当前位置:文档之家› Localization Transition in Multilayered Disordered Systems

Localization Transition in Multilayered Disordered Systems

Localization Transition in Multilayered Disordered Systems
Localization Transition in Multilayered Disordered Systems

a r X i v :c o n d -m a t /0005423v 2 [c o n d -m a t .d i s -n n ] 15 J a n 2001

Localization Transition in Multilayered Disordered Systems

S.N.Evangelou 1,Shi-Jie Xiong 2,P.Markoˇs 3and D.E.Katsanos 1

1

Department of Physics,University of Ioannina,Ioannina 45110,Greece 2

Department of Physics and National Laboratory of Solid State Microstructures,

Nanjing University,Nanjing 210008,China

3

Institute of Physics,Slovak Acad.Sci,D′u bravsk′a cesta 9,Bratislava 84228,Slovakia

The Anderson delocalization-localization transition is

studied in multilayered systems with randomly placed inter-layer bonds of density p and strength t .In the absence of diagonal disorder (W =0),following an appropriate pertur-bation expansion,we estimate the mean free paths in the main directions and verify by scaling of the conductance that the states remain extended for any ?nite p ,despite the inter-layer disorder.In the presence of additional diagonal disorder (W >0)we obtain an Anderson transition with critical dis-order W c and localization length exponent νindependently of the direction.The critical conductance distribution P c (g )varies,however,for the parallel and the perpendicular direc-tions.The results are discussed in connection to disordered anisotropic materials.

PACS numbers:72.15.Rn,71.30.+h,74.25.Fy

I.INTRODUCTION

The understanding of the Anderson transition based on the scaling theory of localization [1]inspired many de-tailed numerical studies of disordered electronic systems [2].The universality of the associated critical behavior was tested for various physical models,which include the crucial role of symmetry [3]and added magnetic ?eld [4].Universal critical transport properties are also expected in the presence of hopping matrix elements which are not the same in the various lattice directions,as it can be seen from computations for weakly coupled chains and coupled planes [5,6].It must be emphasized that many of the previous works on anisotropy include site diago-nal isotropic disorder and involve anisotropy only in the hopping magnitudes.This kind of anisotropy remains for zero disorder and is manifested in the band struc-ture.However,many realistic materials involve truly anisotropic disorder.For example,attempting to un-derstand the high-T c cuprates within a non-interacting electron picture in the presence of disorder requires the explanation of the contrasting resistivities in the paral-lel and perpendicular directions [7–10].Anisotropic site randomness in a form resembling a random superlattice with lateral inhomogeneities gave anisotropic localization for anisotropy below a critical value,even for arbitrarily small disorder [11].

The in–plane resistivity for most of the layered

high ?T c materials exhibits metallic behavior,increas-ing linearly with temperature over a wide temperature range,while the perpendicular out–of–plane resistivity is very high at low temperatures and decreases rapidly as the temperature increases,reminiscent of semicon-ductors [12–15].The contrasting behavior of the par-allel and the perpendicular resistivities was observed in Bi 2Sr 2?x La x CuO y far below T c ,down to the low-est experimental temperature [16].In the underdoped La 2?x Sr x CuO 4logarithmic divergencies of the corre-sponding resistivities accompanied by a nearly constant anisotropy ratio are,instead,observed suggesting an un-usual three-dimensional (3D )insulator.The electronic transport in these materials is expected to arise from scattering in the “insulating”layer between the conduct-ing CuO 2layers [12–15].On the other hand,in almost all high-T c cuprates doping impurities or oxygen vacan-cies occupy the insulating layers between the conducting “pure”CuO 2planes which implies interlayer disorder.Although the main aspects of transport in high-T c ma-terials,such as the linear temperature dependence of the in-plane resistivity,are intimately connected with their strongly correlated nature,it is believed that anisotropic transport issues are,somehow,related to their layered structure.

We propose a strongly anisotropic multilayered struc-ture (see Fig.1)motivated by realistic anisotropic ma-terials.This system involves truly anisotropic interlayer disorder,anisotropic hoppings and the usual isotropic site diagonal disorder.It can be regarded as a very simple model for the cuprates where the CuO 2planes are be-lieved to be identical without superlattice–like disorder.Our aim is to study both parallel ( )and perpendic-ular (⊥)transport addressing the following main ques-tions:(1)does anisotropic localization occur (for exam-ple,localization in the layering direction and delocaliza-tion within the layers)for interlayer disorder only?(2)with additional isotropic diagonal disorder is the critical behavior independent of the direction as scaling theory predicts?Firstly,we compute the conductance in the case of interlayer disorder alone to check whether its lo-calization behavior is the same in both directions.Sec-ondly,in the presence of additional isotropic disorder of strength W we obtain the critical disorder W c and the lo-calization length critical exponent νto see if they depend on the direction.We have also analyzed the statistical properties of the critical conductance distributions P c (g )

and although we can conjecture that it is a unique single-parameter function the distribution for the logarithm of the critical g in the“di?cult”⊥case resembles an insu-lator.

In Section II we proceed with the de?nition of the tight-binding Hamiltonian for the multilayered lattice structure.In Section III,we consider the system with only interlayer disorder and estimate the corresponding mean free paths in the two directions.Our results in the absence of isotropic diagonal disorder allow to con-clude,in agreement with the scaling theory,that the states remain extended in both directions despite the strongly anisotropic interlayer disorder.However,the metallic conductance is very di?erent for the⊥case,be-ing insulator-like.In Section IV we review the numerical methods for the computation of the conductance in cubic and long wire systems.We?nd singular behavior along the layering direction due to the missing bonds.In order to avoid this problem we have developed appropriate nu-merical algorithms based on transfer matrix and Green function methods.Finally,in Section V we discuss the conclusions of the present study also in connection to realistic systems.

II.RANDOM MULTILAYER LATTICE

We propose a simple3D anisotropic multilayered model which consists of parallel lattice planes randomly connected by interplane bonds as in Fig.1described by the Hamiltonian

H= m lεm,l|m,l>

where m,m′denote the two-dimensional site indices in each layer and l is the layer index.The?rst term in Eq.(1)describes diagonal(isotropic)disorder with the site matrix elementsεchosen randomly from a box dis-tribution within[?W/2,W/2],the second term describes nearest-neighbor hopping of unit strength within the lay-ers,which sets the energy unit,and the third term corre-sponds to interplane hoppings t′m,l=0or t,placed with probability p at random layer positions m.The inter-plane term obeys the binary distribution

P(t′m,l)=pδ(t′m,l,t)+(1?p)δ(t′m,l,0).(2) The proposed structure has both anisotropic hoppings due to t and anisotropic disorder due to p.The trans-port characteristics are obtained by calculating the con-ductance along the and the⊥directions.

The missing perpendicular bonds in the layering di-rection disturb particle migration even the presence of interlayer disorder alone.Unlike a naive expectation we ?nd no critical point when W=0,for any p=0.We show that the system is metallic independently of the direction,although the behavior of the conductance is very di?erent in the two directions.In the presence of additional diagonal disorder,denoted by W,a critical disorder W c is obtained for various choices of the density p and strength t.The critical point W c within?nite size errors is found to be the same in both directions.

