当前位置:文档之家› [2015 J.Power Sources]Distribution of discharge products inside of the lithiumoxygen battery cathode

[2015 J.Power Sources]Distribution of discharge products inside of the lithiumoxygen battery cathode

[2015 J.Power Sources]Distribution of discharge products inside of the lithiumoxygen battery cathode
[2015 J.Power Sources]Distribution of discharge products inside of the lithiumoxygen battery cathode

Distribution of discharge products inside of the lithium/oxygen battery cathode

Ingo Bardenhagen a ,b ,*,Mandus Fenske a ,Daniela Fenske a ,Arne Wittstock b ,

Marcus B €a

umer b a Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM,Wiener Str.12,28359Bremen,Germany

b

Institute for Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology,University Bremen,Leobener Str.UFT,28359Bremen,Germany

h i g h l i g h t s

g r a p h i c a l a b s t r a c t

Homogeneous discharge product deposition in macropores.

Restricted oxygen diffusion limits the discharge product formation in mesopores.

Direct oxygen feed enhances the lithium carbonate and lithium oxide formation.

LiF forms during the discharge reac-tion due to electrolyte and binder

degradation.

a r t i c l e i n f o

Article history:

Received 7May 2015Received in revised form 10August 2015

Accepted 26August 2015

Available online 6September 2015Keywords:

Lithium-oxygen battery Mesopores Pore clogging

Carbon xerogel GDE Depth pro ?ling

a b s t r a c t

During the discharge of an aprotic Li/O 2battery solid products assemble inside of the gas diffusion electrodes (GDE).The distribution of these in dependence of pore size of the GDE is investigated by X-ray Photoelectron Spectroscopy (XPS).Depth pro ?ling of the electrolyte facing side of the cathode reveal that macroporous electrodes are able to store discharge products homogeneously in the pore structure.Mesoporous GDE,however,develop a concentration gradient with large amounts of discharge product at the electrode/electrolyte interface and low amount in the bulk of the electrode.The investigation of the cross-section of these GDE reveals that most of the discharge products form near the oxygen facing side of the GDE.Here,the chemical compositions differ strongly from those at the electrolyte facing side.The high oxygen concentration and the limited lithium supply lead to the formation of lithium carbonate,lithium oxide and lithium ?uoride.Also a thin layer of discharge product blocking further oxygen supply into the GDE through macroporous cracks is formed at the gas/electrolyte interface.

?2015Elsevier B.V.All rights reserved.

1.Introduction

The development of electrochemical power sources with high gravimetric energy is driven by the large energy consumption of mobile electric devices.Especially fully electric vehicles have a need for these kind of batteries to allow driving ranges competitive to cars with combustion engines.The aprotic Li/O 2battery has the

*Corresponding author.Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM,Wiener Str.12,28359Bremen,Germany.

E-mail addresses:ingo.bardenhagen@ifam.fraunhofer.de (I.Bardenhagen),mandus.fenske@ifam.fraunhofer.de (M.Fenske),daniela.fenske@ifam.fraunhofer.de (D.Fenske),awittstock@uni-bremen.de (A.Wittstock),mbaeumer@uni-bremen.de (M.B €a

umer).Contents lists available at ScienceDirect

Journal of Power Sources

journal ho mep age:https://www.doczj.com/doc/052556713.html,/locate/jpo

wsour

https://www.doczj.com/doc/052556713.html,/10.1016/j.jpowsour.2015.08.0890378-7753/?2015Elsevier B.V.All rights reserved.

Journal of Power Sources 299(2015)162e 169

potential to deliver up to3505Whkgà1,which is nearly ten times higher than that of the conventional lithium ion battery[1].In this type of battery,the desired reversible reaction is the reduction of molecular oxygen which reacts with lithium ions to solid lithium peroxide(O2t2Litt2eà/Li2O2).This reaction is believed to consist of two steps:the one electron reduction of oxygen to form lithium superoxide(LiO2)which disproportionates in a second process to the peroxide and molecular oxygen.In the battery,this part of the discharge reaction occurs at the cathode which is a gas diffusion electrode(GDE)while the anode delivers lithium ions and ideally consists of metallic lithium(Li/Litteà).To achieve the theoretical energy density the GDE needs to be completely and homogeneously?lled by Li2O2.Critical factors are pore size and volume inside of the active material of the GDE and the wetting of the pores with electrolyte[2,3].However,due to the deposition of the discharge product in the GDE some challenges arise:

(1)The Li2O2is insulating and hinders the required electron

transfer from the cathode to the molecular oxygen[4].

(2)The deposition of Li2O2will narrow the pores in the GDE

which will hinder oxygen diffusion and Li ion movement[5].

(3)In case of mesoporous electrodes the pore narrowing can

also lead to clogging preventing further oxygen supply[6,7].

The deposition of discharge product is mostly investigated by scanning electron microscopy(SEM),Infrared Spectroscopy(IR),X-Ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS) of the electrolyte facing side of the GDE.It has been shown that the discharge current in?uences the Li2O2precipitate where low cur-rents lead to toroidal aggregates and high currents lead to?lms on the carbon substrate[8e14].The question how the discharge product forms in the bulk of the active material of the GDE is still open.

One method to look into deeper layers of the discharged GDE is the depth pro?ling.Here,the electrolyte facing surface of the electrode is subsequently etched with argon ions and measured by XPS.The relative amount of each element can be calculated from the recorded spectra and give an insight into the homogeneity of the discharge product deposition.This technique has been applied by several groups to study the SEI on Li[15e18]and on carbona-ceous materials[19,20]in different solvents as well as for catalyst and microporous layers of a fuel cell[21,22].

Besides the homogeneity the XPS measurements also allows for a characterization of the chemical state of the discharge products. Due to the high chemical reactivity of the lithium oxygen species in the cell different non-rechargeable side products may appear.First, the lithium peroxide may be further reduced to the thermody-namically stable lithium oxide(Eq.(1))[1].In addition,the peroxide or its predecessor the superoxide may also react with the passive parts of the cell,namely the electrolyte and the GDE itself,to form either lithium carbonate(Eq.(2))or lithium?uoride(Eq.(3))[9,23]. All three side products are formed irreversible and thereby lower the rechargeability and the capacity of the Li/O2battery.

Li2O2tLitteà/2Li2O(1)

Li2O2tCt1

2

O2/Li2CO3(2)

LiO2esTtàeCH2àCF2TàesT/HO2tàeCH]CFTàesTtLiFesT

(3)

In this work the type of discharge product and the deposition in the bulk of the GDE in dependence of its porosity is investigated by XPS.A commercial macroporous Freudenberg H2315C2GDE and a mesoporous carbon xerogel GDE were discharged in a Li/O2cell prior to the XPS measurements.Besides the GDE as cathode,the cell consisted of a lithium metal anode and1M lithium bis(tri-?uoromethanesulfonyl)imide(LiTFSI)in dimethyl sulfoxide (DMSO)as electrolyte.Despite its limited long term stability owing to reactions with the lithium metal[24]DMSO performs well in stabilizing the superoxide radical[25,26].For both kind of GDE depth pro?les were recorded starting from the electrolyte-facing side.Also cross-sectional XPS of the150m m thick xerogel elec-trode was used to gain further insight into the deposition of discharge product in mesoporous carbon materials.The chemical composition of the discharge product at the oxygen-facing side of the xerogel GDE was measured to reveal the reactions at the gas/ liquid interface.

Prior to the discharged electrodes a benchmark electrode was prepared to evaluate the in?uence of the argon-ion sputtering on the results of the XPS measurements.Here,Li2CO3was mixed in a carbon matrix as reference discharge product which is believed to stay unchanged during the preparation process due to its high chemical stability.

2.Experimental

The production of the carbon?ber-supported xerogel electrode is described in detail elsewhere[6].Brie?y,carbon?ber paper (Toray Paper TGP-060)was pretreated with an oxygen plasma (5min,50W)inside a plasma chamber(Oxford Instruments, PlasmalabSystem100)to increase the hydrophilicity.The etched papers were cut into discs with a diameter of10mm and then impregnated with an aqueous sol consisting of resorcinol,formal-dehyde and sodium carbonate as catalyst.After curing for3days at 353K the gelated samples were rinsed with acetone and air-dried before pyrolysis in a tubular furnace purged with Ar.The furnace was?rst heated to473K at5.8K minà1and kept at423K for 30min.Then it was further heated to1073K at10K minà1and held for60min before cooling down to room temperature.

The benchmark sample for the sputter experiments was made by mixing50w%carbon black(Vulcan?XC72R)and30w%Li2CO3 (Sigma Aldrich)together with20w%PVDF Binder(Kynar?)in N-Ethylpyrrolidone(Carl Roth)to form a slurry.After casting on a copper foil the layer was dried for1h at room temperature prior to a two-step drying procedure for30min at353K and for90min at 393K.

SEM was employed to investigate the surface and the cross-section of the two electrodes before discharge and the deposits at the oxygen facing side of the xerogel GDE after discharge.The high resolution surface images were carried out using a FE-SEM Leo 1530Gemini instrument(Carl Zeiss SMT GmbH,Oberkochen, Germany)and the cross-section images using a Phenom ProX Desktop instrument(Phenom-World BV,Eindhoven,Netherlands). To determine the porosity of the xerogel GDE nitrogen adsorption experiments were conducted employing a Nova2000E(Quan-tachrome Instrument Corp.,Boynton Beach,Florida,USA).The Barrett e Joyner e Halenda(BJH)method was used to determine the mean pore diameter.

The galvanostatic discharge of the GDE was conducted with a Solartron1470E potentiostat(AMETEK Inc.,Berwyn,Pennsylvania, USA)at0.1mA cmà2under2bar oxygen pressure and a cut-off voltage of2.6V.The battery setup has been described previously [6].It consists of a metallic lithium as anode,the GDE as cathode and a?lter paper(Whatman?Grade1)soaked with50m L1M LiTFSI in dimethyl sulfoxide(DMSO)electrolyte.After the mea-surement the cells were disassembled in an argon?lled glove box to avoid reaction with water or CO2from ambient air.The GDE were

I.Bardenhagen et al./Journal of Power Sources299(2015)162e169163

rinsed at least 5times with DME to remove any residual electrolyte.After complete drying they were sealed in an air tight container and transferred to the XPS chamber.

