申报和批准 (12) 6.2 净化与处理 (12) 6.3 专设排放口 (12) 6.4 流出物的监测 (13) 6.5 不满足要求的能返回净化系统 (13) 6.6 对放射性液体流出物实行槽式排放 (13) 7 流出物监测的基本要求 (13) 7.1 制定监测大纲(计划) (13) 7.2 气体流出物在线监测 (14) 7.3 液体流出物等比取样 (14) 7.4 无组织排放监测 (14) 7.5 监测应“平战结合” (14) 附录(问答环节) (14)

3 1 基本概念和管理要求 1.1 放射性流出物的概念 根据国际原子能机构2003版《放射性废物术语》中的定义,对流出物的相关词条进行归纳得出的概念如下:由实践中的某个源,得到授权、有计划、有控制的释放到环境中的气体或液体放射性物质,通常目的是得到稀释和弥散。 1.2 放射性流出物的特点 (1) 流出物属于低水平放射物 流出物特指核与辐射设施经气体及液体途径向环境排放的低水平放射性废物。中、高水平放射性废气和废液禁止向环境中排放。 (2) 流出物排放是放射性废物处置的一种方式 对于固体放射性废物,处置的方式 是将其放置在处置场或处置库中,使之与人类的生活环境隔离。对流出物的处置方式则是有控制的将其排放到人类的生活环境中。流出物这种排放方式本身就是对放射性废物的一种处置。 (3) 流出物排放必须经批准 由于流出物是放射性废物,流出物排放同时是放射性废物处置的一种方式,因此,对于流出物的管理和控制既要遵循放射性废物管理的基本原则,又要执行放射性废物处置的相关要求。 (4) 流出物是辐射影响的源项 对一个特定的核与辐射设施在运行期间对环境产生的辐射影响,其源项就是流出物。如果对流出物有了有效控制,排入环境的放射性物质就得到了有效控制。 1.3 管理要求 (1)按辐射安全管理

氡测量实验报告

本科生实验报告 实验题目氡测量的设计 学院名称核技术与自动化工程学院专业名称辐射防护与环境工程 学生姓名 学生学号 任课教师 设计(论文)成绩 教务处制 2016年1月3日

编写说明 1、专业名称填写为专业全称,有专业方向的用小括号标明; 2、格式要求:格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下 2.54cm,左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩 放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4 号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

室内氡的主要来源及其对人体健康的危害 人的一生中有70%~90%的时间是在室内度过的,室内环境质量如何,直接关系到人体健康。室内氡是影响室内环境的主要因素,人们应该对其有所了解,以便采取适当措施减少氡对自身健康的危害。 一、什么是氡? 氡普遍存在于我们的生活环境中。氡是由镭、钍衰变产生的自然界唯一的天然放射性惰性气体,它没有颜色,也没有任何气味。氡在空气中的衰变产物被称为氡子体。常温下氡及其子体在空气中能形成放射性气溶胶而污染空气,很容易被呼吸系统截留,并在局部区域不断累积。 二、氡对人体有多大危害? 据美国国家安全委员会估计,美国每年因为氡而死亡的人数高达30000 人。早在上个世纪80年代,美国卫生部就宣布,氡是肺癌的第二大诱因。我国也存在着严重的氡污染问题。据部分调查结果显示,室内氡浓度远高于室外,为室外氡浓度的数倍,有的室内氡含量最高的达到国家标准的 6 倍!据不完全统计,我国每年因氡致肺癌为50000 例以上。因此,氡已被国际癌症研究机构列入室内重要致癌物质,排在世界卫生组织所确认的三类人类致癌物中的第一类物质当中,必须引起我们的注意。中国疾病预防控制中心辐射防护与核安全医学所研究员王作元率领的研究小组在经过长达9年的调查研究之后,首次拿出了室内氡污染所造成的肺癌危险度指数:0.19。它意味着当室内空气中氡浓度每增加100贝克/立方米时,在这种环境里居住的人患肺癌的几率就会增加19%。 三、室内氡是怎么来的? 室内氡主要有以下几种来源: 1.从房基土壤中析出的氡。在地层深处含有铀、镭、钍的土壤、岩石中人们可以发现高浓度的氡。这些氡可以通过地层断裂带,进入土壤和大气层。建筑物建在上面,氡就会沿着地的裂缝扩散到室内。2.从建筑材料中析出的氡。1982 年联合国原子辐射效应科学委员会的报告中指出,建筑材料是室内氡的最主要来源。如花岗岩、砖沙、水泥及石膏之类,特别是含有放射性元素的天然石材,易释放出氡。另外还有从户外空气中进入室内的氡,以及从供水及用于取暖和厨房设备的天然气中释放出的氡。