III.MEAN FREE PATHS FOR INTERLAYER

DISORDER

We consider anisotropic disorder in the perpendicu-lar layering direction represented by p and t,due to the randomly placed bonds among consecutive layers, in the absence of diagonal disorder W.In this disor-dered anisotropic lattice one might expect transport to be hindered in the perpendicular direction.It is worth examining whether is present or not.In order to pro-ceed we adopt a convenient layer-diagonal representation since for W=0the2D layers are perfect planes and can be easily diagonalised.The eigenstates at the l?th layer |k ,l are labelled by the parallel momentum k and the Hamiltonian H can be expressed in the convenient Bloch-Wannier basis

|k ,l =

1

N m e i k ·m|m,l ,(3) with parallel momentum k ,the layer index l and m summed over all N =L2sites in every layer for a systen with L3sites.For p=0the2D layers are perfect and k is a good quantum number.For p=1the system reduces to a perfect3D lattice and both k ,k⊥become good quantum numbers.

We consider the case of p=0,1where the translational symmetry in the plane directions is also broken and k is no longer a good quantum number.In this mixed representation the Hamiltonian H can be expressed as H= k ,l? (k )|k ,l k ,l|

+ l k ,k′ [t k ,k′ l,l+1|k ,l k′ ,l+1|+H.c.],(4) with the parallel kinetic energy

? (k )=2cos(k x)+2cos(k y)(5) and the hopping matrix element between neighboring planes

t k ,k

l,l+1

=

1

In order to investigate the question of localization in the layering direction we de?ne the retarded Green function

G(k ,l;k′ ,l′;t)=?iθ(t) [c k

,l

(t),c?

k′

,l′

(0)]+ ,(7)

where c k

,l

(t)is the time-dependent destruction opera-

tor of electron in the state|k ,l .Its diagonal element G(k ,l;k ,l;t)gives the probability for?nding an elec-tron on the layer l with momentum k at time t,if ini-tially it was on the same layer having the same momen-tum.The Fourier transformation of the diagonal Green function with respect to time is

G(k ,l;k ,l;E)=

1

E?? (k i)

(10) with k n+1=k and l n+1=l.From Eq.(2)one has

t k i,k i+1 l i,l i+1=

t

N l,m∈B l,l+1e i(k ?k′ )·m+i(k z?k′z)l, for k =k′ ,

H1(k,k′)=0,for k =k′ ,(12)where N is the total number of lattice sites and k z the perpendicular momentum.

It can be seen from Eq.(12)that the matrix elements of H1are complex numbers of average amplitude value modulo1plus a random phase.If the size of the system increases to in?nity the phase exhausts all possible values in[0,2π]and the average should vanish.In this situation the scattering by the random con?gurations of the inter-plane bonds can be well described by perturbation theory with k-space self-energy

Σ(k,E)??(k)+ k′|H1(k,k′)|2

E??(k′)?iΓ

can be computed as a function of p and the results?tted to a semicircular form asρ(E)t2p(1?p),with E within the H0 band andρ(E)the corresponding density of states.This allows to estimate the lifetime of statesτ~1

u

?

1

2+p2t2

,(14)λ⊥=

τu2⊥

ρ(E)(1?p)

IV.NUMERICAL CALCULATION OF THE

CONDUCTANCE

A.The cube

The parallel (perpendicular)conductance

e 2

M

?1

,(19)

with ξM =

1

L log Tr G L

1L

=

ξM

and the independence ofΛon M at the critical point gives W c from the slope of the linear dependence

αM=?log W c×βM+const.(24) The obtained criticalΛc andΛc⊥are di?erent from the valueΛc of the corresponding isotropic system(see how-ever Eq.(28)below).The critical exponentνis deter-mined from the coe?cientsβM via

ν=?

log M

cosh2(z i/2)

(26)

where the z i’s are the logarithms of the i th eigenvalues of the matrix t?t[21]and in the limit L>>M converge to2Mγi.In the⊥direction the singular behavior of the matrix V l,l+1does not permit to use the formula(26).To calculate log g⊥in this case we use the fact thatΛc⊥<< 1for most of the critical points discussed below.Then, the critical conductance from z1=2/Λc is very small and can be estimated from the contribution of the?rst channel via

log g⊥=Tr G1,L(E+iη)G L,1(E?iη),(27) with the imaginary part of the energyηgiven by the ratio of the bandwidth over the mean level spacing[22].

V.RESULTS

A.W=0

Fig.2shows the scaling behavior of g (⊥)(L)for the L3-site cubic system for various bond densities p and anisotropic interplane coupling t=0.3,in the absence of diagonal disorder W.The parallel conductance is shown to increase ballistically(~L2)for small L and linearly for higher L.In the large size(L→∞)limit the cor-responding scaling functionβ(L)=d ln g/d ln L becomes positive for g (⊥),which implies extended states in both directions for any p,in agreement with the scaling the-ory which predicts a common critical point in any direc-tion.However,the obtained transport behavior is essen-tially di?erent in the two directions.In Fig.3we show the energy dependence of the conductance for p=0.5 and t=0.3where the ratio of the two conductances is close to the estimate g /g⊥≈(t /t⊥)2for t =1and t⊥=pt=0.15[6].A key?nding from Fig.2is a rather smooth g (E)while g⊥(E)displays violent oscillations as a function of E.The dips in g⊥(E)can be regarded as due to“minigaps”in the perpendicular direction which might have e?ect similar to a semiconductor,leading to insulating kind of behavior for the out-of-plane conduc-tivity when the Fermi energy is varied.

B.W>0

The W-dependence ofΛ(M,W)for di?erent M’s and various parameters p,t is presented in Figs4.,5.,6.,7. The corresponding critical points are calculated by the described?tting procedure.The results are listed in Ta-ble1and the data are very reliable for the direction. In the⊥direction they are much harder to analyze due to?nite-size e?ects.For example,in case D(Fig.7)the obtained M-dependence ofΛ⊥(M)is not monotonic and for W=5we?ndΛ(M)which decreases with M for small system sizes,imitating insulating behavior.How-ever,for larger M>12the values ofΛ(M)begin to increase and the correct scaling is restored.This M-dependence is caused by a second irrelevant scaling pa-rameter from the relationΛ=aM1/ν+bMβwithβ<0. The correct estimation of the critical parameters in the⊥direction requires either numerical data for larger M or possibly more sophisticated?ts[23].Although for strong anisotropy we could not obtain accurately the critical pa-rameters in the⊥direction we check that our results converge to those of the direction when M grows.

tΛc M var g

A 1.00.67610-160.16 B0.30.9336-140.4

0.17.93±0.24 1.514±0.06 2.6

D0.1 1.1746-160.7

A 1.00.4376-14

0.610.20±0.67 1.308±0.21

C0.30.08912-20

0.6 6.80±1.94-

In this direction the critical region is very narrow and we could neither calculate the critical exponent,since larger system sizes are required.Nevertheless,the scaling analysis for A and B gives satisfactory results in both directions which con?rm the equal W c andν.Moreover, we?nd the quantity

Λc= Λ2c ×Λc⊥ 1/3(28) which gives the critical value of the corresponding isotropic model[6].

