当前位置:文档之家› 工程热力学基本概念

工程热力学基本概念

工程热力学基本概念
工程热力学基本概念

第一章

1.基本概念

热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。

边界:分隔系统与外界的分界面,称为边界。

外界:边界以外与系统相互作用的物体,称为外界或环境。

闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。

开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。

绝热系统:系统与外界之间没有热量传递,称为绝热系统。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。

复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

单元系:由一种化学成分组成的系统称为单元系。

多元系:由两种以上不同化学成分组成的系统称为多元系。

均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。

非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。

热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。

基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。

热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。

压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。

相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。

比容:单位质量工质所具有的容积,称为工质的比容。

密度:单位容积的工质所具有的质量,称为工质的密度。

强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。

广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。

可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程。

膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。

热量:通过热力系边界所传递的除功之外的能量。

热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。

第二章气体的热力性质

1.基本概念

理想气体:气体分子是由一些弹性的、忽略分子之间相互作用力(引力和斥力)、不占有体积的质点所构成。

比热:单位物量的物体,温度升高或降低1K(1℃)所吸收或放出的热量,称为该物体的比热。

定容比热:在定容情况下,单位物量的物体,温度变化1K(1℃)所吸收或放出的热量,称为该物体的定容比热。

定压比热:在定压情况下,单位物量的物体,温度变化1K(1℃)所吸收或放出的热量,称为该物体的定压比热。

定压质量比热:在定压过程中,单位质量的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定压质量比热。

定压容积比热:在定压过程中,单位容积的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定压容积比热。

定压摩尔比热:在定压过程中,单位摩尔的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定压摩尔比热。

定容质量比热:在定容过程中,单位质量的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定容质量比热。

定容容积比热:在定容过程中,单位容积的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定容容积比热。

定容摩尔比热:在定容过程中,单位摩尔的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定容摩尔比热。

混合气体的分压力:维持混合气体的温度和容积不变时,各组成气体所具有的压力。

道尔顿分压定律:混合气体的总压力P 等于各组成气体分压力P i 之和。

混合气体的分容积:维持混合气体的温度和压力不变时,各组成气体所具有的容积。

阿密盖特分容积定律:混合气体的总容积V 等于各组成气体分容积V i 之和。

混合气体的质量成分:混合气体中某组元气体的质量与混合气体总质量的比值称为混合气体的质量成分。

混合气体的容积成分:混合气体中某组元气体的容积与混合气体总容积的比值称为混合气体的容积成分。

混合气体的摩尔成分:混合气体中某组元气体的摩尔数与混合气体总摩尔数的比值称为混合气体的摩尔成分。

对比参数:各状态参数与临界状态的同名参数的比值。

对比态定律:对于满足同一对比态方程式的各种气体,对比参数r p 、r T 和r v 中若有两个相等,则第三个对比参数就一定相等,物质也就处于对应状态中。

第三章 热力学第一定律

1.基本概念

热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定,这一自然界普遍规律称为能量守恒与转换定律。把这一定律应用于伴有热现象的能量和转移过程,即为热力学第一定律。

第一类永动机:不消耗任何能量而能连续不断作功的循环发动机,称为第一类永动机。

热力学能:热力系处于宏观静止状态时系统内所有微观粒子所具有的能量之和。

外储存能:也是系统储存能的一部分,取决于系统工质与外力场的相互作用(如重力位能)及以外界为参考坐标的系统宏观运动所具有的能量(宏观动能)。这两种能量统称为外储存能。

轴功:系统通过机械轴与外界传递的机械功称为轴功。

流动功(或推动功):当工质在流进和流出控制体界面时,后面的流体推开前面的流体而前进,这样后面的流体对前面的流体必须作推动功。因此,流动功是为维持流体通过控制体界面而传递的机械功,它是维持流体正常流动所必须传递的能量。

焓:流动工质向流动前方传递的总能量中取决于热力状态的那部分能量。对于流动工质,焓=内能+流动功,即焓具有能量意义;对于不流动工质,焓只是一个复合状态参数。

稳态稳流工况:工质以恒定的流量连续不断地进出系统,系统内部及界面上各点工质的状态参数和宏观运动参数都保持一定,不随时间变化,称稳态稳流工况。

技术功:在热力过程中可被直接利用来作功的能量,称为技术功。

动力机:动力机是利用工质在机器中膨胀获得机械功的设备。

压气机:消耗轴功使气体压缩以升高其压力的设备称为压气机。

节流:流体在管道内流动,遇到突然变窄的断面,由于存在阻力使流体压力降低的现象。

第四章 理想气体的热力过程及气体压缩

1.基本概念

分析热力过程的一般步骤:1.依据热力过程特性建立过程方程式,p=f(v);

2.确定初、终状态的基本状态参数;

3.将过程线表示在p-v 图及T —s 图上,使过程直观,便于分析讨论。

4.计算过程中传递的热量和功量。

绝热过程:系统与外界没有热量交换情况下所进行的状态变化过程,即0=q δ或0=q 称为绝热过程。 定熵过程:系统与外界没有热量交换情况下所进行的可逆热力过程,称为定熵过程。

多变过程:凡过程方程为=n pv 常数的过程,称为多变过程。

定容过程:定量工质容积保持不变时的热力过程称为定容过程。

定压过程:定量工质压力保持不变时的热力过程称为定压过程。

定温过程:定量工质温度保持不变时的热力过程称为定温过程。

单级活塞式压气机工作原理:吸气过程、压缩过程、排气过程,活塞每往返一次,完成以上三个过程。 活塞式压气机的容积效率:活塞式压气机的有效容积和活塞排量之比,称为容积效率。

活塞式压气机的余隙:为了安置进、排气阀以及避免活塞与汽缸端盖间的碰撞,在汽缸端盖与活塞行程终点间留有一定的余隙,称为余隙容积,简称余隙。

最佳增压比:使多级压缩中间冷却压气机耗功最小时,各级的增压比称为最佳增压比。

压气机的效率:在相同的初态及增压比条件下,可逆压缩过程中压气机所消耗的功与实际不可逆压缩过程中压气机所消耗的功之比,称为压气机的效率。

热机循环:若循环的结果是工质将外界的热能在一定条件下连续不断地转变为机械能,则此循环称为热机循环。

第五章 热力学第二定律

1.基本概念

热力学第二定律:

开尔文说法:只冷却一个热源而连续不断作功的循环发动机是造不成功的。

克劳修斯说法:热不可能自发地、不付代价地从低温物体传到高温物体。

第二类永动机:从单一热源取得热量,并使之完全转变为机械能而不引起其他变化的循环发动机,称为第二类永动机。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