The XPS experiments were performed using a Thermo K-Alpha K1102(Thermo electron Corporation,East Grinstead,West Sussex,UK)with a monochromatic Al K a radiation (1486.6eV)in ultra high vacuum (UHV)at typical base pressure 2$10à9hPa and an upstream Argon-?lled glove box to prevent the contact between the elec-trodes and ambient air.Spectra were recorded in constant analyzer energy mode (CAE)and take off angle of 0 with pass energies of 150eV in overview spectra while 40eV was used for high resolu-tion measurements.Depth pro ?ling was performed by using inte-grated argon-ion sputtering source with 3kV accelerating voltage in high current mode with grid size parameter 1mm (square formed sputter grid size about 1.3mm ?0.6mm)resulting in a sputtering rate of 1.94?min à1for a Tantal(V)-oxide (Ta 2O 5)sam-ple.The atomic concentration of the elements was determined based on the assumption of a homogeneous distribution of the considered elements within the information depth of XPS using the “elemental relative sensitivity method ”with accounting of the device speci ?c analyser transmission functions using the peak in-tegrals of the survey scan spectra and the following sensitivity factors:1.0(C1s),4.118(F1s),2.881(O1s)and 0.061(Li1s).Because of the method hydrogen concentrations are not taken into account.The analyzed surface area was 0.03mm 2for the basal plane and 1.25$10à3mm 2for the cross section measurement.Sample charging was compensated by integrated dual beam Argon/elec-tron source with ultra-low energy beam neutralization.To compensate any residual charging effect the C e C/C e H emission line of the C1s was calibrated at 285.0eV in all spectra [27].

3.Results &discussion

The classical GDE consists of two components:a gas diffusion layer (GDL)consisting of hydrophobic carbon to supply the cell with the reaction gas and an active layer consisting of highly porous

carbon where the electrochemical reaction takes place.This structure can be seen on the cross-section SEM images of the Freudenberg GDE (Fig.1a).It has a total thickness of about 300m m divided in a 50m m active layer on top of a 250m m thick GDL consisting of woven carbon ?bers.In the xerogel GDE (Fig.1b)no separate GDL is present because the carbon ?ber substrate is completely ?ooded by the sol during the preparation process of the electrode.The active carbon material is present throughout the whole electrode which exhibits a total thickness of about 150m m.High resolution SEM images of the active layer from both GDE are depicted in Fig.1c/d.While the active layer on the Freudenberg GDE (c)consists of large pores with diameters over 100nm the xerogel GDE (d)exhibits a homogeneous mesoporous structure.Because the pore size of the xerogel GDE is near the resolution limit of the microscope nitrogen adsorption is conducted for a more precise determination of the mean pore diameter.The BJH analysis of the recorded isotherm reveals a mean pore diameter of about 22nm.

Typical discharge curves of the two kind of GDE are shown in Fig.2.The xerogel GDE exhibits a speci ?c capacity of 350mAhg à1cathode while the Freudenberg GDE shows only 250mAhg à1cathode ,suffering from its heavy GDL.

For the interpretation of depth pro ?les it is important to keep in mind that the sputtering ef ?ciency depends on the elements pre-sent in the substrate.The larger the difference in atomic masses the stronger is the in ?uence.This may lead to an enrichment of heavy elements.However,because the expected atoms,Li,C,O and F exhibit similar atomic masses (7e 19u)the in ?uence is supposed to be minimal here.

In addition,argon ion sputtering might induce chemical re-actions as a result of the transferred kinetic energy.In the active layer of a discharged GDE one can expect different Li-salts and re-siduals from the electrolyte beside the matrix carbon and binder.These may react among themselves due to the energy input of the accelerated argon ions.Even though the in ?uence is expected to be low [20]it has been shown,that depth pro ?les prepared by argon-ion sputtering may change the chemical composition of the sample,especially caused by binder degradation [22,28].To test the in ?u-ence of the Ar tbombardment on the chemical composition a benchmark electrode containing precise amounts of the various components is measured ?rst.The depth pro ?le of this electrode is depicted in Fig.3a.The expected values for the compounds based on the preparation recipe are depicted as straight lines.

Although steady-state is already reached after 1min of sput-tering the deviation from the expected values is quite

large.

Fig.1.SEM images of the electrodes showing the pore structure and cross section of the Freudenberg (a/c)and xerogel (b/d)

GDE.Fig.2.Discharge curves of the Freudenberg and Xerogel GDE.The speci ?c capacity is calculated on the complete weight of the GDE.

I.Bardenhagen et al./Journal of Power Sources 299(2015)162e 169

164

Especially the relative deviation of oxygen (à53%)and carbon (t14%)are signi ?cant.This seems to arise due to induced chemical reactions forming volatile oxygen species from the lithium salt [27,29].

Noteworthy,a large decrease in F concentration is detectable after 30s of sputtering which indicates a super ?cial ?lm of PVDF binder on top of the electrode likely because of the preparation procedure [22].The changes can also be seen in the high-resolution XPS spectra of Li,C,O and F before and after 30s of sputtering (Fig.3b e e).Here,the partial destruction of the Li 2CO 3is visible in a shift to higher binding energies in the Li1s and O1s spectra which can be related to Li-O-R species.At the same time a small shoulder at 530.0eV arises,revealing Li 2O as another degradation product.

The peak around 291.0eV in the C1s spectrum comprises both CO 32à

and e CF 2.After 30s of argon-ion bombardment this peak decreases caused by the decomposition of the carbonate and the binder.This is also visible in the F1s spectrum where the peak area decreases drastically together with a slight shift to lower energies (688.1eV to 687.8eV)and peak broadening.The formation of lithium ?uoride (685.0eV),however,is not observed.

Altogether it can be seen that chemical reactions are induced by argon ion bombardment.Hence,because of the similar binding

energies of Li 2O 2,Li 2CO 3and LiF in the Li1s and O1s spectra,the identi ?cation of discharge products in deeper layers of the elec-trode is inhibited.This is why only changes apart from those observed in the benchmark electrode will be further discussed for the discharged GDE.The steady-state of the relative atomic values in the depth pro ?le,however,show that the homogeneity of the discharge product deposition inside the different pore networks can be described by this method.

The depth pro ?le and the XPS spectra of the electrolyte facing side of the discharged Freudenberg GDE are depicted in Fig.4.Looking at the progression of the depth pro ?le (Fig.4a)the decreasing values for lithium and oxygen as well as the increasing values for carbon and ?uorine show that a layer of discharge product is present at the electrolyte facing side of the Freudenberg electrode.This layer is subsequently removed within 6min of sputtering reaching steady atomic ratios in deeper layers.Hence,the discharge product deposition is homogeneous inside of the macroporous GDE.

Before sputtering the ratio between lithium and oxygen is nearly 1(Fig.4a)indicating Li 2O 2as main discharge product on the external surface of the electrode.Also,no carbonate signal (291.0eV)can be seen in the C1s spectrum of the untreated sample (Fig.4c).The high carbon content on the surface of about 23

at%

Fig.3.a)Depth pro ?le of the benchmark electrode.The dashed and dotted lines represent the expected values for each element.b)e e)XPS Spectra of the benchmark electrode before (black)and after 30s of argon ion sputtering (grey)of b)Li1s,c)C1s,d)O1s and e)

F1s.

Fig.4.a)Depth pro ?le of the active layer of the discharged Freudenberg GDE with the detail XPS spectra of b)Li1s,c)C1s,d)O1s and e)F1s before sputtering as well as after 30s and 210s.

I.Bardenhagen et al./Journal of Power Sources 299(2015)162e 169165

arises most likely due to some residual electrolyte.After 30s of sputtering this is removed resulting in a steep decrease in the carbon value and a nearly vanishing C e C signal at 285.0eV in the C1s spectrum.The main signal is now at 291.0eV showing some Lithium carbonate in the lower layers.

The O1s spectrum (Fig.4d)shows similar degradation effects as observed in the benchmark electrode.The formation of oxides (529.0eV),however,is more favorable,which is related to the induced reactions of Li 2O 2rather than Li 2CO 3.In the F1s spectra (Fig.4e)the binder peak at 689.0eV decreases slightly after sput-tering while a ?uoride peak at 685.0eV appears.This can be related to LiF in deeper parts of the electrode which forms due to reactions between binder and Li 2O 2.These can also be induced by the argon-ion sputtering to some extend.However,the high relative amount of ?uorine and the absence of LiF in the benchmark electrode indicate that the reaction also takes place inside of the battery.This ?nding agrees with the work of Nasybulin et al.[30]showing the instability of polymer binders against Li 2O 2.

The depth pro ?le and XPS spectra of the electrolyte facing side of the mesoporous xerogel GDE are depicted in Fig.5.No direct transition between a surface layer consisting of discharge product and the bulk is visible in the depth pro ?le (Fig.5a)but rather a gradient from the electrolyte facing side.Li and O are subsequently

decreasing while the carbon signal rises.No homogeneous discharge product deposition can be observed even after 550min of sputtering.The progression of the relative atomic values reveals the in ?uence of the lithium ion movement inside of the mesopores.At the interface between electrolyte and GDE,where the concentra-tion of Li t-ions is high,the formation of Li 2O 2is fast.Inside of the narrow pores of the xerogel GDE the movement of the ions slows down leading to a decreasing amount in deeper layers.At some point of the discharge reaction the deposition at the pore entrance clogs the pore completely leaving the majority of the pore volume unused [7].This effect has already been described to limit the ca-pacity of mesoporous carbon materials in the aprotic Li/O 2system [6].

The changes in the chemical composition induced by argon-ion sputtering (Fig.5b e e)are similar to those previously described for the benchmark and the Freudenberg GDE.However,in this case the formation of LiF (Fig.5e)cannot be explained by binder degrada-tion.The only source of ?uorine is the LiTFSI as a residual of the electrolyte inside of the discharged GDE.As the depth pro ?le re-veals (Fig.5a)?uorine is present throughout the whole sputter experiment with about 2.0±0.5at%.After 30s of argon sputtering the organic F-signal (689.0eV)disappears completely which leads to the conclusion that the argon-ion bombardment decomposes the organic molecule and forms ?uoride ions.

Because of the non-homogeneous discharge product distribu-tion in the xerogel GDE a look at the entire cross-section is viable for further understanding of the deposition.Here,three sections are measured:the electrolyte facing side,the middle of the elec-trode and the oxygen facing side.The relative atomic values for each measurement are given in Table 1.

