当前位置:文档之家› 链路聚合技术文档

链路聚合技术文档

链路聚合技术文档
链路聚合技术文档

链路聚合技术文档

目录

1.以太网链路聚合作用 (1)

2.链路聚合的基本概念 (1)

2.1聚合接口 (1)

2.2聚合组 (1)

2.3成员端口 (1)

2.4操作Key (2)

2.5配置分类 (2)

2.6参考端口 (2)

2.7LACP协议 (2)

3.聚合模式 (3)

3.1静态聚合模式 (4)

3.2动态聚合模式 (5)

4.聚合负载分担类型 (7)

1. 以太网链路聚合作用

链路聚合是将多个物理以太网端口聚合在一起形成一个逻辑上的聚合组,使用链路聚合服务的上层实体把同一聚合组内的多条物理链路视为一条逻辑链路。

链路聚合可以实现出/入负荷在聚合组中各个成员端口之间分担,以增加带宽。同时,同一聚合组的各个成员端口之间彼此动态备份,提高了连接可靠性。

如图1所示,Device A与Device B之间通过三条以太网物理链路相连,将这三条链路捆绑在一起,就成为了一条逻辑链路Link aggregation 1,这条逻辑链路的带宽等于原先三条以太网物理链路的带宽总和,从而达到了增加链路带宽的目的;同时,这三条以太网物理链路相互备份,有效地提高了链路的可靠性。

图1 链路聚合示意图

2. 链路聚合的基本概念

2.1 聚合接口

聚合接口是一个逻辑接口,它可以分为二层聚合接口和三层聚合接口。

2.2 聚合组

聚合组是一组以太网接口的集合。聚合组是随着聚合接口的创建而自动生成的,其编号与聚合接口编号相同。每个聚合组唯一对应着一个逻辑接口,我们称之为聚合接口。聚合组/聚合接口可以分为以下两种类型:

(1)二层聚合组/二层聚合接口:二层聚合组的成员端口全部为二层以太网接口,其对应的聚合接口称为二层聚合接口(Bridge-aggregation Interface,BAGG)。

(2)三层聚合组/三层聚合接口:三层聚合组的成员端口全部为三层以太网接口,其对应的聚合接口称为三层聚合接口(Route-aggregation Interface,RAGG)。

2.3 成员端口

聚合组中的以太网接口就称为该聚合组的成员端口,成员端口的状态具有以下两种状态:(1)选中(Selected)状态:此状态下的成员端口可以参与用户数据的转发,处于此状态的成员端口简称为“选中端口”。

(2)非选中(Unselected)状态:此状态下的成员端口不能参与用户数据的转发,处于此状态的成员端口简称为“非选中端口”。

2.4 操作Key

操作Key是系统在进行链路聚合时用来表征成员端口聚合能力的一个数值,它是根据成员端口上的一些信息(包括该端口的速率、双工模式等)的组合自动计算生成的,这个信息组合中任何一项的变化都会引起操作Key的重新计算。在同一聚合组中,所有的选中端口都必须具有相同的操作Key。

2.5 配置分类

根据对成员端口状态的影响不同,成员端口上的配置分为以下三类:

(1)端口属性类配置:包含速率、双工模式和链路状态(up/down)这三项配置内容,是成员端口上最基础的配置内容。

(2)第二类配置:包含的配置内容如表1所示。在聚合组中,只有与对应聚合接口的第二类配置完全相同的成员端口才能够成为选中端口。

3)第一类配置:是相对于第二类配置而言的,包含的配置内容有GVRP、MSTP等。在聚合组中,即使某成员端口与对应聚合接口的第一类配置存在不同,也不会影响该成员端口成为选中端口。

2.6 参考端口

参考端口从成员端口中选出,其端口属性类配置和第二类配置将作为同一聚合组内的其它成员端口的参照,以确定这些成员端口的状态。

2.7 LACP协议

基于IEEE802.3ad标准的LACP(Link Aggregation Control Protocol,链路聚合控制协议)协议是一种实现链路动态聚合的协议,运行该协议的设备之间通过互发LACPDU(Link Aggregation Control Protocol Data Unit,链路聚合控制协议数据单元)来交互链路聚合的相关信息。

(1)LACP协议的功能

根据所使用的LACPDU字段的不同,可将LACP协议的功能分为基本功能和扩展功能两大类,如表2所示。

(2)LACP优先级

根据作用的不同,可以将LACP优先级分为系统LACP优先级和端口聚合优先级两类,如表3所示。

表 3 LACP优先级的分类

(3)LACP超时时间

LACP超时时间是指成员端口等待接收LACPDU的超时时间。在三倍LACP超时时间之后,如果本端成员端口仍未收到来自对端的LACPDU,则认为对端成员端口已失效。LACP超时时间只有短超时(1秒)和长超时(30秒)两种取值。

3. 聚合模式

根据成员端口上是否启用了LACP协议,可以将链路聚合分为静态聚合和动态聚合两种模式,它们各自的特点如表4所示。

注:不同型号的设备支持的聚合模式不同,请以设备的实际情况为准。

处于静态聚合模式和动态聚合模式下的聚合组分别称为静态聚合组和动态聚合组,动态聚合组内的选中端口以及处于up状态、与对应聚合接口的第二类配置相同的非选中端口均可以收发LACPDU。