孤立系统熵增原理:任何实际过程都是不可逆过程,只能沿着使孤立系统熵增加的方向进行。 定熵过程:系统与外界没有热量交换情况下所进行的可逆热力过程,称为定熵过程。

热机循环:若循环的结果是工质将外界的热能在一定条件下连续不断地转变为机械能,则此循环称为

热机循环。

制冷:对物体进行冷却,使其温度低于周围环境温度,并维持这个低温称为制冷。

制冷机:从低温冷藏室吸取热量排向大气所用的机械称为制冷机。

热泵:将从低温热源吸取的热量传送至高温暖室所用的机械装置称为热泵。

理想热机:热机内发生的一切热力过程都是可逆过程,则该热机称为理想热机。

卡诺循环:在两个恒温热源间,由两个可逆定温过程和两个可逆绝热过程组成的循环,称为卡诺循环。 卡诺定理:

1.所有工作于同温热源与同温冷源之间的一切可逆循环,其热效率都相等,与采用哪种工质无关。 2.在同温热源与同温冷源之间的一切不可逆循环,其热效率必小于可逆循环。

自由膨胀:气体向没有阻力空间的膨胀过程,称为自由膨胀过程。

第七章 水蒸气

1.基本概念

未饱和水: 水温低于饱和温度的水称为未饱和水(也称过冷水).

饱和水: 当水温达到压力P 所对应的饱和温度s t 时,水将开始沸腾,这时的水称为饱和水。

湿饱和蒸汽:把预热到t s 的饱和水继续加热,饱和水开始沸腾,在定温下产生蒸汽而形成饱和液体和饱和蒸汽的混合物,这种混合物称为湿饱和蒸汽,简称湿蒸汽。

干饱和蒸汽:湿蒸汽的体积随着蒸汽的不断产生而逐渐加大,直至水全部变为蒸汽,这时的蒸汽称为干饱和蒸汽(即不含饱和水的饱和蒸汽)。

第八章 湿空气

1.基本概念

湿空气:干空气和水蒸气所组成的混合气体。

饱和空气:干空气和饱和水蒸气所组成的混合气体。

未饱和空气:干空气和过热水蒸气所组成的混合气体。

绝对湿度:每立方米湿空气中所含有的水蒸气质量。

饱和绝对湿度:在一定温度下饱和空气的绝对湿度达到最大值,称为饱和绝对湿度

相对湿度:湿空气的绝对湿度v ρ与同温度下饱和空气的饱和绝对湿度s ρ的比值

含湿量(比湿度):在含有1kg 干空气的湿空气中,所混有的水蒸气质量

饱和度:湿空气的含湿量d 与同温下饱和空气的含湿量d s 的比值

湿空气的比体积:在一定温度T 和总压力p 下,1kg 干空气和0.001d 水蒸气所占有的体积湿空气的焓: 1kg 干空气的焓和0.001d kg 水蒸气的焓的总和

第九章 气体和蒸汽的流动

1.基本概念

稳态稳流:稳态稳流是指开口系统内每一点的热力学和力学参数都不随时间而变化的流动,但在系统内不同点上,参数值可以不同。为了简化起见,可认为管道内垂直于轴向的任一截面上的各种参数都均匀一致,流体参数只沿管道轴向或流动方向发生变化。

定熵滞止参数:将具有一定速度的流体在定熵条件下扩压,使其流速降低为零,这时气体的参数称为定熵滞止参数。

减缩喷管:当进入喷管的气体是M < 1的亚音速气流时,这种沿着气体流动方向喷管截面积逐渐缩小的喷管称为渐缩喷管。

渐扩喷管:当进入喷管的气体是M > 1的超音速气流时,这种沿气流方向喷管截面积逐渐扩大的喷管称为渐扩喷管。

缩放喷管:如需要将M < 1的亚音速气流增大到M > 1的超音速气流,则喷管截面积应由d f < 0逐渐转变为d f> 0,即喷管截面积应由逐渐缩小转变为逐渐扩大,这种喷管称为渐缩渐扩喷管,或简称缩放喷管,也称拉伐尔(Laval)喷管。

节流:节流过程是指流体(液体、气体)在管道中流经阀门、孔板或多孔堵塞物等设备时,由于局部阻力,使流体压力降低的一种特殊流动过程。这些阀门、孔板或多孔堵塞物称为节流元件。若节流过程中流体与外界没有热量交换,称为绝热节流,常常简称为节流。在热力设备中,压力调节、流量调节或测量流量以及获得低温流体等领域经常利用节流过程,而且由于流体与节流元件换热极少,可以认为是绝热节流。

冷效应区:在转回曲线与温度纵轴围成的区域内所有等焓线上的点恒有j > 0,发生在这个区域内的绝热节流过程总是使流体温度降低,称为冷效应区。

热效应区:在转回曲线之外所有等焓线上的点,其j < 0,发生在这个区域的微分绝热节流总是使流体温度升高,即压力降低d p,温度增高d T,称为热效应区。

喷管效率:是指实际过程气体出口动能与定熵过程气体出口动能的比值。

第十章动力循环

1.基本概念

热机:将热能转化为机械能的设备叫做热力原动机,简称热机。

动力循环:热机的工作循环称为动力循环。根据热机所用工质的不同,动力循环可分为蒸汽动力循环和燃气动力循环两大类。

奥托循环:定容加热理想循环是汽油机实际工作循环的理想化,又称为奥托循环。

狄塞尔(Diesel)循环:定压加热理想循环是柴油机实际工作循环的理想化。

燃气轮机:燃气轮机装置是一种以空气和燃气为工质、旋转式的热力发动机。燃气轮机装置主要由三部分组成,即燃气轮机、压气机和燃烧室。

第十一章制冷循环

1.基本概念

制冷:对物体进行冷却,使其温度低于周围环境的温度,并维持这个低温称为。

空气压缩式制冷:将常温下较高压力的空气进行绝热膨胀,获得低温低压的空气。

蒸汽喷射制冷循环:用引射器代替压缩机来压缩制冷剂,以消耗蒸汽的热能作为补偿来实现制冷的目的。蒸汽喷射制冷装置:由锅炉、引射器(或喷射器)、冷凝器、节流阀、蒸发器和水泵等组成。吸收式制冷:利用制冷剂液体气化吸热实现制冷,它是直接利用热能驱动,以消耗热能为补偿将热量从低温物体转移到环境中去。吸收式制冷采用的工质是两种沸点相差较大的物质组成的二元溶液,其中沸点低的物质为制冷剂,沸点高的物质为吸收剂。

热泵:是一种能源提升装置,以消耗一部分高位能(机械能、电能或高温热能等)为补偿,通过热力循环,把环境介质(水、空气、土壤)中贮存的不能直接利用的低位能量转换为可以利用的高位能。