Due to low signal-to-noise ratio of lithium the Li value is very imprecise.Consequently,the relative amount of discharge product at each point is more accurately described by the relative oxygen values.For the electrolyte-facing side and the middle of the GDE the oxygen values are similar and match the values of the end of the depth pro ?le.Consequently,the gradient visible in the depth pro-?le (Fig.5)describes only a thin layer on the electrolyte facing side of the GDE.At the oxygen-facing side the amount of discharge product is larger.

The XPS spectra (Fig.6)reveal similar chemical composition throughout the xerogel GDE.All spectra show no to very little carbonate (291.0eV)in the C1s spectrum (Fig.6b)as well as no oxide species (529.0eV)in the O1s (Fig.6c)indicating Li 2O 2as main discharge product.However,the spectra of the measurement at the oxygen-facing side show larger signals for lithium and oxygen in relation to carbon revealing more discharge product near the ox-ygen supply.This also ?ts the slightly higher oxygen value in Table 1.Zhang et al.[31]have already proposed that the high concentration of oxygen enhances the formation of discharge product at the oxygen side of the electrode in carbonate-based electrolytes.To investigate conditions in this case the oxygen fac-ing side is directly investigated by SEM.This is only possible due to the missing GDL in the xerogel GDE.Thereby the gas/liquid inter-face is directly accessible.The SEM image and the correlating photograph (inset)of the oxygen facing side are depicted in Fig.7a.The pattern visible in the photograph of the discharged GDE arises due to the perforated plate used as current collector in

the

Fig.5.a)Depth pro ?le of the electrolyte facing side of the discharged xerogel GDE with the detail XPS spectra of b)Li1s,c)C1s,d)O1s and e)F1s before sputtering as well as after 30s and 210s.

Table 1

Relative atomic values of the cross section measurements.

C [at%]

O [at%]Li [at%]F [at%]Oxygen side 70.1±1.816.2±1.812.2±2.9 1.0±0.1Middle

77.8±4.812.3±1.38.4±5.20.9±0.1Electrolyte side 79.0±1.2

12.6±0.1

7.3±2.1

0.5±0.1

I.Bardenhagen et al./Journal of Power Sources 299(2015)162e 169

166

cell setup.Here,the bright circles are the direct oxygen supply points surrounded by dark rings resulting from the burrs of the perforated plate pressing into the GDE.On the SEM image the transition between the oxygen supply points and the dark rings is shown.The area with direct oxygen supply (B )shows a layer of discharge product covering the whole surface.This layer has a clearly visible edge (A )at the transition to the part behind the current collector (C ).Here,no layer can be seen and the macro-porous holes in the GDE are preserved.These open holes are visible as dark parts in region (C ).The ?lm at the direct oxygen supply prevents further oxygen diffusion into the cell and thereby limits the amount of discharge product which can be formed in the bulk of the electrode.Consequently,the capacity of the mesoporous GDE is much lower than expected.The ?lm,however,might as well be formed by crystallization of the conducting salt.That is why XPS measurements are performed for identi ?cation of the products formed at the direct and indirect oxygen supply part of the elec-trode.The detail spectra of both parts are depicted in Fig.7b e e and the relative atomic values are given in Table 2.

In both regions,a lot of lithium and oxygen is detected which indicates discharge product instead of LiTFSI.The residuals from the latter can be seen in the F1s spectrum at 689.0eV (Fig.7e).Small amounts of F àat 685.0eV are also visible in both regions,showing that LiF is in fact a side product in the battery due to electrolyte decomposition.However,the ratio between Li and O differ indicating variations of the chemical composition of the discharge product.Both regions exhibit a strong peak at 291.0eV in the C1s spectrum (Fig.7c)which can be assigned to Li 2CO 3.It is far more pronounced than at the electrolyte facing side of the GDE showing that the high amount of molecular oxygen results in car-bon and electrolyte decomposition.This could very well be an ef-fect of the hindered lithium ion movement resulting from the clogging of the pores at the electrolyte facing side.Due to the lack of lithium the oxygen reacts directly with the carbon matrix giving rise to large amounts of carbonate (cf.Eq.(2)).Because of the roughness of the surface and the similar binding energies of Li 2O 2and Li 2CO 3in the Li1s and O1s spectra those peaks cannot be deconvoluted directly.That is why the composition of the discharge products is calculated by the amount of carbonate in the C1s spectrum.

The peak areas of the carbonate peaks account for 43.2%of the complete C signal (Fig.7b)for the direct oxygen region and 31.1%for the indirect region resulting in 10.7at%and 8.0at%carbonate for the direct and indirect regions,respectively.According to the mo-lecular formula of Li 2CO 3these values are multiplied by 2

for

Fig.6.High resolution XPS spectra of different points of the xerogel GDE cross-section:a)Li1s,b)C1s and c)

O1s.

Fig.7.a)SEM image of the oxygen facing side of the xerogel GDE showing the edge of the oxygen supply point (A)as well as the direct (B)and indirect (C)oxygen supply parts together with a photograph (inset)after discharge;b e e)XPS Spectra of b)Li1s,c)C1s,d)O1s and e)F1s in the region with direct (black)and indirect oxygen supply (grey).

Table 2

Relative atomic values of the oxygen facing side of the xerogel GDE.

C [at%]

O [at%]Li [at%]F [at%]Direct oxygen supply 25.5±1.140.7±1.429.0±1.1 3.3±0.8Indirect oxygen supply

26.4±1.1

38.7±2.2

32.3±1.4

1.4±0.2

I.Bardenhagen et al./Journal of Power Sources 299(2015)162e 169167

lithium and 3for oxygen and subtracted from the associated values.The remaining amount of lithium and oxygen is further reduced by the relative amount of Li 2O and LiF calculated from the signal at 529.0eV and 685.0eV in the same way as for the carbonate.Table 3shows the results for the direct and indirect oxygen supply part.

At the gas/liquid interface the direct oxygen supply promotes the formation of lithium carbonate.Three quarters of the closed layer preventing further oxygen diffusion into the electrode con-sists of Li 2CO 3.Below the current collector more Li 2O 2is retained although half of the observed discharge product is still carbonate.A small amount of Li 2O is also detected showing that it does not only form due to argon-ion bombardment but already during discharge.This is probably also due to further reduction of the peroxide because of the lack of lithium ions (cf.Eq.(1)).

Fig.8summarizes the ?ndings for the mesoporous xerogel GDE schematically.It shows the discharged GDE with partially closed pores at the electrolyte side and complete closure for the oxygen facing side.Most of the pore volume is not ?lled by discharge products.The discharge product formed at the electrolyte facing side and inside the bulk of the GDE mainly consists of Li 2O 2(light green (in the web version))while the excess of molecular oxygen at the oxygen facing side leads to the formation of side products such as lithium carbonate,lithium oxide and lithium ?uoride (purple).This kind of deposition arises because of the limited oxygen diffu-sion in the GDE.At the beginning of the discharge the electrolyte is saturated with oxygen which is subsequently consumed.Because of the limited diffusion through the porous GDE the solvated oxygen reacts preferentially at the electrolyte facing side.While the oxygen concentration will decrease at this side the almost in ?nite amount of oxygen in the gas phase leads to a high concentration of solvated oxygen at the oxygen facing side of the GDE.That is why most of the discharge product and side products are formed here which ulti-mately leads to the complete blocking of the electrode.4.Conclusions

The XPS depth pro ?les of a mesoporous and a macroporous GDE reveals the difference in discharge product deposition in the Li/O 2battery in the bulk.Macropores allow for a constant oxygen feed

inside of the electrode leading to a thick layer of discharge product on the carbon walls.In the mesoporous GDE the narrow pore diameter impedes the oxygen diffusion and lithium ion movement leading to a clogging of the pores rather than a complete ?lling.It has been shown that the discharge product forms preferentially at the top and on the bottom of the electrode while the pore volume in the bulk is mostly unused.This greatly reduces the speci ?c ca-pacity for this kind of electrodes.The main reason could be iden-ti ?ed by looking at the oxygen facing side of the electrode.Because of the missing GDL it is possible to observe the electrolyte/oxygen interface directly.Here,a thin ?lm blocks any further oxygen supply into the GDE.Due to the clogging of the mesopores at the elec-trolyte facing side,the lithium ion supply comes to a standstill which promotes the formation of the unwanted Li 2CO 3as main product at the oxygen facing side.This process is expected to limit the capacity also for mesoporous electrodes containing a GDL.Consequently,a pure mesoporous GDE will not be able to reach the high capacity expected from its large pore volume.To use this po-tential a bimodal pore systems seems to be appropriate,where large pores allow for a constant oxygen supply and small pores for the discharge product storage.

However,it is also found that LiF is a side product in both electrodes.It forms due to side reactions of Li 2O 2with the ?uoric binder or even with the conducting salt in the electrolyte.This reaction depends on the amount of ?uorine in the cell which dis-quali ?es the commonly used PTFE or PVDF binders for the use in the Li/O 2cell.Also ?uorine containing electrolytes seem to be inappropriate in this type of battery.Acknowledgments

We thank Jonas Aniol for the help at recording the XPS spectra.We gratefully acknowledge funding by the government of Lower Saxony (Germany).References

[1]P.G.Bruce,S.A.Freunberger,L.J.Hardwick,J.Tarascon.Nat.Mater 11(2011)

19e 29.

[2]I.Bardenhagen,W.Dreher,D.Fenske,A.Wittstock,M.B €a

umer,Carbon 68(2014)542e 552.

[3]M.Mirzaeian,P.J.Hall,F.B.Sillar,I.Fletcher,M.M.Goldin,G.O.Shitta-bey,

H.F.Jirandehi,J.Electrochem.Soc.160(2013)A25e A30.

[4]M.D.Radin,D.J.Siegel,Energy Environ.Sci.6(2013)2370e 2379.

[5]P.Andrei,J.P.Zheng,M.Hendrickson,E.J.Plichta,J.Electrochem.Soc.157

(2010)A1287e A1295.

[6]I.Bardenhagen,O.Yezerska,M.Augustin,D.Fenske,A.Wittstock,M.B €a umer,

J.Power Sources 278(2015)255e 264.

[7]S.S.Sandhu,J.P.Fellner,G.W.Brutchen,J.Power Sources 164(2007)365e 371.[8] B.D.Adams,C.Radtke,R.Black,M.L.Trudeau,K.Zaghib,L.F.Nazar,Energy

Environ.Sci.6(2013)1772e 1778.