放射性检测

一、放射性的度量单位 1、照射量X(库仑每千克/伦琴R) 表示Χ或γ射线在空气中产生电离大小的物理量(X=dQ/dm) dQ是指质量为dm的体积单元的空气中,光子释放的所有电子(负电子和正电子)在空气中全部被阻时,形成的同一种符号(正或负)的离子的总电荷的绝对值。 单位: (C. kg-1) 库伦/千克,旧单位是伦琴(R),1 R=2.58×10-4 C.kg-1 照射量率:指单位时间内的照射量。 2、吸收剂量D(戈瑞Gy/拉德rad) 吸收剂量是单位质量的物质对辐射能的吸收量(D=dε/dm) dε与dm分别代表受电离辐射作用的某一体积元中物质的平均能量与物质的质量. 单位:Gy(戈瑞),1 Gy=1 J.kg-1。 吸收剂量适用于任何电离辐射和任何物质,是衡量电离辐射与物质相互作用的一种重要的物理量。 吸收剂量率:单位时间内的吸收剂量,单位 Gy.s-1。 3、剂量当量H(希沃特SV /雷姆rem) 在人体组织中某一点处的剂量当量H等于吸收剂量与其他修正因数的乘积(H=DQN) Q为品质因子,亦称为线质系数,不同电离辐射的Q值列于表8-1;N为其它修正系数,是吸收剂量在时间或空间上分布不均匀性修正因子的乘积,对外照射源通常取N=1。 单位:SV(希沃特),1 SV=1 J.kg-1

表8-1 品质因数与照射类型、射线种类的关系 二、环境中放射性的来源 (一)天然源 1、宇宙射线初级宇宙线—高能辐射,穿透力很强;次级宇宙线—比初级弱;放射性核素-20余种。 2、天然放射性核素—与地球共生 3、天然放射本源—半衰期极长,强度弱 (二)人工源 1、核试验及航天事故-核裂变产物和中子活化产物放射性尘埃可在大气层滞留0.3—3年 2、核工业:核废弃物(核发电) 3、工农业、医学和科研等部门(医学占人工污染源的90%) 4、放射性矿的开采和利用

流量测量实验报告

课程实验报告 学年学期 2012—2013学年第二学期课程名称工程水文学 实验名称河道测深测速实验 实验室北校区灌溉实验站 专业年级热动113 学生姓名白治朋 学生学号 2011012106 任课教师向友珍李志军 水利与建筑工程学院

1 实验目的 (1)了解流速仪的主要构造及其作用、仪器的性能。 (2)掌握流速仪的装配步骤与保养方法。 (3)了解流速仪测流的基本方法。 2 实验内容 LS25-3C型旋浆流速仪是一种新改型仪器,采用磁电转换原理,无触点式测量,信号采集数多,灵敏度高,防水,防沙性能好,仪器结构紧凑,是一种大量程的流速仪。适用于一般河流,水库、湖泊、河口、水电站、溢港道等高、中、低流速测量。配用HR型流速测算仪。 2.1 主要技术指标 (1)测速范围: V=0.04-10 m/s (2)仪器的起转速: Vo≤0.035 m/s (3)临界速度: Vk≤0.12m/s (4)每转四个信号 (5)旋浆水力螺距: K=250mm(理论) (6)检定公式全线均方差:M≤1.5% (7)信号接收处理:HR型流速仪测算仪(适应线性关系) (8)测流历时: 20s、50s、l00s或1~999s任意设置 (9)测量数位:四位有效数 (10)显示查询方式:显示内容有时间、K值、C值、历时T、流速V、信号数等。 (11)参数设置及保存:可调校时间及设置K、C、T值等参数,设置后参数在掉电状态能长期 2.2仪器结构 本仪器按工作原理可分为:感应,传信,测算,尾翼部份。仪器测流时的安装方式有悬杆,转轴和测杆等几种。 (1)感应部份为一个双叶螺旋浆,安装于支承系统上灵敏地感应水流速度的变化。旋浆的转速与水流速度之间的函数关系由流速仪检定水槽实验得出。 (2)传信部份由磁钢,接收电子器件一霍尔传感器构成,浆叶旋转带动磁钢转动。 (3)HR型流速测算仪控制板由89CXX系列单片机及有关电路组成,液晶显示采用的是二线式串行

