当前位置:文档之家› 第三章 区间隧道衬砌结构设计分析

第三章 区间隧道衬砌结构设计分析

第三章 区间隧道衬砌结构设计分析
第三章 区间隧道衬砌结构设计分析

第3章区间隧道衬砌结构设计

3.1地下铁道线路上部建筑

钢轨、联接零件、道床、轨枕、防爬设备及道岔共同组成地下铁道线路上部建筑。地铁的特点有运量较大、快速迅捷、安全、准时、不污染环境,同时地铁可以修建在建筑物较多而且不便于发展地面交通的地方。

3.1.1 钢轨

选定钢轨类型的主要因素是年通过量、速度、选定的轴负载、延长检修周期、检修工作量和振动噪声。

(1)钢轨类型

综合国内外地铁钢轨类型和南昌轨道交通的实际情况,宜选用60kg/m的钢轨。

(2)钢轨铺设

中山西路站至子固路站区间为直线段,在地下铁道内由于阳光不受影响,温度变化相对较小,铺设无缝线路。对于无缝线路,采用换铺法进行施工,对于长轨条的焊接,采用基地焊接与工地焊接相结合的施工方式。基地焊选用接触焊,工地焊可以选用铝热焊或移动式气压焊。

3.1.2扣件

地下铁道的钢轨扣件有刚性扣件及弹性扣件两种,考虑到中子区间地段线路采用整体式道床,因此扣件采用全弹性分开式扣件。因为全弹性分开式扣件在垂直和横向均具有良好地弹性,相比而言更加适合整体式道床。

3.1.3道床

一般情况下有碎石道床和整体道床两种道床。整体道床的类型较多,随着轨枕方式的不同,有短轨枕式整体道床、长枕式整体道床、纵向浮置板式整体道床等。结合南昌铁路交通的实际情况,利用短轨枕整体道床设计区间,道床稳定、耐久性强、结构简单、造价低、施工简单。钢筋混凝土短轨枕的预制混凝土采用C50,嵌入在混凝土道床,采用C30混凝土道床,布设中心沟,在单层钢筋网的内,钢筋网作为一个杂散电流排水加固。

3.1.4道岔

道岔有单开道岔和双开道岔等形式。中山西路站至子固路站区间采用9号单开道岔。

3.2地下铁道区间隧道限界与净空

本设计线路采用2B 型接触网带电车辆通过这条线,每列车编排6辆,最高时速是80公里/小时。。2B 型车车辆长度为19m ,最大宽度为28m ,车辆定距为12.6m ,车辆限界及设备限界详细参数参照《地铁设计规范》附录。由于区间是一个圆形盾构隧道施工,无论是在直线或曲线段,只能使用相同直径的盾构,要在直线上或不同曲线半径地段采用不同半径的盾构来施工是不可能的。所以,按平面曲线最小曲线半径来选用盾构进行施工,才能够使得圆形隧道建筑限界满足要求。

(一)由于车厢纵轴线与线路中线的偏移而引起的加宽与加高

a.曲线内侧加宽曲内d R

8a l d d 2

2+=+=δ内曲内 (3-1) 式中 l-车辆定距

a-车辆固定轴距

R-圆曲线半径

b.曲线外侧加宽曲外d R

d 8a l -L d -R 8L 2222)(曲内曲外+== (3-2)

(二)由于超高使车厢倾斜而引起的加宽与加高

根据《规范》可知,“圆形或马蹄形隧道在曲线超高地段,应采用隧道中心向线路基准线内侧偏移的方法解决轨道超高造成的内外侧不均匀位移量”。所以从减小衬砌直径、保证受力和降低工程量方面考虑,只需将隧道中心向线路基准线内侧偏移即可,盾构衬砌一般不进行该项加宽。本设计不予计算。

c.顶部加高a h )cos 1(sin 2

1θθ--=

a a H L h (3-3)

式中 1L -车厢顶部的宽度

(三)总加宽与加高

隧道加宽设计考虑区段最小平曲线半径R=350m.所以盾构隧道加宽加高如下:

mm m R 4.580584.0350

82.26.128a l d d 2

222==?+=+=+=δ内曲内 m m 5.70350

82.26.12198a l -L d -R 8L 2222222=?+-=+==)()(曲内曲外R d mm R v E 90.13350

8076.076.02

2=?== rad G E 00968.01435

90.13===θ mm H L h a a 8)cos 1(818.3sin 2

7.1)cos 1(sin 21=-?-?=--=θθθθ 曲线总加宽:mm d d d 9.1285.704.58=+=+=曲外曲内总

曲线总加高:mm h h a 8==高

(四)限界与净空

具体设计见设计图,图号02。

3.3衬砌结构类型与设计

3.3.1 管片类型比选

盾构法隧道的衬砌有单层和双层,单层衬砌由装配式中衬砌构成,也可以采用挤压混凝土衬砌,当前,地铁盾构隧道一般采用的是装配式衬砌。钢筋混凝土管片具有制作方便、刚度较大、耐久性和耐压性好、造价低等一系列特点,因此被广泛采用。结合南昌市轨道交通特点,本设计采用钢筋混凝土土管片。钢筋混凝土管片又有两种类型:

(一)箱型管片

箱型管片一般用于大直径隧道。管片有大手孔和空腔。因为空腔较大,因此可采用制螺栓连接。该管片的优点是:方便螺栓的连接操作;能够减少混凝土材料的使用;材料量相同时候,箱型比板型管片的抗弯刚度更大。缺点是:因为空腔背部的衬砌厚度有一定限度,在盾构千斤顶的压力作用下,可能会使管片混凝土剥落,甚至被压碎;因为存在空腔,应该将管片设计较厚,所以会导致开挖断面加大,不利于节省造价。

(二)板型管片

板型管片呈弯曲的形状,它的手孔较小。该种管片的优点是:因为空腔较小,大多是实心的,因此能承受千斤顶的较大压力;其内表面比箱型管片平整光滑、通风阻力小、对运营通风有利;当厚度相等时,板型管片的抗弯刚度及强度都比

箱型管片大;对各种直径的隧道,都比较适用。缺点是:一定要使用螺栓,不方便施工操作。

根据上述各类型管片的特点和《地铁设计规范》规定,隧道的衬砌类型选为钢筋混凝土预制单层板型管片衬砌。考虑防水及一次衬砌到位,衬砌结构混凝土采用C50防水等级S10的混凝土。

3.3.2管片厚度及宽度的设计

因为单层衬砌具有施工方法简单、工程进度短、投资较省的优点,所以盾构隧道采用单层装配式衬砌,管片选用平板型钢筋混凝土管片。综合考虑,管片的厚度为40cm,采用C50混凝土。

使用环宽1.5m的管片有以下优点:一方面是减少了20%的环向接缝数量,降低了接缝漏水的几率,提高隧道防水质量;另一方面是减少了连接螺栓的使用量;此外还减少了20%的拼装时间,加快了施工速度。综合考虑南昌实际情况,环宽为1.5m。