3.1 静态聚合模式

静态聚合模式中,成员端口的LACP 协议为关闭状态。其端口状态通过手工进行维护。

(1)选择参考端口

当聚合组内有处于up状态的端口时,先比较端口的聚合优先级,优先级数值最小的端口作为参考端口;如果优先级相同,再按照端口的全双工/高速率->全双工/低速率->半双工/高速率->半双工/低速率的优先次序,选择优先次序最高、且第二类配置与对应聚合接口相同的端口作为该组的参考端口;如果优先次序也相同,则选择端口号最小的端口作为参考端口。

与参考端口的端口属性配置和第二类配置一致且处于up状态的端口成为可能处于Selected 状态的候选端口,其它端口将处于Unselected 状态。

聚合组中处于Selected 状态的端口数是有限制的,当候选端口的数目未达到限时,所有候选端口都为Selected 状态,其它端口为Unselected 状态;当候选端口的数目超过这一限制时,系统将按照端口号从小到大的顺序选择一些候选端口保持在Selected 状态,端口号较大的端口则变为Unselected 状态。

当聚合组中全部成员都处于down 状态时,全组成员均为Unselected 状态。因硬件限制(如不能跨板聚合)而无法与参考端口聚合的端口将处于Unselected 状态。

(2)确定成员端口的状态

静态聚合组内成员端口状态的确定流程如图2所示。

图 2 静态聚合组内成员端口状态的确定流程

注:

1)静态聚合组内选中端口的最大数量与设备的型号有关,请以设备的实际情况为准。

2)当一个成员端口的端口属性类配置或第二类配置改变时,其所在静态聚合组内各成员端口的选中/非选中状态可能会发生改变。

3)当静态聚合组内选中端口的数量已达到上限时,后加入的成员端口即使满足成为选中端口的所有条件,也不会立刻成为选中端口。这样能够尽量维持当前选中端口上的流量不中断,但是由于设备重启时会重新计算选中端口,因此可能导致设备重启前、后各成员端口的选中/非选中状态不一致。

3.2动态聚合模式

在动态聚合模式下,聚合组内的成员端口上均启用LACP协议,其端口状态通过该协议自动进行维护。动态聚合模式的工作机制如下:

1. 选择参考端口

(1)首先,从聚合链路的两端选出设备ID(由系统的LACP优先级和系统的MAC地址共同构成)较小的一端:先比较两端的系统LACP优先级,优先级数值越小其设备ID越小;如果优先级相同再比较其系统MAC地址,MAC地址越小其设备ID越小。

(2)其次,对于设备ID较小的一端,再比较其聚合组内各成员端口的端口ID(由端

口的聚合优先级和端口的编号共同构成):先比较端口的聚合优先级,优先级数值越小其端口ID越小;如果优先级相同再比较其端口号,端口号越小其端口ID越小。端口ID最小的端口作为参考端口。

2. 确定成员端口的状态

在设备ID较小的一端,动态聚合组内成员端口状态的确定流程如图3所示。

图 3 动态聚合组内成员端口状态的确定流程

与此同时,设备ID较大的一端也会随着对端成员端口状态的变化,随时调整本端各成员端口的状态,以确保聚合链路两端成员端口状态的一致。

注:

1)动态聚合组内选中端口的最大数量与设备的型号有关,请以设备的实际情况为准。

2)当动态聚合组内同时存在全双工端口和半双工端口时,全双工端口将优先成为选中端口;只有当所有全双工端口都无法成为选中端口,或动态聚合组内只有半双工端口时,才允许从半双工端口中选出一个成为选中端口,且只有一个半双工端口可成为选中端口。

3)当一个成员端口的端口属性类配置或第二类配置改变时,其所在动态聚合组内各成员端口的选中/非选中状态可能会发生改变。

4)当本端端口的选中/非选中状态发生改变时,其对端端口的选中/非选中状态也将随之改变。

5)当动态聚合组内选中端口的数量已达到上限时,后加入的成员端口一旦满足成为选中端口的所有条件,就会立刻取代已不满足条件的端口成为选中端口。

4.聚合负载分担类型

通过采用不同的聚合负载分担类型及其组合,可以灵活地实现对聚合组内流量的负载分担。聚合负载分担的类型包括以下几种:

(1)根据报文的MAC地址进行聚合负载分担;

(2)根据报文的VLAN标签进行聚合负载分担;

(3)根据报文的服务端口号进行聚合负载分担;

(4)根据报文的入端口进行聚合负载分担;

(5)根据报文的IP地址进行聚合负载分担;

(6)根据报文的IP协议类型进行聚合负载分担;

(7)根据报文的MPLS标签进行聚合负载分担;

用户可以指定系统按照上述聚合负载分担类型的其中之一或其组合来进行负载分担,此外用户也可以指定系统按照报文类型(如二层、IPv4、IPv6、MPLS等)自动选择聚合负载分担的类型,还可以指定系统对每个报文逐包进行聚合负载分担。

注:不同型号的设备支持的聚合负载分担类型不同,请以设备的实际情况为准。

链路聚合技术文档

链路聚合技术文档

目录 1.以太网链路聚合作用 (1) 2.链路聚合的基本概念 (1) 2.1聚合接口 (1) 2.2聚合组 (1) 2.3成员端口 (1) 2.4操作Key (2) 2.5配置分类 (2) 2.6参考端口 (2) 2.7LACP协议 (2) 3.聚合模式 (3) 3.1静态聚合模式 (4) 3.2动态聚合模式 (5) 4.聚合负载分担类型 (7)

