当前位置:文档之家› 2.位错的弹性应力场

2.位错的弹性应力场

应力与应变关系

一、应力与应变 1、应力 在连续介质力学里,应力定义为单位面积所承受的作用力。 通常的术语“应力”实际上是一个叫做“应力张量” (stress tensor)的二阶张量。 概略地说,应力描述了连续介质内部之间通过力(而且是通过近距离接触作用力)进行相互作用的强度。 具体说,如果我们把连续介质用一张假想的光滑曲面把它一分为二,那么被分开的这两部分就会透过这张曲面相互施加作用力。 很显然,即使在保持连续介质的物理状态不变的前提下,这种作用力也会因为假想曲面的不同而不同,所以,必须用一个不依赖于假想曲面的物理量来描述连续介质内部的相互作用的状态。 对于连续介质来说,担当此任的就是应力张量,简称为应力。 2、应变 应变在力学中定义为一微小材料元素承受应力时所产生的单位长度变形量。因此是一个无量纲的物理量。 在直杆模型中,除了长度方向由长度改变量除以原长而得“线形变”,另外,还定义了压缩时以截面边长(或直径)改变量除以原边长(或直径)而得的“横向应变”。 对大多数材料,横向应变的绝对值约为线应变的绝对值的三分之一至四分之一,二者之比的绝对值称作“泊松系数”。 3、本构关系 应力与应变的关系我们叫本构关系(物理方程)。E σε=(应力=弹性模量*应变) 4、许用应力(allowable stress ) 机械设计或工程结构设计中允许零件或构件承受的最大应力值。要判定零件或构件受载后的工作应力过高或过低,需要预先确定一个衡量的标准,这个标准就是许用应力。 凡是零件或构件中的工作应力不超过许用应力时,这个零件或构件在运转中是安全的,否则就是不安全的。 许用应力等于考虑各种影响因素后经适当修正的材料的失效应力除以安全系数。 失效应力为:静强度设计中用屈服极限(yield limit )或强度极限(strength limit );疲劳强度设计中用疲劳极限(fatigue limit )。 5、许用应力、失效应力及安全系数之间关系 塑性材料(大多数结构钢和铝合金)以屈服极限为基准,除以安全系数后得许用应力,即[]()/ 1.5~2.5s n n σσ==。(许用应力=屈服极限/安全系数) 脆性材料(铸铁和高强钢)以强度极限为基准,除以安全系数后得许用应力, 即[]()/2~5b n n σσ==。(许用应力=强度极限/安全系数) 表3机床静力学分析结果总结

应力应变关系

1.应力 物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并试图使物体从变形后的位置恢复到变形前的位置。 在所考察的截面某一点单位面积上的内力称为应力。同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。 应力仪或者应变仪是来测定物体由于内应力的仪器。一般通过采集应变片的信号,而转化为电信号进行分析和测量。 方法是:将应变片贴在被测定物上,使其随着被测定物的应变一起伸缩,这样里面的金属箔材就随着应变伸长或缩短。很多金属在机械性地伸长或缩短时其电阻会随之变化。应变片就是应用这个原理,通过测量电阻的变化而对应变进行测定。一般应变片的敏感栅使用的是铜铬合金,其电阻变化率为常数,与应变成正比例关系。 通过惠斯通电桥,便可以将这种电阻的比例关系转化为电压。然后不同的仪器,可以将这种电压的变化转化成可以测量的数据。 对于应力仪或者应变仪,关键的指标有:测试精度,采样速度,测试可以支持的通道数,动态范围,支持的应变片型号等。并且,应力仪所配套的软件也至关重要,需要能够实时显示,实时分析,实时记录等各种功能,高端的软件还具有各种信号处理能力。另外,有一些仪器是通过光谱,膜片等原理设计的。 应力的单位:应力的单位是Pa,简称帕(这是为了纪念法国科学家帕斯卡Blaise· pascal而命名的),即牛顿/平方米(N/ ㎡)。 2.应变 物体在受到外力作用下会产生一定的变形,变形的程度称应变。应变有正应变(线应变),切应变(角应变)及体应变。正应变公式为 ,式中l是变形的前长度,Δl是其变形后的伸长量。 应变单位:应变是形变量与原来尺寸的比值,用ε表示,即ε=ΔL/L,无量纲,常用百分数表示。 3.弹性模量 一般地讲,对弹性体施加一个外界作用,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。又称杨氏模量,弹性材料的一种最重要、最具特征的力学性质,是物体弹性变形难易程度的表征,用E表示。定义为理想材料有小

