当前位置:文档之家› 关于电除尘器气流分布数值模拟的一些注意事项

关于电除尘器气流分布数值模拟的一些注意事项

关于电除尘器气流分布数值模拟的一些注意事项
关于电除尘器气流分布数值模拟的一些注意事项

1.一般气流的测定断面选择在每个电场的入口侧且紧靠收尘极板处,因为该断

面的气流均布性能代表相应电场的气流流动情况,测定断面与进气烟箱的气流

分布板距离应大于孔径的8~10倍,以防穿过孔板的射流影响其测定效果[34]。通过对电除尘器中气流流动状况的分析可以发现气流穿过分布板后达到稳定的距离约在0.7m~1.0m,故测量断面应设在距离分布板1m左右的地方,测点只要保证在水平方向上每个通道上布设一个、垂直方向上两测点之间的距离不大于1m即可(模型内同比缩小)。电除尘技术标准里规定进行气流均布测试时,一个测试断面至少要布设个64测点。对于在一除尘器内串连几个电场的情况,由于第一电场的气流均布性较其它电场差,所以仅测定第一电场入口断面上的气流分布情况即可.

2 采用CFD方法对流体流动进行数值模拟,通常包括如下步骤:

(1)建立反映工程问题或物理问题本质的数学模型。具体地说就是要建立

反映问题各个量之间关系的微分方程及其相应的定解条件.

(2)寻求高效率、高准确度的计算方法,即建立针对控制方程的数值离散

化方法,如有限差分法、有限元法、有限体积法等。

(3)编制程序和进行计算。这部分工作包括网格划分、初始条件和边界条

件的输入、控制参数的设定等

电除尘器气流均布的评价标准:

3气流分布装置:为防止烟尘沉积,静电除尘器入口管道气流速度一般为 10~18m/s,静电除尘器内气体流速仅 0.5~2m/s.

气流分布装置的设计原则:

1极板上下空间,极板与壳体间的空间,应设阻流板,减少未经电场的气体带走粉尘。2即第二层分布板的阻力系数比第一层大,这就能使气体分布较均匀

多孔板上的圆孔φ 30~80mm分布板若设置在除尘器进出口喇叭管内,为防止烟尘堵塞,在分布板下部和喇叭管底边留有一定间隙,其大小按下式确定。

δ =0 .02h 式中,δ为分布板下部和喇叭管底边间的间隙,h 为工作室的高度.

计算:

湍动粘度μt可表示成k=0.617 和ε=0.2 的函数,即图片1 图片2图片3

4计算方法:

对于给定的压力场(可以是假定的值,或是上一次迭代计算所得到的结果),求解离散形式的动量方程,得出速度场。由于压力场是假定的或不精确,得到的压力场一般不满足连续方程,所以压力场必须加以修正。把由动量方程的离散形式所规定的压力与速度的关系代入连续性方程的离散形式,从而得出压力修正方程。由压力修正方程得出这一迭代层次上能满足连续性方程的解。然后用计算所得的新的速度值去改进动量方程的系数,以开始下一层次的计算。如此反复,直到获得收敛的解。

本文在旋转叶栅中采用非结构四面体网格,在非结构网格上分析稳态问题的 SIMPLE 算法的计算步骤:

1) 根据经验假设一个压力场的初始猜测值,记为 p*;

2) 将 p*代入动量离散方程,求出相应的速度 u*,v*,w*;

3) 根据动量插值公式,计算界面流速 ue*,ve*,we*;

4) 计算压力修正方程的系数及源项;

5) 求解压力修正值方程,得到节点上的压力修正值 pp′;

6) 通过插值方式计算各界面上的压力修正值 pe′;

7) 计算修正后的速度 u 、 v 、 w 和压力 p ;

8) 验证计算结果是否收敛

有限容积法:

有限体积法(FVM)又称为控制容积法(CVM)。控制容积法是将计算区域划分为网格,并使每个网格点周围有一个互不重复的控制体积,将待解控制方程对每一个控制体积积分,从而得出一组离散方程。方程组的未知数是网格点上的因变量Φ,为了求出控制体积的积分,必须假定Φ值在网格点之间的变化规律。从积分区域的选取方法来看,控制容积法属于加权余量法中的子域法,从未知解的近似方法来看,控制容积法属于采用局部近似的离散方法

5下面是本文流场模拟中需要注意的几个边界条件:

1.入口边界条件在此算例中认为气流是不可压缩性气体即密度是常数,因

此,速度入口边界条件选择了速度入口边界条件。

2.出口边界条件出口边界条件可以取为压力出口边界条件。压力出口边界条件主要用于定义流动出口的静压。当出现回流时,使用压力出口边界条件来代替质量出口条件常常能够有更好的收敛速度

3.进出口边界的湍流参数在入口和出口边界流域的流动,Fluent 需要指定

输运标量的值在湍流指定方法(Turbulence Specification Method)下拉菜单中选择Intensity and Hydraulic Diameter 以设定湍流强度 I(Turbulence Intensity)和水力直径d (Hydraulic Diameter).图片4

4.多孔介质边界条件图片5

5壁面边界条件本课题中的壁面为静止壁面,固体壁面边界为无滑移条件,在壁面处具有零梯度条件,即 x,y 和 z 各分量上的速度u = v = w=0。在壁面上采用标准壁面法(Standard Wall Functions).

大气污染控制工程--电除尘器课程设计报告

电除尘器设计课程设计报告 学生姓名: 班级: 学号: 时间:2013年5月13日-19日 指导教师: 华中科技大学环境科学与工程学院

课程设计任务书 一、待除尘电厂基本情况 某电厂地处东南季风区,四季分明,温暖湿润,春季温暖雨连绵,夏季炎热雨量大,秋季凉爽干燥,冬季低温,少雨雪。 根据当地气象台多年气象资料统计,其特征值如下: 累年平均气压:1011.0hPa 累年最高气压:1038.9hPa 累年最低气压: 986.6hPa 累年平均气温:17.6℃ 极端最高气温:40.9℃ 极端最低气温:-9.9℃ 厂址处全年北(N)风出现频率为20.0%,西北 (NW)风出现频率为14.7%,西(W)风出现频率13.1%,南(S)风出现频率6.0%,东北(WE)风出现频率9.6%,东(E)风出现频率8.3%,东南(SE)风出现频率8.0%,西南(SW)风出现频率7.2%,静风出现频率为13.1%。 电厂烟气情况: 烟气量 Q =500,000 m3/h(工况) 废气温度 t j=350-400℃ t c=330-370℃ 含尘浓度 C =5-10g/m3 (工况) 煤挥发分A=26.6%(烘煤时) 电厂所用煤的组成成分 成分SO SO3O2N2H2O 2 组成10-120.1-0.3 2.7-377.6-808-9 粉尘粒径分布 粒径20-2515-1010-88-66-44-22-1<1总计平均值17.512.59753 1.5<0.5 含量 2.2 4.6 2.614.127.941.3 6.0 1.1100%

