当前位置:文档之家› 最优控制理论课程总结

最优控制理论课程总结

最优控制理论课程总结
最优控制理论课程总结

《最优控制理论》

课程总结

姓名:肖凯文

班级:自动化1002班

学号:0909100902

任课老师:彭辉

摘要:最优控制理论是现代控制理论的核心,控制理论的发展来源于控制对象的要求。尽50年来,科学技术的迅速发展,对许多被控对象,如宇宙飞船、导弹、卫星、和现代工业设备的生产过程等的性能提出了更高的要求,在许多情况下要求系统的某种性能指标为最优。这就要求人们对控制问题都必须从最优控制的角度去进行研究分析和设计。最优控制理论研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定要求运行,并使某一性能指标达到最优值[1]。

关键字:最优控制理论,现代控制理论,时域数学模型,频域数学模型,控制率Abstract: The Optimal Control Theory is the core of the Modern Control Theory,the development of control theory comes from the requires of the controlled objects.During the 50 years, the rapid development of the scientific technology puts more stricter requires forward to mang controlled objects,such as the spacecraft,the guide missile,the satellite,the productive process of modern industrial facilities,and so on,and requests some performance indexes that will be best in mang cases.To the control problem,it requests people to research ,analyse,and devise from the point of view of the Optimal Control Theory. There are mang major problems of the Optimal Control Theory studying,such as the building the time domain’s model or the frenquency domain’s model according to the controlled objects,controlling a control law with admitting, making the controlled objects to work according to the scheduled requires, and making the performance index to reseach to a best optimal value.

Keywords: The Optimal Control Theroy, The Modern Control Theroy, The Time Domaint’s Model, The Frequency domain’s Model,The Control Law

一、引言

最优控制理论的形成和发展和整个现代自动控制理论的形成和发展十分不开的。在20世纪50年代初期,就有人开始发表从工程观点研究最短时间控制问题的文章,尽管其最优性的证明多半借助于几何图形,仅带有启发性质,但毕竟为发展现代控制理论提供了第一批实际模型。由于最优控制问题引人注目的严格表述形式,特别是空间技术的迫切需求,从而吸引了大批科学家的密切注意。经典变分理论只能解决一类简单的最优控制问题,因为它只对无约束或开集性约束是有效的。而实际上碰到的更多的是容许控制属于闭集的一类最优控制问题,这就要求人们去探索、求解最优控制问题的新途径。在种种新方法中,有俩种方法最富成效:一种是苏联学者庞特里亚金(Л.С.Понтрягин)的“极大值原理”;另一类是美国学者贝尔曼(R.E.Bellman)的“动态规划”[2]。受力学中哈密顿(Hamilton)原理的启发,庞特里亚金等人把“极大值原理”作为一种推测首先推测出来,随后不久又提供了一种严格的证明,并于1958年在爱丁堡召开的国际数学会议上首先宣读。“动态规划”是贝尔曼在1953-1957年逐步创立的,他依旧最优性原理发展了变分学中的哈密顿—雅可比理论,构成了“动态规划”。它是一种适用于计算机计算,处理问题范围更广的方法。在现代控制理论的形成和发展中,极大值原理、动态规划和卡尔曼(R.E.Kalman)的最优估计理论都起过重要的推动作用[3]。

现代控制理论的形成和发展和数字计算机的飞速发展和广约应用密不可分。由于计算机的“在线”参与控制,这样,既不要求把控制器归结为简单的校正网络,也不一定要求有封闭形式的解析解,因此,使得最优控制的工程实现了可能。反过来又提出了许多新的理论问题,导致最优控制的直接和间接计算方法的大批研究成果的出现,进一步推动了控制理论的发展。

二、最优控制的含义

最优控制,就是将通常的最优控制问题抽象成一个数学问题,并且用数学语言严格的表示出来,最优控制可分为静态最有和动态最有两类。

静态最优是指在稳定情况下实现最优,它反映系统达到稳态后的静态关系。

系统中的各变量不随时间变化,而只表示对象在稳定情况下各参数之间的关系,

其特性用代数方程来描述。大多数的生产过程受控对象可以用静态最优控制来处

理,并且具有足够的精度。静态最有一般可用一个目标函数J=f (x )和若干个

等式约束条件或不等式约束条件来描述。要求在满足约束条件下,使目标函数J

为最大或最小[4]。

动态最优是指系统从一个工况变化到另一个工况的变化过程中,应满足最有

要求。在动态系统中,所有的参数都是时间的函数,其特性可用微分方程或差分

方程来描述。动态最优控制要求寻找出控制作用的一个或一组数值,是特性指标

在满足约束条件下为最优值。这样,目标函数不再是一般函数,而是函数的函数。

因此,在数学上这是属于泛函数求极值的问题。

受控系统的模型

受控系统的数学模型即系统的微分方程,它反映了动态系统在运动过程中所

应遵循的物理或化学规律。在集中参数情况下,动态系统的运动规律可以用一组

一阶常微分方程即状态方程来描述,即

()()().

[],,x t f x t u t t = (2-1)

式(2-1)中:x (t )表示n 维状态变量;u (t )表示为r 维控制向量;f ()是

x (t )、u (t )和t 的n 维函数向量;t 是实数变量,可以概括一切具有集中参

数的受控数学模型。

三、边界条件与目标集

动态系统的运动过程是系统从状态空间的一个状态到另一个状态的转移,其

运动轨迹在状态空间中形成曲线x (t )。为了确定要求的曲线x (t ),需要确定

曲线的两点边界值。因此,要求确定初始状态()0x t 和中端状态()

f x t ,这是求解

状态方程式必需的边界条件。

最优控制问题中,初始时刻0t 和初始状态x (0t )通常已知的,但是中端时

刻f t 和终端状态x (f t )可以固定,也可以自由。

一般的说,对终端的要求可以用如下的终端等式或不等式约束条件来表示,

()1,0

f f N x t t ??=?? (3-1) ()2,0f f N x t t ??≤?

? (3-2) 它们概括了对终端的一般要求。实际上,终端约束规定了状态空间的一个时变或非时变的集合,此满足终端约束的状态集合称为目标集M ,并可表示为:

M={()f x t :()f x t ∈n R ,()1,0f f N x t t ??=??,()2,0f f N x t t ??≤??