影响制冷系数的主要因素:降低制冷剂的冷凝温度(即热源温度)和提高蒸发温度(冷源温度),都可使制冷系数增高。

南京师范大学《工程热力学》考试重点笔记.doc

南京师范大学《工程热力学》考试重点笔记专业课复习资料(最新版)封面 南京师范大学工程热力学第第 1 章基本概念本章基本要求:深刻理解热力系统、外界、热力平衡状态、准静态过程、可逆过程、热力循环的概念,掌握温度、压力、比容的物理意义,掌握状态参数的特点。本章重点:取热力系统,对工质状态的描述,状态与状态参数的关系,状态参数,平衡状态,状态方程,可逆过程。1. 1 热力系统一、热力系统热力系统一、热力系统系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。外界:与系统相互作用的环境。界面:假想的、实际的、固定的、运动的、变形的。依据:系统与外界的关系,系统与外界的作用:热交换、功交换、质交换。二、闭口系统和开口系统(按系统与外界有无物质交换)闭口系统:系统内外无物质交换,称控制质量。开口系统:系统内外有物质交换,称控制体积。三、绝热系统与孤立系统绝热系统:系统内外无热量交换 (系统传递的热量可忽略不计时,可认为绝热)孤立系统:系统与外界既无能量传递也无物质交换=系统+相关外界=各相互作用的子系统之和= 一切热力系统连同相互作用的外界 四、根据系统内部状况划分可压缩系统:由可压缩流体组成的系统。简单可压缩系统:与外界只有热量及准静态容积变化均匀系统:内部各部分化学成分和物理'性质都均匀一致的系统,是由单相组成的。非均匀系统:由两个或两个以上的相所组成的系统。单元系统:一种均匀的和化学成分不变的物质组成的系统。多元系统:由两种或两种以上物质组成的系统。单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。注意:系统的选取方法仅影响解决问题的繁复程度,与研究问题的结果无关。思考题:孤立系统一定是闭口系统吗。反之怎样。孤立系统一定不是开口的吗。孤立系统是否一定绝热。1 .2 工质的热力状态与状态参数一、状态与状态参数状态:工质的热力状态与状态参数一、状态与状态参数状态:热力系统中某瞬间表现的工质热力性质的总状况。状态参数:描述工质状态特性的各种状态的宏观物理量。如:温度(T)、压力(P)、比容()或密度()、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。状态参数的数学特性:1.1212x x dx 有关,而与状态变化的途径无关。2. dx =0 表明:状态参数的循环积分为零基本状态参数:可直接或间接地用仪表测量出来的状态参数。如:温度、压力、比容或密度1 .温度:宏观上,是描述系统热力平衡状况时冷热程度的物理量。微观上,是大量分子热运动强烈程度的量度BTw m22式中22w m分子平移运动的动能,其中 m 是一...

工程热力学第三版电子教案第10章自我测验题

第十章自我测验题 1、画出柴油机混合加热理想循环的p-v图和T-s图,写出该循环吸热量、放热量、净功量和热效率的计算式;并分析影响其热效率的因素有哪些,与热效率的关系如何? 2、画出汽油机定容加热理想循环的p-v图和T-s图,写出该循环吸热量、放热量、净功量和热效率的计算式,分析如何提高定容加热理想循环的热效率,是否受到限制? 3、柴油机的热效率高于汽油机的热效率其主要原因是什么? 4、怎样合理比较内燃机3种理想循环(混合加热循环、定容加压循环、定压加热循环)热效率的大小?比较结果如何? 5、画出燃气轮机装置定压加热理想循环的p-v图和T-s图。分析如何利用压气机绝热效率和燃气轮机相对内效率确定实际压气机出口的温度和实际燃气轮机出口的温度,怎样来提高定压加热实际循环的热效率? 6、燃气轮机装置定压加热实际循环采用回热的条件是什么?一旦可以采用回热,为什么总会带来循环热效率的提高? 7、朗肯循环的定压吸热是在________中进行的,绝热膨胀是在________中进行的,在冷凝器中发生的是________过程,在水泵中进行的是_______过程。 8、试将如图所示的蒸汽再热循环的状态点1、2、3、4、5、6及循环画在T-s图上。假设各状态点的状态参数已知,填空: 9、如图所示的一级抽汽回热(混合式)蒸汽理想循环,水泵功可忽略。试: (1)定性画出此循环的T-s图和h-s图;

(2)写出与图上标出的状态点符号相对应的焓表示的抽汽系数,输出净功,吸热量,放热量,热效率及汽耗率的计算式。 10、某气体依次经历绝热、定容、定压3个可逆过程完成循环。试在T-s图上判断该循环是热机循环还是制冷循环。 11、蒸气压缩制冷循环可以采用节流阀来代替膨胀机,空气压缩制冷循环是否也可以采用这种方法?为什么? 12、何谓制冷系数?何谓热泵系数?试用热力学原理说明能否利用一台制冷装置在冬天供暖。 13、一内燃机按定容加热理想循环工作,其进口状态为p1=98kPa,t1=60℃,压缩比为6,加入热量q1=879kJ/kg。工质视为空气,比热容为定值,试: (l)在p-v图和T-s图上画出该机的理想循环; (2)计算压缩终了温度、循环最高温度、循环放热量及循环热效率。 14、内燃机定压加热循环,工质视为空气,已知p1=100kPa,t1=70℃,压缩比为12, 。设比热容为定值,求循环的吸热量、放热量、循环净功量及循环热效率。 15、一内燃机混合加热循环,已知p1=103kPa,t1=22℃,压缩比为16,定压加热过程比体积的增量占整个膨胀过程的3%,循环加热量为801.8kJ/kg。求循环最高压力、最高温度及循环热效率。 16、一燃气轮机装置定压加热循环,工质视为空气,进入压气机时的温度p1=93kPa,t1=20℃,在绝热效率为0.83的压气机中被压缩到p2=552kPa。在燃烧室中吸热后温度上升到t3=870℃,经相对内效率为0.8的燃气轮机绝热膨胀到p4=93kPa。空气的质量流量为10 kg/s。设空气比热容为定值,试求: (l)循环的净功率; (2)循环热效率。 17、如图所示的一次再热和一级抽汽回热蒸汽动力理想循环,新蒸汽与再热蒸汽温度相同,回热器为表面式,疏水进人凝汽器,被加热水出口焓看作等于抽汽压力下的饱和水焓,水泵功可忽略。试:

工程热力学知识点总结

工程热力学大总结 '

… 第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 ) 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 } 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

工程热力学课后作业答案(第十一章)第五版 .