[9]R.Black,S.H.Oh,J.-H.Lee,T.Yim,B.Adams,L.F.Nazar,J.Am.Chem.Soc.134

(2012)2902e 2905.

[10]J.Hou,M.Yang,M.W.Ellis,R.B.Moore,B.Yi,Phys.Chem.Chem.Phys.14

(2012)13487e 13501.

[11]S.Liu,Z.Wang,C.Yu,Z.Zhao,X.Fan,Z.Ling,J.Qiu,Mater.Chem.A 1(2013)

12033e 12037.

[12]M.Marinaro,S.K.Eswara Moorthy,J.Bernhard,L.J €o

rissen,M.Wohlfahrt-Mehrens,U.Kaiser,Beilstein J.Nanotechnol.4(2013)665e 670.

[13]P.Tan,W.Shyy,T.S.Zhao,Z.H.Wei,L.An,J.Power Sources 278(2015)

133e 140.

[14]J.-J.Xu,Z.-L.Wang,D.Xu,L.-L.Zhang,X.-B.Zhang,https://www.doczj.com/doc/052556713.html,.4(2013)2438.[15] D.Aurbach,I.Weissman, A.Schechter,H.Cohen,Langmuir 12(1996)

3991e 4007.

[16]K.Kanamura,H.Tamura,S.Shiraishi,Z.-I.Takehara,Electrochim.Acta 40

(1995)913e 921.

[17]S.Shiraishi,K.Kanamura,Z.Takehara,J.Appl.Electrochem 25(1995)

584e 591.

[18]S.Xiong,K.Xie,E.Blomberg,P.Jacobsson,A.Matic,J.Power Sources 252

(2014)150e 155.

[19] D.Bar-Tow,E.Peled,L.Burstein,J.Electrochem.Soc.146(1999)824e 832.[20]V.Eshkenazi,E.Peled,L.Burstein,D.Golodnitsky,Solid State Ionics 170(2004)

83e 91.

Table 3

Composition of discharge product at the oxygen facing side of the xerogel GDE.

Li 2CO 3[%]

Li 2O 2[%]Li 2O [%]LiF [%]Direct 69.526.0e 4.5Indirect

48.5

36.4

12.1

3.0

Fig.8.Scheme of the discharged xerogel GDE showing the clogging at the electrolyte facing side as well as the oxygen facing side.The discharged products at the oxygen facing side mainly consist of lithium carbonate.

I.Bardenhagen et al./Journal of Power Sources 299(2015)162e 169

168

[21]M.Schulze,K.Bolwin,E.Gülzow,W.Schnurnberger,Fresenius J.Anal.Chem.

353(1995)778e784.

[22]P.Gazdzicki,I.Biswas,M.Schulze,Surf.Interface Anal.46(2014)350e356.

[23] B.D.McCloskey, A.Speidel,R.Schef?er, https://www.doczj.com/doc/052556713.html,ler,V.Viswanathan,

J.S.Hummelsh?j,J.K.N?rskov, A.C.Luntz,J.Phys.Chem.Lett.3(2012) 997e1001.

[24]M.Roberts,R.Younesi,W.Richardson,J.Liu,J.Zhu,K.Edstrom,T.Gustafsson,

ECS Electrochem.Lett.3(2014)A62e A65.

[25]K.Takechi,S.Higashi,F.Mizuno,H.Nishikoori,H.Iba,T.Shiga,ECS Electro-

chem.Lett.1(2012)A27e A29.

[26]M.J.Trahan,S.Mukerjee, E.J.Plichta,M.A.Hendrickson,K.M.Abraham,

J.Electrochem.Soc.160(2012)A259e A267.

[27]S.Oswald,D.Mikhailova,F.Scheiba,P.Reichel,A.Fiedler,H.Ehrenberg,Anal.

Bioanal.Chem.400(2011)691e696.

[28]R.Younesi,M.Hahlin,M.Treskow,J.Scheers,P.Johansson,K.Edstr€o m,J.Phys.

Chem.C116(2012)18597e18604.

[29]S.Hofmann,Rep.Prog.Phys.61(1998)827.

[30] E.Nasybulin,W.Xu,M.H.Engelhard,Z.Nie,X.S.Li,J.-G.Zhang,J.Power

Sources243(2013)899e907.

[31]G.Q.Zhang,J.P.Zheng,R.Liang,C.Zhang,B.Wang,M.Au,M.Hendrickson,

E.J.Plichta,J.Electrochem.Soc.158(2011)A822e A827.

I.Bardenhagen et al./Journal of Power Sources299(2015)162e169169

党支部2015年上半年党风廉政建设工作总结

XX公司党支部2015年上半年党风廉政建设工作小结 2015年上半年以来,XX党支部严格按照局党委的工作部署,结合工作实际,抓教育,建制度,强监督,切实加强党风廉政建设和反腐败工作,取得了明显成效,工作开展情况总结如下 一、强化两个责任落实,严格履行一岗双责 1、加强领导,明确责任。将党风廉政建设和反腐败工作纳入全年重点工作,统筹安排,全面推进,形成了反腐败领导体制和工作机制。在落实责任上做到两个明确,一是公司党政一把手是党风廉政建设第一责任人;二是明确了领导班子其他成员对分管工作范围内的党风廉政建设负直接领导责任。 2、结合实际,分析研究本单位的党风廉政建设状况,制定具体的工作计划和措施,进一步明确责任。XX党支部与支部委员、科室负责人全部签订了《党风廉政建设目标责任书》,党风廉政建设责任到人。 二、加强宣传教育,反腐倡廉深入人心 XX党支部上半年安排了党风廉政及反腐败内容的学习7次,主要学习了党章、十八大精神、十八届三中、四中全会精神、反腐败案例、市纪委汇编的学思践悟系列文章等内容,并根据学习内容及时进行讨论分析,使教育学习到达效果。 根据局党委安排,XX党支部开展了两个专题活动。一是四个绝对专题活动,二是三严三实专题活动,通过专题教育并结合实际工作,党员干部们改进了工作作风,提高了工作效率,清醒认识到新常态下必须

有新的工作态度和办法,明确自己的权利责任,远离廉政的高压线,明确了今后工作的目标。 XX党支部积极开展了职工廉政教育谈话和谈心交流活动,上半年支部委员与职工谈心21次,支部委员间互相谈心8次。通过交心谈心,一方面增强科室负责人及党员的廉政意识、大局意识,促进了公司党风廉政建设;另一方面拉近班子成员与干部职工的距离,增进了解,消除误会,形成了相互理解、相互支持,齐心协力,共创和谐的工作环境。 三、坚持民主集中制,权利运行透明化 XX党支部始做到了在集中指导下民主,民主基础上集中。班子成员之间密切协调、充分沟通,做到决策之前先沟通,日常工作随时沟通,凡是有关公司大的事项决策及财务开支,必须通过班子讨论通过执行。 四、加强监督检查、防止疏漏 为彻底清除XX公司运行过程中出现的党风廉政死角,XX党支部加大监督检查力度,从公司运营程序上进行监督检查。上半年对项目廉政合同进行了修订改进,并且对公司日常财务工作进行检查,发现并改正了两次因疏忽大意出现的财务票据问题。 五、加强八项规定教育,防止四风出现反弹。 党支部加强八项规定和四风内容的教育,每逢过节前召开专题会议,对八项规定中的要求进行了强调和再次要求,对党员干部日常生活中遇到了家庭婚丧嫁娶的时候,安排监督人员进行提醒监督。XX班子在全体大会上承若严格遵守八项规定,坚持从自身做起,从点滴做起,不断

2015年工作总结及2016年工作计划

2017年度总结&2018年度计划 ---------总经办 /毛伟伟2017年6月12日入职鑫豪信,成为这个大家庭一员,从研发部到行政部、资材部、总经办,一路走来,不易却收益良多。2017年在总经助理这个职位6个月,摸索着前进,到底为公司做出了什么,改变了什么,要怎么去做,怎么去改善,是值得深思的问题。 总结2017年各部门的工作状况: 一、工程部 整个工程部的框架在2015年逐步完善,人员基本齐全。 1、对生产部门的支持力度欠缺,主动性不强:工程部与生产部的主动链接几乎只靠PIE,当新产 品不多时,一个PIE够面对生产,当新产品多时,一个PIE连面对生产都不够,更别提制作治工夹具、优化工位、优化员工作业。 2、BOM的优化:BOM是整个生产的核心资料,一旦出错,会引起连锁反应,各部门接连出错, 应做到100%准确,特别是辅料。 3、试产:在新品试产时很多问题都发现不了,在初次量产时产品问题才全部暴露出来,严重影响 产品品质及产能。 二、资材部 要更加注重部门内部各职位之间的沟通,对仓库的管理要更加严谨: 1、PMC:明确各类物料的损耗,让生产有损耗标准可依,而不是一味的以不良品到仓库换良品, 损耗率无人管控。要将生产排期排得更加细化,当然这个要依据标准产能才能完成。 2、采购:注重新供应商的开发,现有优质供应商的维护,开发到新的优质供应商后希望能更换现 有的稍差的供应商(品质不合格,交期不准时,配合不好的),当然事先应做好关于供应商的评价(如来料合格率、交货及时率、单价等等因素)。 3、仓库 3.1数量清点方面:供应商交货时数量的清点,及物料发给生产时的数量清点,生产退料时的数 量清点,清湖工厂对接观澜工厂的数量清点。 3.2仓库区域规划:无论是清湖工厂还是观澜工厂,都应将区域规划更加细化、合理。 三、生产部

2018年统战工作计划思路

2018年统战工作计划思路 同志们: 按照会议的安排,我就XX年全县统战工作开展情况及XX年统战工作总体思路向会议作报告。 一、XX年全县统战工作简要回顾 XX年,在县委的坚强领导下,我们坚持以科学发展观为统领,紧紧围绕全县发展稳定大局,统筹推进各领域工作,不断提升统一战线工作科学化水平,为促进全县经济发展、民族团结、社会稳定做出了新贡献。 (一)搭建服务民营经济发展平台,“经济统战”工作再现新亮点、彰显新特色。 一是对民营企业的扶持力度不断加大。XX年继续选择前景好,信誉好的中小企业利用100万创业促就业专项资金贷款进行扶持,受贷企业年销售收入比XX年增加15%以上,新增就业75人。组织召开市县两级银企洽谈会两次,参与企业40多家,达成贷款意向1.2亿元。二是帮扶企业选聘人才,企业人力资源进一步优化。协调召开“春风行动XX民企用工招聘会”2次,提供用工岗位2600个,达成意向1620个。三是对县内企业宣传力度不断加大。与电视台联合拍摄了《走进开鲁民营企业》专题片一部,制作《民营企业在开鲁》系列报道五期,全面展示了我县民营企业的创业风采。四是基层商会建设步

