当前位置:文档之家› 东华大学考研高分子物理及化学名词解释_print2012

东华大学考研高分子物理及化学名词解释_print2012

东华大学考研高分子物理及化学名词解释_print2012
东华大学考研高分子物理及化学名词解释_print2012

第一章 绪 论(Introduction )

高分子化合物(High Molecular Compound ):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。

合成高分子:一般是由许多结构相同的、简单的化学结构,通过共价键重复连接而成的相对分子质量很大的化合物。

生物高分子:一般倾向于是对化学结构组成多样、排列顺序严格的、相对分子质量很高的具有生物活性的高分子化合物。

单体(monomer ):能够形成聚合物中结构单元的小分子化合物称为单体。

聚合物(high polymer or polymer ):由相同的化学结构多次重复通过共价键或配位键连接而成的高分子化合物,称聚合物。

单体单元(monomer unit ):由苯乙烯单体反应得到的聚苯乙稀,其结构单元的原子种类、个数都与单体相同,仅电子结构发生变化,故这类聚合物的结构单元又称为单体单元。

结构单元(structure unit ):聚氯乙稀这样的聚合物,括号内的化学结构称为结构单元。即组成高分子的、重复连接的、来源于单体的化学结构单元称―结构单元‖。

重复单元(repeating unit ):聚氯乙稀分子链可以看作结构单元多次重复构成,因此括号内的化学结构也可称为重复单元或链节(chain element )。

聚合度(degree of polymerigation ):重复单元的数目n ,表征聚合物分子量大小的一个物理参数。

数均分子量:各种不同分子的分子量的总合除以分子数总合得到的平均值。 其中:分子量为Mi 的大分子,相应的分子分数为Ni 。 重均分子量:不同分子分子量与分子重量乘积的总和除以整个分子重量得到的平均值。

其中:分子量为Mi 的大分子重量为Wi =NiMi 粘均分子量:用聚合物稀溶液的特性粘度测定的分子量。

一般情况下,0.5<α<0.9若 α=1 则 Mη = Mw (均一聚合物,α=1 )

Z 均分子量:用超速离心法测定的分子量。 Zi = WiMi

分子量分布(Molecular Weight Distribution, MWD ):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般 有分布指数和分子量分布曲线两种表示方法。

分子量分布指数(多分散系数):

D=1 均一分子量

D>1 分子量多分散性

多分散性(Polydispersity ):聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,用以表达聚合物的相对分子量大小并不相等的专业术语叫多分散性。 ∑∑∞=∞

==1

1

i i i i

i n N M N M ∑∑∑∑∞=∞=∞=∞===11211i i i i i i i i i i i w M N M N W M W M ααααη/1111/111

)()(∑∑∑∑∞=∞=+∞=∞===i i i i i i i i i i i M N M N W M W M ∑

∑∑∑∞=∞=∞=∞===1213

11i i i i i i i i i i i z M N M N Z M Z M

聚合物的序列结构:指聚合物大分子结构单元的连接方式。

支化高分子(接枝高聚物):在一定条件下结构单元除正常连接外,还会连接成支链型结构,形成支链型大分子。交联结构:高分子链之间通过支链连接成一个三维网状体型分子称为交联结构。

高分子一次结构:高分子的化学结构。

高分子二次结构:单个分子链的构象结构称为二次结构。

高分子三次结构:高分子的聚集态结构。

加聚反应(addition polymerigation):通过打开环或双键、三键互相联结起来而形成聚合物的反应。聚合过程中无小分子副产物生成。

缩聚反应(polycondensation):缩聚反应通常是经由单体分子的官能团间的反应,在形成缩聚物的同时,伴有小分子副产物的生成。

链(增长)式聚合(链式聚合,chain (growth)polymerigation):烯类单体的加聚反应,绝大多数属于链增长聚合反应。反应过程中,反应体系始终由单体、高相对分子质量聚合物和微量引发剂组成,没有中间产物,单体转化率与反应时间无关。

逐步(增长)聚合(step growth polymerigation):逐步聚合没有活性中心,它是通过一系列单体上所带的能相互反应的官能团间的反应逐步实现的。绝大多数缩聚反应以及合成聚氨酯的聚加成反应等等都是逐步增长聚合反应。