辐射探测实验2-实验报告

符合法测量放射源活度实验报告 班级: 姓名: 学号: 一. 实验目的 1、 学习符合测量的基本方法。 2、 学习用符合方法测定60Co 放射源的活度。 二. 实验内容 1、调整符合系统的参量,选定工作条件,观察各级输出信号波形及其时间关系。 2、测量符合装置的分辨时间。 3、用γβ-符合方法测量60Co 级联衰变的放射性活度。 三. 实验原理 符合技术是利用电子学方法在不同探测器的输出脉冲中把有时间关联的事件选择出来。选择同一时刻脉冲的符合称为瞬时符合。选择不同时的,但有一定时间联系的脉冲符合称为延迟符合。相反,排斥同一时刻或有时间关联脉冲的技术就是反符合或延迟反符合。符合法是研究相关事件的一种方法,在核物理与核技术应用的各领域中获得了广泛应用,如测量放射源的活度、研究核反应产物的角分布、激发态的寿命及角关联的测量、测量飞行粒子的能谱,研究宇宙射线和实现多参数测量等。γβ-符合实验装置图如图2-1。 图2-1 γβ-实验装置 脉冲线性定时延迟线性定时延迟符合光电光电塑料跟随器 跟随器 高压电源 发生器高压电源 放大器单道成形 定标器 放大器单道成形 定标器 定标器 电路 示波器 NIM 机箱低压电源 γ 探头 倍增管倍增管 β 探头 闪烁体 NaI 晶体

1、 符合分辨时间τ 探测器的输出脉冲总有一定的宽度,在选择同时事件的脉冲符合时,当从两个探测器输出的脉冲起始时间差别很小,以至于符合装置不能区分它们的时间差别时,就会被当作同时事件而记录下来,即符合装置有一定的时间分辨能力,符合装置所能够区分的最小时间间隔称为符合分辨时间,它的大小与输入脉冲的形状、持续时间、符合电路的性能都有关系。 分辨时间是符合装置的基本参量,它决定了符合装置研究不同事件间的时间关系时所能达到的精确度,对于大量的在时间上互不相关的独立事件来说,只要两个探测器的输出信号偶然地同时发生在τ时间间隔内,这时符合电路也将把它们作为同时事件而输出符合脉冲,但这个事件不是真符合事件,这种不具有相关性的事件之间的符合称为偶然符合。例如某个核在某时刻发生衰变,其β粒子被β探测器记录,但级联的γ没有被γ探测器记录到,然而此时恰好γ探测器记录了另外一个衰变核的γ射线,那么这两个来自于不同原子核衰变的β和γ射线在符合电路中产生的符合就是无时间关联事件的符合,即属于偶然符合。 假定不具有时间关联的两道脉冲均为理想的矩形脉冲,其宽度为τ,偶然符合的计数率和两个输入道的计数率分别为n rc 、n 1和n 2 ,则有 212n n n rc ??=τ 2 12n n n rc = τ (2-1) 显然,减少τ,能够减少偶然符合几率,但由于辐射进入探测器的时间与输出脉冲之间存在统计性的时间离散,当τ太小时,使得某些同时事件的脉冲因前沿离散而时距大于符合电路分辨时间的可能性增加,从而使得真符合丢失的几率增大。 2、 测量符合分辨时间的方法 1) 偶然符合方法测量分辨时间 通过测定偶然符合计数率rc n 和两道各自的计数率1n 和2n ,根据(2-1)式就可以得到符合分辨时间τ。其中两道的计数率应是时间上无关联的粒子在两个探测器中分别引起的计数率;符合道计数率rc n 应纯粹是偶然符合。但实际测量到的符合计数率中还包含有本底符合计数率 b n 。本底符合计数率是由宇宙射线和周围物体中天然放射性核素的级联衰变,以及散射等产生的符合计数所构成。所以实际测量到的符合计数率rc n '为:

相关主题
文本预览
相关文档 最新文档