伐不断加快。组织成立了保安农场商会,使全县基层商会达到6个,镇级商会组建率已达60%,今年年初顺利完成了工商联换届工作。 (二)全力抓好名誉村主任工作,“民生统战”工作再上新台阶、实现新跨越。 开鲁县现有名誉村主任51人,名誉村主任工作在全县各镇场实现了全覆盖。XX年,全县名誉村主任开展捐资助学、扶危助困等活动,累计捐资达15万余元,资助贫困学生262名,帮扶困难群众439名;为任职村文化、公共事业发展累计投入资金达40万元;与任职村开展村企对接,兴办企业投入资金达400多万元。XX年9月,为交流经验,促进工作,组织召开了全县名誉村主任工作经验交流现场会;拍摄了民营企业家敬业奉献题材专题片《风好扬帆正当时》一部,全面展示了开鲁县名誉村主任风采,激发了更多民营企业家投身社会主义新农村建设的热情 (三)不断强化民族宗教工作,“和谐统战”工作再做新贡献、取得新成效。 一是积极为民族地区发展争取政策扶持。配合县政府制定出台了《关于加快开鲁县民族地区经济社会发展的意见》,政府决定用五年时间把全县10个民族嘎查农牧民人均纯收入提高到6000元,年人均增加收入450元以上,现已投入扶持资金折合人民币400多万元。二是大力扶持少数民族地区群众脱贫致富。鼓励扶持统战扶贫试点村沙日花嘎查大力发展奶牛养殖,帮助成立奶牛养殖专业合作社,协调贷款10

2015年长小党风廉政建设工作总结

2015年小学党风廉政建设工作总结 长潭河乡中心小学 2015年长潭小学党风廉政建设和反腐败工作,以全面贯彻落实习近平对我党提出的“严明政治纪律,严守政治规矩”要求和十八届中央纪委三次全会会议精神,践行群众路线,坚持“为民、务实、清廉”,不断完善党风廉政建设和反腐败工作管理机制,为学校“践行绿色教育、提升教育品质”营造风清气正的环境,提供坚强有力的纪律和政治保证。就2015年学校党风廉政工作总结如下。 一、重视组织领导 (一)党政共抓,履行责任书职责。学校把党风廉政建设工作纳入学校工作的重要内容,列为党支部工作要点,做到党政共抓。党支部书记兼校长康德辉同志为学校党风廉政建设和反腐败工作的第一责任人,年初与长潭河乡中心校签订了《长潭河乡教育系统党风廉政建设工作责任书》。党组织负责人认真履行党风廉政建设责任书职责要求。 (二)目标分解,实施责任追究制。学校党支部以教育局2015年工作要点为指南,以落实《2015年长潭小学党风廉政建设和反腐败工作计划》,分解党风廉政建设责任制目标,层层签订工作责任书和《长潭小学党员干部党风廉政承诺书》,使每位党员干部明确目标和职责。 二、注重教育预防 (一)以“务实清廉”为重点。重点学习“中央八项规定”的深刻内涵和关于厉行勤俭节约的文件精神、学习《中国共产党第十八届中央委员会第三次全体会议》精神,学习《党章》,学习州纪委“严党纪、正作风、促廉政”主题教育活动的实施意见,以服务群众为宗旨,提高服务和管理能力,坚持理想信念,加强党性修养,努力解决思想上、作风上、管理上、效率上的问题。 (二)召开专题会议,增强党员干部的自律性。为了加强学校党风廉政建设,增强党组织的战斗力和党员的自律性, 3月16日中午,以中心学校统一部署,在我小召开了以党风廉政建设为专题的长潭河乡中小学教师大会。会上,党支部传达了县教育系统党风廉政建设大会精神,部署了2015年党风廉政建设和反腐败工作计划和责任分工,在明确学

实验幼儿园2015下半年教研工作计划(精)

实验幼儿园2015下半年教研工作计划 一.指导思想 根据园务工作计划的要求, 以《幼儿园教育指导纲要》为准绳,以《3-6岁儿童学习与发展指南》为指导,以提高教师的教科研水平为目的, 坚持理论联系实际,牢固树立以人为本的教育思想,开展集体备课、定期进行课题研讨和教学经验交流活动, 提高教师的教育技能。本学期教研工作主要有以下几点: 二.加强理论学习,提高教师理论水平 教师在工作之余,要坚持学习,及时转变观念,以先进的教育理念武装头脑,以科学的教育方式组织学习,以饱满的教育热情对待孩子。为此本学期我们通过有目的地定期开展教科研学习活动和自学相结合,提高教师理论水平。 1.积极借阅幼教刊物,学习新的教育理念和新的教学方法,做好理论学习笔记,并且要学以致用,把所学理论与自己教学实践相结合,同时,积极参与本园观摩活动,努力提高自身教育理论及授课水平。 2.进一步学习《3-6岁儿童学习与发展指南》,对《指南》将深入学习贯彻、积极探索、切实落到实处。积极参与教师再培训教育。 三.注重业务培养,提高保教质量 1.本学期我们将实行新的保教常规制度,以进一步落实和促进幼儿园保教工作。新的制度力求将关注的目光投向幼儿一日生活中的各个生活环节、集中教育活动、游戏教育活动以及保教人员学习和日常工作常规方面。幼儿园期望通过这种常规制度的导向引导大家注重落实一日保教规范,注重提高教育教学能力,注重幼儿的游戏教学,使幼儿园的保教工作真正落到实处。 按计划落实保教管理。结合保教一线的具体问题,经常深入一线,观摩活动,及时有效地实施保教管理,对教学过程、一日保教活动进行探讨,思考并提出适宜的意见与建议。切实为保教一线服好务。

2020年统战工作计划范文三篇

年最新统战工作计划范文(一) xx年的统战工作意义非常深远,责任十分重大,任务更加艰巨。我镇今年的统战工作要在县委统战部的直接领导下,紧紧依靠镇党委、政府的高度重视和关心,充分发挥职能部门的主观能动性,调动一切可以调动的积极因素,拓宽工作思路,紧扣高平实际,继续发挥统战资源优势,争取人心,凝聚力量,自强不息,艰苦奋斗,为促进我镇经济社会又好又快发展和社会和谐做出新的贡献。特制订如下统战工作计划 一、指导思想 坚持以邓小平理论和“三个代表”重要思想为指导,深入学习实践科学发展观,认真贯彻落实省、市、县的统战工作会议精神,围绕促进党政关系、民族关系、宗教关系、阶层关系、海内外同胞关系的稳定和谐,进一步发挥统战优势,拓宽工作思路,创新工作方法,争取人心、凝聚力量,为我镇经济社会又好又快发展做出新贡献。 二、工作目标 深入贯彻落实党的xx大精神和上级统战工作会议文件精神,围绕党的xx大对统一战线提出的新目标和新要求,继续认真学习贯彻好中共中央《关于巩固和壮大新世纪新阶段统一战线的意见》和省、市、县xx年统战工作会议文件精神,特别是要学透县委书记钟义凡同志xx县委统战部黄仕军部长在全县统战工作会上的重要讲话,并紧密结合高平的统战工作实际,制定切实可行的工作计划,确保工作时效。同时还要充分利用各种新闻媒体广泛深入地宣传统一战线的新举措、新经验、新成绩,使统战工作计划家喻户晓、人人皆知。 切实加强党外代表人士工作 完善党外干部工作机制,建立镇党委班子成员联系党外干部工作制度,使党外干部在培养、选拔、安排使用、跟踪管理等方面形成合理有序的工作机制。加强党外人才队伍建设,建立党外后备干部人才库,并坚持每年调整充实一次。多渠道解决党外干部的政治待遇,把一些优秀的党外人才推荐选拔充实到村委会任职,并为党外人士的健康成长营造良好氛围,使党外干部真正做到有职、有权、有为。 大力拓展经济领域当中的统战工作 一是深入开展“百企联村,共同发展”活动,推动更多的非公企业与项目村开展对接,发挥各自优势,实现互利双赢。二是继续开展非公人士综合评价工作,把客观、公正的综合评价成果作为今后非公人士评先评优和政治安排的重要依据。三是大力推进光彩事业,坚持“自觉自愿、互惠互利、义利兼顾”的原则,扎实有效地开展扶贫帮困工作。四是积极探索做活高平商会工作的有效机制。充分发挥镇工商分会的牵头作用,加强对商协会的建设与管理,加强与镇外、县外、市省外和境外商协会的联系与沟通,为我镇非公企业走出去、请进来搭建平台。五是促进非公有制经济人士健康成长。要积极引导非公人士争做“爱国、诚信、敬业、守法、贡献”的优秀建设者,努力塑造非公人士的新形象。要引导非公人士积极参与全县各项事业建设,为增强我镇发展活力作贡献,同时要引导非公人士争做改革创新的优秀开拓者,增强创新人士,促进我镇非公经济总量上规模、结构上档次、质量上水平、管理上

2015年党风廉政责任书(定稿)

运输部2015年党风廉政建设责任书 为了认真落实公司党风廉政建设责任制,确保运输部党风廉政建设各项工作任务的完成,为运输部实现年度奋斗目标提供有力保障,根据《销售公司党风廉政建设责任书》,结合运输部实际,特制定本责任书。 一、总体要求 2015年党风廉政建设的总体要求是:深入贯彻党的十八大、十八届三中、四中全会和习近平总书记系列重要讲话精神,认真落实中纪委、省纪委、华能集团、华能煤业公司、集团公司纪委及公司党政关于反腐倡廉建设的决策部署,坚持从严治党、依规治党,严明党的政治纪律和政治规矩,切实加强纪律建设,持续落实八项规定,深入解决“四风’’问题,认真受理信访举报,加大案件查办力度,强化执纪监督问责、提高纪检监察工作水平,全面推进惩治和预防腐败体系建设,着力营造不敢腐、不能腐、不想腐的政治环境,以反腐倡廉工作的新成效,为促进维护企业、职工利益及公司和运输部转型发展提供坚强有力的保证。 二、目标任务 (一)强化反腐倡廉教育,增强党员干部廉洁从业意识。紧跟反腐倡廉新形势、新要求、新常态,全面落实宣传教育内容,着力改进学习方式,充分利用各类媒体和宣传工具,

