当前位置:文档之家› 太阳能小屋设计参考方案.(优选)

太阳能小屋设计参考方案.(优选)

太阳能小屋设计参考方案.(优选)
太阳能小屋设计参考方案.(优选)

2012数学建模B题太阳能小屋设计参考方案

问题1:请根据山西省大同市的气象数据,仅考虑贴附安装方式,选定光伏电池组件,对小屋(见附件2)的部分外表面进行铺设,并根据电池组件分组数量和容量,选配相应的逆变器的容量和数量。

1.地表斜面上辐射量的计算公式

1.1、倾斜太阳能集热器上接收到的太阳辐射能

2太阳能电池方阵设计

(1)太阳能电池组件串联数Ns

将太阳能电池组件按一定数目串联起来,就可获得所需要的工作电压,但是,太阳能电池组件的串联数必须适当。串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电。如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加。因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态。

计算方法如下:

Ns=UR/Uoc=(Uf+UD+Uc)/Uoc(2)

式中:UR为太阳能电池方阵输出最小电压;

Uoc为太阳能电池组件的最佳工作电压;

Uf为蓄电池浮充电压;

UD为二极管压降,一般取0.7V;

UC为其它因数引起的压降。

表1我国主要城市的辐射参数表:需补充的蓄电池容量Bcb为:

Bcb=A×QL×NLAh(5)

④太阳能电池组件并联数Np的计算方法为:

Np=(Bcb+Nw×QL)/(Qp×Nw)(6)

式(6)的表达意为:并联的太阳能电池组组数,在两组连续阴雨天之间的最短间隔天数内所发电量,不仅供负载使用,还需补足蓄电池在最长连续阴雨天内所亏损电量。

(3)太阳能电池方阵的功率计算

根据太阳能电池组件的串并联数,即可得出所需太阳能电池方阵的功率P:

P=Po×Ns×NpW(7)

式中:Po为太阳能电池组件的额定功率。

问题2:电池板的朝向与倾角均会影响到光伏电池的工作效率,请选择架空方式安装光伏电池,重新考虑问题1。

太阳能电池板方阵安装角度怎样计算?

由于太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。

1.方位角

太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116) 10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。

2.倾斜角

倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考

虑积雪的滑落,此外,还要进一步考虑其它因素。对于正南(方位角为0°度),倾斜角从水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加倾斜角其日射量不断减少。其实很简单,如果每家每户都安装上光伏发电,那么一个家庭他得光伏发电系统就会有2个作用,一是每户的光伏得到的电供自己家庭使用,那么每个家庭就会有一个蓄电池,尔如果当天气好,太阳照射很充足,它产生多余的电量就会通过国家电网,传回给国家电网,国家会根据价格返还你补助,就是并网光伏系统,对于具体设计某一个方阵的方位角和倾斜角还应综合地进一步同实际情况结合起来考虑。

3.阴影对发电量的影响一般情况下,我们在计算发电量时,是在方阵面完全没有阴影的前提下得到的。因此,如果太阳电池不能被日光直接照到时,那么只有散射光用来发电,此时的发电量比无阴影的要减少约10%~20%。针对这种情况,我们要对理论计算值进行校正。通常,在方阵周围有建筑物及山峰等物体时,太阳出来后,建筑物及山的周围会存在阴影,因此在选择敷设方阵的地方时应尽量避开阴影。如果实在无法躲开,也应从太阳电池的接线方法上进行解决,使阴影对发电量的影响降低到最低程度。另外,如果方阵是前后放置时,后面的方阵与前面的方阵之间距离接近后,前边方阵的阴影会对后边方阵的发电量产生影响。有一个高为L1的竹竿,其南北方向的阴影长度为L2,太阳高度(仰角)为A,在方位角为B时,假设阴影的倍率为R,则:

R = L2/L1 = ctgA×cosB

此式应按冬至那一天进行计算,

因为,那一天的阴影最长。例如方阵的上边缘的高度为h1,下边缘的高度为h2,则:方阵之间的距离a =(h1-h2)×R。当纬度较高时,方阵之间的距离加大,相应地设置场所的面积也会增加。对于有防积雪措施的方阵来说,其倾斜角度大,因此使方阵的高度增大,为避免阴影的影响,相应地也会使方阵之间的距离加大。通常在排布方阵阵列时,应分别选取每一个方阵的构造尺寸,将其高度调整到合适值,从而利用其高度差使方阵之间的距离调整到最小。具体的太阳电池方阵设计,在合理确定方位角与倾斜角的同时,还应进行全面的考虑,才能使方阵达到最佳状态。

问题3:根据附件7给出的小屋建筑要求,请为大同市重新设计一个小屋,要求画出小屋的外形图,并对所设计小屋的外表面优化铺设光伏电池,给出铺设及分组连接方式,选配逆变器,计算相应结果。

太阳能作为迄今人类所认识的最清洁的可再生能源,其与建筑一体化将在建筑节能中起到十分重要的作用。屋顶在建筑外围

结构中所接受的日照时间最长,接受的太阳辐射量也最大,具有利用太阳辐射的优越条件,同时,屋顶较开阔,便于大面积连续布置

太阳能设备,因此,在城市中,建筑屋顶是太阳能利用的最佳场所。目前,许多国家已纷纷实施和推广“太阳能屋顶计划”,如有德国十万屋顶计划、美国百万屋顶计划以及日本的新阳光计划等[2]。我国属于太阳能利用条件较好的地区,尤其是青藏高原地区太阳能

资源最为丰富[3]。2009 年5 月21 日,财政部与住房和城乡建设部联合出台的《关于加快推进太阳能光伏建筑应用的实施意见》正式启动了我国的“太阳能屋顶计划”。如今,我国已有许多太阳能光伏建筑一体化的应用实例,如国家体育馆太阳能发电系统、首都博

物馆太阳能光伏系统、上海虹桥铁路客运站光伏发电项目等[4],但是,这些建筑上的太阳能电池板都是固定安装的,很大程度上限制了太阳辐射量的吸收,从而影响了发电产量。本文将太阳跟踪技术应用于太阳能屋顶上,使用计算机进行模拟实验,并与固定式太