11-1空气压缩致冷装置致冷系数为2.5,致冷量为84600kJ/h ,压缩机吸入空气的压力为0.1MPa ,温度为-10℃,空气进入膨胀机的温度为20℃,试求:压缩机出口压力;致冷剂的质量流量;压缩机的功率;循环的净功率。 解:压缩机出口压力 1)12(1/)1(-= -k k p p ε 故:))1/(()11(12-+=k k p p ε=0.325 MPa 2 134p p p p = T3=20+273=293K k k p p T T /)1()3 4(34-==209K 致冷量:)41(2T T c q p -==1.01×(263-209)=54.5kJ/kg 致冷剂的质量流量==2q Q m 0.43kg/s k k p p T T /)1()1 2(12-==368K 压缩功:w1=c p (T2-T1)=106 kJ/kg 压缩功率:P1=mw1=45.6kW 膨胀功:w2= c p (T3-T4)=84.8 kJ/kg 膨胀功率:P2=mw2=36.5kW 循环的净功率:P=P1-P2=9.1 KW 11-2空气压缩致冷装置,吸入的空气p1=0.1MPa ,t1=27℃,绝热压缩到p2=0.4MPa ,经冷却后温度降为32℃,试计算:每千克空气的致冷量;致冷机消耗的净功;致冷系数。 解:已知T3=32+273=305K k k p p T T /)1()1 2(12-==446K k k p p T T /)1()34( 34-==205K 致冷量:)41(2T T c q p -==1.01×(300-205)=96kJ/kg 致冷机消耗的净功: W=c p (T2-T1)-c p (T3-T4)=46.5kJ/kg 致冷系数:==w q 2ε 2.06 11-3蒸气压缩致冷循环,采用氟利昂R134a 作为工质,压缩机进口状态为干饱和蒸气,蒸发温度为-20℃,冷凝器出口为饱和液体,冷凝温度为40℃,致冷工质定熵压缩终了时焓值为430kJ/kg ,致冷剂质量流量为100kg/h 。求:致冷系数;每小时的制冷量;所需的理论功率。 解:在lgp-h 图上查各状态点参数。 ,p1=0.133MPa h1=386kJ/kg s1=1.739 kJ/(kg ?K) ,p2=1.016 MPa h2=430 kJ/kg ,h3=419 kJ/kg h5=h4=256 kJ/kg

最新工程热力学思考题答案,第七章

第七章 气体与蒸汽的流动 7.1对改变气流速度起主要作用的是通道的形状还是气流本身的状态变化? 答:改变气流速度主要是气流本身状态变化,主要是压力变化直接导致流速的变 化。 7.2如何用连续性方程解释日常生活的经验:水的流通截面积增大,流速就降低? 答:日常生活中水的流动一般都为稳定流动情况11 221212f f m m m Ac A c q q q v v ====, 对于不可压缩流体水1v =2v ,故有流速和流通截面积成反比关系。 7.3在高空飞行可达到高超音速的飞机在海平面上是否能达到相同的高马赫数? 答:不能,因为速度和压比有个反比关系,当压比越大最大速度越小,高空时压 比小,可以达到高马赫数,海平面时压比增大,最大速度降低无法达到一样的高马赫数。 7.4当气流速度分别为亚声速和超声速时,下列形状的管道(图7-16)宜于作喷管还是宜于作扩压管? 答:气流速度为亚声速时图7-16中的1 图宜于作喷管,2 图宜于作扩压管,3 图 宜于作喷管。当声速达到超声速时时1 图宜于作扩压管,2 图宜于作喷管,3 图宜于作扩压管。4 图不改变声速也不改变压强。 7.5当有摩擦损耗时,喷管的流出速度同样可用2022()f c h h -无摩擦损耗时相同,那么摩擦损耗表现在哪里呢? 答:摩擦损耗包含在流体出口的焓值里。摩擦引起出口速度变小,出口动能的减 小引起出口焓值的增大。 7.6考虑摩擦损耗时,为什么修正出口截面上速度后还要修正温度? 答:因为摩擦而损耗的动能被气流所吸收,故需修正温度。 7.7考虑喷管内流动的摩擦损耗时,动能损失是不是就是流动不可逆损失?为什 么? 答:不是。因为其中不可逆还包括部分动能因摩擦损耗转化成热能,而热能又被 气流所吸收,所造成的不可逆。 7.8在图7-17 中图(a )为渐缩喷管,图(b ) 为缩放喷管。设两喷管的工作背压均为0.1MPa ,进口截面压力均为1 MPa ,进口流速1f c 可忽略不计。1)若两喷管的最小截面面积相等,问两喷管的流量、出口截面流速和压力是否相同?2) 假如沿截面2’-2’切去一段,将产生哪些后果?出口截面上的压力、流速和流

工程热力学(1)考试复习重点总结

第一章 基本概念及定义 一、填空题 1、热量与膨胀功都是 量,热量通过 差而传递热能,膨胀功通过 差传递机械能。 2、使系统实现可逆过程的条件是:(1) ,(2) 。 3、工质的基本状态参数有 、 、 。 4、热力过程中工质比热力学能的变化量只取决于过程的___________而与过程的路经无关。 5、热力过程中热力系与外界交换的热量,不但与过程的初终状态有关,而且与_______有关。 6、温度计测温的基本原理是 。 二、判断题 1、容器中气体的压力不变则压力表的读数也绝对不会改变。( ) 2、无论过程是否可逆,闭口绝热系统的膨胀功总是等于初、终态的内能差。( ) 3、膨胀功的计算式?= 2 1 pdv w ,只能适用于可逆过程。 ( ) 4、系统的平衡状态是指系统在无外界影响的条件下(不考虑外力场作用),宏观热力性质不随时间而变化的状态。( ) 5、循环功越大,热效率越高。( ) 6、可逆过程必是准静态过程,准静态过程不一定是可逆过程。( ) 7、系统内质量保持不变,则一定是闭口系统。( ) 8、系统的状态参数保持不变,则系统一定处于平衡状态。( ) 9、孤立系统的热力状态不能发生变化。( ) 10、经历一个不可逆过程后,系统和外界的整个系统都能恢复原来状态。( ) 三、选择题 1、闭口系统功的计算式21u u w -=( )。 (A )适用于可逆与不可逆的绝热过程 (B )只适用于绝热自由膨胀过程 (C )只适用于理想气体绝热过程 (D )只适用于可逆的绝热过程 2、孤立系统是指系统与外界( )。 (A )没有物质交换 (B )没有热量交换 (C )没有任何能量交换 (D )没有任何能量传递与质交换 3、绝热系统与外界没有( )。 (A )没有物质交换 (B )没有热量交换 (C )没有任何能量交换 (D )没有功量交换