粉尘比电阻 温度℃21120230300 比电阻 Ω·cm 3×1079×1071×107 3.8×107二、除尘器设计要求 烟气量 Q =500,000 m3/h(工况) 出口粉尘浓度:100mg/m3(标准工况) 三、设计参数 1、电场风速选择 2、确定所需的收尘极面积、间距 3、确定电场数 4、电晕线选型(给出图纸) 5、收尘极板选型(给出图纸) 四、电除尘器设计课程设计报告要求 1、课程设计文本结构 1)课程设计任务书2)课程设计目录3)课程设计正文4)致谢5)附录6)参考文献 2、课程设计内容要求 根据三中所确定内容,给出设计参数,要求: 1)给出设计依据 2)给出设计过程 3)给出参考文献出处 五、基本参考文献 [1] 化工设备设计全书《除尘设备设计》科学技术出版社,1989 [2] (日)通产省公安害保安局《除尘技术》建筑工业出版社, 1977 [3] 鞍山矿山设计研究院《除尘设计参考资料》辽宁人民出版社, 1978 [4] 黎在时. 《电除尘器的选型安装与运行管理》中国电力版社,2005 [5] 黎在时《静电除尘器》.冶金工业出版社1993年12月第一版

重力除尘器清灰安全技术规程标准范本

操作规程编号:LX-FS-A18562 重力除尘器清灰安全技术规程标准 范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

重力除尘器清灰安全技术规程标准 范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1、放灰时,岗位必须汽车司机进行互保,防止煤气中毒事故,否则禁止操作。 2、清灰时必须站在上风侧。 3、放灰时附近危险区内严禁有人。 4、放灰时加湿机必须正常工作,不许扬尘。 5、放灰时若发现灰车漏灰,应停止放灰,将漏灰处堵上后继续放灰,除尘器两侧禁止堆放重力灰。 6、放灰时清灰口开的要适当,不许开的过急或过大,放完灰后,清灰阀必须关严。 7、高炉减风50%以上或休风时不许打灰,如因

第五节 电除尘器

第五节电除尘器 电除尘器是利用高压电场便尘粒荷电,在库仓力作用下使粉尘从气流中分离出来的一种除尘设备。 一、电除尘器的优缺点 1.电除尘器的主要优点 1)除尘效率高,对小达0.1μm的粉尘仍有较高的除尘效率。 2)处理气体量大,单台设备每小时可处理几十万甚至上百万立方米的烟气。 3)能处理高温烟气,采用一般涤纶绒布的袋式除尘器工作温度需要控制在120~130℃以下,而电除尘器一般可在350~400℃下工作。采取某些措施后,耐温性能还能提高,这样就大大简化了烟气冷却设备。 4)能耗低,运行费用小。虽然电除尘器在供给高压放电上需要消耗部分电能,但由予电除尘器阻力低(仅100~300Pa),在风机消耗的电能上却可大大节省,因而总的电能消耗较其他类型除尘器要低。 2.电除尘器的缺点 1)一次投资费用高,钢材消耗量大。 2)设备庞大,占地面积大。 3)对粉尘的比电阻有一定要求。若在适宜范围之外,就需要采取一定措施才能达到磐要的除尘效率。 4)结构较复杂,对制造、安装、运行的要求都比较严格,否则不能维持所需的电压,除尘效率将降低。 由于电除尘器具有上述优点,因而在冶金、水泥、电站锅炉以及化工等工业中得到大量应用。 二、电除尘器的工作原理 图4—21为管式电除尘器的示意图。接地的金属圆管叫收尘极(或集尘极),与高压直流电源相联的细金属线叫电晕极(又称电晕线或放电极)。电晕极置于圆管中心,靠重锤张紧。含尘气体从除尘器下部进口引入,净化气体从上部出口排出。

图4—21 管式电除尘器示意 1-高压电直流电源;2-高压电缆;3-绝缘子;4-净化气体出口;5-电晕极;6-收尘极; 7-重锤;8-含尘气体进口 图4—22 电除尘器的工作原理 1-导线(电晕极);2-电子;3-正离子; 4-尘粒; 5-圆筒壁或极板(收尘极);6-高压流电源 含尘气体在电除尘器中的除尘过程(见图4—22)大致可以分为三个阶段。 1

旋风除尘器设计说明

旋风除尘器设计计算说明书 1、旋风除尘器简介 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。 优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。 旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种 1.1 工作原理 (1)气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。 图1 (2)尘粒的运动: 切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2 影响旋风器性能的因素 (2)二次效应-被捕集粒子的重新进入气流 在较小粒径区间,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率; 在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率; 通过环状雾化器将水喷淋在旋风除尘器壁上,能有效地控制二次效应;

临界入口速度。 (2)比例尺寸 在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降; 锥体适当加长,对提高除尘效率有利; 排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e =(0.6~0.8)D ; 特征长度(natural length )-亚历山大公式: 2 1/3e 2.3()=D l d A 排气管的下部至气流下降的最低点的距离 旋风除尘器排出管以下部分的长度应当接近或等于l ,筒体和锥体的总高度以不大于5倍的筒体直径为宜。 (3)运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意。 在不漏风的情况下进行正常排灰 (4) 烟尘的物理性质 气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 (5)操作变量 提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善 ;入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降;效率最高时的入口速度,一般在10~25m/s 围。 2、设计资料 (1)所处理的粉尘为某水泥干燥窑的排烟,主要成分为水泥粉尘; (2)平均烟气量为2300 m 3/h ,最大烟气量为3450 m 3/h (3)烟气日变化系数K 日=1.5 (4)气温293 K,大气压力为101325 Pa (5)烟气颗粒物特征: 粒径围: 5~80m μ 中位径:36.5m μ 主要粒径频数分布: 颗粒物浓度:3000 kg/m 3 空气密度:1.205 kg/m 3 空气粘度:1.81×10-5Pa ﹒s (6)作为后继处理的前处理器,要求颗粒物的总去除效率不低于90%。压力损失不高 于2500Pa. 3、旋风除尘器的选型设计