1. 以太网链路聚合作用 链路聚合是将多个物理以太网端口聚合在一起形成一个逻辑上的聚合组,使用链路聚合服务的上层实体把同一聚合组内的多条物理链路视为一条逻辑链路。 链路聚合可以实现出/入负荷在聚合组中各个成员端口之间分担,以增加带宽。同时,同一聚合组的各个成员端口之间彼此动态备份,提高了连接可靠性。 如图1所示,Device A与Device B之间通过三条以太网物理链路相连,将这三条链路捆绑在一起,就成为了一条逻辑链路Link aggregation 1,这条逻辑链路的带宽等于原先三条以太网物理链路的带宽总和,从而达到了增加链路带宽的目的;同时,这三条以太网物理链路相互备份,有效地提高了链路的可靠性。 图1 链路聚合示意图 2. 链路聚合的基本概念 2.1 聚合接口 聚合接口是一个逻辑接口,它可以分为二层聚合接口和三层聚合接口。 2.2 聚合组 聚合组是一组以太网接口的集合。聚合组是随着聚合接口的创建而自动生成的,其编号与聚合接口编号相同。每个聚合组唯一对应着一个逻辑接口,我们称之为聚合接口。聚合组/聚合接口可以分为以下两种类型: (1)二层聚合组/二层聚合接口:二层聚合组的成员端口全部为二层以太网接口,其对应的聚合接口称为二层聚合接口(Bridge-aggregation Interface,BAGG)。 (2)三层聚合组/三层聚合接口:三层聚合组的成员端口全部为三层以太网接口,其对应的聚合接口称为三层聚合接口(Route-aggregation Interface,RAGG)。 2.3 成员端口 聚合组中的以太网接口就称为该聚合组的成员端口,成员端口的状态具有以下两种状态:(1)选中(Selected)状态:此状态下的成员端口可以参与用户数据的转发,处于此状态的成员端口简称为“选中端口”。 (2)非选中(Unselected)状态:此状态下的成员端口不能参与用户数据的转发,处于此状态的成员端口简称为“非选中端口”。

华为配置静态LACP模式链路聚合示例

华为配置静态LACP模式链路聚合示例 组网需求 如图所示,在两台Switch设备上配置静态LACP模式链路聚合组,提高两设备之间的带宽与可靠性,具体要求如下: 2条活动链路具有负载分担的能力。 两设备间的链路具有1条冗余备份链路,当活动链路出现故障链路时,备份链路替代故障链路,保持数据传输的可靠性。 图配置静态LACP模式链路聚合组网图 配置思路 采用如下的思路配置静态LACP模式链路聚合: 在Switch设备上创建Eth-Trunk,配置Eth-Trunk为静态LACP模式。 将成员接口加入Eth-Trunk。 配置系统优先级确定主动端。 配置活动接口上限阈值。 配置接口优先级确定活动链路。 数据准备 为完成此配置例,需准备如下的数据: 两端Switch设备链路聚合组编号。 SwitchA系统优先级。 活动接口上限阈值。 活动接口LACP优先级。

操作步骤 创建编号为1的Eth-Trunk,配置它的工作模式为静态LACP模式# 配置SwitchA。 system-view [Quidway] sysname SwitchA [SwitchA] interface eth-trunk 1 [SwitchA-Eth-Trunk1] bpdu enable [SwitchA-Eth-Trunk1] mode lacp-static [SwitchA-Eth-Trunk1] quit# 配置SwitchB。 system-view [Quidway] sysname SwitchB [SwitchB] interface eth-trunk 1 [SwitchB-Eth-Trunk1] bpdu enable [SwitchB-Eth-Trunk1] mode lacp-static [SwitchB-Eth-Trunk1] quit 将成员接口加入Eth-Trunk # 配置SwitchA。 [SwitchA] interface ethernet 0/0/1 [SwitchA-Ethernet0/0/1] eth-trunk 1 [SwitchA-Ethernet0/0/1] quit [SwitchA] interface ethernet 0/0/2 [SwitchA-Ethernet0/0/2] eth-trunk 1 [SwitchA-Ethernet0/0/2] quit [SwitchA] interface ethernet 0/0/3 [SwitchA-Ethernet0/0/3] eth-trunk 1 [SwitchA-Ethernet0/0/3] quit# 配置SwitchB。 [SwitchB] interface ethernet 0/0/1 [SwitchB-Ethernet0/0/1] eth-trunk 1 [SwitchB-Ethernet0/0/1] quit [SwitchB] interface ethernet 0/0/2 [SwitchB-Ethernet0/0/2] eth-trunk 1 [SwitchB-Ethernet0/0/2] quit [SwitchB] interface ethernet 0/0/3 [SwitchB-Ethernet0/0/3] eth-trunk 1 [SwitchB-Ethernet0/0/3] quit 在SwitchA上配置系统优先级为100,使其成为LACP主动端

配置eth-trunk链路聚合

配置eth-trunk链路聚合 一、原理概述 两个设备间的带宽不够用时,可采用eth-trunk链路聚合使得原来2个1G的全双工的接口捆绑在一起,可以达到2G。优点:提高可靠性,增加带宽 二、实验目的 (1)确保链路出现故障后及时切换 (2)掌握配置eth-trunk链路聚合的方法(手工负载分担模式)(3)掌握配置eth-trunk链路聚合的方法(静态LACP模式) 三、配置及测试 (一)采用手工负载分担模式 1.通过 [s2] dis stp br 显示交换机的stp接口信息 Port Role(类型)STP State(STP状态) G 0/0/1