3.3.3分块

在当前情况下,地铁隧道为中等直径的时候,衬砌环的分块数一般采用3个标准块+2个邻接块+1个封顶块,特点是方便运输,容易拼装。本区间将采用这种分块方式。中山西路站至子固路站区间盾构管片的标准块为67.5°,邻接块为67.5°,封顶块为22.5°。

3.3.4连接形式

管片采用弯螺栓连接,环向采用12个M30螺栓,每接缝之间采用2个M30螺栓连接。纵向环与环之间采用10个M30螺栓连接,按照36°等角布置。在距离隧道内侧1/3衬砌厚度处设置纵环向螺栓孔。

3.3.5管片的拼装方式

错缝方式和通缝方式是圆形管片衬砌拼装的两种方式。通缝拼装方式可使装配方便,容易定位。错缝拼装方式的优点:衬砌整体性较强,结构受力形态较优;由于错缝呈丁字形,有利于防水;当管片环面不光滑时,容易引起较大的拼装施工应力,使得纵向螺栓的连接不太容易,但环向螺栓容易穿。因此,本设计采用错缝拼装方式。

3.3.6封顶块的插入方式与插入角

径向和纵向两种插入方式是封顶块的不同插入方式。随着盾构隧道的埋深越来越大,承受高水土压力的拱顶管片的抗剪强度成了问题,因此,多数采用纵向插入式。考虑到南昌轨道交通的实际情况,本设计采用8°的插入角。

3.3.7接缝的构造

凹凸榫的设置虽然会提高接缝刚度,减少不均匀沉降,但是却会增加管片制作、拼装的难度,是拼装和后期沉降过程中管片开裂的因素之一,客观上又削弱了管片防水性能。而且当地层较硬时,如果接缝处开裂,这种开裂发生在管片背后会是看不见且无法修补的。因此,管片环、纵缝均不设榫槽。

3.3.8注浆孔和吊装孔

由于需要均匀地向衬砌背后进行回填注浆,每块管片上还需要设置一个注浆孔,内径取60mm。不另外设置吊装孔,螺栓孔和注浆孔兼作管片吊装孔。

3.3.9防水考虑

为了防止管片漏水,设置防水条槽。此外,采用密封垫圈来使螺栓孔防水,背后注浆防水采用了包括密封垫圈的注浆孔防水盒防水环对注浆管万册的防水。管片背面防水采用环氧树脂全面涂刷。

3.4区间隧道结构内力计算及结果分析

本设计利用flac程序计算圆形管片结构使用阶段的结构内力。

由埋深方案比选图,地铁线路中山西路站至子固路站区间最不利工况位置处于线路里程CK13+240.99、CK13+416.25和CK13+21.28,其中CK13+21.28里程处为地质条件最为复杂处,CK13+240.99里程处为埋深最大处,CK13+416.25里程处穿过抚河。需要经过flac计算,才能确定最不利截面。

由地铁区间纵断面地质资料图及设计勘察资料,可以得出上述三处的地质分布,分别如表3-1,、3-2和3-3.

表3-1 CK13+21.28处地质表

表3-2 CK13+240.99处地质表

地层厚度(m)

杂填土 4.6

粉质黏土 3.4

细砂9.0

强风化0.8

中分化10.2

微风化 4.2

表3-3 CK13+416.25处地质表

地层厚度(m)

水7.8

粉质黏土 6.2

强风化 1.0

中分化9.8

微风化15.0

盾构隧道主要穿过中风化层,该层地质稳定,隧道受影响较小。管片衬砌采用C50防水钢筋混凝土,其容重取26KN/m3,弹性模量为35.5GPa,但是考虑到管片拼装的衬砌圆环,其刚度比整体浇筑的圆环要小些,管片的刚度折减率取0.6,因此实际输入文件中管片的弹性模量为21.3GPa。

通过flac程序得到了三处的内力大小以及位移,分别如下所示。

图3-1 CK13+21.28处弯矩图

图3-2 CK13+21.28处剪力图

图3-3 CK13+21.28处轴力图

图3-4 CK13+21.28处结构X方向位移图

图3-5 CK13+21.28处结构Y方向位移图

隧道工程的结构分析

隧道工程的结构分析 摘要:文章对地下工程中的常见的隧道受力进行了有限元分析,通过对边界条件的真实模拟,经过计算分析出了位移变形图、弯矩、剪力和轴力等各种力学特性。这些都为隧道工程的设计提供了重要的借鉴意义。关键词:隧道工程;有限元;模拟单元 地下工程是指深入地面以下,为开发利用地下空间资源所建造的地下土木工程。它包括地下房屋和地下构筑物、地下铁道、公路隧道、水下隧道、地下共同沟和过街地下通道等。隧道为地下通道的一种,也是最常运用的一种。设计给交通或其他用途使用,通常用来穿山越岭,若施做于地面下称作地下隧道,在台湾习称地下道。隧道大部分的功能,为提供行人、脚踏车、一般道路交通、机动车、铁路交通、或运河使用,而部份隧道只运送水、石油或其他特定服务,包括军事及商业物流等。建造隧道有数种方式,深度浅的隧道可先开挖后覆盖,称为明挖回填式隧道;先兴建从地表通往地下施工区的竖井,再直接从地下持续开挖称为钻挖式隧道;建造海底隧道可用沉管式隧道。隧道可以分为铁路隧道、人行隧道、运河隧道、输水隧道、排水隧道、山岭隧道、城市地下隧道、水底隧道、海底隧道、过江隧道和电缆隧道等。 1地下工程的结构分析 1.1建模及分网 有限元分析(FEA)的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的近似解,然后,推导求解这个域总的满足条件,从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于,大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。模型及有限单元划分详见图1。 1.2边界条件 对隧道周边一定范围外的环境施加UX、UY方向的固定约束(即在超出隧道一定距离外的因素可以忽略不计);考虑到隧道周边土体将对其产生一定的压力作用,对其四边施加线性压力。具体如图2所示。

玩具结构设计常见结构设计方法系列教程之二

玩具结构设计常见结构设计方法系列教程之(二) [概述]: 本系列教程详细讲解了在玩具产品结构设计过程中使用的各种常用结构的实现方法和尺寸规格。对于有至于从事玩具设计的新手还是老手们都有很高的参考和指导作用。 本系列教程的内容将包括如下 1.选择材料的考虑因素 2.壁厚(料厚)设定原则 3.加强筋的处理方法 4.出模角大小确定 5.司柱尺寸设定方法 6.司柱套(司筒)尺寸设定方法 7.常见扣位设计及尺寸 8.超音波焊接技术 9.电池箱设计方法 10.滑轮设计方法 11.喇叭的基本装配方法 12.止口的使用及尺寸 13.齿轮的设计指引 14.齿轮箱的基本设计 15.离合器设计规范 6.0 支柱套 (Boss holder) 1. 如成品是以支柱收紧螺丝的时侯,在成品的上壳身必须要有支柱套来作定位之用。 2. 跟据一般的安全规格标准,螺丝头必须收藏于不能触摸的位置,所以高度必须有2.5mm 或以上 3. 以及,因为加上支柱套后会有Shape edge的关系,所以在每一个支柱套上壳收螺丝的地方,必须加上R1.0或以上的round fillet。