第二章自由基聚合(Free-Radical Polymerization)

自由基聚合:由自由基引发的聚合反应为自由基聚合。

活性种(Reactive Species):打开单体的π键,使链引发和增长的物质,活性种可以是自由基,也可以是阳离子和阴离子。

均裂(Homolysis):化合物共价键的断裂形式,均裂的结果,共价键上一对电子分属两个基团,使每个基团带有一个独电子,这个带独电子的基团呈中性,称为自由基。

异裂(Heterolysis):化合物共价键的断裂形式,异裂的结果,共价键上一对电子全部归属于其中一个基团,这个基团形成阴离子,而另一缺电子的基团,称为阳离子。

离子聚合(Ionic Polymerization):活性中心为阴、阳离子的连锁聚合。

阳离子聚合(Cationic Polymerization):以阳离子作为活性中心的连锁聚合。

阴离子聚合(Anionic Polymerization):以阳离子作为活性中心的连锁聚合。

共轭效应(Resonance Effect):共扼效应存在于共轭体系中,它是由于轨道相互交盖而引起共轭体系中各键上的电子云密度发生平均化的一种电子效应。共轭效应使体系的键长趋于平均化,体系能量降低,分子趋于稳定。可分为σ-π共轭、p-π共轭、π-π共轭、σ-p共轭。

空间位阻效应(Steric Effect):由取代基的体积、数量、位置所引起的效应,它对

单体聚合能力有显著的影响,但它不涉及对活性种的选择。

链引发(Chain Initiation):形成单体自由基活性种的反应。链引发包括两步:初级自由基的形成(即引发剂的分解),单体自由基的形成。

链增长(Chain Propagation):单体自由基形成后,它仍具有活性,能打开第二个烯类分子的π双键,形成新的自由基,新自由基的活性并不随着链段的增加而衰减,与其它单体分子结合成单元更多的链自由基,即链增长。链终止(Chain Termination):自由基活性高,有相互作用终止而失去活性的倾向。链自由基失去活性形成稳定聚合物的反应称为链终止反应。

偶合终止(Coupling Termination):两链自由基的独电子相互结合成共价键的终止反应,偶合终止的结果是大分子的聚合度为链自由基重复单元数的两倍。

歧化终止(Disproportionation Termination):某链自由基夺取另一自由基的氢原子或其他原子终止反应。歧化终止的结果是聚合度与链自由基的单元数相同。

单基终止(Mono-radical Termination):链自由基从单体、溶剂、引发剂等低分子或大分子上夺取一个原子

而终止,这些失去原子的分子可能形成新的自由基继续反应,也可能形成稳定的自由基而停止聚合。

双基终止(Bi-radical Termination):链自由基的独电子与其它链自由基中的独电子或原子作用形成共价键的终止反应。

链转移(Chain Transfer):在自由基聚合过程中,链自由基可能从单体(M)、溶剂(S)、引发剂(I)等低分子或大分子上夺取原子而终止,使失去原子的分子成为自由基,继续新链的增长,这一反应叫链转移反应。

引发剂(Initiator):在聚合体系中能够形成活性中心的物质,使单体在其上连接分为自由基引发剂,离子引发剂。半衰期(Half Life):物质分解至起始浓度(计时起点浓度)一半时所需的时间。

诱导期:聚合初期初级自由基为阻聚杂质所终止,无聚合物形成,聚合速率为零的时期。

诱导分解(Induced Decomposition):诱导分解实际上是自由基向引发剂的转移反应,其结果使引发剂效率降低。笼蔽效应(Cage Effect):在溶液聚合反应中,浓度较低的引发剂分子及其分解出的初级自由基始终处于含大量溶剂分子的高黏度聚合物溶液的包围之中,一部分初级自由基无法与单本分子接触而更容易发生向引发剂或溶剂的转移反应,从而使引发剂效率降低。