重点学习贯彻党的十八大、十八届三中、四中全会和习近平总书记系列重要讲话精神,中纪委十八届三次、四次、五次全会精神,传达贯彻上级关于党风廉政建设和反腐败工作的各项工作部署,大力推进廉洁文化建设和示范点创建,不断统一党员干部的思想和行动,增强广大党员干部职工反腐倡廉工作的自觉性和坚定性。 (二)构建新的责任体系,认真履行党风廉政建设职责。建立健全党风廉政建设和反腐败工作领导体制和工作机制,进一步建立完善反腐倡廉工作“五位一体”责任体系,认真落实党委班子领导责任、党组织负责人第一责任、班子成员“一岗双责”、职能部门直接管理责任和纪委监督责任,扎实抓好责任分解、责任落实、责任考核、责任追究等工作,层层传导压力,逐级靠实责任,确保党风廉政建设各项工作扎实有序开展。 (三)严格遵守党纪党规,推动作风建设持续深入发展。始终牢记作风建设和反腐败斗争永远在路上,只有进行时,没有休止符。坚持以“守纪律、勤服务、有作为、常律己”为基本要求,严守党的纪律不动摇,践行服务不停步,做到有所作为不松懈,严格自我约束不放松,深入推进作风建设,使党员干部真正把党规党纪作为警戒线、高压线,努力做到不敢碰、不能碰、不想碰筑牢自我保护防线。 (四)坚持监督惩处并重,营造风清气正工作环境。充

工会下半年工作计划2015

工会下半年工作计划2015 【篇一】 201x年工会紧紧围绕推进科学发展,加速***崛起的主题,突出重点,创新发展,努力在组织职工、引导职工、服务职工、维护职工合法权益中体现新作为,展出新风貌。突出重点,创新发展,整体推进,为实现**“赶超进位、跨越发展”作出新的更大的贡献,努力把全县工会工作推上新的台阶。 (一)促进社会和谐,大力发展和谐劳动关系 1、继续完善创建活动的工作机制。推动各级及企业建立行政领导挂帅的创建活动领导小组,明确职责、强化功能。同时,充实联席会议、协调劳动关系三方机制。完善考核命名表彰制度,协调有关方面出台优惠政策,激励企业踊跃参与创建活动。 2、突出创建活动的重点。推动非公有制企业开展创建活动,努力扩大创建活动覆盖方面,力争全市国有及控股企业100%,非公有制企业80%开展创建活动。 3、突出创建活动的难点。努力解决职工群众最关、最直接、最现实的利益问题,更好地为职工办实事、做好事、解难事。 4、拓展创建活动的内涵。一方面组织职工为企业经济又好又快发展贡献力量,另一方面推动企业履行社会责任,努力实现企业与职工、社会、文化和自然环境的和谐发展。 5、丰富创建活动的手段。进一步完善利益协调、诉求表达、矛盾调处、权益保障机制,不断充实工会与政府(行政)联席会议、协调劳动关系三方机制的内容,深入推进创建劳动关系和谐企业、“双爱双评”等活动,完善职工法律援助与服务机制,加强基层劳动争议调解组织建设,配合政府有关部门及时处理侵犯职工权益的案件,以劳动关系的和谐促进社会和谐稳定。 (二)在“维权帮扶”中创先争优。积极实施《维权帮扶三年覆盖计划》,逐步推进县总工会帮扶中心做到“九有六规范”;巩固“送温暖、跟踪助学、街头义诊”等老品牌,创新诉求代理、职业培训、大病特补等新品牌;加大对困难职工特别是农民工、劳务派遣工、灾区职工的帮扶力度,积极拓宽帮扶资金筹措渠道,创新帮扶方式,提高帮扶水平。 (三)在“企业文化建设”中创先争优。以开展“创建学习型组织,争做知识型职工,勇为创业型人才”活动为载体,进一步加强职工文化建设,发挥工会大学校作用,不断提高职工队伍的思想道德素质和科学文化素质。加强职工道德建设和思想政治工作,继续宣传贯彻《公民道德建设纲要》,引导职工积极参与群众性精神文明创建活动,开展

2017年党风廉政建设实施方案

2017年党风廉政建设实施方案 根据自《学校落实党风廉政建设主体责任专题调研》、《2017年度党风廉政建设责任书》和《2017年党风廉政建 设工作要点》的要求,结合我校实际,为进一步落实2017 年落实党风廉政建设主体责任,特制订如下实施方案: 一、指导思想 坚持教育、制度、监督并重的惩防体系构建,认真推进廉政文化进校园工作,以落实党委主体责任,加强领导班子的廉政建设为重点,不断深化党风廉政建设及教风行风建设,为荣县中学健康发展提供坚强保障。 二、工作目标 将党风廉政建设工作和其他工作一起部署、落实、检查和考核,认真落实职责,深入推进我校党风廉政建设工作,推动学校各项工作健康、民主、和谐发展。 三、工作措施 1、成立机构,落实党委主体责任 成立落实党风廉政建设主体责任工作领导小组和办公室。组长: 副组长: 成员 组长对全校党风廉政建设和反腐败工作负总责。 2、勇于担当,强化“一把手”责任

副组长负责“政风行风建设”、“廉政文化建设”、“加强教育监督”、“着力增强领导干部拒腐防变能力”等方面的工作,具体包括:作风建设、党风党纪教育、岗位廉政教育、廉政学习活动、廉政文化活动、教风行风建设及监督检查等方面工作。 成员要履行“一岗双责”,对分管(联系)领域党风廉政建设负主要领导责任。研究分管工作、分管领域权力运行环节上的廉政风险点,大力推进制度机制创新,为权力阳光规范运行、干部廉洁自律奠定坚实的制度保障。逐级逐层传导主体责任,定期向学校党委和纪委报告履行主体责任情况。 3、创新载体,强化廉政宣传教育 始终坚持把党风廉政宣传教育贯穿于学校各项工作之中,做到围绕中心,服务大局,全力开展党风廉政宣传教育。一是继续组织党员干部切实加强对党章和党内法规的学习,开展党性、党风、党纪、廉政教育。二是继续开展形式多样、内容丰富的廉政文化活动,组织干部职工集中观看廉政教育警示片,通过正反两方面的学习,用先进典型对标、以反面典型警示,深入查找和纠正思想认识上的偏差,给全体党员干部带来心灵的震撼和灵魂的洗礼,更加牢固树立“在关爱在健康成长,在和谐中科学发展”的办学理念。三是设置以廉政文化为主题的警示牌和宣传画,引导广大党员干部追求

2015年度党风廉政建设责任书(单位科室)

2015年环境保护局班子成员与科室(单位)负责人党风廉政建设目标责任书 为更好贯彻落实党风廉政建设主体责任,明确各支部、各科室、单位对党风廉政建设应负的责任,确保2015年党风廉政建设和反腐败工作各项任务落到实处。根据中共中央《关于实行党风廉政建设责任制的规定》和上级有关廉政工作要求,结合市环保局实际,特签订2015年度党风廉政建设目标管理责任书。 一、目标责任及内容 (一)组织领导 1、落实主体责任。各党支部、各科室、单位负责本单位和管辖范围内的党风廉政建设和反腐倡廉工作,其主要负责人是党风廉政建设第一责任人,班子其他成员对职责范围内的党风廉政负直接领导责任,要认真履行党风廉政工作职责,认真落实市环保局“两个责任”清单相关任务。 2、落实工作任务。按照局党组2015党风廉政建设工作的部署和要求,结合本单位实际,制定工作计划,明确工作任务,并抓好落实。 3、落实工作报告。年中(半年)和年底(全年),各支部向局党组书面报告党风廉政建设目标责任落实情况。平时落实“两个责任”的情况要记录在案,有迹可查。 (二)党风廉政建设工作 1、开展党风廉政教育。积极开展形式多样的党风廉政建设教育和廉政文化建设活动。全年集中学习教育活动不少于4次。各党支部书记全年要为全局干部职工讲一次以上的

廉政党课。建立学习教育考勤制度,并保证一定的参与率。 2、持之以恒抓作风建设。把督促落实中央“八项规定”、省委“六条意见”、市委“24条意见”作为的一项经常性工作,常抓不懈。着力解决“四风”方面的突出问题,不断改进工作作风,强化责任意识,提高工作效率。 3、坚持抓早抓小抓预防。对党员干部存在的问题早发现、早提醒、早纠正,早处理,对苗头性问题要约谈诫勉提醒,防治小问题酿成大错。 4、开展岗位廉政风险排查活动,针对本单位容易发生不廉洁行为的环节、岗位,制定具体的廉政规定、措施和要求,建立长效防范机制。 5、严格规范用权。坚持重大问题集体研究决定,不发生违背民主集中制个人说了算的情况。规范工作程序,严格按制度办事,按程序行事,促进管理的规范化、制度化。 (三)廉洁自律工作 1、自觉遵守党的政治纪律、组织纪律、工作纪律、作风纪律、群众工作纪律和国家的法律法规。 2、严格执行《中国共产党党员领导干部廉洁从政若干准则》等廉洁自律各项规定,规范全局领导干部廉洁从业行为。 3、自觉拒收各类礼金、礼券和有价证券,严格执行财经纪律和财务制度。 4、严格执行公务用车使用管理规定,加强车辆管理,严禁公车私用,杜绝公车私用被上级有关部门查处和曝光的情况发生。 5、严格执行公务接待制度,严控招待费支出,杜绝铺