阳能电池板各时刻的太阳辐射吸收量进行了数据对比,从而量化的显示出了这种智能太阳能屋顶的优势。

1 太阳能光伏建筑一体化

1.1 太阳能屋顶

目前,我国及国际上的屋顶太阳能光热和光电利用技术已经比较成熟。利用太阳能光热系统可以给建筑提供生活热水或是冬

季的暖源;利用太阳能光电系统可以提供建筑的日常用电[5]。太阳能光伏建筑一体化指的是太阳能发电,即每座建筑就是一座发电站,发出的电首先能够满足建筑自身的需求,多余的进入电网传输出去[6]。

所谓太阳能屋顶,是将太阳能电池板安装在建筑物的屋顶,引出端经过控制器、逆变器与公共电网相连接,由太阳能电池板、电

网并联向用户供电,组成户用并网光伏系统。

1.2 太阳能光伏与建筑的结合方式

根据2009 年财政部、住房和城乡建设部光电建筑应用示范项目的申报和实施情况,将太阳能光伏与建筑的结合方式分为光伏

建材一体型和光伏建材型两种[7]。

(1)光伏建材一体型。光伏建材一体型太阳电池是生产厂预先把太阳电池安装在普通屋顶建材上,然后同普通屋顶建材施工一

样安装在住宅上,寿命和防水性能等也同普通屋顶建材一样,只是在材料利用上有重复。

(2)光伏建材型。光伏建材型太阳电池是让钢化玻璃和铝合金框架构成的太阳电池组件本身具有建材的功能,要求防水性能良

好,能直接代替建材使用。另外,为了便于维护,要求光伏建材型太阳电池的寿命与周围的建材相匹配。从发展趋势看,光伏建材型

将会成为主流。

2 太阳跟踪技术

太阳能屋顶上电池板的铺设一般对平屋顶而言用覆盖式,对斜屋顶用镶嵌式。目前已实施的太阳能屋顶上的电池板阵列基本

都是固定的,没有充分利用太阳能资源,发电效率低下。为了提高太阳能屋顶的发电量,许多学者做出了研究,刘辉的智能型太阳能

屋顶系统采用了南向的45°和5°两个不同的倾角安装太阳能电池板[8],以提高对太阳辐射量的吸收。据实验,在太阳能光发电中,相同条件下,采用自动跟踪发电设备要比固定发电设备的发电量提高35%[9],因此在太阳能利用中,进行跟踪是十分必要的。

现如今,太阳跟踪技术已十分成熟,它能够保持太阳能电池板随时正对太阳,使太阳光的光线垂直照射太阳能电池板,显著提

高了太阳能的利用率,减少了能源的浪费。目前太阳跟踪的方式有多种,主要有光电式和机械式[10-11]。前者为被动跟踪,受环境影响较大,尤其在多云或阴天时;后者为主动式,其原理是通过程序计算出太阳位置,控制步进电机跟踪太阳,目前国内大多采用后者的

方式。为了提高太阳跟踪精度,相关的研究从未间断,赵建钊的智能型太阳能跟踪系统采用了以程控跟踪为主、光电跟踪为辅的跟

踪方式,同时更新了计算太阳坐标位置的数学模型,从而提高了跟踪精度[10];侯长来的太阳跟踪装置的双模式控制系统能实现高精

度全天候的自动跟踪[9]。

太阳跟踪技术的理论基础就是太阳位置的变化,也就是不同时刻太阳高度角和太阳方位角的确定。太阳高度角和太阳方位角

的计算公式分别如下:

(1)

(2)

式中,hs

为太阳高度角;As

为太阳方位角;Φ为观测者所在地理纬度,不论南北,一律取正;δ为太阳赤纬;t 为时角。太阳高度角和太阳方位角如图1 所示。

3 智能太阳能屋顶的计算机模拟实验

3.1 计算机辅助建筑设计

随着信息技术的高速发展,计算机技术使建筑制造业和建筑业得以迅速现代化,建筑

师们普遍运用计算机提高效率,使之成为一种现代化的传译工具,而一些富于探索精神的

建筑师,则将新兴计算机技术作为他们探索新概念、新形式的灵感源泉。本文的智能太阳能

屋顶就是在Rhinoceros 4.0 软件平台下,使用可编程的图形化程序建模插件Grasshopper 来实现的,并通过Autodesk Ecotect Analysis

2010 与固定太阳能电池板几个时刻的太阳辐射吸收量进行对比分析,量化显示出了该智能模型在发电产量上的优势。

3.2 模型实现

本模型是一个屋顶为南向斜面的小房子,为了便于观察,后面仅拿出屋顶进行模拟实验。该屋顶已铺设好了太阳能电池板阵

列,并已安装了太阳跟踪设备,当太阳位置变化时,屋顶上的各太阳能电池板就以其纵向中线为旋转轴朝向太阳做相应的东西向旋

转,以保证太阳光线垂直照射,如图2~图7 所示。

图2 模型示意图3 日出时太阳能电池板朝向示意图4 上午太阳能电池板朝向示意

图5 正午太阳能电池板朝向示意图6 下午太阳能电池板朝向示意图7 日落时太阳能电池板朝向示意

4 数据对比

为了显出该智能太阳能屋顶光伏发电的优势,我们选择7 月

31 日中的六个时刻进行数据对比,因为对于西安地区而言,7 月31 日为一年当中太阳辐射量最大的一天,对比结果显著。通过Autodesk Ecotect Analysis 2010,对比结果如表1 所示。

5 结论

本文在太阳跟踪技术的基础上,应用计算机辅助建筑设计技

图1 太阳高度角和太阳方位角

表1 两种模型太阳能吸收量的数据对比结果

628

Computer Knowledge and Technology 电脑知识与技术

本栏目责任编辑:唐一东人工智能及识别技术

第7 卷第3 期(2011 年1 月)

(上接第626 页)

4 总结

文章对真实矢量场法及最大Lyapunov 指数进行了讨论,并改进了这两个方法,改进的真实矢量场法给出了平均方向矢指标的

定量测定方法从而可以定量的取得最佳嵌入维数,改进的最大Lyapunov 指数预测方法对d 值进行了优选,从而可以避免邻近点选择不当可能对结果带来的不利影响。最后通过实验仿真,验证了改进方法的有效性。在实验结果中出现的尖峰与实际值相差较大的