4. 为方便生产装配时的导入,所以在每一个支柱套的底部都可以不多不少的加上Chamfer 作导入之用。 5. 而且因为定位的关系,在支柱套底部必须要有至少1mm的深度来收藏支柱。 7.0 扣位 1. 扣位提供了一种不但方便快捷而且经济的产品装配方法,因为扣位的组合部份在生产成品的时候同时成型,装配时无须配合其它如螺丝、介子等紧锁配件,只要需组合的两边扣位互相配合扣上即可. 2. 扣位的设计虽可有多种几何形状,但其操作原理大致相同: 当两件零件扣上时,其中一件零件的勾形伸出部份被相接零件的凸缘部份推开,直至凸缘部份完结为止; 及后,借着塑料的弹性,勾形伸出部份实时复位,其后面的凹槽亦即被相接零件凸缘部份嵌入,此倒扣位置立时形成互相扣着的状态。 3. 如以功能来区分,扣位的设计可分为成永久型和可拆卸型两种。永久型扣位的设计方便装上但不容易拆下,可拆卸型扣位的设计则装上、拆下均十分方便。其原理是可拆卸扣位的勾形伸出部份附有适当的导入角及导出角方便扣上及分离的动作,导入角及导出角的大少直

第三章 区间隧道衬砌结构设计分析

第3章区间隧道衬砌结构设计 3.1地下铁道线路上部建筑 钢轨、联接零件、道床、轨枕、防爬设备及道岔共同组成地下铁道线路上部建筑。地铁的特点有运量较大、快速迅捷、安全、准时、不污染环境,同时地铁可以修建在建筑物较多而且不便于发展地面交通的地方。 3.1.1 钢轨 选定钢轨类型的主要因素是年通过量、速度、选定的轴负载、延长检修周期、检修工作量和振动噪声。 (1)钢轨类型 综合国内外地铁钢轨类型和南昌轨道交通的实际情况,宜选用60kg/m的钢轨。 (2)钢轨铺设 中山西路站至子固路站区间为直线段,在地下铁道内由于阳光不受影响,温度变化相对较小,铺设无缝线路。对于无缝线路,采用换铺法进行施工,对于长轨条的焊接,采用基地焊接与工地焊接相结合的施工方式。基地焊选用接触焊,工地焊可以选用铝热焊或移动式气压焊。 3.1.2扣件 地下铁道的钢轨扣件有刚性扣件及弹性扣件两种,考虑到中子区间地段线路采用整体式道床,因此扣件采用全弹性分开式扣件。因为全弹性分开式扣件在垂直和横向均具有良好地弹性,相比而言更加适合整体式道床。 3.1.3道床 一般情况下有碎石道床和整体道床两种道床。整体道床的类型较多,随着轨枕方式的不同,有短轨枕式整体道床、长枕式整体道床、纵向浮置板式整体道床等。结合南昌铁路交通的实际情况,利用短轨枕整体道床设计区间,道床稳定、耐久性强、结构简单、造价低、施工简单。钢筋混凝土短轨枕的预制混凝土采用C50,嵌入在混凝土道床,采用C30混凝土道床,布设中心沟,在单层钢筋网的内,钢筋网作为一个杂散电流排水加固。 3.1.4道岔 道岔有单开道岔和双开道岔等形式。中山西路站至子固路站区间采用9号单开道岔。

隧道支护结构设计方案

第一部分支护结构设计方案 一、设计依据 1、甲方提供的本工程的岩土工程报告。 2、甲方提供的建筑总平面图、地形图、地下管线图、主体框架平面图和剖面图等。 3、有关设计计算规范和规程: (1)、《南京市地基基础设计规范》DB32/112-95 (2)、《建筑基坑支护技术规程》(JGJ120-99) 二、工程概况 拟建的安仁街地下通道北侧副通道位于南京市鼓楼市民广场东侧安仁街路上,过街通道全长55.67m(中线长度),宽14m,南北各建地下人行通道一条,本次为对北侧安仁街地下人行通道进行设计。根据资料,基坑实际开挖深度按如下考虑:基坑西侧小半部分实际开挖深度5.95m,东侧大半部分实际开挖深度7.30m,靠近最东侧局部开挖深度7.05m。 三、周边情况 该地下通道横穿安仁街,其南侧为北京东路和安仁街、丹凤街四叉路口,该通道东侧为正在施工的北极阁地下商场基础,目前已施工至地面,该基坑为地面下-11m,采用的是人工挖孔桩加一层钢支撑的支护结构,本通道将和其相连接,通道东侧还有一个向北的人行出口,基坑西侧为市民广场,有两个出口,一个出口向北,另一个出口向西。在基坑中部,有一连接横穿北京东路的主通道接口,本次支护暂不考虑,沿安仁街中部路面下和东侧路面下分布有较为密集的地下管线。 四、工程地质情况 1、地形地貌 本工程位于南京鼓楼市民广场东侧安仁街上,根据《南京城区地貌类型图》划分,本施工区域地貌属二级阶地及坳沟地貌单元。地形平坦,地面标高在12.0m左右。 2、岩土层分布 经勘探查明,基坑支护范围内土层自上而下分别为: ①1杂填土:杂色,稍湿,结构松散,主要由碎砖石和少量粉质粘土组成,局部夹大量建筑垃圾,厚度0.9~1.4m; ①2素填土:灰黄~灰色,湿~饱和,可~流塑,夹少量碎砖,局部夹淤泥质土,埋深 0.9~1.4m,厚约0.8~2.2m; ②粉质粘土:灰黄色,饱和,可塑,埋深2.0~3.3m,厚约0.4~3.4m; ③粉质粘土:灰色,饱和,局部流塑,夹腐植物等,分布于场区东侧,埋深4.5~6.0m,厚约0.0~3.0m; ④1粉质粘土:灰黄色,饱和,可塑,埋深3.8~8.6m,厚约0.0~3.6m; ④2粉质粘土夹粘土:黄褐色,饱和,硬塑,埋深2.6~11.4m,厚约5.3~10.4m; 3、地下水 本场地地下水属孔隙潜水型。地下水主要赋存于填土层,由大气降水和地表水补给,富

隧道设计衬砌计算实例讲解(结构力学方法)

隧道设计衬砌计算范例(结构力学方法) 1.1工程概况 川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约260km , 西至康定约97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。 二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。 1.2工程地质条件 1.2.1 地形地貌 二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。隧道中部地势较高。隧址区地形地貌与地层岩性及构造条件密切相关。由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。 1.2.2 水文气象 二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。由于山系屏障,二郎山东西两侧气候有显著差异。东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。全年分早季和雨季。夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。