工程热力学复习重点及简答题

工程热力学复习重点2012. 3 绪论 [1]理解和掌握工程热力学的研究对象、主要研究内容和研究方法 [2]理解热能利用的两种主要方式及其特点 [3]了解常用的热能动力转换装置的工作过程 1.什么是工程热力学 从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。 2.能源的地位与作用及我国能源面临的主要问题 3. 热能及其利用 [1]热能:能量的一种形式 [2]来源:一次能源:以自然形式存在,可利用的能源。 如风能,水力能,太阳能、地热能、化学能和核能等。 二次能源:由一次能源转换而来的能源,如机械能、机械能等。 [3]利用形式: 直接利用:将热能利用来直接加热物体。如烘干、采暖、熔炼(能源消耗比例大) 间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能, 4..热能动力转换装置的工作过程 5.热能利用的方向性及能量的两种属性 [1]过程的方向性:如:由高温传向低温 [2]能量属性:数量属性、,质量属性(即做功能力) [3]数量守衡、质量不守衡 [4]提高热能利用率:能源消耗量与国民生产总值成正比。 第1章基本概念及定义 1. 1 热力系统 一、热力系统 系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。 外界:与系统相互作用的环境。 界面:假想的、实际的、固定的、运动的、变形的。 依据:系统与外界的关系 系统与外界的作用:热交换、功交换、质交换。 二、闭口系统和开口系统 闭口系统:系统内外无物质交换,称控制质量。 开口系统:系统内外有物质交换,称控制体积。 三、绝热系统与孤立系统 绝热系统:系统内外无热量交换(系统传递的热量可忽略不计时,可认为绝热) 孤立系统:系统与外界既无能量传递也无物质交换

工程热力学思考题答案,第二章

第二章热力学第一定律 1.热力学能就是热量吗? 答:不是,热是能量的一种,而热力学能包括内位能,内动能,化学能,原子能,电磁能,热力学能是状态参数,与过程无关,热与过程有关。 2.若在研究飞机发动机中工质的能量转换规律时把参考坐标建在飞 机上,工质的总能中是否包括外部储能?在以氢氧为燃料的电池系统中系统的热力学能是否包括氢氧的化学能? 答:不包括,相对飞机坐标系,外部储能为0; 以氢氧为燃料的电池系统的热力学能要包括化学能,因为系统中有化学反应 3.能否由基本能量方程得出功、热量和热力学能是相同性质的参数 结论? 答:不会,Q U W ?为热力学能的差值,非热力学能,热=?+可知,公式中的U 力学能为状态参数,与过程无关。 4.刚性绝热容器中间用隔板分为两部分,A 中存有高压空气,B 中保持真空,如图2-1 所示。若将隔板抽去,分析容器中空气的热力学能如何变化?若隔板上有一小孔,气体泄漏入 B 中,分析A、B 两部分压力相同时A、B 两部分气体的热力学能如何变化? 答:将隔板抽去,根据热力学第一定律q u w w=所以容 =?+其中0 q=0 器中空气的热力学能不变。若有一小孔,以B 为热力系进行分析

2 1 2 2 222111()()22f f cv j C C Q dE h gz m h gz m W δδδδ=+++-+++ 只有流体的流入没有流出,0,0j Q W δδ==忽略动能、势能c v l l d E h m δ=l l dU h m δ=l l U h m δ?=。B 部分气体的热力学能增量为U ? ,A 部分气体的热力学能减少量为U ? 5.热力学第一定律能量方程式是否可以写成下列两种形式: 212121()()q q u u w w -=-+-,q u w =?+的形式,为什么? 答:热力学第一定律能量方程式不可以写成题中所述的形式。对于 q u w =?+只有在特殊情况下,功w 可以写成pv 。热力学第一定律是一个针对任何情况的定律,不具有w =pv 这样一个必需条件。对于公式212121()()q q u u w w -=-+-,功和热量不是状态参数所以不能写成该式的形式。 6.热力学第一定律解析式有时写成下列两种形式: q u w =?+ 2 1 q u pdV =?+? 分别讨论上述两式的适用范围. 答: q u w =?+适用于任何过程,任何工质。 2 1 q u pdV =?+? 可逆过程,任何工质 7.为什么推动功出现在开口系能量方程式中,而不出现在闭口系能量

工程热力学第二章整理知识点第三版

工程热力学第三版 沈维道蒋智敏童钧耕合编 第二章热力学第一定律 热力学第一定律(能量守恒与转换定律):自然界中的一切物质都具有能量, 能量不可能被创造, 也不可能被消灭;但能量可以从一种形态转变为另一种形态,且在能量的转化过程中能量的总量保持不变。它确定了热力 过程中热力系与外界进行能量交换时,各种形态能量数量上的守恒关系。 能量是物质运动的度量。分子运动学说阐明了热能是组成物质的分子、原子等微粒的杂乱运动———热运动的能量。 根据气体分子运动学说,热力学能是热力状态的单值函数。在一定的热 力状态下, 分子有一定的均方根速度和平均距离, 就有一定的热力学能, 而与达到这一热力状态的路径无关,因而热力学能是状态参数。由于气体的热力状态可由两个独立状态参数决定, 所以热力学能一定是两个独立状态参数的函数,如: u = f( T, v) 或 u = f( T, p) ; u = f( p, v)

能量传递方式:作功和传热。作功来传递能量总是和物体的宏观位移有关。 功的形式除了膨胀功或压缩功这类与系统的界面移动有关的功外, 还有因工质在开口系统中流动而传递的功, 这种功叫做推动功。对开口系统进行功的计算时需要考虑这种功。 开口系统和外界之间功的交换。 取燃气轮机为一开口系统,当1 kg工质从截面 1 - 1 流入该热力系时, 工质带入系统的 推动功为 p 1 v 1 , 工质在系统中进行膨胀, 由状态 1 膨胀到状态 2, 作膨胀功 w, 然后从截面 2 - 2 流出, 带出系统的推动功为 p 2 v 2 。推动功差 Δ( pv) = p 2 v 2 - p 1 v 1 是系统为维持工质流动所需的功,称为流动功(系统为维持工质流动所需的功)。在不考虑工质的动能及位能变化时,开口系与外界交换的功量是膨胀功与流动功之差w - ( p 2 v 2

工程热力学第三版电子教案第10章

第10章动力循环及制冷循环 10.1本章基本要求 (101) 10.2 例题 (101) 10.3 思考及练习题 (107) 10.4自测题 (110)