} (3-3) 为简单起见,有时终端约束式(3-3)称为目标集[5]。

四、容许控制

控制向量u (t )的各个分向量()i u t 往往是具有不同物理属性的控制量。在

实际控制问题中,大多数控制量受客观条件限制只能取值于一定范围。这种限制

范围,通常可用约束条件

0≤u (t )≤max u (4-1)

或 i

i u m ≤,i=1,2,… ,r (4-2)

来表示。

式(4-2)表示一个控制空间r R 中包括原点在内的超方体,式(4-1)和(4-2)

式都规定了r R 空间中的一个闭集[6]。

由控制约束条件所规定的点集为控制域,并记为u R 。凡在闭区间[0t ,f t ]上

有定义,且在控制域u R 内取值的每一控制函数u (t )均称为容许控制,并记为

u (t )∈u R 。通常假定容许控制u (t )∈u R 是一种有界连续函数或分段连续函

数[7]。

五、性能指标

从给定初始状态x (0t )到目标集M 的转移可通过不同的控制规律u(t)来实

现,为了在各种可行的控制规律中找出一种效果最好的控制,这就需要首先建立

一种评价控制效果好坏或控制品质优劣的性能指标函数。性能指标的内容和函

数,取决于最优控制问题所完成的任务。不同的最优控制问题,就有不同的性能

指标,即使是同一问题其性能指标也可能不同。尽管不能为各式各样的最优控制

问题规定了一个性能指标的统一格式,但是通常情况下,对连续系统时间函数性

能指标已可以归纳为以下三种类型。

1)综合型和波尔扎(Bola )型性能指标

设综合性或波尔扎型性能指标为

()0[()][,][(),(),]f t f f t x J u t t L x t u t t dt =Φ+? (5-1) 式中:L 为标量函数,它是向量x(t)和u(t)的函数,称为动态性能指标;Φ为

标量函数,与终端时间f t 及终端状态()f x t 有关,()[,]f f x t t Φ称为终端性能指

标;J 为标量,对每个控制函数都有一个对应值;u()表示控制函数整体,而u(t)

表示t 时刻的控制向量[8]。

式(5-1)类型的性能指标成为综合型和波尔扎问题,它可以用来描述具有

终端约束下的最小积分控制,或在积分约束下的终端最小时间控制。

2)积分型或拉格朗日(lagrange )型性能指标

若不计终端性能指标,则式(5-1)称为

0[()][(),(),]f t t J u L x t u t t dt =? (5-2)

这时的性能指标称为积分型或拉格朗日问题,它更强调系统的过程要求。在

自动控制中,要求调解过程的某种积分评价为最小(或最大)就属于这一类问题

[9]。

3)终端型或麦耶尔(Mager )型性能指标

()[()][,]f f x J u t t =Φ (5-3)

这时的性能指标称为终端或麦耶尔问题。这要求找出使终端的某一函数为最

小(或最大)值的u (t ),终端处某些变量的最终值不是预先规定的。

综上所述,性能指标与系统所收的控制作用和系统的状态有关,但是它不仅

取决于某个固定时刻的控制变量和状态变量,而且与状态转移过程中的控制向量

u (t )和状态曲线x (t )有关,因此性能指标是一个泛函[10]。

六、最优控制的求解方法

最优控制研究的主要问题是根据建立的被控对象的数学模型,选择一个容许

的控制规律,使得被控对象按预定要求运行,并使给定的某一性能指标达到极小

值或极大值。

静态最优问题的目标函数是一个多元普通函数,求解静态最优控制问题常用

的方法有经典微分法、线性规划、分割法(优选法)和插值法等。

动态最优问题的目标函数是一个泛函,求解最优控制问题常用的方法有经典变分法、极大(极小)值原理、动态规划和线性二次型最优控制法等。对于动态系统,当控制无约束时,采用经典微分法或经典变分法;当控制有约束时,采用极大值原理或动态规划;如果系统是线性的,性能指标是性能指标是二次型形式的,则可采用线性二次型最优控制问题求解。

1.变分法

变分法是求解泛函极值的一种经典方法,可以确定容许控制为开集的最优控制函数,也是研究最优控制问题的一种重要工具。掌握变分法的基本原理,还有助于理解以最小值原理和动态规划等最优控制理论的思想和内容。但是,变分法作为一种古典的求解最优控制的方法,只有当控制向量u(t)不受任何约束,其容许控制集合充满整个m维控制空间,用古典变分法来处理等式约束条件下的最优控制问题才是行之有效的。在许多实际控制问题中,控制函数的取值常常受到封闭性的边界限制,如方向舵只能在两个极限值范围内转动,电动机的力矩只能在正负的最大值范围内产生等。因此,古典变分法对于解决许多重要的实际最优控制问题,是无能为力的。

2.最小值原理

最小值原理是由庞德亚金提出来的,它对于解决受约束的最优控制问题是很有效的。当u(t)不受约束时,可以用变分法成功地解决最优控制的求解问题。实际上,u(t)一般都是有约束的。当要求u(t)在一个m维的密闭集中取值时,变分法就不再适用了。这如同要求闭区间上连续可微函数的极值一样,令其倒数为零,求解时可能无解,但这不是真正意义上的无解,而是解可能出现在边界上。例如,y=kx在闭区间上存在最大值与最小值,但令0'==ky,得不到有关最值的任何信息,问题是最值出现在边界上。与此类似,用变分法求解带有约束的最优控制,有时也是行不通的,因为最优控制往往要求在闭集的边界上取值。极小值原理的突出优点是可用于控制变量受限制的情况,能给出问题中最优控制所必须满足的条件。虽然最小值原理为解决带有闭集约束的最优控制问题提供了

有效的方法,但遗憾的是它只是一个必要条件。

3.动态规划

动态规划又称为多级决策理论,是贝尔曼提出的一种非线性规划方法。动态规划的核心是贝尔曼的最优性原理,它将一个多级决策问题化为一系列单极决策问题,从最后一级状态开始到初始状态为止,逆向递推求解最优决策。动态规划法原理简明,适用于计算机求解,在许多理论问题的研究中,都应用到动态规划的思路。动态规划是求解最优化问题的重要方法,在应用动态规划时,有一个前提条件是系统的状态变量必须满足“无后效性”。所谓无后效性的概念是:在任一时刻kt,系统状态为x(kt),以后的状态仅决定于x(kt)以及x (kt)到达终点时刻1t的状态x(1t)的控制策略,而与以前的状态和以前的控制策略无关。因此,在应用动态规划方法时,要注意状态变量的选取,使之满足“无后效性”的条件。例如,讨论物体在空间运动时,不仅选用物体的空间位置座位状态变量,而且要将速度变量也包括在状态变量之内,以便满足“无后效性”的条件。动态规划法的局限性还表现在所谓的“维数灾难”问题:当状态变量的维数增加,要求计算机内存成指数倍增长,计算工作量也大大增加。此外,求解连续决策过程采用的动态规划法得到的哈密顿-雅克比方程是偏微分方程,求解x(kt)也是相当困难的。动态规划虽然提供的是充分条件,但是,由于连续型系统的哈密顿-雅克比方程难于求解而不能满足实际需要。