Fig.8(a),(b)presents the probability distribution of the critical conductance P c(g )in the parallel direction. The distribution is shown to be size-independent but de-pends on the various critical points.For C and D the obtained P c(g )andΛc are the same.This indicates that P c(g )is determined only byΛc [21].The numer-ical data for the mean and variance of the conductance are also unique functions ofΛc (see Table1)supporting this conjecture.In the limit t→0the critical distribu-tion in the parallel direction is expected to converge to a Gaussian.However,the spectrum of the obtained higher Lyapunov exponents shows square-root behavior similar to isotropic3D disordered systems[22].To display the dramatic di?erences in parallel and perpendicular trans-port,we also present the critical distribution of log g⊥, calculated for the perpendicular direction for the criti-cal case C.This distribution has all the features of the localized regime since it is log-normal with

var log g⊥≈? log g⊥ .(29) The important di?erence with the insulating regime is the fact that P c(log g⊥)remains system-size invariant. The relation of Eq.(29)is also valid for the critical points B and D where in the⊥direction g⊥ <<1.

VI.DISCUSSION

The random topological multilayered structure studied may be regarded as a?rst step towards an explanation, via non-interacting electrons,for properties of strongly anisotropic materials.For example,in the case of W=0 the2D layers are perfect and the disorder represented by p can be due to impurities or oxygen vacancies in the insulating layer among the2D planes of the cuprates. The electrons propagating in the perpendicular direction of this system shall encounter anisotropy in the disor-der due to the random interplane links in addition to the value of t which can be di?erent to that of the par-allel direction.However,the distribution of the critical conductance P c(g)depends both on the choice of the pa-rameters and the direction where the electron moves. The considered anisotropic structure exhibits rather strange transport properties on a given scale,expressed in the dramatic di?erences of the critical conductance in the parallel and perpendicular directions.In the perpen-dicular direction the conductance distribution slightly bellow the critical point is log-normal resembling the sta-tistical properties typical of an insulator.A similar sta-tistical“anomaly”has been described in[20].However, a strong di?erence to a“true”insulating regime exists since the conductance still grows with the size.In the large size limit the corresponding distribution reaches a Gaussian.An analogous discussion holds for the paral-lel direction slightly above the critical point.The main criterion for the speci?cation of the critical regime is the size dependence of the conductance g (or log g ). The proposed model for W=0may have some re-lation to the strongly anisotropic transport proprties of high–T c cuprates.In these materials,as tempera-ture increases,the inelastic scattering due to phonons, spin waves or other excitations within the CuO planes, can cause a decrease of the inelastic scattering length l in.If the temperature is so high that l in becomes smaller than mean free path the transverse conductiv-ity is metallic.Experiments for Bi2Sr2CaCu2O8and underdoped La2?x Sr x CuO4,YBa2Cu3O6+x give out–of–plane resistivity which has a semiconductor–like temper-ature dependence at low temperatures(high at small–T with a rapid decrease by increasing T)and a linear–in–T behavior at high temperatures.The characteristic crossover temperature between the two regimes T?de-creases by increasing the doping in La2?x Sr x CuO4and YBa2Cu3O6+x[7–10].We notice that if we relate the bond density p with the doping density of the high-T c materials the obtained p-dependence of the perpendicu-lar mean free path can be used to explain qualitatively the reported behavior.It must be pointed out that the relation between the cuprate doping density and the bond density p is natural,since an increase in the number of the doping impurities or the oxygen atoms in the layer between two CuO2planes increases the number of hop-ping paths between the two planes.As T?decreases fur-ther(below T c)the out–of–plane normal–state resistivity also becomes metallic,which has been observed in high–quality single crystals of YBA2Cu3O7and other high–T c cuprates corresponding to the absence of disorder(p≈1 with W=0in the proposed model)with almost in?nite perpendicular mean free path.This e?ect occurs only in the perpendicular direction since the parallel mean free path is always much longer and inelasting scattering be-comes dominant.

In summary,we have introduced a simple layered lat-tice model with anisotropic disorder described by the interplane bond density p,in addition to the usual anisotropic band structure expressed via the interplane hopping t.In the absence of diagonal disorder we show extended states in both directions but the obtained mean free path and the conductance in the⊥direction is much

smaller than in the direction.Moreover,g⊥?uctu-ates strongly as a function of energy,which leads to an insulator-like temperature dependence of the conductiv-ity in the⊥direction.In the presence of additional di-agonal disorder of strength W we have shown that the critical disorder and the critical exponentνdo not de-pend on the transport direction.The obtained data for the localization exponentνagree with recent accurate estimates for the isotropic model[23]and con?rm the universality at the metal-insulator transition.The ob-tained critical conductance distribution P c(g)although independent on the system size depends strongly on the parameters and the direction of transport. Acknowledgments

This work was supported in part by a TMR network. SNE and SJX thank a Chino-Greek grant and PM the Slovak Grant Agency and NATO.We also like to thank Professors Xing and Economou for many useful discus-sions.

l

l?1

FIG.1.A picture of the multilayered structure which consists of 2D square lattices l (layers)connected by perpendicular bonds of strength t placed at random positions with probability p .

L

100

200

300

g

FIG.2.The g as a function of the linear system size L for a cubic L ×L ×L system of parallel planes with W =0and randomly placed interplane bonds of density p with strength t =0.3.In the inset g ⊥for the same system exhibits similar behavior but much smaller values.

E

50100

150

g

E

1.03.0

5.0

7.0

g

FIG.3.(a)The energy-dependent g for a cubic layered system with L =10,15and W =0,t =0.3,p =0.5.(b)The g ⊥is much smaller and exhibits violent oscillations as a function of the energy E .

W

1.0

0.6

0.8

1.2

1.5

0.4

ξM /M

W

0.3

0.80.5

0.4

0.6

0.7ξM /M

FIG. 4.A:The behavior of the scaled localization length ξM /M for the parallel and perpendicular direction in the M ×M ×L system with p =0.6and t =0.1as a function of W .The critical point is located at W c ≈14.47in the direction and W c ≈14.30in the ⊥direction.

W

0.8

0.62.0

1.00.5

ξM /M

W

0.30

0.10

0.20

0.15

ξM /M

FIG.5.B:The behavior of the scaled localization length ξM /M for the parallel and perpendicular direction in the M ×M ×L system with p =0.6and t =0.3as a function of W .The critical point is located at W c ≈10.48in the and W c ≈10.20in the ⊥direction.

W

ξM /

M

W

ξM /M

FIG.6.C:The behavior of the scaled localization length ξM /M for the parallel and perpendicular direction in the M

×M ×L system for p =0.1and t =0.3as a function of W .The critical point is displayed at W c ≈7.93in the and W c ≈7.18in the ⊥direction.

W

1.0

2.0

0.5

1.5

2.5

ξM /

M

W

0.05

0.1

0.2

ξM /M

FIG.7.D:The behavior of the scaled localization length

ξM /M for the and ⊥direction in the M ×M ×L system with p =0.6and t =0.1as a function of W .The critical point is located in W c ≈8.05in the and W c ≈6.80in the ⊥direction.It is seen that the data for smaller M =6,8fail to cross at the same point indicating “insulating”behavior.