隧道围护结构施工方案

一、编制依据 1、《地铁设计规范》GB50157—2003 2、《地下铁道工程施工及验收规范》GB50299—1999 3、《建筑边坡工程技术规范》GB50330—2002 4、《建筑桩基检测技术规范》JGJ106—2003 5、《建筑桩基技术规范》JGJ94—2008 6、《建筑地基基础工程施工质量验收规范》GB50202—2002 7、《铁路混凝土与砌体工程施工规范》TB10210—2001 8、《轨道交通车站工程施工质量验收标准》QBD-006-2005 9、《钢筋焊接机验收规程》JGJ18—2003 10、《锚杆喷射混凝土支护技术规范》GB50086—2001 11、《建筑变形测量规范》JGJ8—2007 12、《城市轨道交通工程测量规范》GB50308—2008 13、《基坑土钉支护技术规程》CECS96:97 二、工程概况 (一)、工程简介 铁科院环形铁道试验基地建成于1958年,现为满足城市轨道交通装备认证检验的需要,特建设城市轨道交通试验线,以满足车辆的各种动态试验及联调试验,也包括对城市轨道交通工程产品的认证检验。 区间隧道起点为K4+375,终点为K5+300,全长925m,其中K4+375~K4+572段为明挖U型槽,长197m;K4+572~K5+085段为明挖矩形断面,长度513m;K5+085~K5+300段为明挖U型槽,长215m。

隧道基坑围护结构如下: (1)、U型槽段:坑深小于4m采用放坡土钉墙支护体系,坑深大于4m,采用钻孔灌注桩加钢支撑围护体系。 (2)、地下段:地下段采用钻孔灌注桩加钢支撑支护体系,机械成孔灌注桩为Φ600@1200(隧道最深处为Φ600@900),钢支撑竖向设置3道,基坑局部最深处钢支撑竖向设置4道(含倒撑),放坡段基坑最深4m,地下段基坑最深13.1m(隧道最低点泵房处)。 (二)、工程地质概况 (1)场地环境概况 本次全线勘察揭露地层最大深度为45m,根据钻探资料及室内土工试验结果,根据地层沉积年代、成因类型,本工程场地勘探范围内的土层分为人工堆积层(Qml)、新近沉积层(Q42al+pl)和一般第四系冲洪积层(Q4al+pl)三大类,本场区按地层岩性及其物理力学性质将土层划分为13个大层。 (2)岩土分层及其概况 1)杂填土①1层:杂色,松散,湿,含灰渣、石灰渣、砖块、碎石、混凝土块、和生活垃圾等。 2)粉土填土①2层:褐黄色~灰褐色,松散~中密,湿,以粉土为主,含少量黏性土、砖渣、煤渣、石块、灰渣。 3)粉质粘土②层:灰褐色~黄褐色,可塑,湿,中高压缩性,含云母,有机物、氧化铁、局部夹有粉土。 4)粉土②1层:褐黄色,中密,湿,中压缩性,含云母,有机物、

隧道毕业设计开题报告

题目:吴家庄隧道结构设计与施工方案设计 一、隧道工程概论 交通是国家基础建设重要的设施,在国民经济发展中占有十分重要的地位。世界各国经济发展经验表明,快速的交通网是经济发展必不可少的条件。 改革开放以后,国民经济蓬勃发展,运输量大幅度增长,原有的铁路和公路通行能力不足的矛盾日益突出,迫切需要提高公路等级和技术标准,高速公路将成为中国公路建设的主流。过去公路在云、贵、川等山区,由于受到当时的经济实力和技术水平,通行时多采用盘山、绕行,如位于川藏线上“怒江72拐”,很少采用隧道方案。但高速公路对线型和坡度有特殊要求,盘山和绕行的方案已经不能适应快速、舒适、安全等要求了。 因此,公路越岭必然要求越来越多的采用隧道方案,这既能克服地形和高程障碍,改善线路,提高车速,缩短里程,节约燃料,节省时间,减少对植被的破坏,保护生态环境;又可有效防止落石、塌方、雪崩和崩塌等自然条件,提高了行车的安全性、可靠性和舒适度,同时又能和当地环境相协调级保全自然景观。 隧道技术的发展表明:今后隧道技术的研究方向为非爆破的机械化施工、合理规划与环境保护、设计可靠合理、使用安全的方面。我国是发展中国家,经济和技术力量基础还不太强,在隧道技术开发研究时,应在引进同时,立足于国家技术力量,提高我国的隧道技术水平。 二、隧道工程特点及技术难题 隧道工程施工过程通常包括:在地层中挖出土石,形成符合设计轮廓尺寸的坑道;进行必要的初期设计和砌筑最后的永久衬砌,以控制坑道围岩变形,保证隧道长期地安全使用。在进行隧道施工时,必须充分考虑隧道工程的特点,才能在保证隧道安全的条件下开速、优质、低价地建成隧道建筑物。隧道工程的特点,可简要归纳如下: (1)整个工程埋设于地下,因此工程地质和水文地质条件对隧道施工的成败起着重要的、甚至是决定性的作用。 (2)公路隧道是一个形状扁平的建筑物,正常情况下只有进、出口两个工作面,施工速度比较慢,工期也比较长,往往使一些长大隧道成为控制新建公路通车的关键工程。 (3)地下施工环境较差,甚至在施工中还可能使之恶化,例如爆破产生有害气体等。

隧道工程课程设计70946

隧道工程课程设计说明书The structural design of the Tunnel 作者姓名:黄浩刘彦强 专业、班级:道桥1002班道桥1003班 学号:311007020711 311007020815 指导教师:陈峰宾 设计时间:2014/1/9 河南理工大学 Henan Polytechnic University

目录 目录 (3) 隧道工程课程设计 0 一.课程设计题目 0 二.隧道的建筑限界 0 三.隧道的衬砌断面 0 四.荷载确定 (1) 4.1围岩压力计算 (1) 4.2围岩水平压力 (1) 4.3浅埋隧道荷载计算 (2) (1)作用在支护结构上的垂直压力 (2) 五.结构设计计算 (3) 5.1计算基本假定 (3) 5.2内力计算结果 (4) 5.3 V级围岩配筋计算 (5) 5.4偏心受压对称配筋 (6) 5.5受弯构件配筋 (7) 5.6箍筋配筋计算 (7) 5.7强度验算 (7) 5.8最小配筋率验算: (9)

取 50 s a mm = ,有 ()() 942 0.02092% 100050050 s s A b h a ρ===> ?-?- 满足规范要求. (9) 六.辅助施工措施设计 (9) 6.1双侧壁导坑施工方法 (9) 6.2开挖方法 (9) 6.3施工工序 (10)

隧道工程课程设计 一.课程设计题目 某单车道时速350Km/h高速铁路隧道Ⅴ级围岩段结构及施工方法设计 二.隧道的建筑限界 根据《铁路隧道设计规范》有关条文规定,隧道的建筑限界高度H取6.55m,宽度取8.5m,如图所示。 三.隧道的衬砌断面 拟定隧道的衬砌,衬砌材料为C25混凝土,弹性模量Ec=2.95*107kPa,重度γh=23kN/m3,衬砌厚度取50cm,如图所示。