4.三种方法之间的相互关系

动态规划法、极小值原理和变分法,都是求解最优控制问题的重要方法。由动态规划的哈密顿-雅克比方程,可以推得变分法中的欧拉方程和横截条件:也可以推得极小值原理的必要条件。变分法对解决开集约束的最优控制问题十分有效,但对于处理闭集性约束就无能为力了。变分法与极小值原理都可以解微分方程所描述的变分问题作为目标,结果得出了一组常微分方程所表示的必要条件。这三种方法要求的条件不同,其中属动态规划要求最高。在所要求的条件都满足的情况下,使用这三种方法所得结论相同。

随着社会科技的不断进步,最优控制理的应用领域十分广泛,如时间最短、

能耗最小、线性二次型指标最优、跟踪问题、调节问题和伺服机构问题等。但它

在理论上还有不完善的地方,其中两个重要的问题就是优化算法中的鲁棒性问题

和最优化算法的简化和实用性问题。大体上说,在最优化理论研究和应用方面应

加强的课题主要有:(1)适合于解决工程上普遍问题的稳定性最优化方法的研究;

(2)智能最优化方法、最优模糊控制器设计的研究;(3)简单实用的优化集成

芯片及最优化控制器的开发和推广利用;(4)复杂系统、模糊动态模型的辩识与

优化方法的研究;(5)最优化算法的改进。相信随着对这些问题的研究和探索的

不断深入,最优控制技术将越来越成熟和实用,它也将给人们带来不可限量的影

响。

应当指出,在求解动态最优问题中,若将时域[0t ,f t ]分成许多有效域段,

在每一分段内,将变量近似看做常量,那么动态最优化问题可近似按分段静态最

优化问题处理,这就是离散事件最优化问题。显然,分段越多,近似的精确程度

越多。所以,静态最优和动态最优问题不是截然分立,毫无联系的。

最有问题也可以分为确定性和随机性两大类。在确定性问题中,没有随机变

量,系统的参数都是确定的。

七、目前最优控制理论的应用

目前研究最优控制理论最活跃的领域有神经网络优化、遗传算法、鲁棒控制、

预测控制、混沌优化控制以及稳态递阶控制等等[10]。

1.神经网络优化

理论上神经网络是基于以梯度法为基础的一种全局网络,由于受到算法的限

制,不能保证收敛结果全局最优。根据神经网络理论,网络总是朝着能量函数递

减的方向运动,并最后到达系统的平衡点,也就是说:Hopfield 能量函数的极小

点就是系统稳定的平衡点,这样就只要得到系统的平衡点即得到能量函数的极小

点。因此把神经网络动力系统的稳定吸引子设定为适当的能量函数的极小点,优

化算法从初始状态就随着系统运动到终端状态。即得到了极小点。如果把全局优

化理论运用到控制系统中,则控制系统的目标函数最终到达的正是所希望的最小

点。

2.遗传算法

与最优控制相结合的遗传算法已1用到丁许多领域,解决了如组合优化、优化调度、运输问题、电机优化设计等实际问题。曹洁为了求解Riccati方程,在遗传算法基础上运用最优控制理论,优化选择两个权矩阵Q阵和R阵,使线性二次型最优调节器问题(LQR)以及线性二次型高斯问题((LQG)得到优化设计。曾进将改进的遗传算法引入受时间约束最优控制问题的求解,利用改进的遗传算法性能和收敛性,使受时间约束最优控制问题的求解获得满意的结果。

3.鲁棒控制

鲁棒控制与最优控制结合解决许多如线性二次型控制、电机调速、跟踪控制、采样控制、离散系统的镇定、扰动抑制等等实际问题。王勋先提出了一种新的鲁棒最优控制器,该控制器使用Hm鲁棒控制理论设计抗扰调节器和二次型最优控制理论设计跟随调节器。应用于感应电机调速系统得到很好的效果。胡立生针对非线性不确定系统的采样控制,结合最优控制理论,研究了具有输出约束的一类非线性系统的鲁棒采样最优控制问题,结果表示为一些矩阵不等式。

4.预测控制

最优控制理论在预测控制的应用主要是滚动优化算法,这种算法主要特点是把系统离散形式的有限优化目标实现滚动推进,使得在控制的全过程中实现了动态优化,而在控制的每一步实现静态参数优化。目前基于神经网络的多层智能预测控制模式得到了许多专家的研究和应用。邹健提出一种以小脑模型网络为多步预测模型的非线性预测控制算法,同时将遗传算法引入到滚动优化中来提高优化过程的收敛速度和求解精度。

5.混沌优化控制

混沌运动是指在确定性非线性系统中不需附加任何随机因素亦可出现类似随机的行为。其基本的特征是运动轨道的不稳定性,表现为对初值的敏感依赖性或对小扰动的极端敏感性。混沌运动在一定的范围内按其自身的规律不重复地遍历所有状态,这种遍历胜可被用来进行优化搜索且能避免陷入局部极小。因此,混沌优化技术已成为一种新兴的搜索优化技术。

6.稳态递阶控制

递阶控制是一种计算机在线稳态优化的控制结构。其指导思想是将一大系统分解为若干个互相关联的一子系统。即把大系统的最优控制问题分解为各子系统的问题。在各个子系统之上设置一协调器,判断所得的子系统求解子问题结果是否适合整个大系统的最优控制,若否,则指示各子系统修改子问题并重新计算。通过协调器的相互迭代求解即可得到最优解。

在实践的应用中,稳态控制的开环解并不是工业过程中最优状况。又提出一种新的方法:从实际过程提取关联变量的稳态信息,并反馈到上一级协调器用来修正基于模型求出的最优解,使之接近真实最优解。

八、结束语

现代控制工程与现代控制理论吸收了现代技术进步和现代数学发展的一切成果,同时最优控制也有了很大发展,如分布参数的最优控制、随即最优控制、自适应最优控制、大系统的最优控制和微分对策等,其中有大量的工程和理论问题尚待解决。可以毫不夸张的说,最优控制仍是一个十分活跃的研究领域。

随着工业自动化的不断进步,最优控制在理论和实践两方面都得到了充分的发展。在理论方面,日前需要研究解决的两个卞要问题就是优化算法中的鲁棒性问题和最优化算法的简化与实用性问题。关于最优化算法的改进将是今后研究的卞要方向之一。在应用方面,最优控制己经在很多领域发挥了重要的作用,在随机最优控制、分散最优控制、时间最短、能耗最小、线性一次型指标最优、跟踪问题、调节问题、伺服机构问题等中起到关键的作用。

参考文献:

[1]李国勇. 最优控制理论与应用[M]. 北京:国防工业出版社,2008.