0.2

0.4

0.6

g ||/

P (g ||/)

0.00.5

1.0

1.5

g ||/

P (g ||/)

Log(g )/⊥⊥

0.0

0.5

1.0

1.5

2.0

P (L o g (g )/)⊥⊥

FIG.8.(a ).The critical distribution of the parallel conduc-tance in the case A with ≈0.59,var(g )=0.16.(b ).The

same as in (a)for the critical points C (full symbols)and D(open symbols)with ≈2.6,var (g )=0.7.The C,D have the same Λc and the same critical distribution (see Table 1).(c ).The critical distribution of P (log g ⊥)in the perpendicular direction for case C is also shown for comparison.

常用二极管参数

常用整流二极管 型号VRM/Io IFSM/ VF /Ir 封装用途说明1A5 600V/1.0A 25A/1.1V/5uA[T25] D2.6X3.2d0.65 1A6 800V/1.0A 25A/1.1V/5uA[T25] D2.6X3.2d0.65 6A8 800V/6.0A 400A/1.1V/10uA[T60] D9.1X9.1d1.3 1N4002 100V/1.0A 30A/1.1V/5uA[T75] D2.7X5.2d0.9 1N4004 400V/1.0A 30A/1.1V/5uA[T75] D2.7X5.2d0.9 1N4006 800V/1.0A 30A/1.1V/5uA[T75] D2.7X5.2d0.9 1N4007 1000V/1.0A 30A/1.1V/5uA[T75] D2.7X5.2d0.9 1N5398 800V/1.5A 50A/1.4V/5uA[T70] D3.6X7.6d0.9 1N5399 1000V/1.5A 50A/1.4V/5uA[T70] D3.6X7.6d0.9 1N5402 200V/3.0A 200A/1.1V/5uA[T105] D5.6X9.5d1.3 1N5406 600V/3.0A 200A/1.1V/5uA[T105] D5.6X9.5d1.3 1N5407 800V/3.0A 200A/1.1V/5uA[T105] D5.6X9.5d1.3 1N5408 1000V/3.0A 200A/1.1V/5uA[T105] D5.6X9.5d1.3 RL153 200V/1.5A 60A/1.1V/5uA[T75] D3.6X7.6d0.9 RL155 600V/1.5A 60A/1.1V/5uA[T75] D3.6X7.6d0.9 RL156 800V/1.5A 60A/1.1V/5uA[T75] D3.6X7.6d0.9 RL203 200V/2.0A 70A/1.1V/5uA[T75] D3.6X7.6d0.9 RL205 600V/2.0A 70A/1.1V/5uA[T75] D3.6X7.6d0.9 RL206 800V/2.0A 70A/1.1V/5uA[T75] D3.6X7.6d0.9 RL207 1000V/2.0A 70A/1.1V/5uA[T75] D3.6X7.6d0.9 RM11C 1000V/1.2A 100A/0.92V/10uA D4.0X7.2d0.78 MR750 50V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 MR751 100V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 MR752 200V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 MR754 400V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 MR756 600V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 MR760 1000V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 常用整流二极管(全桥) 型号VRM/Io IFSM/ VF /Ir 封装用途说明RBV-406 600V/*4A 80A/1.10V/10uA 25X15X3.6 RBV-606 600V/*6A 150A/1.05V/10uA 30X20X3.6 RBV-1306 600V/*13A 80A/1.20V/10uA 30X20X3.6 RBV-1506 600V/*15A 200A/1.05V/50uA 30X20X3.6 RBV-2506 600V/*25A 350A/1.05V/50uA 30X20X3.6 常用肖特基整流二极管SBD 型号VRM/Io IFSM/ VF Trr1/Trr2 封装用途说明EK06 60V/0.7A 10A/0.62V 100nS D2.7X5.0d0.6 SK/高速 EK14 40V/1.5A 40A/0.55V 200nS D4.0X7.2d0.78 SK/低速 D3S6M 60V/3.0A 80A/0.58V 130p SB340 40V/3.0A 80A/0.74V 180p SB360 60V/3.0A 80A/0.74V 180p SR260 60V/2.0A 50A/0.70V 170p MBR1645 45V/16A 150A/0.65V <10nS TO220 超高速

常用二极管参数

常用二极管参数 2008-10-22 11:48 05Z6.2Y 硅稳压二极管 Vz=6~6.35V, Pzm=500mW, 05Z7.5Y 硅稳压二极管 Vz=7.34~7.70V, Pzm=500mW, 05Z13X 硅稳压二极管 Vz=12.4~13.1V, Pzm=500mW, 05Z15Y 硅稳压二极管 Vz=14.4~15.15V, Pzm=500mW, 05Z18Y 硅稳压二极管 Vz=17.55~18.45V, Pzm=500mW, 1N4001 硅整流二极管 50V, 1A,(Ir=5uA, Vf=1V, Ifs=50A) 1N4002 硅整流二极管 100V, 1A, 1N4003 硅整流二极管 200V, 1A, 1N4004 硅整流二极管 400V, 1A, 1N4005 硅整流二极管 600V, 1A, 1N4006 硅整流二极管 800V, 1A, 1N4007 硅整流二极管 1000V, 1A, 1N4148 二极管 75V, 4PF, Ir=25nA, Vf=1V, 1N5391 硅整流二极管 50V, 1.5A,(Ir=10uA, Vf=1.4V, Ifs=50A) 1N5392 硅整流二极管 100V, 1.5A, 1N5393 硅整流二极管 200V, 1.5A, 1N5394 硅整流二极管 300V, 1.5A, 1N5395 硅整流二极管 400V, 1.5A, 1N5396 硅整流二极管 500V, 1.5A, 1N5397 硅整流二极管 600V, 1.5A, 1N5398 硅整流二极管 800V, 1.5A, 1N5399 硅整流二极管 1000V, 1.5A, 1N5400 硅整流二极管 50V, 3A,(Ir=5uA, Vf=1V, Ifs=150A) 1N5401 硅整流二极管 100V, 3A, 1N5402 硅整流二极管 200V, 3A, 1N5403 硅整流二极管 300V, 3A, 1N5404 硅整流二极管 400V, 3A, 1N5405 硅整流二极管 500V, 3A, 1N5406 硅整流二极管 600V, 3A, 1N5407 硅整流二极管 800V, 3A, 1N5408 硅整流二极管 1000V, 3A, 1S1553 硅开关二极管 70V, 100mA, 300mW, 3.5PF, 300ma, 1S1554 硅开关二极管 55V, 100mA, 300mW, 3.5PF, 300ma, 1S1555 硅开关二极管 35V, 100mA, 300mW, 3.5PF, 300ma, 1S2076 硅开关二极管 35V, 150mA, 250mW, 8nS, 3PF, 450ma, Ir≤1uA, Vf≤0.8V,≤1.8PF, 1S2076A 硅开关二极管 70V, 150mA, 250mW, 8nS, 3PF, 450ma, 60V, Ir≤1uA, Vf≤0.8V,≤1.8PF, 1S2471 硅开关二极管80V, Ir≤0.5uA, Vf≤1.2V,≤2PF, 1S2471B 硅开关二极管 90V, 150mA, 250mW, 3nS, 3PF, 450ma, 1S2471V 硅开关二极管 90V, 130mA, 300mW, 4nS, 2PF, 400ma, 1S2472 硅开关二极管50V, Ir≤0.5uA, Vf≤1.2V,≤2PF, 1S2473 硅开关二极管35V, Ir≤0.5uA, Vf≤1.2V,≤3PF,