燃煤电厂电除尘器选型设计指导书

燃煤电厂电除尘器选型设计指导书(送审稿C 版) 15 11.2 燃煤电厂电除尘器选型设计指导意见 11.2.1 50mg/m 3 粉尘排放标准下燃煤电厂电除尘器选型设计指导意见 50mg/m 3粉尘排放标准下的燃煤电厂电除尘器选型设计指导意见如表11: 表11 50mg/m 3 粉尘排放标准下的燃煤电厂电除尘器选型设计指导意见 ωk 值 电除尘器所需电 场数量 [个] 电除尘器所需比集尘面积 [m 2/(m 3/s )] 电除尘器适应性分析结论 ωk ≥55 ≥4 ≥100 推荐使用电除尘器 45≤ωk <55 ≥4 ≥110 35≤ωk <45 ≥5 ≥120 25≤ωk <35 ≥6 ≥140 可以使用电除尘器 ωk <25 ≥6 ≥170 建议在进行全面、细致的技 术经济性分析后决定 建议采用配套实用技术 注:1)当煤种灰分高或电除尘器入口含尘浓度较大时,建议增加电场数量并适当增大比集尘面积; 当采用配套实用技术时,可减小电场数量并适当减小比集尘面积; 2)比集尘面积按400mm 同极间距计算; 3)煤种或煤、飞灰主要成分所对应的ωk 值范围可参考表4及表5。 11.2.2 30mg/m 3 粉尘排放标准下燃煤电厂电除尘器选型设计指导意见 30mg/m 3粉尘排放标准下的燃煤电厂电除尘器选型设计指导意见如表12: 表12 30mg/m 3 粉尘排放标准下的燃煤电厂电除尘器选型设计指导意见 ωk 值 电除尘器所需电场 数量 [个] 电除尘器所需比集 尘面积 [m 2/(m 3/s )] 电除尘器适应性分析结论 ωk ≥55 ≥4 ≥110 推荐使用电除尘器 45≤ωk <55 ≥5 ≥130 40≤ωk <45 ≥5 ≥140 35≤ωk <40 ≥6 ≥170 可以使用电除尘器 建议采用配套实用技术 ωk <35 / / 不推荐使用电除尘器 注:1)当煤种灰分高或电除尘器入口含尘浓度较大时,建议增加电场数量并适当增大比集尘面积; 当采用配套实用技术时,可减小电场数量并适当减小比集尘面积; 2)比集尘面积按400mm 同极间距计算; 3)煤种或煤、飞灰主要成分所对应的ωk 值范围可参考表4及表5。 参考文献 ①《火力发电厂电除尘器规范书》(DG-CC-95-40) ② 欧洲暖通空调协会联盟(Rehva )/CostG3 组织工业通风系统和设备指导书---《电除尘器——工业应用》

除尘器技术方案设计.docx

. 20t/h 锅炉配套除尘设备 设 计 方 案 丹东黄海环保机械设备有限公司

. 2016 年 03 月 目录 一、工作原理 (3) 二、项目概述: (4) 三、高效布袋除尘器设计方案: (4) 四、供货范围: (9) 五、项目其他要求: (10) 六、设备分交界面: (10) 七、电器控制及设置说明: (10) 八、质量保障: (11) 九、运输安装: (12) 十、工程验收: (12)

十一、资料交付: (12) 十二、售后服务: (12) 十三、分项报价: (13) 一、工作原理 脉冲袋式除尘器的清灰方式“离线分室”脉冲清灰,气体净化方式为外滤式,含尘气体 由进风口进入进气室,经过导流板由底部进入过滤室,含尘烟气先通过沉降室去除大颗粒 及未燃尽的火星颗粒物后进入过滤区域,气流通过导流分布装置,适当导流自然流向分布,从下部均匀进入袋室,整个过滤室内气流分布均匀,含尘气体中大颗粒粉尘及大颗粒未燃 尽火星在进风道内通过沉降室自然沉降直接落入灰斗,飘逸粉尘在导流装置的引导下,随 气流进入中箱体过滤区,吸附在滤袋外表面。过滤后的洁净气体透过滤袋经上箱排风口排 出。 设备型号规格 设备型号: LCM-D

设备规格:8500mm ×4500mm ×14000mm 二、项目概述: _公司为了将锅炉大气污染物达到国家环保排放标准排放的要求,现阶段国家实行了节能减排政策,对烟尘有着更加严格的要求,给燃煤工业锅炉的大气污染物治理增加了难度。环保部门要求对锅炉烟气治理要实行除尘,同时处理效果达到《锅炉大气污染物排放标准 GB13271-2001 》标准。 三、高效布袋除尘器设计方案: 本公司经现场勘查并结合现场基本条件,设计满足环保要求的除尘技术方案如下。 3.1 工作介质:燃煤锅炉烟气 3.2 设计参数 (1)设计风量: 50000m 3/h , (2)过滤面积: 1220m2 (3)过滤风速: 0.7m-0.9m/min , (4)运行阻力:≤1500Pa (5)脉冲阀规格: DMF-Y-76s (6)分室气缸: SC-100-600H-FA (7)灰斗数量: 4 个 (8)电器控系统:西门子 (9)压缩空气系统: 3m3/min 0.8MPa一用一备 (10)烟道:设计风速 12-15m/s 3.3 项目预期达到指标 名称单位指标备注