[2]胡寿松,王执铨,胡维礼. 最优控制理论与应用[M].北京:科学出本社,2005.

[3]钱伟懿,徐恭贤,宫召华.最优控制理论及其应用[M].大连:大连理工大学出版社,2010.

[4]王朝珠,秦化淑.最优控制论[M].北京:科学出版社,2003.

[5]顾立钧.最优控制系统[M].北京:水利电力出版社,1993.

[6]邓子辰.最优控制理论的发展及现状[J],大自然探索,1994,13(48),32-34

[7] T.H.Tsang,A second-order gradient method for determining optimal trajectories

of nonlinear discrete-time systems[J].Int.J.Control3(1),(1996)85-95.

[8]A.E.Bryson,Y-C.Ho.Applied Optimal Control, Blaisdell, Waltham, MA,1969.

[9]M.W.Helmy,F.Khalf and T.A.Darwish.Well design using a computer model.SPE

Drilling & Completion,1998.

[10]H.O.Fattorini.Infinite Dimensional Optimization and Control Theory. Cambridge,

U.K;Cambridge University Press,1999.

自动控制原理论文

自动控制 摘要:综述了自动控制理论的发展情况,指出自动控制理论所经历的三个发展阶段,即经典控制理论、现代控制理论和智能控制理论。最后指出,各种控制理论的复合能够取长补短,是控制理论的发展方向。 自动控制理论是自动控制科学的核心。自动控制理论自创立至今已经过了三代的发展:第一代为20世纪初开始形成并于50年代趋于成熟的经典反馈控制理论;第二代为50、60年代在线性代数的数学基础上发展起来的现代控制理论;第三代为60年代中期即已萌芽,在发展过程中综合了人工智能、自动控制、运筹学、信息论等多学科的最新成果并在此基础上形成的智能控制理论。经典控制理论(本质上是频域方法)和现代控制理论(本质上是时域方法)都是建立在控制对象精确模型上的控制理论,而实际上的工业生产系统中的控制对象和过程大多具有非线性、时变性、变结构、不确定性、多层次、多因素等特点,难以建立精确的数学模型。因此,自动控制专家和学者希望能从要解决问题领域的知识出发,利用熟练操作者的丰富经验、思维和判断能力,来实现对上述复杂系统的控制,这就是基于知识的不依赖于精确的数学模型的智能控制。本文将对经典控制理论、现代控制理论和智能控制理论的发展情况及基本内容进行介绍。 1自动控制理论发展概述 自动控制是指使用自动化仪器仪表或自动控制装置代替人 自动地对仪器设备或工业生产过程进行控制,使之达到预期的状态或性能指标。对传统的工业生产过程采用自动控制技术,可以有效提高产品的质量和企业的经济效益。对一些恶劣环境下的控制操作,自动控制显得尤其重要。 自动控制理论是和人类社会发展密切联系的一门学科,是自动控制科学的核心。自从19世纪M ax we ll对具有调速器的蒸汽发动机系统进行线性常微分方程描述及稳定性分析以来,经过20世纪初Ny qu i s t,B od e,Ha rr is,Ev ans,W ie nn er,Ni cho l s等人的杰出贡献,终于形成了经典反馈控制理论基础,并于50年代趋于成熟。经典控制理论的特点是以传递函数为数学工具,采用频域方法,主要研究“单输入—单输出”线性定常控制系统的分析和设计,但它存在着一定的局限性,即对“多输入—多输出”系统不宜用经典控制理论解决,特别是对非线性、时变系统更

现代控制理论试题

现代控制理论试题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

现代控制理论试题 一、名词解释(15分) 1、能控性 2、能观性 3、系统的最小实现 4、渐近稳定性 二、简答题(15分) 1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系 统的那些性质 2、如何判断线性定常系统的能控性如何判断线性定常系统的能观性 3、传递函数矩阵的最小实现A、B、C和D的充要条件是什么 4、对于线性定常系统能够任意配置极点的充要条件是什么 5、线性定常连续系统状态观测器的存在条件是什么 三、计算题(70分) 1、RC 无源网络如图1所示,试列写出其状态方程和输出方程。其中,为系统的输入,选两端的电压为状态变量,两端的电压为状态变量,电压为为系统的输出y。 2、计算下列状态空间描述的传递函数g(s) 图1:RC无源网络 3、求出下列连续时间线性是不变系统的时间离散化状态方程: 其中,采样周期为T=2. 4、求取下列各连续时间线性时不变系统的状态变量解和 5、确定是下列连续时间线性时不变系统联合完全能控和完全能观测得待定参数a的 取值范围: 6、对下列连续时间非线性时不变系统,判断原点平衡状态即是否为大范围渐 近稳定: 7、给定一个单输入单输出连续时间线性时不变系统的传递函数为 试确定一个状态反馈矩阵K,使闭环极点配置为,和。 现代控制理论试题答案 一、概念题 1、何为系统的能控性和能观性 答:(1)对于线性定常连续系统,若存在一分段连续控制向量u(t),能在有限时间区间[t0,t1]内将系统从初始状态x(t0)转移到任意终端状态x(t1),那么就称此状态是能控的。 (2)对于线性定常系统,在任意给定的输入u(t)下,能够根据输出量y(t)在有限时间区间[t0,t1]内的测量值,唯一地确定系统在t0时刻的初始状态x(t0 ),就称系统在t0时刻是能观测的。若在任意初始时刻系统都能观测,则称系统是状态完全能观测的,简称能观测的。

现代控制理论论文

湖北民族学院 姓名 XX 班级 XX 学号 XXXXXXXX

摘要 最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。 一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。 关键词:最优控制;控制规律;最优性能指标;线性二次型

Abstract The optimal control, also called dynamic optimization or infinite dimension, optimization of modern control theory, the most basic part of the core. It is the center of the research question: how to control system based on the dynamic characteristics, to choose, can control system according to certain technical requirements, and makes the operation performance of the system or the quality of describing a "index" in certain significance to achieve optimal value. The optimal control problem has four points for dynamic systems, controlled, The initial and terminal conditions (state) and, Performance index and allow control. A typical of optimal control problem is described as follows: the state equation and initial conditions are given, and given the objective function. Then a feasible method for the control system of the output state transition to the target state and optimum performance. The optimal performance index and quality in the specific conditions of the optimal value is functional form. Therefore solution of optimal control problem is due to the constraint condition of functional, belongs to the category of variational learning. The variational method, the maximum principle (minimum principle) and dynamic planning is the optimal control theory, the basic contents and methods. The Pontryagin maximum principle, Behrman dynamic programming and Kaman linear quadratic optimal control is obtained in the constraint condition of the optimal solution of the three powerful tools, used in the most optimal control problem. Especially the linear quadratic optimal control, because its in mathematics and engineering implementation is simple, so it has great practical value. Key words: The optimal control, Control rule, optimal performance indicators, The linear quadratic