问题,为进一步研究指明了方向:进一步研究噪声处理以及多时间序列同时预测。

最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改

太阳能小屋设计参考方案.(优选)

2012数学建模B题太阳能小屋设计参考方案 问题1:请根据山西省大同市的气象数据,仅考虑贴附安装方式,选定光伏电池组件,对小屋(见附件2)的部分外表面进行铺设,并根据电池组件分组数量和容量,选配相应的逆变器的容量和数量。 1.地表斜面上辐射量的计算公式 1.1、倾斜太阳能集热器上接收到的太阳辐射能

2太阳能电池方阵设计 (1)太阳能电池组件串联数Ns 将太阳能电池组件按一定数目串联起来,就可获得所需要的工作电压,但是,太阳能电池组件的串联数必须适当。串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电。如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加。因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态。 计算方法如下: Ns=UR/Uoc=(Uf+UD+Uc)/Uoc(2) 式中:UR为太阳能电池方阵输出最小电压; Uoc为太阳能电池组件的最佳工作电压; Uf为蓄电池浮充电压; UD为二极管压降,一般取0.7V; UC为其它因数引起的压降。 表1我国主要城市的辐射参数表:需补充的蓄电池容量Bcb为: Bcb=A×QL×NLAh(5)

④太阳能电池组件并联数Np的计算方法为: Np=(Bcb+Nw×QL)/(Qp×Nw)(6) 式(6)的表达意为:并联的太阳能电池组组数,在两组连续阴雨天之间的最短间隔天数内所发电量,不仅供负载使用,还需补足蓄电池在最长连续阴雨天内所亏损电量。 (3)太阳能电池方阵的功率计算 根据太阳能电池组件的串并联数,即可得出所需太阳能电池方阵的功率P: P=Po×Ns×NpW(7) 式中:Po为太阳能电池组件的额定功率。 问题2:电池板的朝向与倾角均会影响到光伏电池的工作效率,请选择架空方式安装光伏电池,重新考虑问题1。 太阳能电池板方阵安装角度怎样计算? 由于太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116) 10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考

太阳能光伏设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个2.88kWp的小型系统,平均每天发电5.5kWh,可供一个1kW的负载工作5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。

数学建模太阳能小屋的设计说明

太阳能小屋的设计 摘要:本文讨论了太阳能小屋设计中,光伏电池在小屋外表面的优化设计的问题。基于对问题的分析和给定的部分太辐射强度,不同种类光伏电池规格数据,以及满足最大发电量、最小投资量的要求,以对光伏电池性价比选择为中心,综合运用了SPSS、MATLAB、Excel等软件,使用了多种综合分析方法,研究了在太阳能小屋的设计中,不同种类的光伏电池之间,光伏电池与逆变器之间的最优串并联组合,以实现光伏电池在小屋外表面的优化铺设。 首先,影响光伏电池每峰瓦实际发电效率或发电量的主要因素太辐射总强度的分析,计算出倾斜平面的太辐射总强度,并利用选取每月选取一个代表日的方法,求得三类电池在阀值限制下的年辐射总量。(见表1) 其次,对三种类型光伏电池的最优选择,通过建立三种类型光伏电池的性价比选择模型(模型一),来寻找在既满足全年太阳能光伏发电总量尽可能大,又满足单位发电量的费用尽可能小的最优光伏电池组件,并求得各类电池一年的总发电量(见表2),光伏电池的最优性价比,该模型可适用于不同类型的物质的性价比优选,即可以保证最大出产,又可以顾及最小投入,从而达到最优选择。 再次,是对最优串并联组合的选取,我们得到了所需光伏电池的种类的块数后,通过分析结合之前所求得的性价比,利用线性规划模型得出最优串并联组合,和小屋外表面的铺设阵列,并最终求得投资的回收年限(见表4-6)。 最后,在解决问题二和问题三上,在光伏电池的最优选取和最优串并联组合的选取上,可以直接套用解决问题一是所用的模型,只需着重分析太辐射强度的变化及光伏电池的安装部位及方式(贴附或架空)。

关键词:太总辐射强度性价比选择线性规划 最优串并联组合每月代表日 一、问题的重述 在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。 附件1-7提供了相关信息。请参考附件提供的数据,对下列三个问题,分别给出小屋外表面光伏电池的铺设方案,使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,并计算出小屋光伏电池35年寿命期的发

太阳能电池充电器设计方案

电源招聘专家太阳能电池充电器设计方案 太阳能电池板的泄漏问题传统上可以采用一个与太阳能电池板相串联的肖特基二极管来解决,但肖特基二极管的正向电压降使得它在高电流条件下会消耗大量的功率。因此,需要采用昂贵的散热器和精细的布局来把肖特基二极管保持于低温状态。那么,有没有低成本的解决方案?太阳能电池充电器设计最困扰设计师的“至满充电电池的浮动电压控制”和“在最佳发电点给电池板加载”问题又该如何解决?在下文中,Linear电源专家将为你介绍该公司最新的低成本解决方案。 作为在商业和住宅环境中均具实用性的一种发电方法而言,太阳能电池板已经被人们所广泛接受。然而,尽管在技术方面取得了进步,太阳能电池板的造价仍然很昂贵。这种高昂的成本有很大部分来自于电池板本身,这里,电池板的尺寸(因而也包括其成本) 将随着所需输出功率的增加而增加。因此,为了造就外形尺寸最小、成本效益性最佳的解决方案,最大限度地提升电池板性能是很重要的。 一般而言,太阳能电池板所获取的能量用于给电池充电,电池的储能反过来将在没有阳光照射的情况下为终端应用电路的操作提供支持。如欲实现太阳能电池充电器的最佳设计,则必需对太阳能电池板的特性有所了解。首先,由于具有很大的结合区,因此太阳能电池板会发生泄漏,在黑暗条件下电池将通过电池板放电。而且,每块太阳能电池板都拥有一个具最大功率点的特征IV曲线,所以,当负载特性与电池板特性不相匹配时,能量提取将有所减少。理想的情况是:电池板将在最大功率点上被持续加载,以充分地利用可用的太阳能,并由此最大限度地缩减电池板成本。 一般情况下,可以采用一个与电池板相串联的肖特基二极管来解决电池板的泄漏问题。反向泄漏被减小至一个很低的数值;然而,肖特基二极管的正向电压降(它在高电流条件下会消耗大量的功率) 仍然会造成能量损失。因此,需要采用昂贵的散热器和精细的布局来把肖特基二极管保持于低温状态。解决该功率耗散问题的一种更加有效方法是用一个基于MOSFET的理想二极管来替代肖特基二极管。这将把正向电压降减小到低至20mV,从而显著地减少功耗,同时降低散热布局的复杂性、外形尺寸和成本。幸运的是,由于已经有一些IC供应商制造出了具有这种规格的理想二极管(比如:由凌力尔特公司提供的LTC4412),因此上述目标得以轻松实现。 不过,有两个问题依然存在,即:“至满充电电池的浮动电压控制”和“在最佳发电点给电池板加载”。这些问题常常可以通过采用一个开关模式充电器和一个高效率降压型稳压器来加以解决。 凌力尔特已经开发出了这样一款电路,它由LTC1625 No RESNSE(无检测电阻器)同步降压型控制器、LTC1541微功率运算放大器、比较器和基准、以及LTC4412理想二极管组成。下面给出了该电路以供参考: 图1中的电路被置于太阳能电池板和电池之间,用于调节电池浮动电压。基于LTC1541的附加控制环路强制充电器在最大电池板功率点上运作。这种效率的提升缩减了所需的电池板尺寸,因而降低了总体解决方案的成本。当电池板峰值电源电压和电池电压之间存在失配时,这款电路的重要优点表现得尤为突出。