G 0/0/2 G 0/0/4 2. [S1]dis int e b S1中输入以下命令 4.在S2的配置与S1一置 ping pc2 ,即:在PC1中ping –t,然后关闭S1的g 0/0/1端口,把PC1 ping pc2的界面,截图 6.显示S1的eth-trunk的接口信息,在S1中输入以下 dis int eth 1,把显示的结果截图,并对结果进行分析。 (二)静态LACP模式 问题:链路聚合线路中某条线路发生故障时,只有一条链路能正常工作,这样无法保证有足够的带宽。 解决办法:再部署一条链路作为备份链路,采用静态LACP模式配置

链路聚合,当某链路出现故障时,立即启用备份链路进行链路聚合。 1.增加一条新的链路g 0/0/3,如图示: 2.删除S1,S2已经加入到eth-trunk1的接口 注:S2的配置与S1的配置一样 ,S2的工作模式设置为静态LACP模式,并将S1,S2中的g0/0/1 ,g0/0/2 , g0/0/3添加到eth-trunk1中

配置交换机端口聚合

配置交换机端口聚合(思科、华为、锐捷) 2008-08-18 16:27 思科命令行配置: CLI:SW#conf t SW(config)#interface range f1/1 -2 SW(config-if)#channel-group 1 mode desirable/on SW(config-if)#swithport SW(config-if)#switchport mode trunk SW(config-if)#switchport trunk encap dot1q 可以通过 interface port-channel 1 进入端口通道 华为端口聚合配置: 华为交换机的端口聚合可以通过以下命令来实现: S3250(config)#link-aggregation port_num1 to port_num2 {ingress | ingress-egress} 其中port_num1是起始端口号,port_num2是终止端口号。 ingress/ingress-egress这个参数选项一般选为ingress-egress。 在做端口聚合的时候请注意以下几点: 1、每台华为交换机只支持1个聚合组 2、每个聚合组最多只能聚合4个端口。 3、参加聚合的端口号必须连续。 对于聚合端口的监控可以通过以下命令来实现: S3026(config)#show link-aggregation [master_port_num] 其中master_port_num是参加聚合的端口中端口号最小的那个端口。 通过这条命令可以显示聚合组中包括哪些端口等一些与端口聚合相关的参数。 锐捷端口聚合配置: Switch#configure terminal Switch(config)#interface range fastethernet 1/1-2 Switch(config-if-range)#port-group 5 Switch(config-if-range)#switchport mode trunk 你可以在全局配置模式下使用命令#interface aggregateport n(n为AP号) 来直接创建一个AP(如果AP n不存在)。 配置aggregate port的流量平衡 aggregateport load-balance {dst-mac | src-mac |ip} 设置AP的流量平衡,选择使用的算法: dst-mac:根据输入报文的目的MAC地址进行流量分配。在AP各链路中,目的MAC地址相同的报文被送到相同的接口,目的MAC不同的报文分配到不同的接口

华为S5700配置实例76667

目录 1 以太网配置 1、1 以太网接口配置 1、1、1 配置端口隔离示例 1、2 链路聚合配置 1、2、1 配置手工负载分担模式链路聚合示例 1、2、2 配置静态LACP模式链路聚合示例 1、3 VLAN配置 1、3、1 配置基于接口划分VLAN示例 1、3、2 配置基于MAC地址划分VLAN示例 1、3、3 配置基于IP子网划分VLAN示例 1、3、4 配置基于协议划分VLAN示例 1、3、5 配置VLAN间通过VLANIF接口通信示例 1、3、6 配置VLAN聚合示例 1、3、7 配置MUX VLAN示例 1、3、8 配置自动模式下的Voice VLAN示例 1、3、9 配置手动模式下的Voice VLAN示例 1、4 VLAN Mapping配置 1、4、1 配置单层Tag的VLAN Mapping示例 1、4、2 配置单层Tag的VLAN Mapping示例(N:1) 1、5 QinQ配置 1、5、1 配置基于接口的QinQ示例 1、5、2 配置灵活QinQ示例 1、5、3 配置灵活QinQ示例-VLAN Mapping接入 1、5、4 配置VLANIF接口支持QinQ Stacking示例 1、6 GVRP配置 1、6、1 配置GVRP示例 1、7 MAC表配置 1、7、1 配置MAC表示例 1、7、2 配置基于VLAN的MAC地址学习限制示例 1、7、3 配置接口安全示例 1、7、4 配置MAC防漂移示例

1、7、5 配置全局MAC漂移检测示例 1、8 STP/RSTP配置 1、8、1 配置STP功能示例 1、8、2 配置RSTP功能示例 1、9 MSTP配置 1、9、1 配置MSTP的基本功能示例 1、9、2 配置MSTP多进程下单接环与多接环接入示例 1、10 SEP配置 1、10、1 配置SEP封闭环示例 1、10、2 配置SEP多环示例 1、10、3 配置SEP混合环示例 1、10、4 配置SEP+RRPP混合环组网示例(下级网络拓扑变化通告) 1、10、5 配置SEP多实例示例 1、11 二层协议透明传输配置 1、11、1 配置基于接口的二层协议透明传输示例 1、11、2 配置基于VLAN的二层协议透明传输示例 1、11、3 配置基于QinQ的二层协议透明传输示例 1、12 Loopback Detection配置 1、1 2、1 配置Loopback Detection示例 1以太网配置 本文档针对S5700的以太网业务,主要包括以太网接口配置、链路聚合配置、VLAN配置、VLAN Mapping配置、QinQ配置、GVRP配置、MAC表配置、STP/RSTP、MSTP配置、SEP配置、二层协议透明传输配置、Loopback Detection配置。 本文档从配置过程与配置举例两大方面介绍了此业务的配置方法与应用场景。 ?1、1 以太网接口配置 介绍以太网接口的基本知识、配置方法与配置实例。 ?1、2 链路聚合配置 介绍链路聚合的基本知识、配置方法与配置实例。