10.1本章基本要求 1.熟练掌握水蒸气朗肯循环、回热循环、再热循环以及热电循环的组成、热效率计算及提高热效率的方法和途径。 2.熟练空气和蒸汽压缩制冷循环的组成、制冷系数的计算及提高制冷系数的方法和途径。 3.了解吸收制冷、蒸汽喷射制冷及热泵的原理。 10.2 例题 例1:某朗肯循环的蒸汽参数取为1t =550C 0 ,1p =30bar ,2p =0.05bar 。试计算1) 水泵所消耗的功量,2) 汽轮机作功量, 3) 汽轮机出口蒸汽干度, 4) 循环净功, 5) 循环热效率。 解:根据蒸汽表或图查得1、2、3、4各状态点的焓、熵值: 1h =3568.6KJ/kg 1s =7.3752kJ/kgK 2h =2236kJ/kg 2s =7.3752kJ/kgK 3h =137.8kJ /kg 3s =0.4762kJ/kgK 4h =140.9kJ/kg 则 1) 水泵所消耗的功量为 34h h w p -==140.9-137.78=3.1kJ/kg 2) 汽轮机作功量 21h h w t -==3568.6-2236=1332.6kJ/kg 3) 汽轮机出口蒸汽干度

2p =0.05bar 时的'2s =0.4762kJ/kgK "2s =8.3952kJ/kgK. 则 =--=' 2 "2' 2 2s s s s x 0.87 或查h-s 图可得 x =0.87. 4) 循环净功 p T w w w -=0=1332.6-3.1=1329.5kJ/kg 5) 循环热效率 411h h q -= =3568.6-140.9=3427.7KJ/kg 故 1 q w T = η =0.39=39% (i )p 3a =6.867bar ,t 3a =490℃ 水泵的功8.0)(12÷-=p p v w a p =0.001(686.7-9.81)÷0.8=0.846kJ/kg w net =923.57-0.846=922.72kJ/kg (ii) p 3b =58.86 bar ,t 3b =490℃ 水泵的功8.0)(12÷-=p p v w b p =0.001(5886-9.81)÷0.8=7.34 kJ/kg w net =1057.5-7.34=1050.16 kJ/kg

工程热力学基本概念及重要公式

工程热力学基本概念及 重要公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第一章基本概念1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。 广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。

工程热力学课后题答案

习题及部分解答 第一篇 工程热力学 第一章 基本概念 1. 指出下列各物理量中哪些是状态量,哪些是过程量: 答:压力,温度,位能,热能,热量,功量,密度。 2. 指出下列物理量中哪些是强度量:答:体积,速度,比体积,位能,热能,热量,功量,密度。 3. 用水银差压计测量容器中气体的压力,为防止有毒的水银蒸汽产生,在水银柱上加一段水。若水柱高 mm 200,水银柱高mm 800,如图2-26所示。已知大气压力为mm 735Hg ,试求容器中气体的绝对压力为多少kPa ?解:根据压力单位换算 kPa p p p p kPa Pa p kPa p Hg O H b Hg O H 6.206)6.106961.1(0.98)(6.10610006.132.133800.96.110961.180665.92002253=++=++==?=?==?=?= 4. 锅炉烟道中的烟气常用上部开口的斜管测量,如图2-27所示。若已知斜管倾角 30=α,压力计中 使用3/8.0cm g =ρ 的煤油,斜管液体长度mm L 200=,当地大气压力MPa p b 1.0=,求烟 气的绝对压力(用MPa 表示)解: MPa Pa g L p 6108.7848.7845.081.98.0200sin -?==???==α ρ MPa p p p v b 0992.0108.7841.06=?-=-=- 5.一容器被刚性壁分成两部分,并在各部装有测压表计,如图2-28所示,其中C 为压力表,读数为 kPa 110,B 为真空表,读数为kPa 45。若当地大气压kPa p b 97=,求压力表A 的读数(用kPa 表示) kPa p gA 155= 6. 试述按下列三种方式去系统时,系统与外界见换的能量形式是什么。 (1).取水为系统; (2).取电阻丝、容器和水为系统; (3).取图中虚线内空间为系统。 答案略。 7.某电厂汽轮机进出处的蒸汽用压力表测量,起读数为MPa 4.13;冷凝器内的蒸汽压力用真空表测量,其读数为mmHg 706。若大气压力为MPa 098.0,试求汽轮机进出处和冷凝器内的蒸汽的绝对压力(用MPa 表示) MPa p MPa p 0039.0;0247.021== 8.测得容器的真空度 mmHg p v 550=,大气压力 MPa p b 098.0=,求容器内的绝对压力。若大气

工程热力学第三版答案【英文】第11章

11-13 An ideal vapor-compression refrigeration cycle with refrigerant-134a as the working fluid is considered. The rate of heat removal from the refrigerated space, the power input to the compressor, the rate of heat rejection to the environment, and the COP are to be determined. Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. Analysis (a ) In an ideal vapor-compression refrigeration cycle, the compression process is isentropic, the refrigerant enters the compressor as a saturated vapor at the evaporator pressure, and leaves the condenser as saturated liquid at the condenser pressure. From the refrigerant tables (Tables A-12 and A-13), ()()throttling kJ/kg 82.88kJ/kg 82.88liquid sat.MP a 7.0C 95.34kJ/kg 50.273MP a 7.0K kJ/kg 94779.0kJ/kg 97.236 vapor sat.kP a 12034MPa 7.0 @ 3322122kPa 120 @ 1kPa 120 @ 11=?==? ?? =?==??? ==?====???=h h h h P T h s s P s s h h P f g g Then the rate of heat removal from the refrigerated space and the power input to the compressor are determined from and ()()()()()()kW 1.83kW 7.41=-=-==-=-=kJ/kg 236.97273.50kg/s 0.05kJ/kg 82.8897.236kg/s 0.0512in 41h h m W h h m Q L (b ) The rate of heat rejection to the environment is determined from kW 9.23=+=+=83.141.7in W Q Q L H (c ) The COP of the refrigerator is determined from its definition, 4.06===kW 1.83kW 7.41COP in R W Q L 11-15 An ideal vapor-compression refrigeration cycle with refrigerant-134a as the working fluid is considered. The throttling valve in the cycle is replaced by an isentropic turbine. The percentage increase in the COP and in the rate of heat removal from the refrigerated space due to this replacement are to be determined. s

工程热力学思考题答案,第一章.