!!!太阳能电池制程工艺-培训资料

员 工 培 训 资 料 2008年09月04日初订 目录 第一章太阳能概况 (2) 第二章太阳能电池的发明和未来前景 (3) 1.太阳能电池发明 (3)

2.太阳能电池前景 (4) 第三章太阳能光伏技术 (5) 1.光伏效应 (5) 2.光伏电池分类 (5) 3.晶体硅生产一般工艺流程 (5) 第四章硅太阳能电池的工作原理及其结构 (12) 第五章太阳能电池基本参数 (16) 1.标准测试条件 (16) 2.太阳电池等效电路 (16) 3.伏安(I-V)特性曲线 (17) 4.开路电压 (18) 5.短路电流 (18) 6.最大功率点 (18) 7.最佳工作电压 (18) 8.最佳工作电流 (18) 9.转换效率 (18) 10.填充因子(曲线因子) (19) 12.电压温度系数 (19) 第一章太阳能概况 太阳能是各种可再生能源中最重要的基本能源,生物质能、风能、海洋能、水能等都来自太阳能,广义地说,太阳能包含以上各种可再生能源。太阳能作为可再生能源的一种,则是指太阳能的直接转化和利用。通过转换装置把太阳辐射

能转换成热能利用的属于太阳能热利用技术,再利用热能进行发电的称为太阳能热发电,也属于这一技术领域;通过转换装置把太阳辐射能转换成电能利用的属于太阳能光发电技术,光电转换装置通常是利用半导体器件的光伏效应原理进行光电转换的,因此又称太阳能光伏技术。 二十世纪50年代,太阳能利用领域出现了两项重大技术突破:一是1954年美国贝尔实验室研制出6%的实用型单晶硅电池,二是1955年以色列Tabor提出选择性吸收表面概念和理论并研制成功选择性太阳吸收涂层。这两项技术突破为太阳能利用进入现代发展时期奠定了技术基础。 70年代以来,鉴于常规能源供给的有限性和环保压力的增加,世界上许多国家掀起了开发利用太阳能和可再生能源的热潮。1973年,美国制定了政府级的阳光发电计划,1980年又正式将光伏发电列入公共电力规划,累计投入达8亿多美元。1992年,美国政府颁布了新的光伏发电计划,制定了宏伟的发展目标。日本在70年代制定了“阳光计划”,1993年将“月光计划”(节能计划)、“环境计划”、“阳光计划”合并成“新阳光计划”。德国等欧共体国家及一些发展中国家也纷纷制定了相应的发展计划。90年代以来联合国召开了一系列有各国领导人参加的高峰会议,讨论和制定世界太阳能战略规划、国际太阳能公约,设立国际太阳能基金等,推动全球太阳能和可再生能源的开发利用。开发利用太阳能和可再生能源成为国际社会的一大主题和共同行动,成为各国制定可持续发展战略的重要内容。 二十多年来,太阳能利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展,成为世界快速、稳定发展的新兴产业之一。 第二章太阳能电池的发明和未来前景 1.太阳能电池发明 1839年法国物理学家A·E·贝克勒尔意外的发现,两片金属进入溶液构成的伏打电池,受到阳光照射时会产生额外的伏打电势,他把这种现象称为光生伏打效应。1883年,有人在半导体硒和金属接触处发现了固体光伏效应。后来就把能够产生光生伏打效应的器件称为光伏器件。由于半导体PN结器件在阳光下光电

历年数学建模赛题题目

历年数学建模赛题题目 1992年 (A)施肥效果分析问题(北京理工大学:叶其孝) (B)实验数据分解问题(华东理工大学:俞文此;复旦大学:谭永基)1993年 (A) 非线性交调得频率设计问题(北京大学:谢衷洁) (B)足球排名次问题(清华大学:蔡大用) 1994年 (A)逢山开路问题(西安电子科技大学:何大可) (B)锁具装箱问题(复旦大学:谭永基、华东理工大学:俞文此) 1995年 (A) 飞行管理问题(复旦大学:谭永基、华东理工大学:俞文此) (B)天车与冶炼炉得作业调度问题(浙江大学:刘祥官,李吉鸾) 1996年 (A) 最优捕鱼策略问题(北京师范大学:刘来福) (B) 节水洗衣机问题(重庆大学:付鹂) 1997年 (A)零件参数设计问题(清华大学:姜启源) (B)截断切割问题(复旦大学:谭永基、华东理工大学:俞文此) 1998年 (A) 投资得收益与风险问题(浙江大学:陈淑平) (B)灾情巡视路线问题(上海海运学院:丁颂康) 1999年 (A) 自动化车床管理问题(北京大学:孙山泽) (B) 钻井布局问题(郑州大学:林诒勋) (C) 煤矸石堆积问题(太原理工大学:贾晓峰) (D)钻井布局问题(郑州大学:林诒勋) 2000年 (A) DNA序列分类问题(北京工业大学:孟大志) (B)钢管订购与运输问题(武汉大学:费甫生) (C)飞越北极问题(复旦大学:谭永基) (D)空洞探测问题(东北电力学院:关信) 2001年 (A) 血管得三维重建问题(浙江大学:汪国昭) (B)公交车调度问题(清华大学:谭泽光) (C)基金使用计划问题(东南大学:陈恩水) (D) 公交车调度问题(清华大学:谭泽光) 2002年