布袋除尘器的优点与缺点

早期使用的袋式除尘器和布袋除尘室,没有清灰装置,过滤风速较低,即处理气体能力较低。后来用人工方法清除吸附在滤袋上的粉尘,过滤风速有所提高;进而又 发展到分室定期自动振打间歇式清灰的袋式除尘器(机械振打、逆气流和逆气统振动 袋式除尘器),过滤风速显著提高。但是,由于采用逐室切断被处理气体,依次对各 室滤袋进行清灰的方法,除尘器没有充分发挥作用。近年来出现了其有先进清灰装 挽的袋式除尘器,如脉冲袋式除尘器就是其中的一种。这种除尘器是在不切断被处 理气体的情况下,对滤袋进行连续清灰的(运行中除尘器的压力拟失和被处理的含尘 气体量几乎不变)。利用压缩空气(其消耗*仅.片被处理 决定布袋除尘器工作效率的原因主要取决于滤料和滤袋上的粉尘层厚度。一般来说 ,滤料致密,粉尘层厚,效率就高;但相应的处理气体能力降低,即过滤风速低。如 何在保证高效率和除尘器压力损失稳定的同时,又能提高过滤风速,这是一个有待 于进一步研究的问题。过滤风速的提高,取决于清灰方法和滤料的性能。 脉冲布袋除尘器的优点、缺点 布袋除尘器的缺点: 1.对于不同类型的气体、烟气、粉尘等,应选用相应类型的布袋,不同的布袋(寿命期为1--3年)过后必须更换。 2.收集湿度高的含尘气体时,应采取保湿措施,以免因结露而造成“糊袋”,因此布袋除尘气对气体的湿度有一定的要求。 3.阻力较大,一般压力损失为1000~1500Pa。 4.对于高温气体,必须采用降温措施。 5.接收粒径大的含尘气体时,布袋较易磨损。必须在原有的布袋脉冲除尘器前端加装一级旋风除尘。 1.除尘效率高,可捕集0.3nm以上的粉尘,使含尘气体净化到20mg/m3甚至以下。 2.附属设备少,投资省,技术要求没有电除尘器那样高。 3.能捕集电除尘难以回收的粉尘;并且在一定程度上能收集硝化物、硫化物等化合物。 4.对负荷变化适应性好,特别适宜捕集细微而干燥的粉尘,所收的干尘便于处理和回收利用。 5.袋式除尘器收集含有爆炸危险或带有火花的含尘气体时安全性较高。

机械除尘设备分析

机械式除尘设备 机械式除尘器是依靠机械力(重力、惯性力、离心力等)将尘粒从气流中去除的装置。特点是结构简单,设备费和运行费均较低,但除尘效率不高。按出尘粒的不同可设计为重力尘降室、惯性除尘器和旋风除尘器。适用于含尘浓度高和颗粒力度较大的气流。广泛用于除尘要求不高的场合或用作高效除尘装置的前置预除尘器。 机械力除尘设备包括重力除尘设备、惯性除尘设备、离心除尘设备等。1.1惯性除尘设备 1.工作原理 惯性除尘设备是使含尘气体与挡板撞击或者急剧改变气流方向,利用惯性力分离并捕集粉尘的除尘设备。惯性除尘设备亦称惰性除尘设备。 惯性除尘设备分为碰撞式和回转式两种:前者是沿气流方向装设一道或多道挡板,含尘气体碰撞到挡板上使尘粒从气体中分离出来。显然,气体在撞到挡板之前速度越高,碰撞后越低,则携带的粉尘越少,除尘效率越高。后者是使含尘气体多次改变方向,在转向过程中把粉尘分离出来。气体转向的曲率半径越小。转向速度越高,则除尘效率越高。 惯性除尘设备的性能因结构不同而异。当气体在设备内的流速为10m/s以下时,压力损失在200-1000Pa之间,除尘效率为50%-70%。在实际应用中,惯性除尘设备一般放在多级除尘系统的第一级,用来分离颗粒较粗的粉尘。它特别适用于捕集粒径大于10μm的干燥粉尘.而不适宜于清除粘结性粉尘和纤维性粉尘。惯性除尘设备还可以用来分离雾滴,此时要求气体在设备内的流速以1—2m/s 为宜。 2.类型及结构 ①碰撞式惯性除尘器 碰撞式惯性除尘器的特点是:用一个或几个挡板阻挡气流直线前进,在气流快速

转向时,粉尘颗粒在惯性力作用下从气流中分离出来;碰撞式惯性除尘器对气流的阻力较小,但除尘效率也较低;与重力除尘器不同,碰撞式惯性除尘器要求较高的气流速度,约18-20m/s,气流基本上处于紊流状态。 ②回流式惯性除尘器 回流式惯性除尘器的特点是,把进气流用挡板分割成小股气流。为了使任意一股气流都有相同的较小回转半径和较大回转角,可以采用各种百叶挡板结构。百叶挡板能提高气流急剧转折前的速度,有效地提高分离效率。但速度不宜过高,否则会引起已捕集的颗粒粉尘的二次飞扬,所以一般都选用12-15m/s的气流速度。百叶挡板的尺寸对分离效率也有一定影响,一般选用的挡板长度(沿气流方向)为20mm左右;挡板之间的距离约为3-6mm;挡板的安装斜角(与铅垂线夹角)为30°左右,使气流回转角为150°左右。 理论分析与实践均已证明,百叶窗回流式惯性除尘器的除尘效率与粉尘颗粒直径及密度,气流的回转角度、回转速度、回转半径,气体粘度等有一定的关系。例如,含尘气流进入后,不断从百叶板间隙中流出,颗粒粉尘也不断被分离出来。但是,越往下气体流量越小,气流速度也逐渐变慢,惯性效应也随之减小,分离效率就逐渐降低。所以,若能在底部抽走10%的气体流量,即带有下泄气流的百叶板式分离器,将有助于提高除尘效率。此外,百叶挡板还可以做成弯曲的形状,以防止已被捕集的颗粒粉尘被气流冲刷而二次飞扬。由于采用弯曲形状的百叶挡板,使气流的路线弯弯曲曲,故可称为迷宫式惯性分离器。 ③钟罩式惯性除尘器 钟罩式惯性除尘器结构简单,阻力小,不需要引风机,并可直接安装在排气筒或风管上。但这种除尘器的除尘效率较底,一般仅为50%左右。 钟罩式除尘器主要是利用碰撞和气流急速转向,使部分尘粒产生重力沉降原理设计的。当含尘烟气由长烟管进入大截面的沉降室前,由于锥形隔烟罩的阻挡而急速改变流向,同时因为截面扩大烟气流速锐减,从而有部分烟尘受重力作用而沉降分离出来。分离出来的尘粒由沉降室下部排灰口排出。净化后的烟气由沉降室上部的烟管排入大气。 ④百叶沉降式惯性除尘器 百叶沉降式除尘器适用于小型立式锅炉,可直接安装在钢板卷制的烟囱上,对于