第 一 章 基本概念与定义 1.闭口系与外界无物质交换,系统内质量保持恒定,那么系统内质量保持恒定的热力系一定是闭口系统吗? 答:不一定。稳定流动开口系统内质量也可以保持恒定。 2.有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系统不可能是绝热系。对不对,为什么? 答:这种说法是不对的。工质在越过边界时,其热力学能也越过了边界。但热力学能不是热量,只要系统和外界没有热量地交换就是绝热系。 3.平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系? 答:只有在没有外界影响的条件下,工质的状态不随时间变化,这种状态称之为平衡状态。稳定状态只要其工质的状态不随时间变化,就称之为稳定状态,不考虑是否在外界的影响下,这是他们的本质区别。平衡状态并非稳定状态之必要条件。 物系内部各处的性质均匀一致的状态为均匀状态。平衡状态不一定为均匀状态,均匀并非系统处于平衡状态之必要条件。 4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?绝对压力计算公式b e p p p =+()e p p >, b e p p p =-()e p p <中,当地大气压是否必定是环境大气压? 答:压力表的读数可能会改变,根据压力仪表所处的环境压力的改变而改变。当地大气压不一定是环境大气压。环境大气压是指压力仪表所处的环境的压力。 5.温度计测温的基本原理是什么? 答:选作温度计的感应元件的物体应具备某种物理性质随物体的冷热程度不同有显著的变化。有两个系统分别和第三个系统处于热平衡,则两个系统彼此必然处于热平衡。 6.经验温标的缺点是什么?为什么? 答:任何一种经验温标不能作为度量温度的标准。由于经验温标依赖于测温物质的性质,当选用不同测温物质的温度计、采用不同的物理量作为温度的标志来测量温度时,除选定为基准点的温度,其他温度的测定值可能有微小的差异。 7.促使系统状态变化的原因是什么?举例说明 答:系统内部各部分之间的传热和位移或系统与外界之间的热量的交换与功的交换都是促使系统状态变。 8.分别以图参加公路的自行车赛车运动员、运动手枪中的压缩空气、杯子内的热水和正在运行的电视机为研究对象,说明这是什么系统。 答:赛车运动员因为有呼吸有物质交换,运动员 对自行车作功,因此有能量交换,因此赛车运动 员是开口系统。压缩空气只有对子弹作功,因此 为闭口系统。杯子内的热水对外既有能量交换又 有物质交换,因此为开口系统,正在运行的电视 机有能量交换物物质交换,因此为闭口系统 9.家用加热电器是利用电加热水的家用设备,通常其表面散热可忽略。取正在使用的家用电热水器为控制体(不包括电机热器),这是什么系统?把电加热器包括在研究对象内,是什么系统?什么情况下构成孤立的系统? 答:仅仅考虑电热水器为控制体,因有盖,不能与外界进行物质交换但与电机热器有热交换,因此是闭口系统。将电加热器包括在内,无热量交换因此是绝热过程。如果电加热器内电流非外部,而是用电池,即可认为绝热系统。 10.分析汽车动力系统与外界的质能交换情况? 答:汽车发动机有吸气,压缩,作功,排气四个过程,因此吸气过程吸 收外界的空气,过程中既有物质的进入,也有随物质进入带入的能量。压缩后喷油点火,这个过程中压缩点火为能量交换,喷油为物质交换。

工程热力学思考题答案,第十一章

第十一章 制冷循环 1、家用冰箱的使用说明书上指出,冰箱应放置在通风处,并距墙壁适当距离,以及不要把冰箱温度设置过低,为什么? 答:为了维持冰箱的低温,需要将热量不断地传输到高温热源(环境大气),如果冰箱传输到环境大气中的热量不能及时散去,会使高温热源温度升高,从而使制冷系数降低,所以为了维持较低的稳定的高温热源温度,应将冰箱放置在通风处,并距墙壁适当距离。 在一定环境温度下,冷库温度愈低,制冷系数愈小,因此为取得良好的经济效益,没有必要把冷库的温度定的超乎需要的低。 2、为什么压缩空气制冷循环不采用逆向卡诺循环? 答:由于空气定温加热与定温放热不易实现,故不能按逆向卡诺循环运行。在压缩空气制冷循环中,用两个定压过程来代替逆向卡诺循环的两个定温过程。 3、压缩蒸气制冷循环采用节流阀来代替膨胀机,压缩空气制冷循环就是否也可以采用这种方法?为什么? 答:压缩空气制冷循环不能采用节流阀来代替膨胀机。工质在节流阀中的过程就是不可逆绝热过程,不可逆绝热节流熵增大,所以不但减少了制冷量也损失了可逆绝热膨胀可以带来的功量。而压缩蒸气制冷循环在膨胀过程中,因为工质的干度很小,所以能得到的膨胀功也极小。而增加一台膨胀机,既增加了系统的投资,又降低了系统工作的可靠性。因此,为了装置的简化及运行的可靠性等实际原因采用节流阀作绝热节流。 4、压缩空气制冷循环的制冷系数、循环压缩比、循环制冷量三者之间的关系如何? 答: 压缩空气制冷循环的制冷系数为:()() 142314-----o o net k o q q h h w q q h h h h ε=== (a) (b) 压缩空气制冷循环状态参数图

工程热力学第10章答案

第10章 制冷循环 第10章 制冷循环 10-1 在商业上还用“冷吨”表示制冷量的大小,1“冷吨”表示1吨0℃的水在24小时冷冻到0℃冰所需要的制冷量。证明1冷吨=3.86kJ/s 。已知在1标准大气压下冰的融化热为333.4kJ/kg 。 解:1冷吨=333.4 kJ/kg ×1吨/24小时=333.4×1000/(24×3600) kJ/s=3.86kJ/s 压气机入口T 1= 263.15K 压气机出口 K T T k k 773.4165 15.2634 .114.1112=×==??π 冷却器出口T 3=293.15K 膨胀机出口 K T T k k 069.1855 15.2934 .114.113 4=== ??π 制冷量 ()()kg kJ T T c q p c /393.78069.18515.263004.141=?×=?= 制冷系数

第10章 制冷循环 ()()()() 71.1069.18515.26315.293773.416069 .18515.263413241=????=????== T T T T T T w q net c ε 10-4 压缩空气制冷循环中,压气机和膨胀机的绝热效率均为0.85。若放热过程的终温为20℃,吸热过程的终温为0℃,增压比π=3,空气可视为定比热容的理想气体,c p =1.004kJ/(kg·K ),k =1.4。求:(1)画出此制冷循环的T-s 图;(2)循环的平均吸热温度、平均放热温度和制冷系数。 433'4循环的平均吸热温度 ()K T T T T s q T c c 887.248986.22515.273ln 986.22515.273ln 41 41 1 4=?=?=?= ′′′ 循环的平均放热温度 ()K T T T T s q T 965.33915.293638.391ln 15.293638.391ln 3 232230 0=?=?=?= ′′′