常用二极管型号及参数大全精编版

1.塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs 1 1A1-1A7 1A 50-1000V 1.1 R-1 2 1N4001-1N4007 1A 50-1000V 1.1 DO-41 3 1N5391-1N5399 1.5A 50-1000V 1.1 DO-15 4 2A01-2A07 2A 50-1000V 1.0 DO-15 5 1N5400-1N5408 3A 50-1000V 0.95 DO-201AD 6 6A05-6A10 6A 50-1000V 0.95 R-6 7 TS750-TS758 6A 50-800V 1.25 R-6 8 RL10-RL60 1A-6A 50-1000V 1.0 9 2CZ81-2CZ87 0.05A-3A 50-1000V 1.0 DO-41 10 2CP21-2CP29 0.3A 100-1000V 1.0 DO-41 11 2DZ14-2DZ15 0.5A-1A 200-1000V 1.0 DO-41 12 2DP3-2DP5 0.3A-1A 200-1000V 1.0 DO-41 13 BYW27 1A 200-1300V 1.0 DO-41 14 DR202-DR210 2A 200-1000V 1.0 DO-15 15 BY251-BY254 3A 200-800V 1.1 DO-201AD 16 BY550-200~1000 5A 200-1000V 1.1 R-5 17 PX10A02-PX10A13 10A 200-1300V 1.1 PX 18 PX12A02-PX12A13 12A 200-1300V 1.1 PX 19 PX15A02-PX15A13 15A 200-1300V 1.1 PX 20 ERA15-02~13 1A 200-1300V 1.0 R-1 21 ERB12-02~13 1A 200-1300V 1.0 DO-15 22 ERC05-02~13 1.2A 200-1300V 1.0 DO-15 23 ERC04-02~13 1.5A 200-1300V 1.0 DO-15 24 ERD03-02~13 3A 200-1300V 1.0 DO-201AD 25 EM1-EM2 1A-1.2A 200-1000V 0.97 DO-15 26 RM1Z-RM1C 1A 200-1000V 0.95 DO-15 27 RM2Z-RM2C 1.2A 200-1000V 0.95 DO-15 28 RM11Z-RM11C 1.5A 200-1000V 0.95 DO-15 29 RM3Z-RM3C 2.5A 200-1000V 0.97 DO-201AD 30 RM4Z-RM4C 3A 200-1000V 0.97 DO-201AD 2.快恢复塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs (1)快恢复塑封整流二极管 1 1F1-1F7 1A 50-1000V 1.3 0.15-0.5 R-1 2 FR10-FR60 1A-6A 50-1000V 1. 3 0.15-0.5 3 1N4933-1N4937 1A 50-600V 1.2 0.2 DO-41 4 1N4942-1N4948 1A 200-1000V 1.3 0.15-0. 5 DO-41 5 BA157-BA159 1A 400-1000V 1.3 0.15-0.25 DO-41 6 MR850-MR858 3A 100-800V 1.3 0.2 DO-201AD

常用稳压二极管大全,

常用稳压管型号对照——(朋友发的) 美标稳压二极管型号 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 需要规格书请到以下地址下载, 经常看到很多板子上有M记的铁壳封装的稳压管,都是以美标的1N系列型号标识的,没有具体的电压值,刚才翻手册查了以下3V至51V的型号与电压的对 照值,希望对大家有用 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9

1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V DZ是稳压管的电器编号,是和1N4148和相近的,其实1N4148就是一个0.6V的稳压管,下面是稳压管上的编号对应的稳压值,有些小的稳压管也会在管体 上直接标稳压电压,如5V6就是5.6V的稳压管。 1N4728A 3.3 1N4729A 3.6 1N4730A 3.9 1N4731A 4.3 1N4732A 4.7 1N4733A 5.1 1N4734A 5.6 1N4735A 6.2 1N4736A 6.8 1N4737A 7.5 1N4738A 8.2 1N4739A 9.1 1N4740A 10 1N4741A 11 1N4742A 12 1N4743A 13

二极管封装大全

二极管封装大全 篇一:贴片二极管型号、参数 贴片二极管型号.参数查询 1、肖特基二极管SMA(DO214AC) 2010-2-2 16:39:35 标准封装: SMA 2010 SMB 2114 SMC 3220 SOD123 1206 SOD323 0805 SOD523 0603 IN4001的封装是1812 IN4148的封装是1206 篇二:常见贴片二极管三极管的封装 常见贴片二极管/三极管的封装 常见贴片二极管/三极管的封装 二极管: 名称尺寸及焊盘间距其他尺寸相近的封装名称 SMC SMB SMA SOD-106 SC-77A SC-76/SC-90A SC-79 三极管: LDPAK

DPAK SC-63 SOT-223 SC-73 TO-243/SC-62/UPAK/MPT3 SC-59A/SOT-346/MPAK/SMT3 SOT-323 SC-70/CMPAK/UMT3 SOT-523 SC-75A/EMT3 SOT-623 SC-89/MFPAK SOT-723 SOT-923 VMT3 篇三:常用二极管的识别及ic封装技术 常用晶体二极管的识别 晶体二极管在电路中常用“D”加数字表示,如: D5表示编号为5的二极管。 1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。正因为二极管具有上述特性,无绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。 电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004)、隔离二极管(如1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。 2、识别方法:二极管的识别很简单,小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长

1N系列常用整流二极管的主要参数

1N 系列常用整流二极管的主要参数
反向工作 峰值电压 URM/V 额定正向 整流电流 整流电流 IF/A 正向不重 复浪涌峰 值电流 IFSM/A 正向 压降 UF/V 反向 电流 IR/uA 工作 频率 f/KHZ 外形 封装
型 号
1N4000 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 1N5100 1N5101 1N5102 1N5103 1N5104 1N5105 1N5106 1N5107 1N5108 1N5200 1N5201 1N5202 1N5203 1N5204 1N5205 1N5206 1N5207 1N5208 1N5400 1N5401 1N5402 1N5403 1N5404 1N5405 1N5406 1N5407 1N5408
25 50 100 200 400 600 800 1000 50 100 200 300 400 500 600 800 1000 50 100 200 300 400 500 600 800 1000 50 100 200 300 400 500 600 800 1000
1
30
≤1
<5
3
DO-41
1.5
75
≤1
<5
3
DO-15
2
100
≤1
<10
3
3
150
≤0.8
<10
3
DO-27
常用二极管参数: 05Z6.2Y 硅稳压二极管 Vz=6~6.35V,Pzm=500mW,