地铁区间隧道常见结构的设计

地铁区间隧道常见结构的设计 【摘要】结合深圳地铁2号线工程实例,介绍地铁区间隧道常见结构型式的设计,以用于指导建设实践。 【关键词】地铁;区间隧道;结构设计 地铁区间隧道目前主要的设计方案有暗挖马蹄形断面隧道、圆形盾构断面隧道、明挖矩形断面隧道。每种型式各有优缺点,在设计中需根据不同的地质条件、线路埋深和周边环境加以选择。 1、设计结构型式的选择 1.1 明挖矩形结构经过多年的发展,明挖法施工工艺成熟,方法简单、可靠,施工风险小,容易控制;工程进度快,根据需要可以分段同时作业;浅埋时造价及运营费用低;对地质条件要求不高;防水处理容易。但施工对城市地面交通和居民的正常生活也有一定影响,在施工期间对周边环境有一定的破坏;在明挖影响范围的地下管线需拆迁;需较大的施工场地。对于跨度大、埋深浅、地质条件差且地面环境允许,有施工场地的区间段,应优先考虑使用,以减少施工的风险和减少工程造价。 1.2矿山法马蹄形结构 1.2.1矿山法优缺点分析地铁区间隧道采用矿山法施工,是为适应城市浅埋隧道的需要而发展起来的施工方法,也称浅埋暗挖法。在我国地铁区间隧道建设中已广泛采用。它是采用信息化设计和施工,可以根据施工监测的信息反馈来验证或修改设计和施工工艺,具有适应城市地下工程周围环境复杂、地质条件较差、埋深浅、地面沉降控制严格及结构防水要求高等特点。矿山法施工除在施工竖井或洞口位置需占有一定的施工场地外,对地面交通、管线等干扰较少,对周边环境影响较小;废弃土石方量少;对不同的地质情况及周边环境采用不同的工程措施及施工方法,针对性强;对软硬不均地层,可以采用不同的开挖方式进行处理,处理方便容易。矿山法也有自身的弱点:在施工中容易引起地下水流失,从而引起地面沉降或隆起,在重要管线和房屋周边需采取切实可行的保护措施;在施工中处理不当,容易引起地面坍塌,从而造成对周边环境的影响和引发事故。在施工过程中需严格按施工工艺和要求进行施工,并加强施工中的监控量测工作。跨度大时,需分多步进行开挖施工,工序之间干扰大,施工组织麻烦,施工中存在一定的风险。在设计及施工过程中,需要充分论证和考虑隧道周边的环境和工程及水文地质条件,采用合理的工程措施和施工工艺之后,以上弱点才可以弱化并避免的。因此采用矿山法设计和施工时,必须从隧道施工方法、施工程序、辅助工法的采用等方面进行认真研究。 1.2.2计算简图采用荷载-结构模型平面杆系有限单元法。选取地质条件最差、最不利典型横断面进行承载能力极限状态和正常使用极限状态的计算。计算简图和计算结果见图1~图3。 1.3盾构法圆形结构 1.3.1盾构法优缺点盾构法施工不仅施工进度快,而且无噪音,无振动,对地面交通及沿线建筑物、地下管线和居民生活等影响较少。由于管片采用高精度预制构件,机械化拼装,因而质量易于控制。地铁工程建设经验表明,由于采用高精度管片及复合防水封垫,单层钢筋混凝土管片组成的隧道衬砌可取得良好的防水效果,不需要修筑内衬结构。盾构技术的发展,尤其是泥水式、复合式土压平衡式盾构的开发,使之在含水砂层以及砂质黏性土层等地层中进行开挖成为可能,所以当工程地质和水文地质条件以及周围环境情况等难以用矿山法和明挖法施工时,盾构法是较好的选择。而且采用盾构法施工下穿房屋筏板基础时,能较有效控制地面沉降,减少对房屋的破坏。因此,地铁区间隧道采用盾构技术已成为发展的必然趋势。采用盾构法较矿山法施工有施工风险相对较小、对环境的影响较小、工程投资较省等优点。盾构法施工也有一定的弱点。盾构机在匀质地层中施工是顺利的,但是地层软硬不均,尤其是在软

荷载与结构设计方法名词解释

1.作用:能使结构产生效应(内力、应力、位移、应变等)的各 种因素总称为作用。 2.地震烈度:某一特定地区遭受一次地震影响的强弱程度。 3.承载能力极限状态:结构或构件达到最大承载力或不适于继 续承载的变形,这种状态称为承载能力极限状态。 4.单质点体系:当结构的质量相对集中在某一确定位置,可将 结构处理成单质点体系进行地震反映分析。 5.基本风压:基本风压是根据全国各气象站50年来的最大风 速记录,按基本风压的标准要求,将不同高度的年最大风速统一换算成离地面10m的最大风速按风压公式计算得的风压。 6.结构可靠度:结构可靠性的概率量度。结构在规定时间内, 在规定条件下,完成预定功能的概率。 7.荷载代表值:设计中用以验算极限状态所采用的荷载量值。 8.基本雪压:当地空旷平坦地面上根据气象记录经统计得到的 在结构使用期间可能出现的最大雪压。 9.路面活荷载:路面活荷载指房屋中生活或工作的人群、家具、 用品、设备等产生的重力荷载。 10.土的侧压力:是指挡土墙后的填土因自重或外荷载作用对 墙背产生的土压力。 11.静水压力:静水压力指静止的液体对其接触面产生的压 力。

12.混凝土徐变:混凝土在长期外力作用下产生随时间而增长 的变形。 13.混凝土收缩:混凝土在空气中结硬时其体积会缩小,这种 现象叫混凝土收缩。 14.荷载标准值:是荷载的基本代表值,其他代表值可以在标 准值的基础上换算来。它是设计基准期内最大荷载统计分布的特征值,是建筑结构在正常情况下,比较有可能出现的最大荷载值。 15.荷载准永久值:结构上经常作用的可变荷载,在设计基准 期内有较长的持续时间,对结构的影响类似于永久荷载。 16.结构抗力:结构承受外加作用的能力。 17.可靠:结构若同时满足安全性、适用性、耐久性要求,则 称结构可靠。 18.超越概率:在一定地区和时间范围内,超过某一烈度值的 烈度占该时间段内所有烈度的百分比。 19.震级:衡量一次地震规模大小的数量等级。是地震本身强 弱程度的等级,震级的大小表示地震中释放能量的多少。 20.雷诺数: 惯性力与粘性力的比。 21.脉动风: 周期小于10min的风,它的强度较大,且有随机 性,周期与结构的自振周期较接近,产生动力效应,引起顺风向风振。 22.平均风: 周期大于10min的风,长周期风,该类风周期相