华为链路聚合典型配置指导

链路聚合典型配置指导(版本切换前) 链路聚合是将多个物理以太网端口聚合在一起形成一个逻辑上的聚合组,使用链路聚合服务 的上层实体把同一聚合组内的多条物理链路视为一条逻辑链路。 链路聚合可以实现出/入负荷在聚合组中各个成员端口之间分担,以增加带宽。同时,同一 聚合组的各个成员端口之间彼此动态备份,提高了连接可靠性。 组网图 链路聚合配置示例图 应用要求 设备Switch A用3个端口聚合接入设备Switch B,从而实现出/入负荷在各成 员端口中分担。 Switch A 的接入端口为GigabitEthernet1/0/1 ?GigabitEthernet1/0/3 。 适用产品、版本 配置过程和解释 说明: 以下只列出对Switch A的配置,对Switch B也需要作相同的配置,才能实现链路聚合。 配置聚合组,实现端口的负载分担(下面两种方式任选其一) 采用手工聚合方式 #创建手工聚合组1。 system-view [SwitchA] link-aggregation group 1 mode manual | # 将以太网端口GigabitEthernet1/0/1 至GigabitEthernet1/0/3 加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-aggregation group 1

[SwitchA-GigabitEthernet1/0/1] interface GigabitEthernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/2] interface GigabitEthernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-aggregation group 1 采用静态LACP聚合方式 #创建静态LACP聚合组1。 system-view [SwitchA] link-aggregation group 1 mode static #将以太网端口GigabitEthernet1/0/1 至GigabitEthernet1/0/3 加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/1] interface GigabitEthernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/2] interface GigabitEthernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-aggregation group 1 完整配置 采用手工聚合方式: # link-aggregation group 1 mode manual # interface GigabitEthernet1/0/1 port link-aggregation group 1 # interface GigabitEthernet1/0/2 port link-aggregation group 1 # interface GigabitEthernet1/0/3 | port link-aggregation group 1 # 采用静态LACP聚合方式: # link-aggregation group 1 mode static interface GigabitEthernet1/0/1 port link-aggregation group 1 # interface GigabitEthernet1/0/2 port link-aggregation group 1 # interface GigabitEthernet1/0/3 port link-aggregation group 1 # 配置注意事项 不同平台软件对静态聚合方式的实现不同,所以不同平台软件的产品采用静态 聚合方式对接时,容易产生问题。有关平台软件的版本信息可以通过 display version 命令查看。

交换机汇聚配置

(1)交换机的基本配置 (2)在交换机上创建聚合接口 (3)在交换机上配置聚合端口 (4)端口聚合增加交换机之间的传输带宽,验证当一条链路断开时仍能互相通信。 第一步:交换机A的基本配置。 SwitchA(config)#vlan 10 SwitchA(config-vlan)#name sales SwitchA(config-vlan)#exit SwitchA(config)#interface fastEthernet0/5 SwitchA(config-if)#switchport access vlan 10 验证测试:验证已创建了VLAN 10,并将0/5端口已划分到VLAN 10中。SwitchA#show vlan id 10 VLAN Name Status Ports -------------------------------------------------------------------------------------------------------- 10 sales active Fa0/5 第二步:在交换机SwitchA上配置聚合端口。 SwitchA(config)#interface aggregateport 1 !创建聚合接口AG1 SwitchA(config-if)#switchport mode trunk !配置AG模式为trunk SwitchA(config-if)#exit SwitchA(config)#interface range fastEthernet 0/1-2 !进入接口0/1和0/2 SwitchA(config-if-range)#port-group 1 !配置接口0/1和0/2属于AG1验证测试:验证接口fastEthernet0/1和0/2属于AG1。 SwitchA#show aggregatePort 1 summary !查看端口聚合组1的信息AggregatePort MaxPorts SwitchPort Mode Ports -------------------------------------------------------------------------------------------------- Ag1 8 Enabled Trunk Fa0/1, Fa0/2 注:AG1,最大支持端口数为8个,当前VLAN模式为Trunk,组成员有F0/1、F0/2。 第三步:交换机B的基本配置。 (具体步骤与SwitchA类似) 第四步:在交换机SwitchB上配置聚合端口。 (具体步骤与SwitchA类似) 第五步:验证当交换机直接的一条链路断开时,PC1与PC2仍能互相通信。 注意事项: (1)只有同类型端口才能聚合为一个AG端口。 (2)所有物理端口必须属于同一个VLAN。 (3)在锐捷交换机上最多支持8个物理端口聚合为一个AG。 (4)在锐捷交换机上最多支持6组聚合端口。 参考配置: SwitchA#show running-config !显示交换机SwitchA的全部配置 Bui lding configuration… Current configuration : 497 bytes