引发剂效率(Initiator Efficiency):引发聚合部分引发剂占引发剂分解消耗总量的分率称为引发剂效率。

转化率(Conversion):单体转化为聚合物的分率,等于转化为聚合物的单体量比去用去单体总量。

等活性理论(Equal activity theory):在自由基聚合中,链自由基的反应活性基本与链长无关。

稳态假设( Steady state assumption):自由基聚合反应开始很短一段时间后,单位时间内通过双基终止反应所消耗的自由基数与链引发反应引发剂分解所生成的自由基数相等,即连引发速率等于链终止速率,构成体系中的自由基浓度不随时间增长而变化。一般只在低转化率(10%以内)的反应中存在。

热引发聚合(Thermal-Initiation Polymerization):聚合单体中不加入引发剂,单体只在热的作用下,进行的聚合称为热引发聚合。

光引发聚合(Photo-Initiation Polymerization):单体在光的激发下(不加入引发剂),发生的聚合称为光引发聚合。可分为直接光引发聚合和光敏聚合两种。

光引发效率(Photo-Initiation Efficiency):又称为自由基的量子产率,表示每吸收一个光量子产生的自由基对数。自动加速现象(Auto-accelerative Phenomena):聚合中期随着聚合的进行,聚合速率逐渐增加,出现自动加速现象,自动加速现象主要是体系粘度增加所引起的。

凝胶效应(Gel effect): 因体系粘度增加而引起聚合速率自动加速的现象。粘度增加使kp 增大,使kt减小。

沉淀效应(precipitation effect):在聚合中,若聚合物不溶于各自的单体,聚合一开始就会出现沉淀,整个聚合体系在异相体系中进行,在聚合一开始就出现聚合速率自动加速现象。

聚合动力学(Kinetics of Polymerization):指聚合速率、分子量与引发剂浓度、单体浓度、聚合温度等因素间的定量关系。

动力学链长(Kinetics Chain Length):每个活性种从引发阶段到终止阶段所消耗的单体分子数定义为动力学链长,动力学链在链转移反应中不终止。

链转移常数(Chain Transfer Constant):是链转移速率常数和增长速率常数之比,代表链转移反应与链增长反应的竞争能力。

链转移剂(Chain Transfer Agent):聚合物生产过程中人为地加入的一种自由基能够向其转移的试剂,用于调节聚合物分子量。常用的链转移剂有脂肪族硫醇等。

自由基寿命(Radical Lifetime):指自由基从产生到终止所经历的时间,可由稳态时的自由基浓度与自由基消失速率相除求得。

聚合上限温度(Ceiling Temperature of Polymerization):ΔG=0,聚合和解聚处于平衡状态时的温度即为聚合上限温度,在此温度以下进行的聚合反应无热力学障碍;超过聚合上限温度聚合就无法进行。

本体聚合(Bulk Polymerization):本体聚合是单体本身、加入少量引发剂(或不加)的聚合。

悬浮聚合(Suspension Polymerization):悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。

溶液聚合(Solution Polymerization):是指单体和引发剂溶于适当溶剂的聚合。

乳液聚合(Emulsion Polymerization):是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。

分散剂(Dispersant):分散剂大致可分为两类,(1)水溶性有机高分子物,作用机理主要是吸咐在液滴表面,形成一层保护膜,起着保护人用,同时还使表面(或界面)张力降低,有利于液滴分散。(2)不溶于水的无机粉末,作用机理是细粉吸咐在液滴表面,起着机械隔离的作用。

乳化剂(Emulsifier):常用的乳化剂是水溶性阴离子表面活性剂,其作用有:(1)降低表面张力,使单体乳化成微小液滴,(2)在液滴表面形成保护层,防止凝聚,使乳液稳定,(3)更为重要的作用是超过某一临界浓度之后,乳化剂分子聚集成胶束,成为引发聚合的场所。

胶束(Micelle):当乳化剂浓度超过临界浓度(CMC)以后,一部分乳化剂分子聚集在一起,乳化剂的疏水基团伸身胶束回部,亲水基伸向水层的一种状态。

亲水亲油平衡值(HLB)( Value of Hydrophile Lipophile Balance):该值用来衡量表面活性剂中亲水部分和亲油部分对水溶性的贡献,该值的大小表表亲水性的大小。

胶束成核(Micellar Nucleation):在经典的乳液聚合体系中,由于胶束的表面积大,更有利捕捉水相中的初级自由基和短链自由基,自由基进入胶束,引发其中单体聚合,形成活性种,这就是所谓的胶束成核。