隧道结构设计模型概述

隧道结构设计模型概述 摘要:目前采用的地下结构设计方法可以归纳为以下四种设计模型:○1以参照过去隧道工程实践经验进行工程类比为主的经验设计法;○2以现场量测和实验室试验为主的实用设计方法如收敛——约束法。○3作用与反作用模型,即荷载—结构模型○4连续介质模型,包括解析法和数值法。针对各种模型特点谈谈一下对该四种模型的认识。 1隧道结构体系设计计算模型的建立原则 对于均匀介质中的圆形隧道,当它处于平面轴对称状态时,将围岩与支护结构的相互作用问题抽象为支护需求曲线和支护补给曲线的收敛—约束关系,从而求出围岩与支护结构达到平衡时的支护阻力Pa。有了这个值就可以计算出围岩和支护结构的应力状态。由此可以看出,即使对于如此理想的问题,都需要事先将研究对象的几何形状、初始应力状态、开挖和支护过程、岩体和支护结构的物理力学特性等条件转换为数学力学模型,然后运用数学力学方法求出模型的、作为设计标准的特征值(如应力、位移或极限荷载等)。一个理想的隧道工程的数学力学模型应能反映下列的因素: ①必须能描述有裂隙和破坏带的,以及开挖面形状变化所形成的三维几何形状。 ②对围岩的地质状况和初始应力场不仅要能说明当时的,而且还要包括将来可能出现的状态。 ③应包括对围岩应力重分布有影响的岩石和支护材料非线性特性,而且还要能准确地测定出反映这些特性的参数。 ④如果要知道所设计的支护结构和开挖方法能否获得成功,即想评估其安全度,则必须将围岩、锚杆和混凝土等材料的局部破坏和整体失稳的判断条件纳入模型中。当然,条件必须满足现行设计规范的有关规定。 ⑤要经得起实际的检验,这种检验不能只是偶然巧合,而是需要保证系统的一致性。 这样的理想模型对于科学研究是十分必要的,因为只有准确地模拟围岩性质和施工过程,才能更好地了解围岩与支护结构的实际工作状态,作出符合实际的决策。然而这种理想模型的参数太多又不易精确测定,将各种影响因素都机械地转换到模型中来也是十分困难的。因此,理想模型还不宜直接用于设计实践,必须在可能的情况下,由理想模型推演出一些较简单的计算模型,或称为工程师模型。

隧道设计计算书

《地下结构课程设计》任务书 ——地铁区间隧道结构设计 学校:交通大学 学院:土木建筑工程学院 :俊 学号:11231214 班级:土木1108班 指导教师:贺少辉、晓静

目录 一.设计任务 (3) 1.1 工程地质条件 (3) 1.2 其他条件 (3) 二.设计过程 (5) 2.1 根据给定的隧道或车站埋深判断结构深、浅埋 (5) 2.2 计算作用在结构上的荷载 (5) 2.2.1永久荷载 (5) 2.2.2可变荷载 (7) 2.3 进行荷载组合..................................... 错误!未定义书签。 2.3.1承载能力极限状态................................ 错误!未定义书签。 2.3.2正常使用极限状态 (7) 2.4 绘出结构受力图 (8) 2.5 利用midas程序计算结构力 (8) 2.5.1 midas程序建模过程 9 2.5.2 绘制力分析图 11 三. 结构配筋计算 ......................................... 错误!未定义书签。 3.1 基本条件 11 3.1 顶板配筋计算 (15) 3.2 侧板配筋计算 (18) 3.3 底板配筋计算 (20) 四.最终配筋: (23) 五.参考资料 22 六、设计总结............................................. 错误!未定义书签。

一、设计任务 对某区间隧道进行结构检算,求出力,并进行配筋计算。具体设计基本资料如下: 1.1 工程地质条件 线路垂直于永定河冲、洪积扇的轴部,第四纪地层沉积韵律明显,地层由上到下依次为:杂填土、粉土、细砂、圆砾土、粉质粘土、卵石土。其主要物理力学指标如表1,本地区地震烈度为6度。 1.2 其他条件 地下水位在地面以下12m处;隧道顶板埋深14m;采用暗挖法施工,隧道断面型式为马蹄形。

隧道工程课程设计完整版

隧道工程课程设计 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

1初始条件 某高速公路隧道通过III 类围岩(即IV 级围岩),埋深H=30m ,隧道围岩天然容重γ=23 KN/m3,计算摩擦角ф=35o ,变形模量E=6GPa,采用矿山法施工;衬砌材料采用C25喷射混凝土,材料容重322/h KN m γ=,变形模量25h E GPa =。 2隧道洞身设计 隧道建筑界限及内轮廓图的确定 该隧道横断面是根据两车道高速公路IV 级围岩来设计的,根据《公路隧道设计规范》确定隧道的建筑限界如下: W —行车道宽度;取×2m C —余宽;因设置检修道,故余宽取为0m J —检修道宽度;双侧设置,取为×2m H —建筑限界高度;取为L L —左侧向宽度;取为 R L —右侧向宽度;取为 L E —建筑限界左顶角宽度;取 R E —建筑限界右顶角宽度;取 h —检修道高度;取为 隧道净宽为++++=12m 设计行车速度为120km/h,建筑限界左右顶角高度均取1m ;隧道轮廓线如下图: 图1 隧道内轮廓限界图 根据规范要求,隧道衬砌结构厚度为50cm (一次衬砌为15cm 和二次衬砌35cm )通过作图得到隧道的尺寸如下: 图2 隧道内轮廓图 得到如下尺寸:11.2m R 5.6m R 9.47m R 321===,, 3隧道衬砌结构设计 支护方法及衬砌材料 根据《公路隧道设计规范》(JTG-2004),本设计为高速公路,采用复合式衬砌,复合式衬砌是由初期支护和二次衬砌及中间防水层组合而成的衬砌形式。 复合式衬砌应符合下列规定: 1初期支护宜采用锚喷支护,即由喷射混凝土,锚杆,钢筋网和钢筋支架等支护形式单独或组合使用,锚杆宜采用全长粘结锚杆。 2二次衬砌宜采用模筑混凝土或模筑钢筋混凝土结构,衬砌截面宜采用连结圆顺的等厚衬砌断面,仰拱厚度宜与拱墙厚度相同。 IV 级围岩: 初期支护:拱部边墙的喷射混凝土厚度为12-15cm ,拱墙的锚杆长度为,锚杆间距为; 二次衬砌厚度:拱墙混凝土厚度为35cm 因此确定衬砌尺寸及规格如下:

衬砌结构计算

衬砌结构计算 一、基本资料 某公路隧道,结构断面尺寸如下图,内轮廓半径为5.4m,二衬 厚度为0.45m。围岩为V 级,重度为19kN/m3,围岩弹性抗力系数为1.6×5 10kN/m3,二衬材料为C25 混凝土,弹性模量为28.5GPa,重度为23 kN/m3 x0 y 二、荷载确定 1.根据式(1-21),围岩竖向均布压力: q=0.45*1-s2*γ*ω 式中:s---围岩级别,此处s=5;