链路聚合配置命令

目录 1 链路聚合配置命令................................................................................................................................ 1-1 1.1 链路聚合配置命令............................................................................................................................. 1-1 1.1.1 description .............................................................................................................................. 1-1 1.1.2 display lacp system-id ............................................................................................................ 1-2 1.1.3 display link-aggregation member-port.................................................................................... 1-2 1.1.4 display link-aggregation summary.......................................................................................... 1-4 1.1.5 display link-aggregation verbose............................................................................................ 1-5 1.1.6 enable snmp trap updown...................................................................................................... 1-7 1.1.7 interface bridge-aggregation .................................................................................................. 1-8 1.1.8 lacp port-priority...................................................................................................................... 1-8 1.1.9 lacp system-priority................................................................................................................. 1-9 1.1.10 link-aggregation mode........................................................................................................ 1-10 1.1.11 port link-aggregation group ................................................................................................ 1-10 1.1.12 reset lacp statistics............................................................................................................. 1-11 1.1.13 shutdown ............................................................................................................................ 1-11

链路聚合

链路聚合(Trunking)技术 引言 随着数据业务量的增长和对服务质量要求的提高,高可用性(High Availability)日益成为高性能网络最重要的特征之一。网络的高可用性是指系统以有限的代价换取最大运行时间,将故障引起的服务中断损失降到最低。具有高可用性的网络系统一方面需要尽量减少硬件或软件故障,另一方面必须对重要资源作相应备份。一旦检测到故障即将出现,系统能迅速将受影响的任务转移到备份资源上以继续提供服务。 网络的高可用性一般在系统、组件和链路三个级别上体现。系统级的高可用性要求网络拓扑必须有冗余节点和备份设计。组件级的高可用性着眼于网络设备自身,要求网络设备具有冗余部件和热备份机制。链路级的高可用性则要求传输线路备份,如果主要数据通路中断,备用线路将迅速启用。 传输链路的备份是提高网络系统可用性的重要方法。目前的技术中,以生成树协议(STP)和链路聚合(Link Aggregation)技术应用最为广泛。生成树协议提供了链路间的冗余方案,允许交换机间存在多条链路作为主链路的备份。而链路聚合技术则提供了传输线路内部的冗余机制,链路聚合成员彼此互为冗余和动态备份。 链路聚合技术 链路聚合技术亦称主干技术(Trunking)或捆绑技术(Bonding),其实质是将两台设备间的数条物理链路“组合”成逻辑上的一条数据通路,称为一条聚合链路,如下图示意。交换机之间物理链路Link 1、Link2和Link3组成一条聚合链路。该链路在逻辑上是一个整体,内部的组成和传输数据的细节对上层服务是透明的。 链路聚合示意图 聚合内部的物理链路共同完成数据收发任务并相互备份。只要还存在能正常工作的成员,整个传输链路就不会失效。仍以上图的链路聚合为例,如果Link1和Link2先后故障,它们的数据任务会迅速转移到Link3上,因而两台交换机间的连接不会中断。

22_端口聚合实验

1. 实验报告如有雷同,雷同各方当次实验成绩均以0分计。 2. 当次小组成员成绩只计学号、姓名登录在下表中的。 3. 在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0分计。 4. 实验报告文件以PDF 格式提交。 【实验目的】理解链路聚合的配置及原理。 【实验内容】 (1)完成实验教程第三章实例3-5的实验,回答实验提出的问题及实验思考。(P99-102) (2)端口聚合和生成树都可以实现冗余链路,这两种方式有什么不同? (3)你认为本实验能实现负载平衡吗?如果不能,请讨论原因并设计方法,进行实验验证。 【实验要求】 一些重要信息信息需给出截图,注意实验步骤的前后对比。 【实验记录】(如有实验拓扑请自行画出,) (1)【实验名称】 端口聚合提供冗余备份链路。 【实验目的】 理解链路聚合的配置及原理。 【背景描述】 假设某企业采用两台交换机组成一个局域网,由于很多数据流量是跨过交换机进行转发的,因此需要提高交换机之间的传输带宽,并实现链路冗余备份,为此网络管理员在两台交换机之间采用两根网线互连,并将相应的两个端口聚合为一个逻辑端口,现要在交换机上做适当配置来实现这一目标。 【技术原理】 端口聚合(Aggregate-port )又称链路聚合,是指两台交换机之间在物理上将多个端口连接起来,将多条链路聚合成一条逻辑链路。从而增大链路带宽,解决交换网络中因带宽引起的网络瓶颈问题。多条物理链路之间能够相互冗余备份,其中任意一条链路断开,不会影响其他链路的正常转发数据。 端口聚合遵循IEEE 802.3ad 协议的标准。 【实现功能】 增加交换机之间的传输带宽,并实现链路冗余备份。 【实验设备】 S3760(两台)、PC (两台)、直连线(4条) 【实验拓扑】 按照拓扑图连接网络时注意,两台交换机都配置完端口聚合后,再将两台交换机连接起来。如果先连线再配置会造成广播风暴,影响交换机的正常工作。 院系 软件学院 班 级 电政一班 组长 狄志路 学号 12330072 学生 狄志路 实验分工 狄志路 设计方案,实现操作,撰写 实验报告 警示

华为S配置实例

目录 1 ?以太网配置 ?以太网接口配置 ?配置端口隔离示例 ?链路聚合配置 ?配置手工负载分担模式链路聚合示例 ?配置静态LACP模式链路聚合示例 ?VLAN配置 ?配置基于接口划分VLAN示例 ?配置基于MAC地址划分VLAN示例 ?配置基于IP子网划分VLAN示例 ?配置基于协议划分VLAN示例 ?配置VLAN间通过VLANIF接口通信示例 ?配置VLAN聚合示例 ?配置MUX VLAN示例 ?配置自动模式下的Voice VLAN示例 ?配置手动模式下的Voice VLAN示例 ?VLAN Mapping配置