均相成核(Homogeneous Necleation):又称水相成核,当选用水溶性较大的单体,溶于水的单体被引发聚合成的短链自由基将含有较多的单体单元,并有相当的亲水性,水相中多条这样较长的短链自由基相互聚集在一起,絮凝成核,以此为核心,单体不断扩散入内,聚合成乳胶粒,这个过程即为均相成核。

第三章离子聚合(Ionic Polymerization)

活性聚合(Living Polymerization):当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。

化学计量聚合(Stoichiometric calculation Polymerization):阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。

准活性聚合(Quasi-living polymerization):在阴离子聚合反应中,如果Rt≠0 ,Rtr≠0,但两者均很小,称为准活性聚合,该过程活性链有充足的生长时间,终止后得到的稳定大分子称长寿命链。

阴离子聚合引发过程(Initiation of Anionic polymerization):形成单碳负离子活性中心的过程。

阴离子聚合链增长过程(Chain Propagation of Anionic polymerization):引发过程产生的碳阴离子与反离子结合共同构成链增长活性中心,单体不断与碳阴离子连接,成为新的碳阴离子,使阴离子活性链不断增长。

阴离子聚合的变换反应(Shift reaction of Anionic polymerization):阴离子活性聚合获得的活性碳负离子经某种反应后链端的碳负离子活性中心变成另一种活性中心。

遥爪聚合物(Telechelic polymer):按化学计量比投料的活性阴离子聚合体系,单体转化率达100%后,加入某种实际反应,该试剂在对大分子封端的同时,使大分子的一端或两端接上具有反应性的官能团,每个大分子相当于一个长长的臂,臂端存在可抓住其它反应物的爪子,因此通常称它们为遥爪聚合物。

大分子单体(Macromonomer):阴离子活性高分子与某些含有双键的化合物反应,可以形成端基带有可进行链式聚合反应的双键官能团,这种端基上含有可进行聚合反应的基团的齐聚物或高分子成为大分子单体。

动力学链不终止(not termination of Kinetic chain):无论何种终止方式,凡是在链终止形成稳定大分子的同时有新的活性中心产生,且该活性中心可以引发单体聚合的链终止过程称为动力学连不终止。

动力学链终止(termination of Kinetic chain):无论何种终止方式,凡是在链终止形成稳定大分子的同时无新的活性中心产生的链终止过程称为动力学连不终止。

配位聚合(Coordination Polymerization):单体与引发剂经过配位方式进行的聚合反应。具体的说,采用具有配位(或络合)能力的引发剂、链增长(有时包括引发)都是单体先在活性种的空位上配位(络合)并活化,然手插入烷基—金属键中。配位聚合又有络合引发聚合或插入聚合之称。

定向聚合(Stereo-regular Polymerization):任何聚合过程(包括自由基、阳离子、阴离子、配位聚合)或任何聚合方法(如本体、悬浮、乳液和溶液等),只要它是经形成有规立构聚合物为主,都是定向聚合。定向聚合等

同于立构规整聚合(Stereo-specific Polymerization)。

Ziegler-Natta聚合(Ziegler –Natta Polymerization):采用Zigler-Natta引发剂的任何单体的聚合或共聚合。

立体异构(Stereo-isomerism):分子中的原子的不同空间排布而产生不同的构型。可分为光学异构体和几何异构体。

构型(Configuration):是由原子(或取代基)在手性中心或双键上的空间排布顺序不同而产物的立体异构。

构象(Conformation):构象则是对C-C单键内旋转异构体的一种描述,有伸展型、无规线团、螺旋型和折叠链等几种构象。

光学异构体(Optical Isomer,又称对映体异构):由手性中心产生的异构体,分R(右)型和S(左)型。

几何异构体(Geometrical Isomer):由双键而产生的异构体,即Z(顺)式和E(反)式。

手性中心(Chiral Center):非对称取代的烯类单体或α—烯烃聚合物分子链中的不对称的碳原子。

全同立构聚合物(Isotactic Polymer)(等规立构聚合物):各手性碳原子构型相同,称全同立构聚合物。以聚α-烯烃为例,聚α-烯烃中含有多个手性中心C原子,若各个手性中心C原子的构型相同,如~RRRR~ 或~SSSS~ ,就成为全同立构(等规)聚合物。