太阳能小屋的优化设计

2012高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛地竞赛规则 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上 咨询等)与队外地任何人(包括指导教师)研究、讨论与赛题有关地问题 我们知道,抄袭别人地成果是违反竞赛规则地,如果引用别人地成果或其他公开地资料(包括网上查到地资料),必须按照规定地参考文献地表述方式在正文引用处和参考文献 中明确列出? 我们郑重承诺,严格遵守竞赛规则,以保证竞赛地公正、公平性?如有违反竞赛规则地行为,我们将受到严肃处理? 我们授权全国大学生数学建模竞赛组委会,可将我们地论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等) 我们参赛选择地题号是(从 A/B/C/D中选择一项填写): B 我们地参赛报名号为(如果赛区设置报名号地话): 所属学校(请填写完整地全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):教练组 日期:2012年9月10日 赛区评阅编号(由赛区组委会评阅前进行编号)

2012高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号) 全国统一编号(由赛区组委会送交全国前编号) 全国评阅编号(由全国组委会评阅前进行编号)

太阳能小屋地优化设计 摘要 本文通过对题中所给数据和相关资料地分析,给出了光伏电池在小屋外表面地优化铺设方案 . 问题一:根据山西省大同市地气象数据,在仅考虑贴附安装方式地情况下,建立了多目标非线性规划模型 .根据该模型地结果,得出 35 年总发电量为: 1065202.28 度,单位发电量地花费为: 0.1566 元,总经济效益为:365751.12 元,成本回收年限为: 19 年. 问题二:在问题一地基础上,考虑了电池板地朝向与倾角对光伏电池地工作效率地影响,采用架空方式安装光伏电池,使之随着太阳位置地改变而均匀地、稳定地、连续地改变,建立了太阳辐射总强度地连续模型,并求其定积分,仍然是多目标非线性规划模型.最 终得出 35 年总发电量为: 1316013.03 度、单位发电量地花费为: 0.11 元,总经济效益为: 578835.8 元,比模型一多了 213084.7 元,成本回收年限为: 14 年. 问题三:根据大同地位置地坐标,以及太阳方位角和高度角地变化情况,小屋被设计为梯形,并画出了小屋地外形图,并给所设计小屋地外表面优化铺设光伏电池,给出铺设及分组连接方式,模型类似于模型一和二 .最终求得地 35 年总发电量为 1316013.03 度,单位发电量地花费为: 0.12元,总经济效益为:500883.975 元. 由本文求解结果可知,太阳能电池不仅是从能源还是环保上来说,都是一项很有发展前景地能源 .合理地利用这项资源,会给人们带来很好地经济效益. 关键字:多目标规划模型光伏电池太阳辐射 、问题重述 在太阳能小屋地设计中,研究光伏电池在小屋外表面地优化铺设是很重要地问题.本文 需通过参考附件提供地数据,对下列三个问题,分别给出小屋外表面光伏电池地铺设方案,使小屋地全年太阳能光伏发电总量尽可能地大,而单位发电量地费用尽可能地小,并计算出小屋光伏电池 35 年寿命期内地发电总量、经济效益及投资地回收年限. 在求解每个问题时,都要求配有图示,给出小屋各外表面电池组件铺设分组阵列图形及组件连接方式(串、并联)示意图,也要给出电池组件分组阵列容量及选配逆变器规格列表 .

太阳能电池技术方案设计设计

技术方案 太阳能电池的分类 (一)单晶硅太阳能电池 单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。 (二)多晶硅太阳能电池 多晶硅太阳能电池的制作工艺与单晶硅太阳电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电效率约12%左右(2004年7月1日日本夏普上市效率为14.8%世界最高效率多晶硅太阳能电池)。从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。从性能价格比来讲,单晶硅太阳能电池还略好。 (三)非晶硅太阳能电池 非晶硅太阳电池是1976年出现的新型薄膜式太阳电池,它与单晶硅和多晶硅太阳电池的制作方法完全不同,工艺过程大大简化,硅材料消耗很少,电耗更低,它的主要优点是在弱光条件也能发电。但非晶硅太阳电池存在的主要问题是光电转换效率偏低,目前国际先进水平为10%左右,且不够稳定,随着时间的延长,其转换效率衰减。

(四)多元化合物太阳电池 多元化合物太阳电池指不是用单一元素半导体材料制成的太阳电池。现在各国研究的品种繁多,大多数尚未工业化生产,主要有以下几种:a)硫化镉太阳能电池b)砷化镓太阳能电池c)铜铟硒太阳能电池(新型多元带隙梯度Cu(In,Ga)Se2薄膜太阳能电池)Cu(In,Ga)Se2是一种性能优良太阳光吸收材料,具有梯度能带间隙(导带与价带之间的能级差)多元的半导体材料,可以扩大太阳能吸收光硅薄膜太阳能电池明显提高的薄膜太阳能电池。可以达到的光电转化效率为18%,而且,此类薄膜太阳能电池到目前为止,未发现有光辐射引致性能衰退效应(SWE),其光电转化效率比目前商用的薄膜太阳能电池板提高约50~75%,在薄膜太阳能电池中属于世界的最高水平的光电转化效率。 工艺技术方案 根据产品方案,本项目主要生产工艺的流程采用国内较为成熟的工艺路线,基本上是从硅片的开箱检测与装盒开始,然后在加工车间去除油污及制裁、扩散制作表面PN结然后检测、等离子体刻蚀周边PN结及抽测效果、二次清洗,然后在表面处理车间完成制备薄膜减反射层、印刷背面电极、背电场、正面电极,然后经过高温烧结,最后经检测车间检测合格后入库。太阳能电池硅片生产工艺流程图如下:

太阳能电池工艺简介及厂房建设总结1

太阳能电池片工艺简介及厂房建设总结 本文章主要侧重于太阳能电池的生产工艺及厂房及建设探讨,欢迎批评指正。 一、工艺简介及设备环境要求 太阳能电池片生产工艺分为:制绒清洗(扩散前清洗)→扩散→扩散后清洗→刻蚀→PECVD→丝网印刷→烧结→分类检测→封装,以下就各工艺进行详细分析及说明。 扩散前清洗的目的在于制绒,就是把相对光滑的原材料硅片的表面通过强酸和强碱腐蚀,使其凸凹不平,变得粗糙,形成漫反射,减少直射到硅片表面的太阳能的损失。 相关设备有无锡瑞宝,德国RENA,深圳捷佳创。 所使用的介质有HF,HCL,HNO3,NaOH,Na2SiO3和乙醇等。 动力源有自来水,纯水,压缩空气,氮气,工艺冷却水,废水,热排风和酸排风。 制绒的流程:单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠、氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结 腐蚀制绒区环境要求:温度要求:23±2℃湿度要求:55±10%;十万级可满足车间要求。 不同设备厂家高度也不同RENA制绒设备的规格为7584*4540*3065,因此一般设计3.5~4米吊顶。 地坪采用>2mm环氧树脂即可,无防静电要求。 腐蚀制绒区排气(18个排气口) 排风量(PP or PVC):普通漂洗排风3000m3/h+酸排4290m3/h+碱排450m3/h /台 有酸/碱废液,排放酸性约19m3/h,碱性液体约8m3/h 压缩空气6Bar,224NM3/h/台管道采用不锈管 纯水:电子级1级,3.6m3/h/台管道采用CL-PVC 自来水流量2.4m3/h,,平均0.06m3/h/台管道采用PPR 冷却循环水:供水压力5Bar,进水温度18℃,接口流量2.4m3/h/台管道不锈管。 RENA清洗机功率:19.5KW 捷佳创功率:90KW

硅太阳能电池的结构及工作原理

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显

太阳能小屋的设计数学建模

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等) 与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的 资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参 考文献中明确列出。 我们重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则 的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展 示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 010048 所属学校(请填写完整的全名):呼伦贝尔学院 参赛队员 (打印并签名) :1. 苑伟 2. 曦 3. 海平 指导教师或指导教师组负责人 (打印并签名): 日期: 2012 年 09月 09 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

B题太阳能小屋的设计 摘要 随着当今社会资源的匮乏,合理利用能源显得越来越重,其中太阳能做为一种新能源,给人们的生活和生产带来了很多帮助。在设计太阳能小屋时,需在建筑物表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V 交流电才能供家庭使用,并将剩余电量输入电网。不同种类的光伏电池每峰瓦的差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。因此,在太阳能小屋的设计中,研究光伏电池在小屋表面的优化铺设是很重要的问题。 问题1仅考虑贴附安装方式,那么光伏电池组件的夹角就可以忽略了小屋的表面安装的个数根据其面积比例就可以计算出来。问题2的架空方式考虑到电池板的朝向与倾角会影响光伏电池的工作效率,会使小屋产电量更大。问题3中设计的小屋应尽可能多的装电池组件,以使发电量总量尽可能大。 在问题一中,根据各种光伏电池组件的连接方式和平均发电功率的比较和逆变器的价格(写出数据的对比),选择电池组件*和逆变器*,每个面的面积选择了*个逆变器……利用表格数据作图得到…… 在问题二中,根据市的每个面得辐射总量知道太阳照射比较强的是*面,于是再根据其每个方向的辐射量的比较选择按*度角安装电池组件 在问题三中,根据问题一和问题二的比较,知道用架空方式设计小屋会更有效率,小屋的结构比例和安装方向选择了电池组件*和逆变器*…… 关键字:光伏电池、光伏电池组件、逆变器、辐射强度、年发电量。

太阳能电池设计方案作业

编号: 审定成绩: 重庆邮电大学 课程设计(论文) 设计(论文)题目:太阳能电能收集充电器 学院名称:通信与信息工程学院 学生姓名:杨海,张强,马超,殷亮,余凌霄 专业:电子信息工程(通信技术方向) 班级: 指导教师:刘乔寿 答辩组负责人: 填表时间:2011 年12 月重庆邮电大学教务处制

【摘录】本文通过对电路设计的总体要求的把握和理解,在充分理解性能及设计要求指标的基础上,对元器件的选择做了比对和较为细致的研究,阐述了电路设计中对于升降压电路的选取带来的不同性能,从综合性比较的角度上,得出了自动切换升降压方案在性能,经济成本,适用范围,可操作性等方面相对更优性,并通过最后的测试方案在误差范围内验证了设计方案,完成了课程设计任务。 在具体设计过程中,主要使不同强度的太阳光所产生的不同大小电压,通过可编程输出电压的相关芯片,如TPS61200,LM317等芯片调整出适当的输出电压,使其符合锂电池充电所需的4.2V并且尽可能的稳定。 本系统的供电电源转换分为升压和降压两部分,升压部分是一节干电池作为供电电源,通过升压电路转换为可为手机充电的电压,降压部分是由太阳能电池板作为供电电源,通过降压电路之后转换为可为手机电池充电的电压。 【关键词】自动切换升降压方案综合性比较测试方案验证稳定性

目录 前言 (1) 第一章太阳能概述及应用 (2) 1.1 太阳能电池发展历史及趋势 (2) 1.1.1 发展历史简介 (2) 1.1.2 发展趋势预测 (3) 第二章电路设计总体方案概述 (4) 2.1 方案一降压电路方案概述 (4) 2.1.1 电路设计的原理 (4) 2.1.2 设计的主要器件选择 (4) 2.2. 方案二升压后降压方案概述 (4) 2.2.1 电路设计的原理 (5) 2.2.2 电路设计的主要器件选择 (5) 2.3 方案三自动切换升降压电路概述 (5) 2.3.1 电路设计的原理 (5) 2.3.2 电路设计的主要器件选择 (5) 第三章电池设计具体方案分析与讨论 (6) 3.1 降压电路具体设计探讨 (9) 3.2 升压后降压方案具体设计探讨 (12) 3.3 自动切换升降压电路具体设计探讨 (15) 3.4 本章小结 (16) 第四章设计实际测试结果分析 (16) 4.1 关于模拟测试的探讨与结果分析 (16) 4.1.1 模拟测试与实际充放电的区别与共性 (17) 4.1.2 测试的具体方法讨论 (17) 4.2 实际测试数据探讨与对比 (18) 4.2.1 测试模型的选取 (18) 4.2.2 实际测试数据分析 (19)