?配置单层Tag的VLAN Mapping示例 ?配置单层Tag的VLAN Mapping示例(N:1) ?QinQ配置 ?配置基于接口的QinQ示例 ?配置灵活QinQ示例 ?配置灵活QinQ示例-VLAN Mapping接入 ?配置VLANIF接口支持QinQ Stacking示例 ?GVRP配置 ?配置GVRP示例 ?MAC表配置 ?配置MAC表示例 ?配置基于VLAN的MAC地址学习限制示例 ?配置接口安全示例 ?配置MAC防漂移示例 ?配置全局MAC漂移检测示例 ?STP/RSTP配置 ?配置STP功能示例 ?配置RSTP功能示例 ?MSTP配置 ?配置MSTP的基本功能示例

?配置MSTP多进程下单接环和多接环接入示例 ?SEP配置 ?配置SEP封闭环示例 ?配置SEP多环示例 ?配置SEP混合环示例 ?配置SEP+RRPP混合环组网示例(下级网络拓扑变化通告) ?配置SEP多实例示例 ?二层协议透明传输配置 ?配置基于接口的二层协议透明传输示例 ?配置基于VLAN的二层协议透明传输示例 ?配置基于QinQ的二层协议透明传输示例 ?Loopback Detection配置 ?配置Loopback Detection示例 1 ?以太网配置 本文档针对S5700的以太网业务,主要包括以太网接口配置、链路聚合配置、VLAN配置、VLAN Mapping配置、QinQ配置、GVRP配置、MAC表配置、STP/RSTP、MSTP配置、SEP配置、二层协议透明传输配置、Loopback Detection配置。

端口聚合及端口安全配置

配置端口聚合提供冗余备份链路 1 实验原理 端口聚合又称链路聚合,是指两台交换机之间在物理上将多个端口连接起来,将多条链路聚合成一条逻辑链路,从而增大链路带宽,解决交换网络中因带宽引起的网络瓶劲问题。多条物理链路之间能够相互冗余备份,其中任意一条链路断开,不会影响其他链路的正常转发数据。 2 实验步骤 (1)交换机A的基本配置 switchA#conf t switchA(config)#vlan 10 switchA(config-vlan)#name sales switchA(config-vlan)#exit switchA(config)#int fa0/5 switchA(config-if)#switchport access vlan 10 switchA(config)#exit switchA#sh vlan id 10 (2)在交换机switchA上配置端口聚合

switchA(config)#int aggregateport 1 switchA(config-if)#switchport mode trunk switchA(config-if)#exit switchA(config)#int range fa0/1-2 switchA(config-if-range)#port-group 1 switchA(config-if-range)#exit switchA#sh aggregatePort 1summary (3)在交换机B上基本配置(同(1)) (4)在交换机switchB上配置端口聚合(同(2))(5)验证测试 验证当交换机之间一条链路断开时,PC1和PC2任能互相通信。 C:\>Ping 192.168.10.30 –t

网卡链路聚合简单设置实现双倍带宽.

网卡链路聚合简单设置实现双倍带宽 电脑爱好者 2016-02-19 09:01 如今所有主板至少自带一个千兆以太网端口,有些高档主板带有两个端口。很多用户都不知道家用环境下双网卡主板如何充分利用两个网口,其实使用链路聚合(Link aggregation)就是一个好思路。 双倍带宽的链路聚合 链路聚合是指将两条或多条物理以太网链路聚合成一条逻辑链路。所以,如果聚合两个1Gb/s端口,就能获得2GB/s的总聚合带宽(图1)。聚合带宽和物理带宽并不完全相同,它是通过一种负载均衡方式来实现的。在用户需要高性能局域网性能的时候很有帮助,而局域网内如果有NAS则更是如此。比如说我们在原本千兆(1Gb/s)网络下PC和NAS之间的数据传输只能达到100MB/s左右,在链路聚合的方式下多任务传输速度可以突破200MB/s,这其实是一个倍增。 01 链路聚合原本只是一种弹性网络,而不是改变了总的可用吞吐量。比如说如果你通过一条2Gb聚合链路将文件从一台PC传输到另一台PC,就会发现总的最高传输速率最高为1Gb/s。然而如果开始传输两个文件,会看到聚合带宽带来的好处。

简而言之链路聚合增加了带宽但并不提升最高速度,但如果你在使用有多个以太网端口的NAS,NAS就能支持链路聚合,速度的提升是显而易见的。 目前家用的局域网环境不论是线缆还是网卡多数都停留在1Gb/s的水平,如果你想要真正的更高吞吐量改用更高的带宽比如10Gb/s网卡,但对于大多数家庭用户万兆网卡是不太可能的。就算我们使用普通单千兆网卡主板,通过安装外接网卡来增添一个网络端口就能实现效果。 链路聚合准备工作 首先你的PC要有两个以太网端口,想要连接的任何设备同样要有至少两个端口。除了双千兆(或一集成一独立)网卡的主板外,我们还需要一个支持链路聚合(LACP或802.1ad等)的路由器。遗憾的是很多家用路由器不支持链路聚合,选择时要注意路由器具体参数,或者干脆选择一个支持链路聚合的交换机。 除了硬件方面的要求,还需要一款支持链路聚合的操作系统。我们目前广泛使用的Windows 7并没有内置的链路聚合功能,一般微软要求我们使用Windows Server,但其实Windows 8.1和10已经提供了支持了。其实如果操作系统不支持可以考虑使用厂商提供的具有链路聚合功能的驱动程序,比如英特尔PROSet 工具。另外操作系统Linux和OS X都有内置的链路聚合功能,满足了所有先决条件后下面介绍如何实现。 测试平台 主板华硕Rampage IV 处理器英特尔酷睿i7-3970X 内存三星DDR3 32GB 硬盘三星850Pro 1TB(RAID 0) 交换机网件ProSAFE XS708E 10GbE 网卡双端口10GBASE-T P2E10G-2-T 线缆 CAT7