工程热力学思考题答案,第十二章

工程热力学思考题答案, 第十二章 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

第十二章 理想气体混合物及湿空气 1.处于平衡状态的理想气体混合气体中,各种组成气体可以各自互不影响地充满整个体积,他们的行为可以与它们各自单独存在时一样,为什么 答:混合气体的热力学性质取决于各组成气体的热力学性质及成分,若各组成气体全部处在理想气体状态,则其混合物也处在理想气体状态,具有理想气体的一切特性。 2.理想气体混合物中各组成气体究竟处于什么样的状态 答:若各组成气体全部处在理想气体状态,遵循状态方程pV nRT =。 3.道尔顿分压定律和亚美格分体积定律是否适用于实际气体混合物 答:否。只有当各组成气体的分子不具有体积,分子间不存在作用力时,处于混合状态的各组成气体对容器壁面的撞击效果如同单独存在于容器时的一样,这时道尔顿分压力定律和亚美格分体积定律才成立,所以道尔顿分压定律和亚美格分体积定律只适用于理想气体混合物。 4.混合气体中如果已知两种组分A 和B 的摩尔分数x A >x B ,能否断定质量分数也是 ωA >ωB 答:否。i i i eq x M M ω=?,质量分数还与各组分的摩尔质量有关。 5.可以近似认为空气是1 mol 氧气和 mol 氮气混合构成(即x O2=、x N2=),所以 MPa 、20°C的 mol 空气的熵应是 MPa 、20°C的1 mol 氧气的熵和 MPa 、20°C的 mol 氮气熵的和,对吗为什么 答:不对。计算各组分熵值时,应该使用分压力,即(,)i i s f T p =。 6.为什么混合气体的比热容以及热力学能、焓和熵可由各组成气体的性质及其在混合气体中的混合比例来决定混合气体的温度和压力能不能由同样方法确定 答:根据比热容的定义,混合气体的比热容是1kg 混合气体温度升高1°C所需热量。理想气体混合物的分子满足理想气体的两点假设,各组成气体分子的运动不因存在其他气体而受影响。混合气体的热力学能、焓和熵都是广延参数,具有可加性。所以混合气体的比热容以及热力学能、焓和熵可由各组成气体的性质及其在混合气体中的混合比例来决定。 混合气体的温度和压力是强度参数,不能由同样方法确定。 7.为何阴雨天晒衣服不易干,而晴天则容易干 答:阴雨天空气的湿度大,吸取水蒸气的能力差,所以晒衣服不易干。晴天则恰恰相反,所以容易干。

工程热力学思考题标准答案,第十一章.docx

第十一章制冷循环 1.家用冰箱的使用说明书上指出,冰箱应放置在通风处,并距墙壁适当距离,以及不要把冰箱温度设置过低,为什么? 答:为了维持冰箱的低温,需要将热量不断地传输到高温热源(环境大气),如 果冰箱传输到环境大气中的热量不能及时散去,会使高温热源温度升高,从而使制冷系数降低,所以为了维持较低的稳定的高温热源温度,应将冰箱放置在通风处,并距墙壁适当距离。 在一定环境温度下,冷库温度愈低,制冷系数愈小,因此为取得良好的经 济效益,没有必要把冷库的温度定的超乎需要的低。 2.为什么压缩空气制冷循环不采用逆向卡诺循环? 答:由于空气定温加热和定温放热不易实现,故不能按逆向卡诺循环运行。在压缩空气制冷循环中,用两个定压过程来代替逆向卡诺循环的两个定温过程。 3.压缩蒸气制冷循环采用节流阀来代替膨胀机,压缩空气制冷循环是否也可以采用这种方法?为什么? 答:压缩空气制冷循环不能采用节流阀来代替膨胀机。工质在节流阀中的过程是不可逆绝热过程,不可逆绝热节流熵增大,所以不但减少了制冷量也损失了可逆绝热膨胀可以带来的功量。而压缩蒸气制冷循环在膨胀过程中,因为工质的干度很小,所以能得到的膨胀功也极小。而增加一台膨胀机,既增加了系统的投资,又降低了系统工作的可靠性。因此,为了装置的简化及运行的可靠性等实际原因采用节流阀作绝热节流。 4.压缩空气制冷循环的制冷系数、循环压缩比、循环制冷量三者之间的关系如 何? 答: p T2 7 3235T0 8 61T c 49 41 O v O4′ 9′1′s ( a)( b) 压缩空气制冷循环状态参数图

压缩空气制冷循环的制冷系数为: q o q o h1 - h4 w net q k - q o h2 - h3 - h1 - h4 空气视为理想气体,且比热容为定值,则: T1T4 T2T3T1 T4 循环压缩比为: p2 p1 k 1 T2k T3 过程 1-2 和3-4 都是定熵过程,因而有:P2 T1P1T4 1 代入制冷系数表达式可得: k 1 k1 由此式可知,制冷系数与增压比有关。循环压缩比愈小,制冷系数愈大,但是循 环压缩比减小会导致膨胀温差变小从而使循环制冷量减小,如图(b)中循环 1-7-8-9-1 的循环压缩比较循环 1-2-3-4-1 的小,其制冷量(面积 199′1′1)小于循环 1-2-3-4-1 的制冷量(面积 144′1′1)。 5.压缩空气制冷循环采用回热措施后是否提高其理论制冷系数?能否提高其实 际制冷系数?为什么? 答:采用回热后没有提高其理论制冷系数但能够提高其实际制冷系数。因为采用回热后工质的压缩比减小,使压缩过程和膨胀过程的不可逆损失的影响减小,因此提高实际制冷系数。 6.按热力学第二定律,不可逆节流必然带来做功能力损失,为什么几乎所有的压缩蒸气制冷装置都采用节流阀? 答:压缩蒸气制冷循环中,湿饱和蒸气在绝热膨胀过程中,因工质中液体的含量很大,故膨胀机的工作条件很差。为了简化设备,提高装置运行的可靠性,所以采用节流阀。 7. 参看图5 ,若压缩蒸汽制冷循环按1-2-3-4-8-1 运行,循环耗功量没有变化,仍为 h2-h1 ,而制冷量却从 h1-h 5. 增大到 h1-h 8,显见是“有利”的。这种考虑可行么?为什么? 答:过程 4-8 熵减小,必须放热才能实现。而 4 点工质温度为环境温度 T0,要想放热达到温度T c(8点),必须有温度低于T c的冷源,这是不存在的。( 如果有,就不必压缩制冷了 ) 。 8. 作制冷剂的物质应具备哪些性质?你如何理解限产直至禁用氟利昂类工质, R11、 R12? 如 答:制冷剂应具备的性质:对应于装置的工作温度,要有适中的压力;在工作温度下气化潜热要大;临界温度应高于环境温度;制冷剂在 T-s 图上的上下界限线要陡峭;工质的三相点温度要低于制冷循环的下限温度;比体积要小;传热特性

相关主题
文本预览
相关文档 最新文档