常见二极管参数大全

1N系列稳压管

快恢复整流二极管

常用整流二极管型号和参数 05Z6.2Y 硅稳压二极管 Vz=6~6.35V,Pzm=500mW, 05Z7.5Y 硅稳压二极管 Vz=7.34~7.70V,Pzm=500mW, 05Z13X硅稳压二极管 Vz=12.4~13.1V,Pzm=500mW, 05Z15Y硅稳压二极管 Vz=14.4~15.15V,Pzm=500mW, 05Z18Y硅稳压二极管 Vz=17.55~18.45V,Pzm=500mW, 1N4001硅整流二极管 50V, 1A,(Ir=5uA,Vf=1V,Ifs=50A) 1N4002硅整流二极管 100V, 1A, 1N4003硅整流二极管 200V, 1A, 1N4004硅整流二极管 400V, 1A, 1N4005硅整流二极管 600V, 1A, 1N4006硅整流二极管 800V, 1A, 1N4007硅整流二极管 1000V, 1A, 1N4148二极管 75V, 4PF,Ir=25nA,Vf=1V, 1N5391硅整流二极管 50V, 1.5A,(Ir=10uA,Vf=1.4V,Ifs=50A) 1N5392硅整流二极管 100V,1.5A, 1N5393硅整流二极管 200V,1.5A, 1N5394硅整流二极管 300V,1.5A, 1N5395硅整流二极管 400V,1.5A, 1N5396硅整流二极管 500V,1.5A, 1N5397硅整流二极管 600V,1.5A, 1N5398硅整流二极管 800V,1.5A, 1N5399硅整流二极管 1000V,1.5A, 1N5400硅整流二极管 50V, 3A,(Ir=5uA,Vf=1V,Ifs=150A) 1N5401硅整流二极管 100V,3A, 1N5402硅整流二极管 200V,3A, 1N5403硅整流二极管 300V,3A, 1N5404硅整流二极管 400V,3A,

常用稳压二极管技术参数及老型号代换.

常用稳压二极管技术参数及老型号代换 型号最大功耗 (mW) 稳定电压(V) 电流(mA) 代换型号国产稳压管日立稳压管 HZ4B2 500 3.8 4.0 5 2CW102 2CW21 4B2 HZ4C1 500 4.0 4.2 5 2CW102 2CW21 4C1 HZ6 500 5.5 5.8 5 2CW103 2CW21A 6B1 HZ6A 500 5.2 5.7 5 2CW103 2CW21A HZ6C3 500 6 6.4 5 2CW104 2CW21B 6C3 HZ7 500 6.9 7.2 5 2CW105 2CW21C HZ7A 500 6.3 6.9 5 2CW105 2CW21C HZ7B 500 6.7 7.3 5 2CW105 2CW21C HZ9A 500 7.7 8.5 5 2CW106 2CW21D HZ9CTA 500 8.9 9.7 5 2CW107 2CW21E HZ11 500 9.5 11.9 5 2CW109 2CW21G HZ12 500 11.6 14.3 5 2CW111 2CW21H HZ12B 500 12.4 13.4 5 2CW111 2CW21H HZ12B2 500 12.6 13.1 5 2CW111 2CW21H 12B2 HZ18Y 500 16.5 18.5 5 2CW113 2CW21J HZ20-1 500 18.86 19.44 2 2CW114 2CW21K HZ27 500 27.2 28.6 2 2CW117 2CW21L 27-3 HZT33-02 400 31 33.5 5 2CW119 2CW21M RD2.0E(B) 500 1.88 2.12 20 2CW100 2CW21P 2B1 RD2.7E 400 2.5 2.93 20 2CW101 2CW21S RD3.9EL1 500 3.7 4 20 2CW102 2CW21 4B2 RD5.6EN1 500 5.2 5.5 20 2CW103 2CW21A 6A1 RD5.6EN3 500 5.6 5.9 20 2CW104 2CW21B 6B2 RD5.6EL2 500 5.5 5.7 20 2CW103 2CW21A 6B1 RD6.2E(B) 500 5.88 6.6 20 2CW104 2CW21B RD7.5E(B) 500 7.0 7.9 20 2CW105 2CW21C RD10EN3 500 9.7 10.0 20 2CW108 2CW21F 11A2 RD11E(B) 500 10.1 11.8 15 2CW109 2CW21G RD12E 500 11.74 12.35 10 2CW110 2CW21H 12A1 RD12F 1000 11.19 11.77 20 2CW109 2CW21G RD13EN1 500 12 12.7 10 2CW110 2CW21H 12A3 RD15EL2 500 13.8 14.6 15 2CW112 2CW21J 12C3 RD24E 400 22 25 10 2CW116 2CW21H 24-1

常用稳压管型号参数对照

常用稳压管型号参数对照 3V到51V 1W稳压管型号对照表1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5

1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V

1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 摩托罗拉IN47系列1W稳压管IN4728 3.3v IN4729 3.6v IN4730 3.9v IN4731 4.3 IN4732 4.7 IN4733 5.1

IN4735 6.2 IN4736 6.8 IN4737 7.5 IN4738 8.2 IN4739 9.1 IN4740 10 IN4741 11 IN4742 12 IN4743 13 IN4744 15 IN4745 16 IN4746 18 IN4747 20

IN4749 24 IN4750 27 IN4751 30 IN4752 33 IN4753 34 IN4754 35 IN4755 36 IN4756 47 IN4757 51 摩托罗拉IN52系列 0.5w精密稳压管IN5226 3.3v IN5227 3.6v

很全的二极管参数

G ENERAL PURPOSE RECTIFIERS – P LASTIC P ASSIVATED J UNCTION 1.0 M1 M2 M3 M4 M5 M6 M7 SMA/DO-214AC G ENERAL PURPOSE RECTIFIERS – G LASS P ASSIVATED J UNCTION S M 1.0 GS1A GS1B GS1D GS1G GS1J GS1K GS1M SMA/DO-214AC 1.0 S1A S1B S1D S1G S1J S1K S1M SMB/DO-214AA 2.0 S2A S2B S2D S2G S2J S2K S2M SMB/DO-214AA 3.0 S3A S3B S3D S3G S3J S3K S3M SMC/DO-214AB F AST RECOVERY RECTIFIERS – P LASTIC P ASSIVATED J UNCTION MERITEK ELECTRONICS CORPORATION