γ---围岩重度,此处γ=19KN/m 3 ω---跨度影响系数,ω=1+i(m l -5),毛洞跨度 m l =(5.4+0.45)*2+2*0.06=11.82m,其中0.06m 为一侧平均超挖量,m l =5—15m 时,i=0.1,此处ω=1+0.1*(11.82-5)=1.682 所以,有:q=0.45*1-52*19*1.682*0.5=115.04875(kPa) 此处超挖回填层重忽略不计 2.围岩水平均布压力: e=0.4q=0.4*115.04875=46.0195(kPa) 三.衬砌几何要素 1.衬砌几何尺寸 内轮廓线半径1r =5.4m 外轮廓线半径1R =5.85m 拱轴线半径'1r =5.625m 2.半拱轴线长度S 及分段轴长△S 半拱轴线长度S= °180θπ'1r =° 180°104* *5.625=10.210(m) 将半拱轴线等分为8段,每段轴长为:△S=8 S =8210 .10=1.27625(m) 3.各分块接缝(截面)中心几何要素 i α=8 104 i

i 1y ='1r (1-cos i α) i 1x ='1r sin i α E1Q1 Q2Q3Q4Q5 Q6Q7E2E3E4 E5 E6 E7E8 G3G4 G1 G5 G6G2 G7 G8 R4 R5 R6 R7R8 q b1 b2b3b4b5b6b7b8h1h2h3h4h5h6 h7h8 附图 衬砌结构计算图示 四.计算位移 1.单位位移 用辛普生法近似计算,按计算列表进行。单位位移的计算见附表1-1 单位位移值计算如下: 11δ=≈? ds M s 01I E h h ΔS E I 1∑6 -7 10*1764.474979.1053*10*85.227625.1==

结构设计方法

第3章结构设计方法3?1为什么需要合适的结构设计方法

1、经典力学与实际工程之间的差异性 2、材料、荷载的无法精确确定,具有离散性 概率统计方法

3.2结构设计的要求与可靠性结构的功能要求 1?安全性。 2?适用性。 4?经济性。

3.2结构设计的要求与可靠性 结构的可靠性(reliability):在规定的时间内,在规定的条件下,完成预定功能的能力。 规定的时间------ 设计使用年限(注意与 设计基准期的区别) 规定的条件------ 正常设计、正常施工、 正常使用和维护,不考虑人为错误或失误的情形

3?3结构的极限状态 结构能够满足功能要求而良好地工作■称 为结构"可靠"或"有效"。反之则结构 "不可靠"或"失效"。区分结构工作状 态的可靠与失效的标志是“极限状态”(limit state )。极限状态是结构或构件能 够满足设计规定的某一功能要求的临界状态,超过这一界限,结构或构件就不再能 满足设计规定的该项功能要求,而进入失

3?3结构的极限状态 效状态。 1、承载能力极限状态 (a )走义: 结构或构件达到最大承载能力或不适于继续承载的变形状态主要 考虑结构安全性功能。 (b)标志: (1 )整个结构或其中的一部分作为刚体失去平衡(如倾覆.过大的滑移); (2 )结构构件或连接圉材料强度被超过而破坏或圉过度的塑性变形而 不适用于继续承载(如受弯构件中的少筋梁); (3 )结构转变为机动体系(如超静是结构由于某些截面的屈服,使结构成 为几何可变体系); (4 )结构或构件丧失稳定(如细长柱达到临界荷载发生压屈)。 (5 )地基丧失承载力(如地基稳定性不够)

公路隧道支护结构设计的优化方法研究

公路隧道支护结构设计的优化方法研究 下,将支护结构设计中需要解决的问题表达成数学模型,再根据数学原理求得最优解,它包括设计变量、目标函数和约束条件等3个方面。目标函数是评价设计方案好坏的标准,一般来说,目标函数可以表示为问题变量的解析表达式。目标函数可以是一个,也可以是多个,但应尽量使目标函数的数目少一些。 对于衬砌断面形状的优化,考虑采用洞室开挖断面积最小为目标函数,实际计算时由于开挖断面积不但取决于衬砌净空限界,还与衬砌厚度相关,难度较大。考虑到衬砌内轮廊形状直接影响到隧道衬砌轴线的合理性以及衬砌厚度和开挖量,故采用内轮廊(面以上)所包的隧道净空面积最小为目标函数。 因为公隧道相对铁隧道跨度要稍大,故公隧道采用得较多的断面形状为四心圆、三心圆及单心圆。由于一般隧道断面均为对称结构,故本文只取隧道净空面积(面以上)的一半作为目标函数。根据隧道断面具体形状的不同,目标函数的解析表达式也不同。在一个最优化设计问题中,变量是影响设计质量的可变参数。变量太多,将使问题变得十分复杂, 而变量太少,则设计的自由度少,优化的程度变差, 甚至得出不符合实际的结论,所以要结合具体问题, 合理地选择变量。在满足设计要求的前提下,应减少次要的变量,使问题简化。 为满足限界要求,内轮廊线至少应将隧道建筑界完全包容在内,保证限界边界的任何点均在内轮廊线内,实际上就是保证限界控制点A、B、C

到隧道中心线的水平距离,小于或等于内轮廊线上在同内轮廊线净高应能满足隧道建筑限界净高H 要求,并在此基础上考虑通风要求。隧道的净空断面受通风方式的影响很大,在选择通风方式上,首先需要决定隧道内所需的通风量,然后讨论自然通风和交通风能否满足需要。

衬砌结构设计方法

p 隧道衬砌结构设计 一、隧道结构计算模型 1.荷载结构模型(结构力学模型):松弛荷载理论 以支护结构为承载体,围岩对支护结构的作用只是作用在结构上的荷载(包括主动的围岩压力和被动的弹性抗力)。一般用结构力学方法对支护结构进行计算。隧道支护结构与围岩的相互作用通过弹性抗力来体现。 2.地层结构模型(现代岩体力学模型):岩承理论 将支护结构与围岩视为一体,作为共同承受荷载的隧道结构体系。模型中围岩是直接承载单元,支护结构只是用来约束和限制围岩的变形,是反映现代支护原理的计算方法。 二、隧道衬砌结构设计方法 1.结构力学法(弹性理论) 结构力学法,也就是荷载-结构模式的分析方法。这里的结构是指衬砌结构,荷载主要是指开挖洞室后由松动岩土的自重所产生的地层压力。一般把隧道支护结构在力学上和构造上作为拱形结构来处理,这个思想是从地面结构引申出来的。 拱形结构概念以下述假定为基础:被砌筑的衬砌视为结构的主体,围岩(或其一部分)只是被视为荷载,从本质上说这是与隧道工程的本质相矛盾的。只要施工没有满足下述条件:制止松弛和由此产生的松弛压力;结构和围岩之间有效的、长期的紧密接触。隧道结构就只能是个拱,而按拱形结构进行设计计算。 荷载-结构模型在荷载处理上大致经历了三个阶段:1主动荷载模式;2主动荷载+被动荷载模式;3实际荷载模式。多数情况下采用第二种模式。第二种模式考虑了结构和围岩之间的相互作用,即围岩对结构的约束作用——围岩抗力,局部体现了隧道作为地下结构的受力特点。因此,它是第一种模式的进一步发展。为了保证围岩约束抗力的存在,就必须保证结构与围岩之间的紧密接触。在此,把围岩对结构形变的约束所产生的反作用谓之抗力,而且把它视为线弹性的,Ky σ=(K ——弹性抗力系数;y ——接触点的径向位移)。实际上,在荷载作用下地基的变形是一个弹塑性过程。现在计算方法是把荷载分为被动的弹性抗力与主动的侧压力。 其计算结果最终归结为验证安全系数是否满足设计要求。 2.岩体力学法(弹塑性理论) 岩体力学法以弹塑性理论为依据。 ①收敛约束法(特征曲线法) 特征曲线法的基本原理是利用围岩特征曲线和支护结构特 征曲线交会的方法来决定支护体系的最佳平衡条件(右图)。 破坏准则:由本构方程决定,通常情况下采用摩尔-库伦破坏准则。 围岩特征曲线:受围岩性质(瞬时的及长期的)、围岩构造、施工