大气除尘装置设计

大气污染控制工程课程设计某燃煤采暖锅炉房烟气除尘系统设计 专业环境工程 班级 姓名 学号 教师 时间2016/1/15

目录 前言1 第一章设计依据2 1.1设计任务书2 1.2煤的工业分析2 第二章烟气量和烟气浓度的计算2 2.1计算烟气量的产生2 2.2烟气浓度4 第三章除尘器的选择4 3.1 除尘器的比较和选择4 3.2 除尘效率6 3.3 除尘器的选择6 3.4 旋风除尘器7 第四章确定除尘器、风机和烟囱的位置及管道的布置8 4.1 各装置及管道布置的原则8 4.2 管径的确定8 4.3 烟道的设计计算9 第五章系统阻力的计算10 5.1 摩擦压力损失10 5.2总阻力损失12 第六章风机和电动机选择及计算12 6.1标准状态下风机风量的计算12 6.2 风机风压的计算12 6.3 电动机功率的计算13 6.4 风机和电机的选择13 第七章烟囱的设计14 7.1 烟囱高度的确定14 7.2 烟囱直径的计算14 7.3 烟囱的抽力15 第八章设计说明书16 8.1 设计工艺流程图16

8.2 网管布局图(见附图)17 8.3 相关附表17 第九章设计总结19 参考文献19

……………………………………………………………最新资料推 荐………………………………………………… 前言 按照国际标准化组织(1SO)作出的定义,“空气污染:通常系指由于人类活动和自然过程引起某些物质介入大气中,呈现出足够的浓度,达到了足够的时间,并因此而危害了人体的舒适、健康和福利或危害了环境。” 大气污染物的种类非常多,根据其存在状态,可将其概括为两大类:气镕胶状态污染物和气体状态污染物。 所谓气溶胶,在物理、化学中概括为:几分散介质为气体的胶体物系。在大气污染中,ISO提出了明确的定义,“气溶胶:系指沉降速度可以忽略的固体粒子、液体粒子或固体和液体粒子在气体介质中的悬浮体。”从大气污染控制的角度,按照气溶胶的物理性质,可将其分为如下几种:(1)粉尘;(2)烟;(3)飞灰:(4)黑烟(smoke):(5)液滴(droPlet):(6)轻雾或霓〔mist):(7)雾;(8)降尘;(9)飘尘;(10)总悬浮颗粒 气体状态污染物种类极多,主要有五个方面:以二氧化硫为主的含硫化合物、以氧化氮和二氧化氮为主的台氮化合物、碳的氧化物、碳氢化合物及卤素化合物等。 大气污染控制工程课程设计是废气污染控制工程课程的重要实践性环节,是环境工程专业学生在校期间第一次较全面的废气污染控制设计能力训练,在实现学生总体培养目标中占有重要地位。 任务与目的:通过本课程学习,掌握《废气处理设施设计与运行》课程各基本原理和基本设计方法的应用,培养环境工程专业学生解决实际问题的能力。结合前续课程《废气处理设施设计与运行》的内容,本课程内容为,运用各种污染物的不同控制、转化、净化原理和设计方法,进行除尘、除硫、脱氮等废气污染控制工程设计,使学生在废气污染控制工程方面得到工程训练。 通过课程设计实践,培养综合运用废气污染控制设计课程和其他先修课程的理论与生产实际知识来分析和解决废气污染控制设计问题的能力。

布袋除尘器常见问题及解决方法

脉冲袋式除尘器主要由上箱体、中箱体(内部安装滤袋和骨架)、灰斗、清灰机构、卸灰装置、控制系统等组成。含尘气体从中箱体的下部进入,经导流板均匀上升到达滤袋,大颗粒粉尘经碰撞先落入灰斗,粉尘被阻挡在滤袋外表面,干净气体进入袋内经过袋口和上箱体,由出风管排出。随着滤袋外表面的粉尘不断增加,设备阻力达到设定值时压差监控系统发出信号,清灰机构开始工作,压缩空气从脉冲阀喷出,经喷吹管和喷嘴射向滤袋,滤袋瞬时膨胀、振动,使表面的粉尘脱出、落入灰斗,由卸灰阀排出。也可采用定时清灰或手动清灰。脉冲袋式除尘器的各仓室依次进行清灰,完成清灰的仓室随即恢复除尘状态。在脉冲袋式除尘器的实际运行当中,重视维护检修工作,及时发现问题处理故障,可以避免情况恶化、节省修理费用,确保除尘器运行稳定、除尘高效。 脉冲袋式除尘器的故障分析与处理方法 1.除尘效果不佳,排放粉尘浓度超标 脉冲袋式除尘器是高效的除尘设备,一旦发现除尘器后的排气筒出口冒灰,粉尘排放量大,可从以下几个方面查找原因: (1) 新装的洁净滤袋孔隙较大,刚开始使用时粉尘通过率较高,尚未达到最佳的过滤状态,粉尘排放量较大。随着过滤的进行,粉尘在滤袋的外表面堆积形成粉尘层,使滤袋外表面的孔隙变小,除尘效率提高,“尘滤尘”的作用可去除微细粉尘99%以上。因此测定脉冲袋式除尘器的除尘效率在连续使用1个月后进行更为准确。 (2) 检查滤袋的安装是否正确。通常的脉冲袋式除尘器,依靠缝制于滤

袋口的弹性胀圈将滤袋嵌压在花板孔内,通过花板将中箱体尘气室与上箱体净气室严格区分。如果滤袋口的弹性胀圈未能与花板孔完全密合,出现了缝隙,就会导致含尘气流直接进入净气室,排气筒出口冒灰。可以逐一检查除尘滤袋口的安装情况,发现缝隙的要压紧密封。在脉冲袋式除尘器的安装过程中,滤袋的安装质量是监督检查的重点之一。炼铁厂对滤袋的安装进行了改进优化:在每个花板孔上方焊接1个套圈,套圈高度为30mm且与花板孔同心,将缝制于滤袋口的单层弹性胀圈紧贴套圈内壁安装,不但保证了滤袋的安装高度平整、密封,而且使滤袋的安装、拆卸更为简捷。 (3) 滤袋破损将导致含尘气流直接外排、除尘器后的排气筒出口冒灰。对于离线清灰的大型脉冲袋式除尘器,可以采用以下方法确定破袋的位置:用手动操作方式逐个仓室进行清灰,每次关闭1个仓室的出气阀,注意观察排气筒出口,当有破袋的仓室停止过滤时,排气筒出口就不再冒灰,据此可确定哪个仓室出现破袋。如果只有个别滤袋破损,用铁盖密封住该花板孔, 即可确保排放的粉尘浓度达标。需要更换滤袋时, 建议同 果只能更换几条滤袋, 需把新滤袋的袋口封闭,埋入除尘灰中几天, 增加新滤袋的阻力, 使新滤袋的阻力与旧滤袋接近。 (4) 对于进风通道与出风通道仅用隔板分开的除尘器,须检查中间隔板是否焊接严密。如果中间隔板出现焊缝、缺口,进风当中的高浓度粉尘会窜入出风通道,导致排气筒出口冒灰。确保中间隔板的焊接质量,使进风通道与出风通道完全分隔,是除尘器制作安装当中质量检查的另一重