2015血透室上半年工作总结及下半年工作计划

血透室上半年工作总结及下半年工作计划 在过去的半年我科的工作根据医院及护理部的整体发展规划和要求,并结合科室的自身特点,在科内全体人员的共同努力下,比较顺利的完成了上半年我科室所承担的各项工作,具体内容如下: 1.科室内全体成员明确并熟知现有的规章制度和各项工作流程及操作 规范,从而使透析治疗工作规范化、制度化、正规化、常规化。 2.定期组织科内全体成员进行专科知识、应急预案及各项护理操作技术 的学习和演练,并进行相应考核,均能熟练掌握和应用;同时鼓励科内成员积极参加院内组织的在职继续教育,不断提高自身的知识储备。 3.强化医疗护理的安全管理,规避各类潜在的医疗风险,上半年我科室 无跌倒坠床等护理不良时间及医疗差错、事故发生。 4.积极开展责任制整体护理,医护人员在患者治疗过程中积极巡视,定 时监测患者生命体征,早期发现患者的病情变化,及时预防和治疗各种并发症。 5.每日做好水处理机及透析机的日常维护,并做好相关记录;每月及每 季度分别进行透析用水、透析液的细菌培养及内毒素检测,结果均合格,并将结果进行网上登记。 6.定期检查急救药品及器械的完好性,完好率达100%,以保证患者的 治疗安全。 7.根据医院感染管理科的要求,加强手卫生的培训及考核,科内成员手 卫生的依从性逐渐提高;各项护理操作严格执行无菌操作,无交叉感染发生,

无新增感染病例。 8.上半年业务完成情况:上半年新增患者名,单纯血液透析、血液透析 滤过共计完成6099例,业务收入为2605515.18元;去年同期两者分别为5092例及21524520.00元;相比较分别增长20%和21%,基本完成了年初制定的相应目标。 9.存在的问题和不足:1.随着病人数量急剧增加,透析床位不够,希望 增加透析机数量和床位。2.候诊区域狭小,患者等候时出现拥挤。 在下半年,我科室继续按照医院和护理部的要求,做好本科室的工作,积极实施责任制整体护理,并将优质护理贯穿到整个临床护理工作中,使广大患者和家属满意;继续加强专科知识及技术的培训,不断提高成员的业务技术水平,确保无医疗差错及事故的发生;严格按照医院感控的要求,做好消毒隔离工作,预防交叉感染的发生;积极收治患者,完成年初的既定目标。 2015.7.1 保洁员协议书 甲方:村村民委员会 乙方:,身份证号: 为了确保本村的清洁卫生得到正常有序地运行,使全村的环境卫生保持清洁.干净。切实做好全村生活垃圾的收集处置工作。经甲.乙双方协商同意,特订如下协议: 一.垃圾收集范围: 屯主要道路的路边.溪边经常保持整洁,及时清理白色污染.无明显垃圾堆积物:清除屯主要道路两边杂草:对屯内公共树木养护:沟渠如有堵塞做到及时清理:对乱张贴.乱涂写.乱刻画.乱散发.乱悬挂等非法广告做到及时制止和清理。 二.保洁员报酬工资合计元,要求做到每周清洁2次以上,确保路面干净.整洁。工资逐月发放。 三.保洁所需一切工具均由乙方自己承担,乙方还要自备垃圾清运车辆。在工作期间注意自身安全,如发生意外,

2015年党风廉政建设工作方案

2015年党风廉政建设工作方案一、指导思想

坚持以落实党风廉政建设责任制为中心内容,以促进惩防体系建设为落脚点,紧紧围绕我单位的中心工作,深入学习实践科学发展观,认真开展廉政风险防范管理工作,坚决贯彻“标本兼治、综合治理、惩防并举、注重预防”的方针,结合教育系统反腐倡廉建设实际情况,运用科学的管理方法,增强防范工作的创新性、科学性和可操作性,以创新的思路和改革的办法抓好教育、制度和监督工作,推动惩防体系建设,针对权力运行中的风险和监督管理中的薄弱环节,主动预防,超前防范,解决落实党风廉政建设责任制工作中不够扎实规范等问题,使党风廉政建设落在实处。 二、工作原则 1、坚持围绕中心、服务大局的原则; 2、坚持防范管理工作与科学发展观活动相结合的原则; 3、坚持全员参与、突出重点的原则; 三、主要内容及范围 根据两委文件确定我单位的廉政风险防范管理工作实施内容及范围 包括:全体党员、干部,重点是中层以上干部、负责人事、招生、财产财务、采购、基建工程等的党员干部。 四、组织领导 成立党风廉政建设领导小组: 组长:郝卫民(中心主任) 组员:马洪松(工会主席)王朝晖(活动部部长)尹路(后勤主管)

中心加强领导,将廉政风险防范工作作为重大政治任务来抓,建立由主任负总责,党政齐抓共管,全体党员干部共同参与的领导体制和工作机制。 五、工作目标 通过廉政风险防控,提高党员干部自觉接受监督、主动参与监督和积极化解廉政风险的意识,促进职责明确、决策民主、程序公开、规范管理,对权力运行实施有效监督原则,使领导班子形成民主、科学、开拓、进取的工作作风,全体教职员工形成团结、协作、创新、奉献的工作作风。 六、工作措施 (一)组织动员,提高认识 1、召开领导班子会,学习传达《周炜同志教育系统党风廉政建设工作会议上的讲话》精神及《教育系统建立健全惩治和预防腐败体系实施意见》等相关文件,动员部署教辅中心廉政风险防范管理工作; 2、成立教辅中心廉政风险防范管理工作领导小组; 3、制定教辅中心廉政风险防范管理工作方案; 4、召开全体党员干部会,传达“教育系统党风廉政建设和反腐败工作2014年总结及2015年主要任务”,使党员干部了解廉政管理工作的重要意义、主要精神和基本内容,积极参与到廉政管理工作中。 5、党员干部积极参加系统内组织的有关教育活动。 6、党员干部签订《党风廉政建设责任清单》及《党风廉政建设责任书》,学习并完成《两个责任理论测试题》。 (二)重点岗位,重点防范

2015下半年公司销售工作计划

2015下半年公司销售工作计划 (一)细分市场,多层次立体化的营销推广活动。 公司客户大体上可以分为四类,即现金管理客户、公司无贷户和电子银行客户客户。全年的发展,以市场为导向,以客户为中心,以账户为基础,抓大不放小,“稳住大客户,努力转变小客户,拓展新客户”的策略,制定详营销计划,在全公司系列的媒体宣传、网点销售、大型产品推介会、客户上门推介、组织投标和营销活动等,持续的市场推广攻势。 现金管理市场领先地位。分层次、推广现金管理服务,努力产品的客户价值。要抓客户市场,现金管理的品牌效应。各行部要对辖区内客户、行业大户、集团客户调查,分析其经营特点、模式,设计的现金管理方案,营销。对现金管理存量客户挖掘深层次的需求,解决的问题,客户度。今年新增现金管理客户185200户。 开发公司无贷户市场。中小企业无贷户,这我行的基础客户,并为资产、中间发展来源。在去年中小企业“弘业结算”主题营销活动基础上,总结经验,深化营销,营销。要全公司的公司无贷户市场营销在量上增长,并注重质量;要优化结构,优质客户比重,降低筹资成本率,高附加值产品的销售。要抓好公司无贷户的开户营销,努力市场占比。要对公司无贷户管理,分析其结算特点,全产品营销,我行的结算市场份额。XX年要努力新开对公结算账户358001户,结算账户净增长272430户。 系统大户的营销工作。全市还有镇区财政所未在我行开户的现状,调用资源营销,开花。并借势向各镇区分支机构展开营销攻势,更大的存款份额。对大中型企业、名牌企业、世界10强、纳税前8000名、进出口前7334强”等10多户客户挂牌认购工作,锁定他行客户,攻关。 (二)服务渠道管理,“结算优质服务年”活动。 客户资源是全公司至关的资源,对公客户是全公司的优质客户和潜力客户,要对公视图系统,在优质服务的基础上,体现个性化、多样化的服务。

2020年统战工作总结及2021年工作计划

2020年统战工作总结及2021年工作计划 2020年统战工作总结及2021年工作计划 弹指一挥间__年接近尾声。在过去的一年里,在领导的悉心关怀下,同事的热情帮助下,自身的不断努力下,工作上取得了一定成绩,得到了领导和同事们的肯定。现就个人取得的成绩,工作不足和未来的计划做如下的工作: 一、工作取得成绩 1、参与并组织了全局范围内的风险问题梳理工作。__年集团公司提出了全面风险管理的要求,这对我们来说既是机遇也是挑战,机遇就是能更好的规避企业生产经营中各种风险,减少企业不必要的损失。挑战就是这项工作是一个新课题过去没有接触过,需要在实践中不断摸索,边学边做。同时我们感到工作量特别大,需要有耐心才能完成好这项工作。根据总部要求,局、分公司下发了《关于开展内控风险梳理工作的通知》,并于6至7月对所属单位及相关部门进行了一次全面的风险问题梳理,局共发现了244个风险点,并于8月召开了局、分公司内控风险梳理审查会,就如何解决这些问题提出具体措施。这对我局今后各项工作提供了宝贵的经验,起到了很好的借鉴作用。 2、坚持办好半月一期的《企业经营管理简报》。此项工作是我自__年正式接手。简报是体现企业文化的一部分,是对外宣传内控的一个窗口。通过办简报既宣传了内控知识,反映最新企业管理动态,增强各级管理人员的内控意识与管理意识。同时也提高了我的写作能力与表达能力。通过这个平台谈谈关于企业管理的看法,对我来说是一个很好的锻炼与提高。 3、积极配合集团公司审计局南京审计分局内控独立评价组检评工作。此次审计局对华东局的内控环境,业务流程控制点做了全面细致的审查,对华东局适用的18个业务流程中的16个进行了检查,检查中发现有22个问题需要进一步整改落实。针对存在的问题,于__年6月20号下发了《关于做好审计组内控检查问题整改的通知》。各单位针对存在的问题高度重视,积极整改,及时上报整改结果,我把各家整改结果进行统一汇总,并向审计局提交了《华东石油局__年审计内控独立检查评价整改报告》。通过此次审计局检查以及我们整改,解决了许多已经发生或者可能发生的问题,更加有利于华东局的生产经营正常运行。 4、参与内控制度的梳理工作。制度贯彻落实的好坏决定内控管理水平的高