间同立构聚合物(Syndiotactic Polymer)(间规立构聚合物):若相邻手性碳原子构型相反,且交替排列,则为间同立构聚合物。以聚α-烯烃为例,若聚α-烯烃中相邻的手性中心C原子的构型相反并且交替排列,如~RSRSRS~,则成为间同立构聚合物。

无规立构聚合物(Atactic Polymer):手性C构型呈无规排列的聚合物。以聚α-烯烃为例,若聚α-烯烃中的手性中心C原子的构型呈无规则排列,如~RRSRSSSRSSR~,则为无规聚合物。

顺式(Z)构型(Cis-configuration)、反式(E)构型(Anti-configuration):当双键的两个碳原子各连接两个不同基团时,由于双键不能自由旋转,就有可能生成两种不同的由空间排列所产生的异构体。两个相同基团处于双键同侧的叫做顺式,反之叫做反式。

立构规整度(Stereo-regularity):立构规整聚合物的质量占总聚合物质量的分率。

全同指数(Isotactic Index)(聚丙烯的等规度):表征聚合物的立构规整程度的指数,即有规立体聚合物占总聚合物量的分率,以IIP表示。常用沸腾正庚烷的萃取剩余物所占分数来表示。

配位聚合引发体系(Initiator of Coordination Polymerization):用于配位聚合的引发剂,这类引发剂在聚合过程中的作用不仅为聚合提供活性种,而且它可使增长插入的单体配位,达到立构规化的目的。配位聚合引发体系大致有四类:一是Ziegler-Natta型;二是π烯丙基过渡金属型;三是烷基锂引发剂;四是最近发展起来的茂金属引发剂。配位引发剂的作用有二:一是提供引发聚合的活性种,二是引发剂的剩余部分(经常是过渡金属的反离子)紧邻引发中心提供独特的配位能力,这种反离子同单体和增长链的配位促使单体分子按一定的构型进入增长链,起着连续定向模板的作用。

Ziegler-Natta引发剂(Initiator of Ziegler-Natta):Zigler-Natta引发剂是一大类引发体系的统称,通常有两个组份构成:主引发剂是Ⅳ~Ⅷ族过渡金属化合物。共引发剂是Ⅰ~Ⅲ族的金属有机化合物。

基团转移聚合(group transfer polymerization GTP):带有特定取代基(酯、氰、酮和酰胺等)的极性的烯类单体,以带有硅、锗、锡烷基基团的化合物为引发剂,用负离子或路易斯酸(Lewis)等化合物为催化剂,在每次增长过程中,发生链末端结构单元上的基团转移给增长单体或者增长单体的基团转移给链末端结构单元的集团转移过程,末段活性种总是活化的官能团。

开环聚合(Ring-Opening Polymerization):环状单体在引发剂作用下开环,形成线形聚合物的聚合反应。

第四章共聚合反应(Co-polymerization)

均聚合(Homo-polymerization):由一种单体进行的聚合反应。

共聚合(Co-polymerization):由两种或两种以上单体共同参加的连锁聚合反应。形成的聚合物中含有两种或多种单体单元。

均聚物(Homo-polymer):由均聚合所形成的聚合物。

共聚物(Copolymer):由共聚合形成的聚合物。

无规共聚物(Random Copolymer):聚合物中组成聚合物的结构单元呈无规排列。

交替共聚物(Alternating Copolymer):聚合物中两种或多种结构单元严格相间。

嵌段共聚物(Block Copolymer):聚合物由较长的一种结构单元链段和其它结构单元链段构成,每链段由几百到几千个结构单元组成。

接枝共聚物(Graft Copolymer):聚合物主链只由某一种结构单元组成,而支链则由其它单元组成。

等活性理论(Equal activity theory):在自由基共聚合中,链自由基的反应活性基本与链长无关。

稳态理论( Steady state theory):自由基共聚合聚合反应中,链自由基的总浓度及两种链自由基的浓度均不随反应时间变化。

共聚物组成方程(Equation of Copolymer Composition):表示共聚物组成与单体混合物(原料)组成间的定量关系。

理想共聚(Ideal Co-polymerization):该聚合竞聚率r1*r2=1,共聚物某瞬间加上的单体中1组分所占分率F1=r1f1/(r1f1+f2),并且其组成曲线关于另一对角线成对称(非恒比对角线)。