自动控制理论论文

自动控制原理的历史与发展 摘要 在科技高速发展的今天,自动控制技术在工农业生产、国防和科学技术领域中,都有着十分重要的作用。在短短一百年中,自动控制理论得到了令人吃惊的发展,对人类社会产生了巨大的影响。从瓦特的蒸汽机、阿波罗的登月到海湾战争,无处不显示着控制技术的威力。随着社会生产和科学技术发展,自动控制技术在不断进步、不断完善起来。控制理论目前还在向更纵深、更广阔的领域发展,无论在数学工具、理论基础、还是在研究方法上都产生了实质性的飞跃,在信息与控制学科研究中注入了蓬勃的生命力,启发并扩展了人的思维方式,引导人们去探讨自然界更为深刻的运动机理。自动控制理论的不断发展,必将会给提高社会生产力,提高人民的生活水平,促进人类的发展。 [关键字]:自动控制理论发展现状未来展望 1.自动控制理论简介 1.1控制思想起源的意义 控制思想与技术的存在至少已有数千年的历史了。“控制”这一概念本身即反映了人们对征服自然与外在的渴望,控制理论与技术也自然而然地在人们认识自然与改造自然的历史中发展起来。 1.2自动控制的定义 自动控制是指应用自动化仪器仪表或自动控制装置代替人自动地对仪器设备或工生产过程进行控制,使之达到预期的状态或性能指标。对传统的工业生产过程采用动控制技术,可以有效提高产品的质量和企业的经济效益。对一些恶劣环境下的控操作,自动控制显得尤其重要。

1.3自动控制理论的基本概念 在已知控制系统结构和参数的基础上,求取系统的各项性能指标,兵找出这些性能指标与系统参数间的关系就是对自动控制系统的分析,而在给定对象特性的基础上,按照控制系统应具备的性能指标要求,寻求能够全面满足这些性能指标要求的控制方案并合理确定控制器的参数,则是对自动控制系统的分析和设计。 1.4自动控制的历史 利用反馈来控制系统有着悠久的历史。最早的反馈控制出现在公元前330年的古希腊,运用在一种改进的浮球控制器装置上。现代欧洲的第一个反馈系统出现在15世纪荷兰人发明的温度控制器中。18世纪,瓦特的蒸汽机离心调速器被公认是第一台应用在工业生产中的自动反馈控制器,这是将自动控制技术应用到工业中的最早代表。在十八世纪以前的整个时期,自动控制系统的发展仅仅是靠直觉和发明。为了提高控制系统精度,不得不减慢瞬变震荡的衰减,甚至导致系统的不稳定。因此,有必要发展一套自动控制的理论。后来逐渐有一些科学家总结了与控制理论结合的数学理论,而这套控制理论用用了控制器不同的等效模型。1932年奈奎斯特提出了研究控制系统的频率发。1948年伊文思提出了根轨迹法,这两大重大贡献,是自动控制理论和控制技术发展史上的里程碑。建立在频率法和根轨迹法基础上的控制理论成为经典控制理论。 第二次世界大战前,美国和西欧的自动控制理论,在发展方式上与俄国和东欧有很大差别。在美国,应用反馈的主要促进因素是电话系统的发展。与此相反,前苏联接触的数学家和机械学家在控制理论领域占主流。因此,俄国的理论更倾向与运用不同方程的时域公式。 第二次世界大战是自动控制理论的理论和实践得到巨大发展的时期。因为当时,必须设计和制造自动领航系统、火炮位置系统、雷达天线控制系统和其他建立在反馈控制方法基础上的军事系统。这些军事系统的复杂性和优良的性能都要求必须发展不同的控制技术,提高控制系统的性能,以及发展新的理论和方法等。 20世纪40年代后,越来越多的数学和分析方法得到应用,控制工程才真正成为一门独立的工程学科。

现代控制理论基础试卷及答案

现代控制理论基础考试题 西北工业大学考试题(A卷) (考试时间120分钟) 学院:专业:姓名:学号: ) 一.填空题(共27分,每空分) 1.现代控制理论基础的系统分析包括___________和___________。 2._______是系统松弛时,输出量、输入量的拉普拉斯变换之比。 3.线性定常系统齐次状态方程是指系统___________时的状态方程。 4.推导离散化系统方程时在被控对象上串接一个开关,该开关以T为周期进 行开和关。这个开关称为_______。 5.离散系统的能______和能______是有条件的等价。 6.在所有可能的实现中,维数最小的实现称为最小实现,也称为__________。 7.构造一个与系统状态x有关的标量函数V(x, t)来表征系统的广义能量, V(x, t)称为___________。8." 9.单输入-单输出线性定常系统,其BIBO稳定的充要条件是传递函数的所有 极点具有______。 10.控制系统的综合目的在于通过系统的综合保证系统稳定,有满意的 _________、_________和较强的_________。 11.所谓系统镇定问题就是一个李亚普诺夫意义下非渐近稳定的系统通过引入_______,以实现系统在李亚普诺夫意义下渐近稳定的问题。 12.实际的物理系统中,控制向量总是受到限制的,只能在r维控制空间中某一个控制域内取值,这个控制域称为_______。 13._________和_________是两个相并行的求解最优控制问题的重要方法。二.判断题(共20分,每空2分) 1.一个系统,状态变量的数目和选取都是惟一的。(×) 2.传递函数矩阵的描述与状态变量选择无关。(√) 3.状态方程是矩阵代数方程,输出方程是矩阵微分方程。(×) 4.对于任意的初始状态) ( t x和输入向量)(t u,系统状态方程的解存在并且惟一。(√) 5.( 6.传递函数矩阵也能描述系统方程中能控不能观测部分的特性。(×) 7.BIBO 稳定的系统是平衡状态渐近稳定。(×)