链路聚合技术

一、链路聚合简介 1.链路聚合原理 将两个或更多数据信道结合成一个单个的信道,该信道以一个单个的更高带宽的逻辑链路出现。链路聚合一般用来连接一个或多个带宽需求大的设备 2.作用 将多个物理以太网端口聚合在一起形成一个逻辑上的聚合组,使用链路聚合服务的上层实体把同一聚合组内的多条物理链路视为一条逻辑链路 https://www.doczj.com/doc/02697468.html,CP协议 Link Aggregation Control Protocol 链路聚合控制协议 LACP 协议通过LACPDU(Link Aggregation Control Protocol Data Unit,链路聚合控制协议数据单元)与对端交互信息。 使能某端口的LACP 协议后,该端口将通过发送LACPDU 向对端通告自己的系统LACP 协议优先级、系统MAC、端口的LACP 协议优先级、端口号和操作Key。对 端接收到LACPDU 后,将其中的信息与其它端口所收到的信息进行比较,以选择能 够处于Selected 状态的端口,从而双方可以对端口处于Selected 状态达成一致。 操作Key 是在链路聚合时,聚合控制根据端口的配置(即速率、双工模式、up/down 状态、基本配置等信息)自动生成的一个配置组合。在聚合组中,处于Selected 状 态的端口有相同的操作Key。 4.链路聚合的端口的注意事项 1 端口均为全双工模式;

2 端口速率相同; 3 端口的类型必须一样,比如同为以太口或同为光纤口; 4 端口同为access端口并且属于同一个vlan或同为trunk端口; 5 如果端口为trunk端口,则其allowed vlan和nativevlan属性也应该相同。 5.链路聚合配置命令 1)CISCO a)把指定端口给聚合组,并指定聚合方式 SW(config)interface Ethernet0/1 SW(config-ethernet0/1)#port-group 1 mode(active|passive|on) b)进入聚合端口的配置模式 SW(config)#interface port-channel 1 进入该模式可以配置一些端口参数 c)名词解释 Port-channel 组号:范围是1-16 聚合模式 active(0)启动端口的LACP 协议,并设置为Active 模式; passive(1)启动端口的LACP 协议,并且设置为Passive 模式; on(2)强制端口加入Port Channel,不启动LACP 协议。

华为链路聚合典型配置指导

链路聚合典型配置指导(版本切换前) 链路聚合是将多个物理以太网端口聚合在一起形成一个逻辑上的聚合组,使用 链路聚合服务的上层实体把同一聚合组内的多条物理链路视为一条逻辑链路。 链路聚合可以实现出/入负荷在聚合组中各个成员端口之间分担,以增加带宽。 同时,同一聚合组的各个成员端口之间彼此动态备份,提高了连接可靠性。组网图 链路聚合配置示例图 应用要求 设备Switch A用3个端口聚合接入设备Switch B,从而实现出/入负荷在各成员端口中分担。 Switch A的接入端口为GigabitEthernet1/0/1~GigabitEthernet1/0/3。 适用产品、版本 配置适用的产品与软硬件版本关系 配置过程和解释 说明: 以下只列出对Switch A的配置,对Switch B也需要作相同的配置,才能实现链路聚合。 配置聚合组,实现端口的负载分担(下面两种方式任选其一) 采用手工聚合方式 # 创建手工聚合组1。 system-view [SwitchA] link-aggregation group 1 mode manual # 将以太网端口GigabitEthernet1/0/1至GigabitEthernet1/0/3加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-aggregation group 1

[SwitchA-GigabitEthernet1/0/1] interface GigabitEthernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/2] interface GigabitEthernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-aggregation group 1 采用静态LACP聚合方式 # 创建静态LACP聚合组1。 system-view [SwitchA] link-aggregation group 1 mode static # 将以太网端口GigabitEthernet1/0/1至GigabitEthernet1/0/3加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/1] interface GigabitEthernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/2] interface GigabitEthernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-aggregation group 1 完整配置 采用手工聚合方式: # link-aggregation group 1 mode manual # interface GigabitEthernet1/0/1 port link-aggregation group 1 # interface GigabitEthernet1/0/2 port link-aggregation group 1 # interface GigabitEthernet1/0/3 port link-aggregation group 1 # 采用静态LACP聚合方式: # link-aggregation group 1 mode static interface GigabitEthernet1/0/1 port link-aggregation group 1 # interface GigabitEthernet1/0/2 port link-aggregation group 1 # interface GigabitEthernet1/0/3 port link-aggregation group 1 # 配置注意事项 不同平台软件对静态聚合方式的实现不同,所以不同平台软件的产品采用静态聚合方式对接时,容易产生问题。有关平台软件的版本信息可以通过 display version命令查看。 配置了RRPP的端口、配置了静态MAC地址或者黑洞MAC地址的端口、使能Voice VLAN的端口以及使能802.1x的端口不能加入聚合组。 链路聚合典型配置指导(版本切换后) 组网图 链路聚合配置示例图

相关主题
文本预览
相关文档 最新文档