隧道工程课程设计报告(完整)

隧道工程课程设计 一、工程概况 某地区一暗挖双线马蹄形隧道,埋深h=125m,围岩等级为v级,地层平均容重16.0 kN/m3。宽度B=13.08m,隧道采用复合式衬砌形式,衬砌厚度为0.42m,配筋采用Ф22@200mm,钢材采用HRB335,钢筋保护层厚度50mm。 二、计算 1、衬砌结构的计算模型 隧道工程建筑物是埋置于地层中的结构物,它的受力和变形与围岩密切相关,支护结构与围岩作为一个统一的受力体系相互约束,共同工作。这种共同作用正是地下结构与地面结构的主要区别。根据本工程浅埋及松散地层的特点,使用阶段结构安全性检算采用“荷载—结构”模式,即将支护和围岩分开考虑,支护结构是承载主体,围岩作为荷载的来源和支护结构的弹性支承。支护结构与围岩的相互作用是通过弹性支承对支护结构施加约束来实现的。 计算模型中,二衬结构采用弹性平面梁单元模拟,弹性抗力以及隧底地基均采用弹簧单元模拟。组合荷载根据不同作用方向分别转换成等效节点力施加在相应的单元结点上。具体计算模型见图1。 图1 计算模型 2、荷载计算 围岩压力计算参照课本中有关我国铁路隧道推荐的方法进行确定(双线隧道)或参照《铁路隧道设计规范》,深浅埋分别计算。 按破坏阶段设计计算垂直压力公式: q=r x h q = 0.45 x 2^(s-1) x r x w

式中:h q——等效荷载高度值 S——围岩级别 r——围岩的容重 w——宽度影响系数,其值为w=1+i(B-5) 计算得,q=0.45x2^(5-1)x16000x1.805=2.082816e6N/m 水平均布松动压力系数取0.3,则e=0.3q=0.0634e6N/m 3、ANSYS操作命令流 !荷载——结构方法计算(马蹄形断面) finish !退出当前处理程序 /clear !清除以前数据,重新开始一个新的分析 /COM,Structural !定义分析类型,结构分析(热分析、流体分析等) /prep7 !进入前处理器 *AFUN,deg !定义角度单位为度(缺省为弧度,RAD) ! 定义建模及材料参数的一些变量值 *set,Py,2.082816e5 !定义垂直围岩压力大小(若有地表荷载加地表荷载值)*set,px1,0.0634e6 *set,px2,0.0634e6 *set,cylxsh,0.3 !定义侧压力系数 *set,cyl,Py*cylxsh !水平侧压力 *set,CQHD,0.47 !定义初支或二衬厚度 *set,CQDYCD,0.17 !定义梁单元长度参数及弹簧单元面积(梁单元长度与弹簧单元面积相等) *set,CQETXML,31e9 !定义衬砌(初支或二衬)的弹性模量 *set,CQUBSB,0.2 !定义衬砌的泊松比 *set,WYTXKL,100e6 !定义围岩的弹性抗力系数 *set,WYMD,1600 !定义围岩的密度 *set,CQMD,2500 !定义衬砌的密度 !定义单元类型及材料属性及单元实常数 et,1,beam3 !定义1号单元为梁单元 mp,ex,1,CQETXML !定义1号材料的弹性模量 mp,prxy,1,CQUBSB !定义1号材料的泊松比 mp,dens,1,CQMD !定义1号材料的密度 R,1,CQHD,1/12*CQHD*CQHD*CQHD,CQHD !1-实常数号;第一个参数为梁截面的面积;第二个参数为梁单元的转动惯量;第三个参数为梁高。 !建立几何模型 !创建关键点

结构设计基本步骤方法及相关概念(精)

结构设计基本步骤、方法及相关概念 PKPMCAD 邹军 一、常用规范 建筑结构荷载规范 混凝土设计规范 建筑抗震设计规范 建筑地基设计规范 高层建筑混凝土结构技术规程 岩土工程勘察规范 二、基本资料及信息 1.建筑需求:建筑外观、平面布局及使用功能要求,建筑重要性。需要相应阶段的建筑图纸、审批文件。 2.使用荷载:一般民用建筑可查看可在规范,普通住宅、办公室为2.0kN/m2,阳台2.5kN/m2;电梯机房等效8kN/m2;消防车等效20kN/m2。 工业厂房需要业主提供文件,指定使用荷载。 3.风信息:(荷载规范、高规) a.基本风压:一般用50年一遇,深圳为0.75kN/㎡,对应风速约120公里 /小时;高度大于60米的结构,承载力计算用100年一遇的 风压,深圳为0.90 kN/㎡) b.地面粗糙度:一般城市市区可选C c.体型系数:一般建筑取1.3

d.基本周期:简单估算(0.1x楼层数),用于计算风振 e.其他相关概念: Wk=βzμsμzW0 用于主要承重结构 Wk=βgzμsμzW0 用于围护结构 风压高度变化系数, 风振系数(基本自振周期大于0.25s,高度大于30m且高宽 比大于1.5的房屋,考虑顺风向风振系数;横向 风软件没有考虑) 阵风系数:计算围护结构风荷载 群体效应:群集的高层建筑,相互间距较近时,风力相互 干扰,体型系数应增大。 4.地震信息:(抗震规范、高规) a.设防烈度:按设计基本地震加速度值划分,分为6度(0.05g)、7 度(0.10g)、7度(0.15g)、8度(0.20g)、8度(0.30g)、 9度(0.40g),具体取值由政府规定(可查抗规附表),。 深圳为7度(0.1g) b.设计地震分组:按震中的近、远划分,分为第1组、第2组、第3组。 深圳为第1组 c.场地土类别:按土层等效剪切波速和土层厚度划分,分Ⅰ、Ⅱ、Ⅲ、 Ⅳ四类,大部分为Ⅱ类。由地质勘探部门提供。可以理 解为Ⅰ类场地土最结实,Ⅳ最差。 d.其他抗震相关概念: 抗震设防三水准:小震不坏、中震可修、大震不倒。

相关主题
文本预览
相关文档 最新文档