现代控制理论概述及实际应用意义

13/2012 59 现代控制理论概述及实际应用意义 王 凡 王思文 郑卫刚 武汉理工大学能源与动力工程学院 【摘 要】控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。本文介绍了现代控制理论的产生、发展、内容、研究 方法和应用以及经典控制理论与现代控制理论的差异,并介绍现代控制理论的应用。提出了学习现代控制理论的重要意义。【关键词】现代控制理论;差异;应用;意义 1.引言 控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。例如,我们的教学也使用了控制理论的方法。老师在课堂上讲课,大家在课堂上听,本身可看作一个开环函数;而同学们课下做作业,再通过老师的批改,进而改进和提高老师的授课内容和方法,这就形成了一个闭环控制。像这样的例子很多,都是控制理论在生活中的应用。现代控制理论如此广泛,因此学好现代控制理论至关重要。 2.现代控制理论的产生与发展现代控制理论的产生和发展经过了很长的时期。从现代控制理论的发展历程可以看出,它的发展过程反映了人类由机械化时代进入电气化时代,并走向自动化、信息化、智能化时代。其产生和发展要分为以下几个阶段的发展。 2.1 现代控制理论的产生在二十世纪五十年代末开始,随着计算机的飞速发展,推动了核能技术、空间技术的发展,从而对出现的多输入多输出系统、非线性系统和时变系统的分析与设计问题的解决。 科学技术的发展不仅需要迅速 地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台。 2.2 现代控制理论的发展五十年代后期,贝尔曼(Bellman)等人提出了状态分析法;在1957年提出了动态规则;1959年卡尔曼(Kalman)和布西创建了卡尔曼滤波理论;1960年在控制系统的研究中成功地应用了状态空间法,并提出了可控性和可观测性的新概念;1961年庞特里亚金(俄国人)提出了极小(大)值原理;罗森布洛克(H.H.Rosenbrock)、麦克法轮(G.J.MacFarlane)和欧文斯(D.H.Owens)研究了使用于计算机辅助控制系统设计的现代频域法理论,将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,为进一步建立统一的线性系统理论奠定了基础。 20世纪70年代奥斯特隆姆(瑞典)和朗道(法国,https://www.doczj.com/doc/029773720.html,ndau)在自适应控制理论和应用方面作出了贡献。 与此同时,关于系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。 3.现代控制理论的内容及研究方法 现代控制理论的内容主要有为系统辨识;最优控制问题;自适应控制问题;线性系统基本理论;最佳滤波或称最佳估计。 (1)系统辨识 系统辨识是建立系统动态模型的方法。根据系统的输入输出的试验数据,从一类给定的模型中确定一个被研究系统本质特征等价的模型,并确定其模型的结构和参数。 (2)最优控制问题 在给定约束条件和性能指标下,寻找使系统性能指标最佳的控制规律。主要方法有变分法、极大值原理、动态规划等极大值原理。现代控制理论的核心即:使系统的性能指标达到最优(最小或最大)某一性能指标最优:如时间最短或燃料消耗最小等。 (3)自适应控制问题 在控制系统中,控制器能自动适应内外部参数、外部环境变化,自动调整控制作用,使系统达到一定意义下的最优。模型参考自适应控制

2010《现代控制理论基础》考试题B卷及答案

一.(本题满分10分) 请写出如图所示电路当开关闭合后系统的状态方程和输出方程。其中状态变量的设置如图所示,系统的输出变量为流经电感2L 的电流强度。 【解答】根据基尔霍夫定律得: 11132223321L x Rx x u L x Rx x Cx x x ++=?? +=??+=?&&& 改写为1 13111 22 322 31 211111R x x x u L L L R x x x L L x x x C C ? =--+?? ?=-+???=-?? &&&,输出方程为2y x = 写成矩阵形式为

[]1 1 111222 2 331231011000110010R L L x x L R x x u L L x x C C x y x x ??? --???????????????? ???????=-+???? ??????? ???????????????? ???-??????? ? ??? ?? ?=??? ?????? &&& 二.(本题满分10分) 单输入单输出离散时间系统的差分方程为 (2)5(1)3()(1)2()y k y k y k r k r k ++++=++ 回答下列问题: (1)求系统的脉冲传递函数; (2)分析系统的稳定性; (3)取状态变量为1()()x k y k =,21()(1)()x k x k r k =+-,求系统的状态空间表达式; (4)分析系统的状态能观性。 【解答】 (1)在零初始条件下进行z 变换有: ()()253()2()z z Y z z R z ++=+ 系统的脉冲传递函数: 2()2 ()53 Y z z R z z z +=++ (2)系统的特征方程为 2()530D z z z =++= 特征根为1 4.3z =-,20.7z =-,11z >,所以离散系统不稳定。 (3)由1()()x k y k =,21()(1)()x k x k r k =+-,可以得到 21(1)(2)(1)(2)(1)x k x k r k y k r k +=+-+=+-+ 由已知得 (2)(1)2()5(1)3()y k r k r k y k y k +-+=-+-112()5(1)3()r k x k x k =-+- []212()5()()3()r k x k r k x k =-+-123()5()3()x k x k r k =--- 于是有: 212(1)3()5()3()x k x k x k r k +=--- 又因为 12(1)()()x k x k r k +=+ 所以状态空间表达式为

现代控制理论的论文

第一章经典控制理论和现代控制理论 本学期学习了现代控制理论课程的主要内容,现代控制理论建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 以下是经典控制理论和现代控制理论的比较: 1、经典控制理论: (1)理论基础:Evens的根轨迹,Nyquist稳定判据。 (2)研究对象:线性定常SISO系统分析与设计。 (3)分析问题:稳、准、快 (4)采用方法:是以频率域中传递函数为基础的外部描述方法。 (5)数学描述:高阶微分方程、传递函数、频率特性;方块图、信号流图、频率特性曲线。 (6)研究方法:时域法、根轨迹法、频率法。 2、现代控制理论: (1)理论基础:李雅普诺夫稳定性理论,Bellman动态规划,Понтрягин极值原理,Kalman 滤波。 (2)研究对象:MIMO系统分析与设计(复杂系统:多变量、时变、非线性) (3)分析问题:稳、准、快 (4)设计(综合)问题: 1)采用方法:是以时域中(状态变量)描述系统内部特征的状态空间方法为基础的内部描述方法。 2)数学描述:状态方程及输出方程、传递函数阵、频率特性;状态图、信号流图、频率特性曲线。 3)研究方法:状态空间法(时域法)、频率法。多采用计算机软硬件教学辅助设计——MATLAB软件 (5)特点: 1)系统:MIMO、非线性、时变。 2)方法将矩阵理论和方法应用到控制理论中,不仅能描述系统的输入与输出之间的关系,而且在任何初始条件下,都能揭示系统内部的行为。 3)一个复杂系统可能有多个输入和多个输出,并且以某种方式相互关联或耦合。为了分析这样的系统,必须简化其数学表达式,转而借助于计算机来进行各种大量而乏味的分析与计算。从这个观点来看,状态空间法对于系统分析是最适宜的。