太阳能电池片生产工艺简介解读

培训资料 前道 一制绒工艺 制绒目的 1?消除表面硅片有机物和金属杂质。 2.去处硅片表面机械损伤层。 3?在硅片表面形成表面组织,增加太阳光的吸收减少反射。 工艺流程 来料,开盒,检查,装片,称重,配液加液,制绒,甩干,制绒后称重,绒面检查,流出。 单晶制绒1号机 2号机 基本原理 1#超声 去除有机物和表面机械损伤层。 目前采用柠檬酸超声,和双氧水与氨水混合超声。

3#4#5#6#制绒 利用NaOH 溶液对单晶硅片进行各向异性腐蚀的特点来制备绒面。当各向异性因子((100) 面与(111)面单晶硅腐蚀速率之比)=10 时,可以得到整齐均匀的金字塔形的角锥体组成的绒面。绒面具有受光面积大,反射率低的特点。可以提高单晶硅太阳能电池的短路电流,从而提高太阳能电池的光转换效率。 化学反应方程式:Si+2NaOH+H 2O=Nasio 3+2H 2 f 影响因素 1.温度 温度过高,首先就是IPA 不好控制,温度一高,IPA 的挥发很快,气泡印就会随之出现,这样就大大减少了PN 结的有效面积,反应加剧,还会出现片子的漂浮,造成碎片率的增加。可控程度:调节机器的设置,可以很好的调节温度。 2.时间金字塔随时间的变化:金字塔逐渐冒出来;表面上基本被小金字塔覆盖,少数开始成长;金字塔密布的绒面已经形成,只是大小不均匀,反射率也降到比较低的情况;金字塔向外扩张兼并,体积逐渐膨胀,尺寸趋于均等,反射率略有下降。可控程度:调节设备参数,可以精确的调节时间。 3.IPA 1.协助氢气的释放。 2.减弱NaOH 溶液对硅片的腐蚀力度,调节各向因子。纯NaOH 溶液在 高温下对原子排列比较稀疏的100 晶面和比较致密的111 晶面破坏比较大,各个晶面被腐蚀而消融,IPA 明显减弱NaOH 的腐蚀强度,增加了腐蚀的各向异性,有利于金字塔的成形。乙醇含量过高,碱溶液对硅溶液腐蚀能力变得很弱,各向异性因子又趋于1。 可控程度:根据首次配液的含量,及每次大约消耗的量,来补充一定量的液体,控制精度不高。 4.NaOH 形成金字塔绒面。NaOH 浓度越高,金字塔体积越小,反应初期,金字塔成核密度近似不受NaOH 浓度影响,碱溶液的腐蚀性随NaOH 浓度变化比较显著,浓度高的NaOH 溶液与硅反映的速度加快,再反应一段时间后,金字塔体积更大。NaOH 浓度超过一定界限时,各向异性因子变小,绒面会越来越差,类似于抛光。 可控程度:与IPA 类似,控制精度不高。 5.Na 2SiO 3 SI 和NaOH 反应生产的Na2SiO3 和加入的Na2SiO3 能起到缓冲剂的作用,使反应不至于很剧烈,变的平缓。Na 2SiO 3使反应有了更多的起点,生长出的金字塔更均匀,更小一点Na2SiO3 多的时候要及时的排掉,Na2SiO3 导热性差,会影响反应,溶液的粘稠度也增加,容易形成水纹、花蓝印和表面斑点。 可控程度:很难控制。 4#酸洗 HCL 去除硅片表面的金属杂质盐酸具有酸和络合剂的双重作用,氯离子能与多种金属离子形成可溶与水的络合物。 6#酸洗 HF 去除硅片表面氧化层,SiO2+6HF=H 2[siF6]+2H 2O。控制点 1.减薄量定义:硅片制绒前后的前后重量差。 控制范围

太阳能小屋的设计

% 太阳能小屋的设计 摘 要 近年来,光伏技术受到人们的青睐,同时材料成本费在产品应用过程中起着举足轻重的作用。本文研究如何使光伏电池板在满足一定的约束条件下合理、有效的布置电池板,从而提高电池板材料的利用率。我们的主思路就是:如何布置光伏电池板使得总发电量在尽可能大的情况下,单位发电量效益尽可能小。根据太阳能电池外形以及房屋的外形,我们决定用填充算法与遗产算法相结合的矩形优化排样模型。 针对问题一,我们采用对太阳能电池板采用贴附式的方法进行铺设的模式。一方面,我们在确保每个电池组件都贴附着房屋的情况下来排布尽可能多的电池板,使排放区域的板材废料尽可能少,以提高板材的利用率。另一方面,我们考虑光伏电池组件的分组及逆变器选择的要求,运用遗传算法模型进行编程求解,最终求得35年的总发电量为367951kwh ,经过28年后成本收回,开始盈利,35年总的收益为24180元。 针对问题二,我们是采用架空式安装电池板的模式。基于问题一的模型基础上,由于铺的最多板的数目已确定,我们的目的:建立模型尽可能的使已铺的电池板吸收更多的太阳能。一方面,为了保证太阳能电池板能够最大的将照射在上面的太阳光吸收,我根据倾斜面上的所接受到的各种光照建立了最佳倾角模型,最终得出山西省大同市的最佳倾角为度。另一方面,为了消除由于太阳能电池板之间产生的阴影,我们建立了最优电池阵列间距模型。在最佳倾角模型的基础上,我们得出一年中冬至日的高度角最小, 通过数学几何知识,进一步得出电池阵列间距?2.27cos l ,最终得到总发电量为436470kwh ,经过17年收回成本,总收益为42600元。 针对问题三,我们对房屋进行重新设计。该题要求自己设计房屋,我们根据以下方面:(1)采光度最好,确定方向为坐北朝南。(2)太阳辐射强度最大,所以应使屋顶的面积尽可能大。经过问题二的计算,确定房顶的倾斜度为?3.37,根据以上条件,画出小屋的外观模型。根据问题二的排板模型,我们得到了太阳能电池板的排列方法,如图。求得总发电量为535710kwh ,经过15年成本收回,收益为53160元。 * 关键字:光伏电池 矩形优化排样模型 采光度 最佳倾角 '