电除尘器改造方案

电袋结合除尘器 方案 电除尘器改造为电-袋除尘器方案 电袋复合式除尘器有效结合了电除尘器与袋式除尘器各自的优点,利用电除尘器捕集大颗粒粉尘,进而大幅度降低了烟气进入袋式除尘器区域的粉尘浓度,可增大滤袋的清灰周期,提高滤袋的使用寿命。由于粉尘前部电场作用下带有相同的电荷。在滤袋表面形成的粉尘层相对松散,透气性能好,更有利于清灰,从而降低运行阻力,减少运行费用。 1电除尘器的拆除本设计方案的设计原则是,尽量保留原电除尘器的构造不变,在原构架的基础上做必要的改动,既能满足设计要求,又能降低成本。 实施方案为:保留第 1 电场,使其成为电除尘区,其余2、3 电场安装滤袋。在改造实施前必须对原来电除尘器的部分构件进行必要的拆除。拆除的内容包括:电除尘器2、3电场内部的阴、阳极系统及阳极振打、阴极振打、高压硅整流变压器及其进线和绝缘装置、除尘器外顶盖及其顶部起吊装置等。 1.1本体上壳体拆除 拆除内容包括除尘器顶盖及其除尘器顶部的所有设备,如:变压器,阴阳极振打电机的拆除。外保温层保留,并对壳体进行必要的加固防腐处理。保留1电场,拆除2、 3 电场。

1.2电除尘器内部阴阳极的拆除 完全拆除原来2、3电场除尘器内部的阴极线、阳极板。并将壳体内部完全打扫干净。 以上设备拆除后从除尘器的顶部搬出壳体。同时,与阴阳极相关的设备如:阴阳极振打系统等相关设备也一并拆除。 完全保留1电场,完全拆除2、3电场。 1.3拆除工作量 阳极系统阳极振打拆除:60 t 阴极系统和阴极振打拆除:20 t

内顶盖: 15 t 顶部起吊: 5 t 电 气系统: 2 t 总计 拆除量: 116t 2 除尘器的改造 措施 2.1 除尘 器本体的改造 拆除原电除尘器 2、3电场顶部的高压变压器及其附属设备、顶 部的吊装设备、阴极 框架和阳极板排、阳极板和阴极线、内顶盖和外顶盖等。保证 2、3电场除尘器内部中空, 并打扫干净。 完全保留 1电场, 2、 3电场做袋式除尘单元。在 2、3电场壳体顶部加装净气室。除 尘器2、3电场的顶 盖重新设计加工,在顶 盖上装设清灰系统的绝 大部分部件,如储气罐、 脉冲阀、旋转风管、驱动电机等。 在原电除尘器出口处加设出气端墙。 2.1 除尘 器进出口的改造 保留原电除尘器进口烟道、气流分布装置,在电袋结合处加装气流分布装置 , 进口 烟道由于要安装挡板门,需要在设计的安装位置处断开,安装挡板门和补偿 器后密封焊 接。 保留原电除尘器的出口烟道和出口烟箱,出口烟箱喇叭口的上部开孔,从净 气室接 一段出口烟道与原出口喇叭口的开孔处相连,这样既满足设计要求,又尽可 能的利用了 原电除尘器的壳体和烟道,节约了成本。 2.3 除尘 器灰斗 除尘器灰斗原则上不进行改造,但需要根据现有灰斗的腐蚀或磨蚀情况进行 适度的 加固或更新。与灰斗相关的其它辅助设备不进行改造。 2.4 除尘 器保温 充分利用原来除尘器保温系统,节约了成本。增加本体及设备均做保温设计 ,并负 外顶盖: 10 t 高压引入及电加热: 2 t 其它:2t

最新电除尘器设计(数学模型)

Design of Electric Dust Catcher 环工07-2 朱子晨 20071581 本课题来源于某工业中产生的烟气,已知其烟气量为48m 3/s ,除尘需达到的效率为84%,含尘量为46g/m 3。 1.1 电除尘器的仿真设计数学模型 1.1.1 驱进速度ω的确定 s cm KS /81.9102.162.962.9625.0625.0=??==ω %)1(=S 式中 ω——驱进速度,cm/s ; S ——煤的含硫量,%; K ——平均粒度影响系数按下表选定。 表3-1 平均粒度影响系数 平均粒径 10 15 20 25 30 35 K 0.9 0.95 1 1.05 1.1 1.5 2.01K 22==,平均a 1.1.2 计算所需集尘板面积A v q ln(1) k A ηω --= ?()2 2 90068.896.0110 81.94.801ln 48m ≈=??-?-- )0.1(=k 式中 ω——驱进速度,m/s ; A ——总除尘面积,m 2 ; k ——储备系数,1.0~1.3; q v ——烟气量,m 3/s ; η——除尘效率,%。 1.1.3 平均粒度a 平均 所处理烟气粒径服从正态分布

1122n n W a W a W a 100 a ++ = 平均=22 式中 W 1,W 2——粒度为a 1,a 2组成的百分比; a 1,a 2——粒度平均粒径。[6] 1.1.4 初定电场断面F' 2402 .148m v q F v === ' )2.1(=v [1] 式中 'F ——初定电场断面积,m 2; v ——电场风速,m/s 。 1.1.5 电场高度h 当280m F ≤' F h '≈ m F h 32.640=='≈(本设计取6.33m ) 式中 h ——电场高度,m ,要对于极板高度h 进行圆整。 1.1.6 电除尘器的通道数N ()1680.1533 .61040040 23≈=??='= -h s F N ()mm s 4002= 式中 2s ——相邻两极板中心距,m 。将N 圆整为整数,当选用双进风口时,N 值应取偶数。 1.1.7 电场有效宽度B 有效: m sN B 4.6164.02=?==有效 (本设计取6.85) 1.1.8 实际电场断面F 252.404.633.6m B h F =?=?=有效