U LTRA FAST RECOVERY RECTIFIERS – G LASS P ASSIVATED J UNCTION

S CHOTTKY B ARRIER R ECTIFIERS

S WITCHING D IODES Power Dissipation Max Avg Rectified Current Peak Reverse Voltage Continuous Reverse Current Forward Voltage Reverse Recovery Time Package Part Number P a (mW) I o (mA) V RRM (V) I R @ V R (V) V F @ I F (mA) t rr (ns) Bulk Reel Outline 200mW 1N4148WS 200 150 100 2500 @ 75 1.0 @ 50 4 5000 SOD-323 1N4448WS 200 150 100 2500 @ 7 5 0.72/1.0 @ 5.0/100 4 5000 SOD-323 BAV16WS 200 250 100 1000 @ 7 5 0.8 6 @ 10 6 5000 SOD-323 BAV19WS 200 250 120 100 @ 100 1.0 @ 100 50 5000 SOD-323 BAV20WS 200 250 200 100 @ 150 1.0 @ 100 50 5000 SOD-323 BAV21WS 200 250 250 100 @ 200 1.0 @ 100 50 5000 SOD-323 MMBD4148W 200 150 100 2500 @ 75 1.0 @ 50 4 3000 SOT-323-1 MMBD4448W 200 150 100 2500 @ 7 5 0.72/1.0 @ 5.0/100 4 3000 SOT-323-1 BAS16W 200 250 100 1000 @ 7 5 0.8 6 @ 10 6 3000 SOT-323-1 BAS19W 200 250 120 100 @ 100 1.0 @ 100 50 3000 SOT-323-1 BAS20W 200 250 200 100 @ 150 1.0 @ 100 50 3000 SOT-323-1 BAS21W 200 250 250 100 @ 200 1.0 @ 100 50 3000 SOT-323-1 BAW56W 200 150 100 2500 @ 75 1.0 @ 50 4 3000 SOT-323-2 BAV70W 200 150 100 2500 @ 75 1.0 @ 50 4 3000 SOT-323-3 BAV99W 200 150 100 2500 @ 75 1.0 @ 50 4 3000 SOT-323-4 BAL99W 200 150 100 2500 @ 75 1.0 @ 50 4 3000 SOT-323- 5 350mW MMBD4148 350 200 100 5000 @ 75 1.0 @ 10 4 3000 SOT-23-1 MMBD4448 350 200 100 5000 @ 75 1.0 @ 10 4 3000 SOT-23-1 BAS16 350 200 100 1000 @ 75 1.0 @ 50 6 3000 SOT-23-1 BAS19 350 200 120 100 @ 120 1.0 @ 100 50 3000 SOT-23-1 BAS20 350 200 200 100 @ 150 1.0 @ 100 50 3000 SOT-23-1 BAS21 350 200 250 100 @ 200 1.0 @ 100 50 3000 SOT-23-1 BAW56 350 200 100 2500 @ 70 1.0 @ 50 4 3000 SOT-23-2 BAV70 350 200 100 5000 @ 70 1.0 @ 50 4 3000 SOT-23-3 BAV99 350 200 100 2500 @ 70 1.0 @ 50 4 3000 SOT-23-4 BAL99 350 200 100 2500 @ 70 1.0 @ 50 4 3000 SOT-23-5 BAV16W 350 200 100 1000 @ 75 0.86 @ 10 6 3000 SOD-123 410-500mW BAV19W 410 200 120 100 @ 100 1.0 @ 100 50 3000 SOD-123 BAV20W 410 200 200 100 @ 150 1.0 @ 100 50 3000 SOD-123 BAV21W 410 200 250 100 @ 200 1.0 @ 100 50 3000 SOD-123 1N4148W 410 150 100 2500 @ 75 1.0 @ 50 4 3000 SOD-123 1N4150W 410 200 50 100 @ 50 0.72/1.0 @ 5.0/100 4 3000 SOD-123 1N4448W 500 150 100 2500 @ 7 5 1.0 @ 200 4 3000 SOD-123 1N4151W 500 150 75 50 @ 50 1.0 @ 10 2 3000 SOD-123 1N914 500 200 100 25 @ 20 1.0 @ 10 4 1000 10000 DO-35 1N4148 500 200 100 25 @ 20 1.0 @ 10 4 1000 10000 DO-35 LL4148 500 150 100 25 @ 20 1.0 @ 10 4 2500 Mini-Melf SOT23-1 SOT23-2 SOT23-3 SOT23-4 SOT23-5 SOT323-1 SOT323-2 SOT323-3 SOT323-4 SOT323-5

齐纳二极管(稳压二极管)工作原理及主要参数

齐纳二极管(稳压二极管)工作原理及主要参数 齐纳二极管也叫稳压二极管.一般二极管处于逆向偏压时,若电压超过PIV(逆向峰值电压)值时二极管将受到破坏,这是因为一般二极管在两端的电位差既高之下又要通过大量的电流,此时所产生的功率所衍生的热量足以使二极管烧毁。 齐纳二极管就是专门被设计在崩溃区操作,是一个具有良好的功率散逸装置,可以当做电压参考或定电压组件。若利用齐纳二极管作为电压调节器,将使附载电压保持在Vz附近且几乎唯一定值,不受附载电流或电源上电压变动影响。一般二极管之崩溃电压,在制作时可以随意加以控制,所以一般齐纳二极管之崩电压(Vz)从数伏特至上百伏特都有。一般齐纳二极管在特性表或电路上除了标住Vz外,均会注明Pz也就是齐纳二极管所能承受之做大功率,也可由Pz=Vz*Iz 换算出奇纳二极管可通过最大电流Iz。dz3w上有个在线计算器,电路设计时可以用来计算稳压二极管的相关参数. 齐纳二极管工作原理 齐纳二极管主要工作于逆向偏压区,在二极管工作于逆向偏压区时,当电压未达崩溃电压以前,二极管上并不会有电流产生,但当逆向电压达到崩溃电压时,每一微小电压的增加就会产生相当大的电流,此时二极管两端的电压就会保持于一个变化量相当微小的电压值(几乎等于崩溃电压),下图为齐纳二极管之电压电流曲线,可由此应证上述说明。 齐纳二极管(又叫稳压二极管)它的电路符号是:此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 在通常情况下,反向偏置的PN结中只有一个很小的电流。这个漏电流一直

常用稳压管型号参数大全

常用稳压管型号 2009-12-06 22:56 美标稳压二极管型号 TLV4732运算放大器,可饱和输出。当单电源供电时,可作为0V和5V的稳压器。 其他的如LM358等放大器,输出均不能达到0V或者5V,一般为4V。 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V

1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 需要规格书请到以下地址下载, https://www.doczj.com/doc/043604593.html,/products/Rectifiers/Diode/Zener/ 经常看到很多板子上有M记的铁壳封装的稳压管,都是以美标的1N系列型号标识的,没有具体的电压值,刚才翻手册查了以下3V至51V的型号与电压的对照值,希望对大家有用 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7