应力应变关系

应力应变关系 我所认识的应力应变关系 一在前面两章的分别学习了关于应力与应变的学习,第三章的本构关系讲述了应力与应变的关系从而构成了弹塑性力学的本构关系。 在单向应力状态下,理想的弹塑性材料的应力应变关系及其简单满足胡克定律即 ,E ,,XX 在三维应力状态下需要9个分量,即应力应变需要9个分量,于是可以把单向应力应变关系推广到三维应力状态,及推广到广义的胡克定律 本式应该是91个应变分量单由于切应力互等定理,此时后面的三个应力与式中的切应力想等即现在剩余36个应变分量。 (1)具有一个弹性对称面的线弹性体的应力应变公式如下

(2)正交各向异性弹性体的弹塑性体公式如下 (3)各向同性弹性体的本构方程 各向同性弹性体在弹性状态下,主应力方向与主应变方向重合容易证明。在主应变空间里,由于应变主轴与应力主轴重合,各向同性弹性体体内任意一点的应力和应变之间满足: ,,,,,,,CCCxxyz111213 ,,,,,,,CCCyxyz212223 ,,,,,,,CCCzxyz313233 (2-3) ,,,,,,yyxzxz对的影响与对以及对的影响是相同的,即有 ,CCC==,CC=CC=,y112233x12132123z;和对的影响相同,即,同理有和CC=3132等,则可统一写为: CCCa==,112233 CCCCCCb=====,122113312332 (2-4) 所以在主应变空间里,各向同性弹性体独立的弹性常数只有2个。在任意的坐标系中,同样可以证明弹性体独立的弹性参数只有2个。 广义胡可定律如下式 ,,xy1,,,,,,,,,,,[()]xy,xxyz,2GE,,,,1,yz, ,,,[()],,,,,,,,yzyyxz 2GE,,

位错的弹性性质(考试重要)

2.4位错的弹性性质 位错的弹性性质是位错理论的核心与基础。它考虑的是位错在晶体中引起的畸变的分布及其能量变化。处理位错的弹性性质有若干种方法,主要的有:连续介质方法、点阵离散方法等。从理论发展和取得的效果来看,连续介质模型发展得比较成熟。我们仅介绍位错连续介质模型考虑问题的方法和计算结果,详细的数学推导不作介绍,有兴趣的同学可进一步阅读教学参考书。 一、位错的连续介质模型 早在1907年,伏特拉(Volterra)等在研究弹性体形变时,提出了连续介质模型。位错理论提出来后,人们借用它来处理位错的长程弹性性质问题。1.位错的连续介质模型基本思想 将位错分为位错心和位错心以外两部分。在位错中心附近,因为畸变严重,要直接考虑晶体结构和原子间的相互作用。问题变得非常复杂,因而,在处理位错的能量分布时,将这一部分忽略。在远离位错中心的区域,畸变较小,可视作弹性变形区,简化为连续介质。用线性弹性理论处理。即位错畸变能可以通过弹性应力场和应变的形式表达出来。对此,我们仅作一般性的了解。2.应力与应变的表示方法(1)应力分量 如图1所示。物体中任意一点可以抽象为一个小立方体,其应力状态可用9个应力分量描述。它们是: 图1物体中一受力单元的应力分析 σxx σxy σxz σyx σyy σyz σzx σzy σzz 其中,角标的第一个符号表示应力作用面的外法线方向,第二个下标符号表示该应力的指向。如σxy 表示作用在与yoz 坐标面平行的小平面上,而指向y 方向的力,显而易见,它表示的是切应力分量。同样的分析可以知道:σxx ,σyy ,σzz 3个分量表示正应力分量,而其余6个分量全部是切应力分量。平衡状态时,为了保持受力物体的刚性,作用力分量中只有6个是独立的,它们是:σxx ,σyy ,σzz ,σxy ,σxz 和σyz ,而σxy =σyx ,σxz =σzx ,σyz =σzy 。同样在柱面坐标系中,也有6个独立的应力分量:σrr ,σθθ,σzz ,σrθ,σrz ,σθz 。(2)应变分量