大气污染脱硫除尘课程设计

大气污染脱硫除尘课程设计

目录 第一章绪论 0 第二章设计概述 (1) 2.1 设计任务 (1) 2.2 相关排放标准 (1) 2.3设计依据 (2) 第三章工艺设计概述 (3) 3.1 方案比选与确定 (3) 3.1.1 除尘方案的比选与确定 (3) 3.1.2脱硫方案比选和确定 (4) 3.2 工艺流程介绍 (9) 第四章工艺系统说明 (10) 4.1 袋式除尘系统 (10) 4.1.1 袋式除尘器的种类 (10) 4.1.2 滤料的选择 (10) 4.2 脱硫系统 (11) 4.2.1 石灰石-石膏法 (11) 4.2.2石灰石、石灰浆液制备系统 (11) 4.2.3 脱硫液循环系统 (12) 4.2.4 固液分离系统 (12) 第五章主要设备设计 (12)

5.1 袋式除尘器设计计算 (12) 5.1.1 过滤气速的选择 (12) 5.1.2 过滤面积A (12) 5.1.3 滤袋袋数确定n (13) 5.1.4 除尘室的尺寸 (13) 5.1.5 灰斗的计算 (13) 5.1.6 滤袋清灰时间的计算 (14) 5.2 脱硫设计计算 (14) 5.2.1浆液制备系统主要设备 (14) 5.2.2脱硫塔设计 (14) 5.2.3浆液制备中所需石灰的量 (15) 5.2.3浆液制备中所需水的量 (15) 5.2.4浆液制备所需乙二酸的量 (15) 5.2.5脱硫液循环槽(浆液槽)体积计 算 (15) 5.2.6石灰贮仓体积计算 (16)

第一章绪论 随着经济和社会的发展,燃煤锅炉排放的二氧化硫严重的污染了我们赖以生存的环境。由于中国燃料以煤为主的特点,致使中国目前大气污染仍以煤烟型为主,其中尘和酸雨危害最大。随着环保要求的提高,焦化厂脱硫工艺急需完善。 焦化厂焦炉煤气中SO2及其粉尘对大气环境的污染问题日趋严重,甚至影响到我国焦化行业的可持续发展。因此,对焦炉煤气进行脱硫除尘的净化处理势在必行。 炼焦技术是将煤配合好装入炼焦炉的炭化室,在隔绝空气的条件下通过两侧燃烧室加热干馏,经过一段时间后形成焦炭。由此可以看出,在炼焦过程中将产生大量含有二氧化硫和粉尘的烟气,该废气若不经过处理直接排入大气中,不仅会对周围环境产生极大影响,而且导致了原物料的浪费,同时有损企业的形象,所以必须进行脱硫除尘处理。因此将从炼焦炉出来的烟气经过管道收集,通过风机将其引入到脱硫除尘系统中去。 焦化厂生产工艺中产生焦炉废气,焦炉废气中主要含有二氧化硫和粉尘。焦化厂烟气具有二氧化硫浓度变化大,温度变化大,水分含量大的特征,从而使焦炉烟气处理难度加大。

布袋除尘器说明书(精)

DGE布袋除尘器 使 用 说 明 书 本手册是布袋除尘器的原理、构造和使用应该注意的事项及辅助设备操作维护等方面的技术要求,以便使操作人员能正确了解使用该型除尘器。供调试与使用时使用。除尘器工作原理 1、概述 除尘器由上箱体、中箱体、灰斗、导流板、支架、滤袋组件、喷吹装置、离线阀、卸灰装置及检测、控制系统等组成。整套除尘器还包括检修平台、照明系统、检修电源等辅助设备。 工作原理如下:含尘气体由进风烟道各入口阀进入各单元箱体,在箱体导流系统的引导下,大颗粒粉尘分离后直接落入灰斗、其余粉尘随气流进入中箱体过滤区,过滤后的洁净气体透过滤袋,经上箱体、提升阀、出风烟道排出除尘器,经过风机和烟囱直接排放到大气中。随着过滤工况的进行,当滤袋表面积尘达到一定量时,由清灰控制装置(差压或定时、手动控制)按设定程序,控制当前单元离线,并打开电磁脉冲阀喷吹,抖落滤袋上的粉尘。落入灰斗中的粉尘经由仓泵进入气力输灰系统。结构特点如下: 本脉冲除尘器为外滤式除尘器,即含尘气体在滤袋外,洁净空气在滤袋内,袋口向上。清灰功能利用差压或定时、手动功能控制在线清灰仓室,启动脉冲喷吹阀喷吹,使滤袋径向变形,抖落灰尘。除尘器同时具有离线检修功能。 2、工艺流程 除尘器利用滤料捕获烟气中的尘粒。滤料捕获尘粒的能力决定除尘器的除尘效率。因此,整个除尘器的工艺流程可以简单描述为通过 对经过除尘器的含尘气流的阻力的控制,使滤料保持最大的捕获尘粒的能力,此控制即为周期性地对布袋清灰,防止气流阻力过大。 气流在进入汇风箱后经过各入口阀直接进入各箱体进行过滤,气流流量由各过滤室的压力自行控制,压力低的过滤室气流流量将较大。因此,一旦一个过滤室的压差过大,更多的气流(含有更多的尘粒)将被赶往其它过滤室,直到各过滤室压差相当。在实际工况中,各过滤室的压差基本相同,如果某一过滤室的压差较高(高于设定值),该室将进入清灰程序;如果某一过滤室的压差一直较高且清灰后无明显下降,说明该室有滤袋被堵;如果某一过滤室的压差一直较低或陡然下降(低于设定值),说明该室滤袋有破损。

电除尘器施工方案(1)

1、工程概况: 本工程设计3台双室四电场除尘器,结构为干式、板式、卧式静电除尘,专为新疆美克化工有限公司3台循环流化床锅炉烟气除尘配套设计。本静电除尘器包括钢支柱、灰斗、壳体结构、阳极系统、阴极系统,进出口封头、梯子平台、壳体保温、内外顶盖及顶部起吊设备等。 2、编制依据: 2.1 电除尘器施工图。 2.2 《电除尘器安装说明书》。 2.3 《电除尘器机械安装技术条件》(JB/T8536-2010)。 2.4 《火力发电厂焊接技术规程》(DL/T869-2004)。 2.5 《建筑钢结构焊接技术规程》(JGJ81-2002)。 2.6 《现场设备、工业管道焊接工程施工及验收规范》(GB50236-2011)。 2.7 《机械设备安装工程施工及验收通用规范》(GB50231-2009)。 2.8 《电站钢结构焊接通用技术条件》(DL/T678-1999)。 2.9 《电力建设施工技术规范-锅炉机组篇》(DL/T5047-95)。 2.10 《电力建设施工质量验收及评价规程》(DL/T5210.2-2009)。 2.11 《建筑安装工人安全技术规程》。 3、施工人员计划及进度计划 3.1项目现场劳动力计划 1)本工程拟定投入电除尘安装施工人员人数为30人 劳动力计划表 序号工种 人 数 资质备注