1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V

二极管的主要参数

二极管的主要参数 正向电流IF:在额定功率下,允许通过二极管的电流值。 正向电压降VF:二极管通过额定正向电流时,在两极间所产生的电压降。 最大整流电流(平均值)IOM:在半波整流连续工作的情况下,允许的最大半波电流的平均值。 反向击穿电压VB:二极管反向电流急剧增大到出现击穿现象时的反向电压值。 正向反向峰值电压VRM:二极管正常工作时所允许的反向电压峰值,通常VRM为VP的三分之二或略小一些。 反向电流IR:在规定的反向电压条件下流过二极管的反向电流值。 结电容C:电容包括电容和扩散电容,在高频场合下使用时,要求结电容小于某一规定数值。最高工作频率FM:二极管具有单向导电性的最高交流信号的频率。 2.常用二极管 (1)整流二极管 将交流电源整流成为直流电流的二极管叫作整流二极管,它是面结合型的功率器件,因结电容大,故工作频率低。 通常,IF在1安以上的二极管采用金属壳封装,以利于散热;IF在1安以下的采用全塑料封装(见图二)由于近代工艺技术不断提高,国外出现了不少较大功率的管子,也采用塑封形式。2.常用二极管 (1)整流二极管 将交流电源整流成为直流电流的二极管叫作整流二极管,它是面结合型的功率器件,因结电容大,故工作频率低。 通常,IF在1安以上的二极管采用金属壳封装,以利于散热;IF在1安以下的采用全塑料封装(见图二)由于近代工艺技术不断提高,国外出现了不少较大功率的管子,也采用塑封形式。 2)检波二极管 检波二极管是用于把迭加在高频载波上的低频信号检出来的器件,它具有较高的检波效率和良好的频率特性。 (3)开关二极管 在脉冲数字电路中,用于接通和关断电路的二极管叫开关二极管,它的特点是反向恢复时间短,能满足高频和超高频应用的需要。 开关二极管有接触型,平面型和扩散台面型几种,一般IF<500毫安的硅开关二极管,多采用全密封环氧树脂,陶瓷片状封装,如图三所示,引脚较长的一端为正极。 4)稳压二极管 稳压二极管是由硅材料制成的面结合型晶体二极管,它是利用PN结反向击穿时的电压基本上不随电流的变化而变化的特点,来达到稳压的目的,因为它能在电路中起稳压作用,故称为、稳压二极管(简称稳压管)其图形符号见图4 稳压管的伏安特性曲线如图5所示,当反向电压达到Vz时,即使电压有一微小的增加,反向电流亦会猛增(反向击穿曲线很徒直)这时,二极管处于击穿状态,如果把击穿电流限制在一定的范围内,管子就可以长时间在反向击穿状态下稳定工作。

常用稳压二极管技术参数

型号稳压值(V) 稳定电流 (mA) 功率(mW) 型号稳压值(V) 稳定电流 (mA) 功率(mW) MA1030 3 5 400 MA2180 18 20 1000 MA1033 3.3 5 400 MA2200 20 20 1000 MA1036 3.6 5 400 MA2220 22 10 1000 MA1039 3.9 5 400 MA2240 24 10 1000 MA1043 4.3 5 400 MA2270 27 5 1000 MA1047 4.7 5 400 MA2300 30 5 1000 MA1051 5.1 5 400 MA2330 33 5 1000 MA1056 5.6 5 400 MA2360 36 5 1000 MA1062 6.2 5 400 MA3047 4.7 5 150 MA1068 6.8 5 400 MA3051 5.1 5 150 MA1075 7.5 5 400 MA3056 5.6 5 150 MA1082 8.2 5 400 MA3062 6.2 5 150 MA1091 9.1 5 400 MA3082 8.2 5 150 MA1100 10 5 400 MA3091 9.1 5 150 MA1110 11 5 400 MA3100 10 5 150 MA1114 11.4 10 400 MA3110 11 5 150 MA1120 12 5 400 MA3120 12 5 150 MA1130 13 5 400 MA3130 13 5 150 MA1140 14 5 400 MA3150 15 5 150 MA1150 15 5 400 MA3160 16 5 150 MA1160 16 5 400 MA3180 18 5 150 MA1180 18 5 400 MA3200 20 5 150 MA1200 20 5 400 MA3220 22 5 150 MA1220 22 5 400 MA3240 24 5 150 MA1240 24 5 400 MA3270 27 2 150 MA1270 27 2 400 MA3300 30 2 150 MA1300 30 2 400 MA3330 33 2 150 MA1330 33 2 400 MA3360 36 2 150 MA1360 36 2 400 MA4030 3 5 370 MA2051 5.1 40 1000 MA4033 3.3 5 370 MA2056 5.6 40 1000 MA4036 3.6 5 370 MA2062 6.2 40 1000 MA4039 3.9 5 370 MA2068 6.8 40 1000 MA4043 4.3 5 370 MA2075 7.5 40 1000 MA4047 4.7 5 370 MA2082 8.2 40 1000 MA4051 5.1 5 370 MA2091 9.1 40 1000 MA4056 5.6 5 370 MA2100 10 40 1000 MA4062 6.2 5 370 MA2110 11 5 1000 MA4068 6.8 5 370

常用二极管型号参数大全

For personal use only in study and research; not for commercial use 1.塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs 1 1A1-1A7 1A 50-1000V 1.1 R-1 2 1N4001-1N4007 1A 50-1000V 1.1 DO-41 3 1N5391-1N5399 1.5A 50-1000V 1.1 DO-15 4 2A01-2A07 2A 50-1000V 1.0 DO-15 5 1N5400-1N5408 3A 50-1000V 0.95 DO-201AD 6 6A05-6A10 6A 50-1000V 0.95 R-6 7 TS750-TS758 6A 50-800V 1.25 R-6 8 RL10-RL60 1A-6A 50-1000V 1.0 9 2CZ81-2CZ87 0.05A-3A 50-1000V 1.0 DO-41 10 2CP21-2CP29 0.3A 100-1000V 1.0 DO-41 11 2DZ14-2DZ15 0.5A-1A 200-1000V 1.0 DO-41 12 2DP3-2DP5 0.3A-1A 200-1000V 1.0 DO-41 13 BYW27 1A 200-1300V 1.0 DO-41 14 DR202-DR210 2A 200-1000V 1.0 DO-15 15 BY251-BY254 3A 200-800V 1.1 DO-201AD 16 BY550-200~1000 5A 200-1000V 1.1 R-5 17 PX10A02-PX10A13 10A 200-1300V 1.1 PX 18 PX12A02-PX12A13 12A 200-1300V 1.1 PX 19 PX15A02-PX15A13 15A 200-1300V 1.1 PX 20 ERA15-02~13 1A 200-1300V 1.0 R-1 21 ERB12-02~13 1A 200-1300V 1.0 DO-15 22 ERC05-02~13 1.2A 200-1300V 1.0 DO-15 23 ERC04-02~13 1.5A 200-1300V 1.0 DO-15 24 ERD03-02~13 3A 200-1300V 1.0 DO-201AD 25 EM1-EM2 1A-1.2A 200-1000V 0.97 DO-15 26 RM1Z-RM1C 1A 200-1000V 0.95 DO-15 27 RM2Z-RM2C 1.2A 200-1000V 0.95 DO-15 28 RM11Z-RM11C 1.5A 200-1000V 0.95 DO-15 29 RM3Z-RM3C 2.5A 200-1000V 0.97 DO-201AD 30 RM4Z-RM4C 3A 200-1000V 0.97 DO-201AD 2.快恢复塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs (1)快恢复塑封整流二极管 1 1F1-1F7 1A 50-1000V 1.3 0.15-0.5 R-1 2 FR10-FR60 1A-6A 50-1000V 1. 3 0.15-0.5 3 1N4933-1N4937 1A 50-600V 1.2 0.2 DO-41 4 1N4942-1N4948 1A 200-1000V 1.3 0.15-0. 5 DO-41

相关主题
文本预览
相关文档 最新文档