理想恒比共聚( Ideal Azeotropic Co-polymerization):该聚合的竞聚率

r1=r2=1,这种聚合不论配比和转化率如何,共聚物组成和单体组成完全相同,F1=f1,并且随着聚合的进行,F1、f1,的值保持恒定不变。

交替共聚(Alternating Co-polymerization):该聚合竞聚率r1=r2=0或者r1→0,r2→0,这种聚合两种自由基都不能与同种单体加成,只能与异种单体共聚,因此不论单体组成如何,结果都是F1=0.5,形成交替共聚物。

非理想共聚(Non-ideal Co-polymerization):竞聚率r1*r2≠1的聚合都是非理想聚合,非理想聚还可再往下细分。有恒比点非理想共聚(Non-ideal Azeotropic Co-polymerization):竞聚率r1<1 且r2<1的非理想聚合,该共聚物组成曲线与恒比对角线有一交点,在这一点上共聚物的组成与单体组成相同,且随着聚合的进行二者的单体和聚合物的组成都都保持恒定不变。

嵌段共聚(Block Co-polymerization):该聚合竞聚率r1>1且r2>1,两种自由基都有利于加上同种单体,形成―嵌段共聚物‖,但两种单体的链段都不长,很难用这种方法制得商品上的真正嵌段共聚物。

竞聚率(Reactivity Ratio):是均聚和共聚链增长速率常数之比,r1=k11/k12,r2=k22/k21,竞聚率用来直观地表征两种单体的共聚倾向。

第五章逐步聚合(Stepwise Polymerization)

均缩聚(condensation reaction):均缩聚反应指的是只有一种单体参与的缩聚反应。其重复结构单元只含一种单体单元。

混缩聚(Blending condensation reaction):一种或几种含有二个以上官能团的单体化合成为聚合物同时析出低分子副产物(如水、氯化氢等)的过程。

线形缩聚(Linear Poly-codensation):在聚合反应过程中,如用2-2或2官能度体系的单体作原料,随着聚合度逐步增加,最后形成高分子的聚合反应。线型缩聚形成的聚合物为线形缩聚物,如涤纶、尼龙等。

体形缩聚(Tri-dimensional Poly-condensation):参加反应的单体,至少有一种单体含有两个以上的官能团,反应中形成的大分子向三个方向增长,得到体型结构的聚合物的这类反应。

官能团等活性理论(Equal activity theory of Functional Group):无论官能团是被单体还是被聚合体携带,也不论聚合体的聚合度是多大,该官能团反应活性是相同的。

官能度(Functionality):一分子聚合反应原料中能参与反应的官能团数称为官能度。

平均官能度(Aver-Functionality) :单体混合物中每一个分子平均带有的官能团数。即单体所带有的全部官能团数除以单体总数。

当量系数(Ratio of Group Number):线形缩聚中两种单体的基团数比。常用r表示,一般定义r为基团数少的单体的基团数除以基团数多的单体的基团数。r=Na/Nb ≤1,Na 为单体a的起始基团数,Nb为单体b的起始基团数。

反应程度(Extent of Reaction):参加反应的官能团数占起始官能团数的分率。

转化率(Conversion):参加反应的反应物(单体)与起始反应物(单体)的物质的量的比值即为转化率。

凝胶化现象(Gelation Phenomena) 凝胶点(Gel Point):体型缩聚反应进行到一定程度时,体系粘度将急剧增大,迅速转变成不溶、不熔、具有交联网状结构的弹性凝胶的过程,即出现凝胶化现象。此时的反应程度叫凝胶点。扩链反应(chain extending reaction):通过聚合物端基活性基团的反应而形成线型分子链的反应。

预聚物(Pre-polymer):体形缩聚过程一般分为两个阶段,第一阶段原料单体先部分缩聚成低分子量线形或支链形预聚物,预聚物中含有尚可反应的基团,可溶可熔可塑化。该过程中形成的低分子量的聚合物即是预聚物。无规预聚物(Random Pre-polymer):预聚物中未反应的官能团呈无规排列,经加热可进一步交联反应。这类预聚物称做无规预聚物。