(完整版)现代控制理论考试卷及答案

西北工业大学考试试题(卷)2008 -2009 学年第2 学期

2009年《现代控制理论》试卷A 评分标准及答案 第一题(10分,每个小题答对1分,答错0分) (1)对 (2)错 (3)对 (4)错 (5)对 (6)对 (7)对 (8)对 (9)对 (10)错 第二题(15分) (1))(t Φ(7分):公式正确3分,计算过程及结果正确4分 ? ? ? ???+-+---=-=Φ?? ?? ??????+- +-+- +-+- ++-+=??????-+++=-??? ???+-=------------t t t t t t t t e e e e e e e e A sI L t s s s s s s s s s s s s A sI s s A sI 22221 11 2222}){()(22112 21221112112 213)2)(1(1 )(321 (2) 状态方程有两种解法(8分):公式正确4分,计算过程及结果正确4分 ??????-+-+-=????? ???????+-+++-+++-++??????+--=??????????? ???????++-++++-=-+-=??????---+-=????? ?+--+??? ???+--=??????-Φ+Φ=------------------------------??t t t t t t t t t t t t t t t t t t t t t e e te e e te s s s s s s L e e e e t x t x s s s s s L x A sI L t x s BU A sI x A sI s X e e t e e t d e e e e e e e e e t x t x d t Bu x t t x 222 21 22212 21111122)(02222210 2344}2414)1(42212)1(4 {2)()(} )2()1(4) 2()1()3(2{)}0(){()() ()()0()()(2)34()14(22222)()()()()0()()(或者 ττ τττττττ 第三题(15分,答案不唯一,这里仅给出可控标准型的结果) (1) 系统动态方程(3分) []x y u x x 0010 1003201 00010=???? ??????+??????????--=&

现代控制理论知识点汇总

第一章 控制系统的状态空间表达式 1.状态空间表达式 n 阶 Du Cx y Bu Ax x +=+= 1:?r u 1:?m y n n A ?: r n B ?: n m C ?:r m D ?: A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情 况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。 2.状态空间描述的特点 ①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。 ②状态方程和输出方程都是运动方程。 ③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。 ④状态变量的选择不唯一。 ⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。 ⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。 ⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。 3.模拟结构图(积分器 加法器 比例器) 已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。 4.状态空间表达式的建立 ① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积 分器的输出选作i x ,输入则为i x ;c 由模拟图写出状态方程和输出方程。 ② 由系统的机理出发建立状态空间表达式:如电路系统。通常选电容上的电压和电感上的电流作为状态变量。 利用KVL 和KCL 列微分方程,整理。 ③由描述系统的输入输出动态方程式(微分方程)或传递函数,建立系统的状态空间表达式,即实现问题。实现是非唯一的。 方法:微分方程→系统函数→模拟结构图→状态空间表达式。熟练使用梅森公式。 注意:a 如果系统函数分子幂次等于分母幂次,首先化成真分式形式,然后再继续其他工作。 b 模拟结构图的等效。如前馈点等效移到综合反馈点之前。p28 c 对多输入多输出微分方程的实现,也可以先画出模拟结构图。 5.状态矢量的线性变换。也说明了状态空间表达的非唯一性。不改变系统的特征值。特征多项式的系数也是系统的不变量。 特征矢量i p 的求解:也就是求0)(=-x A I i λ的非零解。 状态空间表达式变换为约旦标准型(A为任意矩阵):主要是要先求出变换矩阵。a 互异根时,各特征矢量按列排。b 有重根时,设3阶系统,1λ=2λ,3λ为单根,对特征矢量1p ,3p 求法与前面相同, 2p 称作1λ的广义特征矢量,应满足121)(p p A I -=-λ。 系统的并联实现:特征根互异;有重根。方法:系统函数→部分分式展开→模拟结构图→状态空间表达式。 6.由状态空间表达式求传递函数阵)(s W D B A sI C s W ++-=-1)()( r m ?的矩阵函数[ij W ] ij W 表示第j 个输入对第i 个输出的传递关系。 状态空间表达式不唯一,但系统的传递函数阵)(s W 是不变的。

现代控制理论----综述论文-2015

2015级硕士期末论文《现代控制理论综述》 课程现代控制理论姓名 学号 专业 2016 年1 月 4 日

经典控制理论与现代控制理论的差异 现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控

制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。 现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。 线性系统理论是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。 非线性系统理论的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对

自动控制原理课程设计报告

自控课程设计课程设计(论文) 设计(论文)题目单位反馈系统中传递函数的研究 学院名称Z Z Z Z学院 专业名称Z Z Z Z Z 学生姓名Z Z Z 学生学号Z Z Z Z Z Z Z Z Z Z 任课教师Z Z Z Z Z 设计(论文)成绩

单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(0 0++= s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s 3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc 和穿频率Wx 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s 平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m 和有限极点数n 中大者相等,连续并且对称于实轴;本题中分支数为3条。

现代控制理论试题

现代控制理论试题 一、名词解释(15分) 1、能控性 2、能观性 3、系统的最小实现 4、渐近稳定性 二、简答题(15分) 1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系统的那些性 质? 2、如何判断线性定常系统的能控性?如何判断线性定常系统的能观性? 3、传递函数矩阵错误!未找到引用源。的最小实现A、B、C和D的充要条件是什么? 4、对于线性定常系统能够任意配置极点的充要条件是什么? 5、线性定常连续系统状态观测器的存在条件是什么? 三、计算题(70分) 1、RC无源网络如图1所示,试列写出其状态方程和输出方程。其中,错误!未找到引用源。为系统的输入,选错误!未找到引用源。两端的电压为状态变量错误!未找到引用源。,错误!未找到引用源。两端的电压为状态变量错误!未找到引用源。,电压错误!未找到引用源。为为系统的输出y。 图1:RC无源网络 2、计算下列状态空间描述的传递函数g(s) 3、求出下列连续时间线性是不变系统的时间离散化状态方程: 其中,采样周期为T=2. 4、求取下列各连续时间线性时不变系统的状态变量解错误!未找到引用源。和错误! 未找到引用源。

5、确定是下列连续时间线性时不变系统联合完全能控和完全能观测得待定参数a的 取值范围: 6、对下列连续时间非线性时不变系统,判断原点平衡状态即错误!未找到引用源。是 否为大范围渐近稳定: 7、给定一个单输入单输出连续时间线性时不变系统的传递函数为 试确定一个状态反馈矩阵K,使闭环极点配置为错误!未找到引用源。,错误!未找到引用源。和错误!未找到引用源。。