第一章:位错理论

第一章 位错理论(补充和扩展) 刃位错应力场: 22222)() 3()1(2y x y x y Gb x ++-- =νπσ 2 2222)() ()1(2y x y x y Gb y +--= νπσ )(y x z σσνσ+= 22222)()()1(2y x y x x Gb yx xy +--= =νπττ 滑移面: x Gb yx xy 1 )1(2νπττ-= = 攀移面 y Gb x 1 )1(2νπσ--= 螺位错应力场: r Gb z z πττθ θ2= = 单位长度位错线能量及张力 2 2 1Gb T W == 单位长度位错线受力 滑移力: b f τ= 攀移力: b f x σ=

位错线的平衡曲率 θθd 2 d sin 2R f T = 当θd 较小时2d 2d sin θθ≈,故 τ 2Gb f T R = = R Gb 2/=τ 两个重要公式: Frank -Read 源开动应力 l Gb /=τ Orowan 应力 λτ/Gb =

位错与位错间的相互作用 1. 不在同一滑移面上平行位错间的相互作用 (1)平行刃型位错 .) ()()1(22 222 22y x y x x b Gb b f yx x +--'±='±=νπτ式中正号表示b 和b '同向;负号表示b 和b '反向。 沿y 轴的作用力y f 即攀移力 .) ()3()1(22 222 22y x y x y b Gb b f x y ++-'='=νπσ)-( b b ', 同号: 0>y f 正攀移 b b ', 反号: 0

位错理论

《位错与位错强化机制》杨德庄编著哈尔滨工业大学出版社1991年8月第一版 1-2 位错的几何性质与运动特性 一、刃型位错 2.运动特性 滑移面:由位错线与柏氏矢量构成的平面叫做滑移面。 刃型位错运动时,有固定的滑移面,只能平面滑移,不能能交叉滑移(交滑移)。 刃型位错有较大的滑移可动性。这是由于刃型位错使点阵畸变有面对称性所致。 二、螺型位错 1. 几何性质 螺型位错的滑移面可以改变,有不唯一性。螺型位错能够在通过位错线的任意平面上滑移,表现出易于交滑移的特性。 同刃型位错相比,螺型位错的易动性较小。、 位于螺型位错中心区的原子都排列在一个螺旋线上,而不是一个原子列,使点阵畸变具有轴对称性。 2.混合位错 曲线混合位错的结构具有不均一性。 混合位错的运动特性取决于两种位错分量的共同作用结果。一般而言,混合位错的可动性介于刃型位错和螺型位错之间。随着刃型位错分量增加,使混合位错的可动性提高。 混合位错的滑移面应由刃型位错分量所决定,具有固定滑移面。 四、位错环 一条位错的两端不能终止于晶体内部,只能终止于晶界、相界或晶体的自由表面,所以位于晶体内部的位错必然趋向于以位错环的形式存在。一般位错环有以下两种主要形式: 1. 混合型位错环 在外力作用下,由混合型位错环扩展使晶体变形的效果与一对刃型位错运动所造成的效果相同。 2. 棱柱型位错环 填充型的棱柱位错环 空位型棱柱位错环 棱柱位错环只能以柏氏矢量为轴的棱柱面上滑移,而不易在其所在的平面上向四周扩展。因为后者涉及到原子的扩散,因而在一般条件下(如温度较低时)很难实现。 1-3 位错的弹性性质 位错是晶体中的一种内应力源。——这种内应力分布就构成了位错的应力场。——位错的弹