晶体硅太阳能电池

晶体硅太阳能电池 专业班级:机械设计制造及其自动化13秋姓名:张正红 学号: 1334001250324 报告时间: 2015年12月

晶体硅太阳能电池 摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源己经成为越来越值得关注的社会与环境问题。人们开始急切地寻找其他的能源物质,而光能、风能、海洋能以及生物质能这些可再生能源无疑越来越受到人们的关注。光伏技术也便随之形成并快速地发展了起来,因此近年来,光伏市场也得到了快速发展并取得可喜的成就。本文主要就晶体硅太阳能电池发电原理及关键材料进行介绍,并对晶体硅太阳能电池及其关键材料的市场发展方向进行了展望。 关键词:太阳能电池;工作原理;晶体硅;特点;发展趋势 前言 “开发太阳能,造福全人类”人类这一美好的愿景随着硅材料技术、半导体工业装备制造技术以及光伏电池关键制造工艺技术的不断获得突破而离我们的现实生活越来越近!近20年来,光伏科学家与光伏电池制造工艺技术人员的研究成果已经使太阳能光伏发电成本从最初的几美元/KWh减少到低于20美分/KWh。而这一趋势通过研发更新的工艺技术、开发更先进的配套装备、更廉价的光伏电子材料以及新型高效太阳能电池结构,太阳能光伏(PV)发电成本将会进一步降低,到本世纪中叶将降至4美分/KWh,优于传统的发电费用。 大面积、薄片化、高效率以及高自动化集约生产将是光伏硅电池工业的发展趋势。通过降低峰瓦电池的硅材料成本,通过提升光电转换效率与延长其使用寿命来降低单位电池的发电成本,通过集约化生产节约人力资源降低单位电池制造成本,通过合理的机制建立优秀的技术团队、避免人才的不合理流动、充分保证技术上的持续创新是未来光伏企业发展的核心竞争力所在! 一、晶体硅太阳能电池工作原理 太阳能电池是一种把光能转换成电能的能量转换器,太阳能电池工作原理的基础是半导体PN结的光生伏特效应。

关于批准2013年全国大学生数学建模赛题后续研究立项的通告

关于批准2013年全国大学生数学建模赛题 后续研究立项的通告 为了在全国大学生数学建模竞赛(以下简称竞赛)活动中,进一步落实教育部《关于全面提高高等教育质量的若干意见》和教育部、财政部《关于实施高等学校创新能力提升计划的意见》的精神,探索大学生创新能力培养的新举措,促进人才培养与科研工作的结合,促进应用数学与工业及其他行业的结合,促进数学建模教师队伍水平的整体提高,提升竞赛的影响力,全国大学生数学建模竞赛组委会(以下简称全国组委会)决定开展2013年数学建模赛题后续研究的立项。 经过自由申请,全国组委会在立项申请截止日期前,一共收到86份申请书。经过专家评审,决定批准10项2013年数学建模赛题后续研究的立项(名单见附件),对每项课题给予1万元的经费支持。 请获得批准立项的申请人(或学校)于2013年4月20日前将学校财务账号信息(包括完整准确的开户银行、户名、账号)上报全国组委会。不按时提供上述信息的申请人(或学校),视为自动放弃立项。全国组委会将于4月30日前将相应经费汇入相应账号,相关学校在收到经费后将正式发票挂号寄回全国组委会。发票付款单位请填写“中国工业与应用数学学会”,经费用途请填写“赛题研究费”。 请获得批准立项的申请人按项目申请书认真开展研究,并于2014年4月30日前向全国组委会提交项目结题报告。 全国组委会秘书处联系人:100084清华大学数学科学系胡明娅;电话:010-********;E-mail:mhu@https://www.doczj.com/doc/022775616.html, 全国大学生数学建模竞赛组委会 二○一三年四月七日 附件: 2013年全国大学生数学建模赛题后续研究立项批准名单

有机太阳能电池封装技术毕业设计

1有机太阳能电池概述 1.1研究背景 随着化石能源的日益枯竭,可再生能源的寻求已经迫在眉睫,太阳能作为一种取之不尽、用之不竭的绿色能源受到了人们的关注。据统计,地球表面接受的太阳能辐射达到全球需求能源的一万倍,地球每平方米平均每年受到的辐射可发电289kw.h,在全球4%的沙漠上装太阳光伏系统,就足以满足全球能源需求。因此光伏发电具有广阔的发展空间。目前占光伏市场主导地位的是单晶硅和多晶硅太阳能电池。但是,昂贵的成本是限制无机太阳能电池进一步发展的重要因素。并且,中国多晶硅价格从去年最高的超过300万元/吨,下降至目前大约120万元/吨。薄膜太阳能电池等由于成本低,市场份额迅速扩大,这不仅对传统晶硅电池价格形成压制,同时在一定程度上降低了太阳能发电成本。 从20世纪70年代开始人们就越来越关注有机太阳能的研制。在导电聚合物上的研发利用取得很大的进步,有机半导体成为硅半导体的替代品指日可待。机导电聚合物有其独特的优势:有机分子可以经过加工,不需要得到晶体状无机半导体。特别是聚合物半导体的优越性是与廉价的加工技术联系在一起。大量的研究表明,导电聚合物是集各种性能于一身的半导体材料。导电聚合物又称导电高分子,是通过参杂手段,能使得电导率在半导体和导体范围内的聚合物.自1970年代第一种导电聚合物—聚乙炔发现以来,一系列星星导电聚合物相继问世.常见的导电聚合物有聚乙炔,聚噻吩,聚吡咯,聚苯胺,聚苯撑,聚苯撑乙烯,和聚双炔等.有机薄膜聚合物的快速发展,为有机薄膜太阳能电池的发展,提供有力的支持。机薄膜太阳能电池也是一种薄膜器件,现在的各种成熟的薄膜制造技术为有机薄膜太阳能电池的发展提供技术保障。有机聚合物太阳能电池具有可重复利

相关主题
文本预览
相关文档 最新文档