现代控制理论试题答案 一、概念题 1、何为系统的能控性和能观性? 答:(1)对于线性定常连续系统,若存在一分段连续控制向量u(t),能在有限时间区间[t0,t1]内将系统从初始状态x(t0)转移到任意终端状态x(t1),那么就称此状态是能控的。 (2)对于线性定常系统,在任意给定的输入u(t)下,能够根据输出量y(t)在有限时间区间[t0,t1]内的测量值,唯一地确定系统在t0时刻的初始状态x(t0 ),就称系统在t0时刻是能观测的。若在任意初始时刻系统都能观测,则称系统是状态完全能观测的,简称能观测的。 2、何为系统的最小实现? 答:由传递函数矩阵或相应的脉冲响应来建立系统的状态空间表达式的工作,称为实现问题。在所有可能的实现中,维数最小的实现称为最小实现。 3、何为系统的渐近稳定性? 答:若错误!未找到引用源。在时刻错误!未找到引用源。为李雅普若夫意义下的稳定,且存在不依赖于错误!未找到引用源。的实数错误!未找到引用源。和任意给定的初始状态错误!未找到引用源。,使得错误!未找到引用源。时,有错误!未找到引用源。,则称错误!未找到引用源。为李雅普若夫意义下的渐近稳定 二、简答题 1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系统的那些性 质? 答:系统做线性变换后,不改变系统的能控性、能观性,系统特征值不变、传递函数不变 2、如何判断线性定常系统的能控性?如何判断线性定常系统的能观性? 答:方法1:对n维线性定常连续系统,则系统的状态完全能控性的充分必要条件为:错误!未找到引用源。。 方法2:如果线性定常系统的系统矩阵A具有互不相同的特征值,则系统能控的充要条件是,系统经线性非奇异变换后A阵变换成对角标准形,且错误!未找到引用源。不包含元素全为0的行 线性定常连续系统状态完全能观测的充分必要条件是能观性矩阵错误!未找到引用源。满秩。即:错误!未找到引用源。 3、传递函数矩阵错误!未找到引用源。的最小实现A、B、C和D的充要条件是什么?

现代控制理论综述论文

论文题目:现代控制理论综述 摘要 本文是对现代控制理论课程的完整综述,现代控制理论的主要内容包括控制系统的状态空间表达式及其解,线性控制系统的能控性和能观性,稳定性与李雅普诺夫方法,线性定常系统的综合以及最优控制理论等部分。本文通过对控制理论各部分的阐述,构出了现代控制理论的主要框架及各部门的基本内容。 关键词:现代控制;状态方程;稳定性;最优控制;

Abstract This article is a complete review of modern control theory course, the main contents of the modern control theory, including the control system of the state space expression and its solution, the controllability of linear control systems and can view, stability and Lyapunov method, the synthesis of linear time-invariant system and optimal control theory. This article through to all parts of the control theory, compose the main framework of modern control theory and the basic content of each department. Keywords: Modern control; State equation;Stability;Optimal control

自动控制论文

自动控制原理课程设计 学院:计算机与信息学院 专业: 信息工程 姓名:顾靖苓 学号:201040930114

轴双旋翼直升机悬停方向的控制 摘要:本文主要目的是设计共轴双旋翼直升机悬停方向的控制系统。文中主要介绍了此控制系统的设计方案,在时域和频域中详细地分析了系统的稳定性、稳态性能和动态性能。并且,为达到设计指标,对系统进行了串联校正,使系统能够较好地达到了指标要求。在控制系统的设计过程中,利用了Scilab和Matlab软件进行仿真分析,动态直观地反映了系统的性能。 关键字:共轴双旋翼直升机串联校正稳定性稳态性能动态性能 Coaxial twin rotor helicopter hovering direction control Departments:Computer and information science Professional: Information engineering Name: Gu-jing-ling Student id: 201040930114 Abstract:Main purpose of this article is to design coaxial twin rotor helicopter hovering direction control system. This paper mainly introduces the design scheme of the control system, in the time domain and frequency domain detailed analysis the system's stability, steady performance and dynamic performance. And, to achieve the design target, the system for the series correction, the system can better achieve the index requirements. In the design of a control system process, the use of the Matlab software Scilab and simulation analysis, dynamic directly reflects the performance of the system.

自动控制原理论文

自动控制原理课程设计 专业:测控技术与仪器 设计题目:控制系统的综合设计超前校正班级: 学生姓名:学号:10号 指导教师: 分院院长: 教研室主任: 电气工程学院

目录 第一章课程设计内容与要求分析 (1) 1.1 设计内容 (1) 1.2 课程设计要求 (1) 1.3 课程设计报告要求 (2) 第二章超前校正理论与计算 (4) 2.1 采用超前校正的一般步骤 (4) 2.2 理论计算过程 (4) 第三章Matlab程序设计 (7) 3.1 关于MATLAB (7) 3.2 MATLAB程序的功能特点 (7) 3.3 MATLAB仿真设计 (8) 3.4 绘制原系统对数频率特性 (8) 3.5 绘制校正装置对数频率特性 (9) 3.6 绘制校正后系统对数频率特性 (10) 第四章Simulink仿真设计 (12) 4.1 Simulink仿真设计 (12) 4.2 原系统单位阶跃响应 (13) 4.3 校正后系统单位阶跃响应 (14) 4.4 校正前、后系统单位阶跃响应 (15) 4.5 校正前、后系统阶跃响应曲线比较 (16) 第五章硬件电路设计及参数R、C值 (17) 5.1 硬件电路 (17) 5.2 参数R、C的值 (19) 总结 (20) 参考文献 (21) 附录 (22)

第一章 课程设计内容与要求分析 1.1设计内容 针对二阶系统) 1()(+=s s K s W ,利用有源串联超前校正网络(如图所示)进行系统校正。当开关S 接通时为超前校正装置,其传递函数 11)(++-=Ts Ts K s W c c α,其中132R R R K c +=,1)(13 2432>++=αR R R R R ,C R T 4=,“-”号表示反向输入端。若K c =1,且开关S 断开,该装置相当于一个放大系数为1的放大器(对原系统没有校正作用)。 图1-1超前校正电路 1.2 课程设计要求 1.引入该校正装置后,单位斜坡输入信号作用时稳态误差1.0)(≤∞e ,开环截止频率ωc ’≥4.4弧度/秒,相位裕量γ’≥45°。 2.根据性能指标要求,确定串联超前校正装置传递函数。 3.设校正装置R 1=100K ,R 2=R 3=50K ,根据计算结果确定有源超前校正网络元件参数R 4、C 值。 c

相关主题
文本预览
相关文档 最新文档