我所认识的应力应变关系讲解

我所认识的应力应变关系 应力应变都是物体受到外界载荷产生的响应。物体由于受到外界载荷后,在 物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相 应的变形;或者由于变形引起相应的力的作用。则一定材料的物体其产生的应力 和应变也必然存在一定的关系。 一应力-应变关系 影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度) 、 加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、 粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况 图中0A 为线弹性阶段,AB 为非线弹性阶段,故0B 为初始弹性阶段,C 点位 初始屈服点, J ?为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中二=E ;, 初始弹性阶段结束之后,应力继续增大,进入塑性阶段, CDE 为强化阶段,应变 强化硬化,EF 为颈缩阶段,应变弱化软化。如果在进入塑性阶段卸载后再加载, 本构关系,所谓简单情况就是六个应力分量 J 、y 、z 、?邓* zx 只有一个不为零, 六个应变分量 1-

例如在D点卸载至零,应力应变关系自D点沿DO'到达O'点,且DO' II OA其中 00'为塑性应变;p,DG为弹性应变;e,总应变为它们之和。此后再继续加载,应力应变关系沿ODEF变化,D点为后继屈服点,0D为后继弹性阶段,Cs'.为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。若在卸除全部载荷后反向加载,弹性阶段COC',、二s . - ;「s_,而在强化阶段DOD',匚_,称为Bauschinger效应。 从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。 因为通常情况下物体不仅仅处于简单应力状态,那么复杂应力状态下应力应变关系又如何呢?如果我们将材料性质理想化即假设材料是连续的、均匀的、各向同性的,忽略T、t的影响,忽略净水压力对塑性变形的影响,可以将应力应变关系归结为不同的类型,包括理想线弹性模型、理想刚塑性模型、线性强化刚塑性模型、理想弹塑性模型、线性强化弹塑性模型、幕强化模型、等向强化模型、随动强化模型。各种材料的应力应变关系图如下图所示:

2.4 位错的弹性性质

2.4 位错的弹性性质 位错的弹性性质是位错理论的核心与基础。它考虑的是位错在晶体中引起的畸变的分布及其能量变化。处理位错的弹性性质有若干种方法,主要的有:连续介质方法、点阵离散方法等。从理论发展和取得的效果来看,连续介质模型发展得比较成熟。我们仅介绍位错连续介质模型考虑问题的方法和计算结果,详细的数学推导不作介绍,有兴趣的同学可进一步阅读教学参考书。 一、位错的连续介质模型 早在1907年,伏特拉(Volterra)等在研究弹性体形变时,提出了连续介质模型。位错理论提出来后,人们借用它来处理位错的长程弹性性质问题。 1.位错的连续介质模型基本思想 将位错分为位错心和位错心以外两部分。在位错中心附近,因为畸变严重,要直接考虑晶体结构和原子间的相互作用。问题变得非常复杂,因而,在处理位错的能量分布时,将这一部分忽略。在远离位错中心的区域,畸变较小,可视作弹性变形区,简化为连续介质。用线性弹性理论处理。即位错畸变能可以通过弹性应力场和应变的形式表达出来。对此,我们仅作一般性的了解。 2.应力与应变的表示方法 (1)应力分量 如图1所示。物体中任意一点可以抽象为一个小立方体,其应力状态可用9个应力分量描述。它们是: 图1 物体中一受力单元的应力分析 σxx σxy σxz σyx σyy σyz σzx σzy σzz 其中,角标的第一个符号表示应力作用面的外法线方向,第二个下标符号表示该应力的指向。如σxy表示作用在与yoz坐标面平行的小平面上,而指向y方向的力,显而易见,它表示的是切应力分量。同样的分析可以知道:σxx,σyy,σzz3个分量表示正应力分量,而其余6个分量全部是切应力分量。平衡状态时,为了保持受力物体的刚性,作用力分量中只有6个是独立的,它们是:σxx,σyy,σzz,σxy,σxz和σyz,而σxy =σyx,σxz =σzx,σyz =σzy。同样在柱面坐标系中,也有6个独立的应力分量:σrr,σθθ,σzz,σrθ,σrz,σθz。(2)应变分量 与6个独立应力分量对应也有6个独立应变分量。直角坐标系中:εxx,εyy,εzz,ε,εxz和εyz。柱面坐标系中:εrr,εθθ,εzz,εrθ,εrz和εθz。 xy 二位错的应力场

相关主题
文本预览
相关文档 最新文档