3.2进度计划(见附页) 4.主要施工机械设备表4.1主要施工机械设备表

5、电除尘安装原则方案 5.1地面组合与设备吊装同时进行,钢架、灰斗、进出口封头、槽板、阴阳极板等设备为散件,需组合后吊装,根据现场组合情况及吊车时间,各工序间可以进行调整或交叉进行。 5.2由于施工场地狭窄,2#、3#电除尘基础又未施工完成,吊装机械主要选用75t、25t汽车吊,另外选用塔吊TC7052吊装1#、2#电除尘的阴极框架。

大气污染控制工程课程设计静电除尘器

南京工程学院 课程设计说明书(论文)题目锅炉烟气静电除尘器的设计 课程名称大气污染控制工程 院(系、部、中心) 康尼学院 专业环境工程 班级 K环境091 学生姓名朱盟翔 学号 0 设计地点文理楼A404 指导教师李乾军 设计起止时间:2012年5月7日至 2011 年5月18日 目录 烟气除尘系统设计任务书

一、课程设计的目的 通过课程设计近一步消化和巩固本能课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行净化系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、绘制工程图、使用技术资料、编写设计说明书的能力。 二、设计原始资料 锅炉型号:SZL4-13型,共4台 设计耗煤量:600 kg/h (台) 排烟温度:160 ℃ 烟气密度(标准状态): kg/m3 空气过剩系数:α= 排烟中飞灰占煤中不可燃成分的比例:18% 烟气在锅炉出口前阻力:800 Pa 当地大气压力: kPa 冬季室外空气温度:-1℃ 空气含水(标准状态下)按m3

烟气其他性质按空气计算 煤的工业分析元素分析值: C ar =68% H ar =% S ar =% O ar =6% N ar =1% W ar =4% A ar =16% V ar =14% 按锅炉大气污染物排放标准(GBl3271-2011)中二类区标准执行。 烟尘浓度排放标淮(标准状态下):30mg/m 3 二氧化硫排放标准(标准状态下):200mg/m 3。 基准氧含量按6%计算。 净化系统布置场地如图1所示的锅炉房北侧15m 以内。 图1. 锅炉房平面布置图 图 2. 图1的剖面图 三、设计内容 (1) 燃煤锅炉排烟量及烟尘和二氧化硫浓度的计算。 (2) 净化系统设计方案的分析确定。 (3) 除尘器的比较和选样:确定除尘器类型、型号及规格,并确定其主要运行参数。

布袋除尘器滤袋的清灰过程详细描述

河北九正通明除尘设备有限公司:四零零,九二六,一五一一 布袋除尘器滤袋的清灰过程详细描述 滤袋清灰压要很好的配合过滤速度,保留稳定的剩余附灰层。减少故障的关键是调好清灰自动电控箱确定清灰周期、振打持续时间,并配合好除尘器的分室,使用情况等。这是保证运行状态良好,除尘效率高的基础。 对于单室不连续使用的除尘器,应根据粉尘性质和含尘浓度等,结合工业生产要求持续使用的时间,进行慎重的对照研究,以选定适当的过滤速度,实行停风进行清灰。 对于多室、连续使用的除尘器,还要考虑到清灰周期、阻力与时间的关系。当清灰周期到达,该室出风阀门关闭,即气流彻底截断,此时室内滤袋的阻力即应降到零,清灰设备启动进行振打,清灰时间过去,出口阀门打开正常工作。由于阀门不可能立即全关或全开,滤袋阻力不是直线而是曲线变化。在长时间运转过程中,开始和末了的清灰时间里,平均阻力的高度要求接近水平线,才是这种除尘器最满意的清灰操作,做到这一点,首先应考虑在滤袋上的附灰层要有合理的厚度,以便清灰时间最短,且能有效清灰。多室除尘器的阻力是连续的,但当轮流停一个室清灰时,总阻力要增高一些,因为各工作室的过滤速度提高了,清灰完了除尘器的总阻力有短时间的少许下降,然后按指数曲线上升到正常阻力水平。保持各室的滤袋阻力的稳定,才能使总阻力稳定。为此,滤袋的清灰周期应在除尘过程中按照各室阻力情况予以分配。 清灰时间和清灰周期过长或过短,对于连续操作的布袋除尘器,除具有强有力的振打或反风逆流的清灰手段外,还要有两者不能缺少的分室停风设施。 在停风清灰的情况下,从滤袋清除下来的灰尘,自离开滤袋表面后,按重力沉降规律,需要一定时间落到灰斗内失速,整个清灰过程才算告终。由于粉尘疑聚块度的大小、形状、比重、含湿量、分散度和气流稳定情况不同,除尘器内的落灰自然沉降的速度也不一致。自然沉降对除尘器的收灰过程是很重要的,因为它是任何干式除尘器收尘必须经过的一个步骤。一般清灰停风需要4min时间,率大层数多时则需要4min以上,才能满足未凝聚的较细粉尘自然沉降下来的要求。如该室在清灰时沉降不彻底,则再使用时,细尘将再次被吸附到滤袋上,愈在滤袋下部细尘就愈多。对于较粗的粉尘,在清灰时的持续时间内沉降到灰斗内是不成问题的。因此应在布袋除尘器的结构空间内部,在含尘气体通过过滤前,就充分利用大颗粒灰尘的重力自然沉降作用,不待滤袋过滤就自行沉降到灰斗内,以减少滤袋的负担。外滤式扁袋除尘器具有较大的尘端空间,能够较好做到这一点,可以把附在滤袋上的灰量减到一半,甚至更多一些。 设计良好的清灰过程,能使滤袋上的附灰层在气流静止的空间内顺利清除下来,还能很好地组织自然重力沉降,并为在使用中粉尘自然崩落创造好条件,使落灰全部快速沉降到灰斗内。 1

相关主题
文本预览
相关文档 最新文档