规划发展部2015年上半年工作总结及下半年工作计划综述

2015年上半年工作总结及下半年工作计划 规划发展部 2015年是公司应对新常态、立足新起点、落实新举措,全面推进精益生产的关键之年。国内钢铁行业依然面临着严峻的形势:企业盈利状况不容乐观,行业的产能严重过剩;环保政策日趋严格,倒逼企业增加环保投资、追求环保发展。公司经营环境严峻,减员增效迫在眉睫,人均产钢还未达到800吨的目标。在这种形势下,我部认真贯彻公司年初工作会精神,紧密围绕公司“精益生产”目标,以重点项目推进为载体,稳步推进信息化项目实施和网络安全维护,以节能环保项目为投资管控中心,结合企业运行管理优化,招议标降价创效等方面着手开展工作,在工作中抓作风、抓落实,牢记服务基层,较好的完成了各项工作,现将主要工作完成情况总结如下: 一、上半年工作总结 一、认真贯彻公司精益生产理念,做好“精益生产”项目实施,通过信息化“三化项目”实施主线,强势抓好精益生产工作的贯彻落实,提高劳动生产率,促进公司“三项制度”改革进一步深化。 (1)系统思考、周密部署,科学严密制定远程集中计量管理系统的调研和总体实施方案。 通过远程集中计量系统的实施,将通过视频监控、无线传输、图像识别、射频技术(RFID)、网络通讯等先进的信息化技术实现公司汽车衡的集中统一管理,变革原来的分散计量方式,能够极大地提升计量管理水平,为公司建立一个适合生产、经营、管理的信息化计量

平台,实现所有计量、计量调度工作的规范化、标准化、电子化和集成化。2015年1月份开始项目实施准备工作,部领导带队从项目调研着手,通过和设备工程部的有效沟通协调,对公司计量系统工作现状进行了细致、全面的调研,2月上旬,会同设备工程部相关负责人赴集团公司考察,结合公司的实际情况,形成初步的调研报告。2015年3月13日,项目正式启动,现已完成了需求调研、需求分析和系统总体解决方案确定等工作,目前已经完成项目概要设计阶段。 (2)全面评估公司视频监控点运行现状,稳步实施集中监控视频及平台升级项目,切实提高岗位劳动生产率。 公司目前视频监控工作存在地点比较分散,前端需要监控、检测、管理的设备越来越多,传统方式现场检查,维护效率较低等问题,通过对视频监控系统的集中管控,将有效减少看守型岗位,提高劳动生产率,是当代钢铁企业发展的必然趋势。1月下旬通过对炼铁厂、轧钢厂、能源中心、物流中心4家单位进行调研走访,对视频监控点运行情况进行全面掌控,确定各单位视频监控工作的总需求。3月13日,集中监控视频及平台升级项目正式启动,目前已完成各二级单位的需求调研,确定了最终的项目实施方案。其中:轧钢、炼铁和能源中心新增网络摄像机共计129台;完成了后端监控平台的新建及改造;轧钢二棒新建主控室,安装网络视频数字矩阵、网络储存、网络键盘、管理电脑及液晶电视墙等网络集中管理系统设备1套;总调中心、保卫中心对原有旧监控系统平台进行升级改造,重新安装网络视频数字矩阵、网络键盘、管理电脑等网络管理系统设备共计2套;中

2015年党风廉政建设工作总结5篇

2015年党风廉政建设工作总结5篇 今年以来,越西公路局党风廉政建设工作在邓小平理论和“三个代表”重要思想的指导下,切实按照中央“八项规定”和省、州、县委“十项规定”的工作要求,认真贯彻落实关于“改进工作作风、紧密联系群众”的相关规定,坚持“两手抓、两手都要硬”的方针,加强廉政教育,健全廉政制度,强化廉政监督,取得明显成效。宽阔干部职工的廉政意识、法律意识进一步增强,内部治理制度进一步完善,权力运行进一步规范,坚持责任、制度先行,教育、监督并重,抓重点、把环节,注重从源头上加强预防和治理,积极有效地推进教育、制度、监督为一体的预防体系建设,收到了较好的效果。 一、抓党员干部队伍廉洁教育,确保反腐倡廉思想阵地更加牢固。 一是注重贯彻落实上级纪委文件精神。以落实中央八项规定及省、州、县“十项规定”为契机,认真落实关于“改进工作作风、紧密联系群众”的各项规定,正风肃纪,正本清源。我们及时成立了以局支部书记局长蒋科为组长、党政领导班子为成员的党风廉政建设工作领导小组,出台了《越西县公路治理局关于党的群众路线教育实践活动正风肃纪工作的实施方案》(越路支[20XX]7号),制定了《20XX党风建设工作要点及落实县“十项规定”的具体措施》(越路支[20XX]2号)。二是注重廉政学习教育。每次机关干部集中学习安排都把廉政知识、党纪法规纳入了学习内容;“三会一课”活动都必须把党风廉政教育纳入打算;三是开展了党员领导干部集中评议活动,进一步促进了领导干部服务群众的意识。 二、加强并完善“惩防并举”的惩治和预防腐败工作体系 坚持教育、制度和监督并重,积极构建预防腐败体系。我局今年党风廉政建设工作是依照各级党委、纪委的工作部署和要求,在明确党风廉政建设和反腐败的组织领导和责任分工之后,进一步完善“一岗双职双责”的工作机制,从而确保了我局各项工作的有机统一。 1、加强学习教育,积极构建“不想腐败”的思想防线。一是自我教育。今年,我局认真组织宽阔党员干部学习《党章》、《中国共产党党内监督条例(试行)》、《中国共产党纪委处分条例》及法律法规等,加强了思想政治教育和法纪教育,树立了正确的权力观、地位观、利益观,增强了宽阔党员干部的党性观念和法纪意识。二是结合时事热点,开展了党风廉政建设专题教育上党课活动,积极推进思想作风、学风、工作作风、领导作风、生活作风各个方面的制度建设和落实。学习了《中纪委关于严格禁止利用职务上的便利谋取不正当利益的若干规定》,进一步了解了当前权钞票交易案件出现的新情况、新咨询题,提高了领导干部防范类似行为发生的警惕性。三是警示教育。依照我局工作性质、特点及实际情况,用周围的人、周围的事来教育宽阔干部职工,细算经济帐、政治帐、亲情帐、健康帐,时刻进行正反对比,做好下面引导,反面警示,增强干部职工的自律、自省意识。 2、加强制度建设,构建“不能腐败”的制度体系。加强和完善制度建设,是加强党风廉政建设的保证。今年,我局依照本单位过去一段时期所出现的咨询题和事件进行了深刻反省,在原有各项制度的基础之上,进一步规范和完善了《工程建设招投标制度》及《工程预决算财务治理制度》。⑴外包工程中,工程完成多少,验收多少,依照计量工程量分时期支付工程款,同时扣缴税款,严禁提早借支和预支付。内部工程中,我局成立了由工程、财务、纪检等多方组成的监督小组,对整个工程进行全程监督,包括工程质量及财务审计与审核,并要求有三方以上人员共同签字方能核销。⑵在内部工程中,借支款的治理也已严格。原则上工程治理人员负责借支,谁借支谁负责,工程竣工之后必须及时核销和冲减,逾期不予核报的,我局财务将从个人工资中逐一扣除。在人事治理制度方面,我局严格按照《干部选拔任用条例》进行。近年来,我局机关治理人员的选拔任用均采取由上一级部门牵头进行公开招考,择优录用,阳光操作,从而使这项工作真正做到公平、公正、公开。(3)强化党风廉政建设工作“一把手”负总责的分工负责制度。今年年初,我局就与县签定了《党风廉政建设目标责

2015年上半年工作总结和下半年工作计划

调度室2015年上半年工作总结 及下半年工作计划 一、上半年工作总结 上半年,在公司领导的正确领导下,在各科室的大力配合下,调度室人员本着“在岗一分钟,奉献60秒”的责任意识,尽职尽责,任劳任怨,以饱满的工作热情和奋发向上的精神状态开展各项工作。结合我公司各项生产计划和工作安排认真组织和指挥生产调度,紧紧围绕公司今年联合试运转目标开展各项工作。现将调度室上半年的工作总结如下: (一)调度安全生产管理 1、加强安全管理。每月按公司要求5日、20日参加全矿的安全大检查,共查出隐患85条,并对所查出的隐患跟踪落实督促整改,消除了隐患,保证了安全生产。 2、加大了各环节之间的协调组织力度,增强生产指挥能力。认真组织召开每天的早会和协调会,研究解决安全生产中存在的问题,督促检查任务落实完成情况,及时对各部门进行人力、物力等合理调度,确保生产各环节的理顺与协调。认真审视每天的工作,改进不合理的工作流程,遇到问题及时沟通、解决。全力提高工作效率和工作质量。2015年上半年完成原煤产量36万吨,掘进进尺3500米,进行了15101首个综采工作面带负荷调试工作。完成了井下采区变电所、采区水仓及采区避难硐室的安装和实施了1024轨道巷、1024胶带巷的延伸以及15102风运巷的开口工作,认真组织了15105风运巷及15105高抽巷的掘进施工。 3、完善应急管理体制。编制了2015年度应急预案和处灾计划,

并根据具体情况及时进行了修改,按年初制定的应急演练计划逐项进行了演练,上半年按演练计划演练了“大面积停电、主排水事故、顶板事故”主扇无计划停风、雨季“三防”、水灾事故六项应急演练工作。每次演练活动有方案有措施,均进行了评审和总结,从而大大提高职工的灾防意识和矿井的救灾能力,并下发了《李阳煤业应急救援领导组织机构及职责》,对应急救援工作职责进一步进行了明确。 4、加强变化环节管控。在安全生产过程中加强了变化环节的管理。根据集体公司变化管理指示要求,制定下发了变化管理逐级汇报管理制度、重点工作重点工程管理办法、变化及非正规作业管理规定、变化管理分析考核机制,对单项工程实行了分级管理,对重点变化重点监管,超前预控、动态掌控、程序调控。在上半年共组织协调了7次贯通、3次过地质构造以及多次巷道开口、探陷落柱、大型机电开关设备搬家运输工作,均顺利完成。保证了安全生产。 5、调度装备管理。运行使用了标准、现代的调度台。 6、加强培训学习工作。按时参加上级和煤业公司内部组织的培训,如兼职救护队员培训学习、调度员培训、安全知识电教片培训学习、CAD培训学习、煤矿安全事故案例学习等。组织调度室所有人员进行调度业务和煤矿专业知识学习,平时主动学习调度业务、现场管理和质量管理等方面的知识,努力提高调度室整体业务水平。 (二)调度汇报 1.事故汇报。对发生的各类事故按要求及时上报,采取有力措施,积极组织救援抢险,杜绝隐瞒和迟报各类事故,使得事故在最有效时间内得到了处理,保证了安全,为生产赢取了时间。 2.采掘工作面跟班队干汇报。采掘工作面跟班队干每班坚持在井下现场向矿调度室作三次汇报,内容包括除生产进尺外现场地质变

相关主题
文本预览
相关文档 最新文档