结构预聚物(Structural Pre-polymer):具有特定的活性端基或侧基的预聚物称为结构预聚物。结构预聚物往往是线形低聚物,它本身不能进一步聚合或交联。

热塑性塑料(Thermoplastics Plastics):是线型可支链型聚合物,受热即软化或熔融,冷却即固化定型,这一过程可反复进行。聚苯乙烯(PS)、聚氯乙烯(PVC)、聚乙烯(PE)等均属于此类。

热固性塑料(Thermosetting Plastics):在加工过程中形成交联结构,再加热也不软化和熔融。酚醛树脂、环氧树脂、脲醛树脂等均属于此类。

融熔缩聚(Melt Poly-condensation):熔融缩聚是指反应温度高于单体和缩聚物的熔点,反应体系处于熔融状态下进行的反应。熔融缩聚的关键是小分子的排除及分子量的提高。

溶液缩聚(Solution Poly-condensation):单体加适当催化剂在溶剂(包括水)中呈溶液状态下进行的缩聚叫溶液缩聚。

界面缩聚(Interfacial Poly-condensation):两单体分别溶解于两不互溶的溶剂中,反应在两相界面上进行的缩聚称之为界面缩聚,具有明显的表面反应的特性。

第六章天然高分子(natural polymers)

单糖(Monosaccharide):最简单的碳水化合物,如葡萄糖、果糖、木糖等。

低聚糖(Oligosaccharide):由二个至十个单糖分子经由糖苷键连接而成的化合物。如蔗糖和棉子糖。

多糖(Polysaccharose):由10个以上的单糖分子经由糖苷键连接而成的碳水化合物。如纤维素和多糖。

橡胶(Rubber):是高弹性的高分子材料,由于橡胶具有其他材料所没有的高弹性,因而也称作弹性体。

硫化(Vulcanizing):将橡胶与硫化剂(通常是硫磺)和其他有关的配合剂一起加热反应,将生胶线型分子链交联形成三维的网状结构,得到硫化胶。

肽键(Peptide Bond):蛋白质是由天然产生的若干种类L-ɑ-氨基酸以共价键结合的共聚物,历史上称这些酰胺键(-CO-NH-)为肽键。

蛋白质(Protein):是由许多氨基酸之间进行缩合反应后所形成的分子量大于10000的聚合物,是提供胺基酸的最主要来源,亦是提供身体生长最主要的成分。

多肽(Polypeptide):多个不同氨基酸由多个肽键结合成为大分子链,分子量少于10000的成为多肽。

蛋白质的一级结构(primary structure of Protein):蛋白质多肽链中氨基酸种类的组成及其连接顺序。

蛋白质的二级结构(secondary structure of Protein):蛋白质多肽链的二级结构描述其构象或形状,主要形式有两种:ɑ-螺旋形和β-片层形,这是由主链中氢键的相互作用而形成的。

蛋白质的三级结构(tertiary structure of Protein):蛋白质多肽链上所有原子之间的相互作用使多肽链进一步折叠、盘曲成为内有袋行空穴的空间排列。

蛋白质的四级结构(quaternary structure of Protein):由两个或两个以上具有特定一、二、三级结构的多肽链,通过次级键以一定关系聚集所形成的空间排布,成为四级结构。

第七章聚合物的化学反应(Chemical Reaction of Polymer)

聚合物化学反应(Chemical Reaction of Polymer):研究聚合物分子链上或分子链间官能团相互转化的化学反应过程。聚合物的化学反应根据聚合物的聚合度和基团的变化(侧基和端基)可分为相似转变、聚合物变大的反应及聚合物变小的反应。

离子基团的屏蔽效应(Ion groups shielding effect):在许多反应中,大分子中的一种官能团转化为离子后,如

果它带的电荷与进攻试剂相同,由于静电相斥效应,会显著地阻碍临近基团受试剂的进攻。

官能团的隔离效应(functional groups isolation effect):当一个试剂分子必须和大分子链上相邻的两个基团都反应时,反应不能进行到底。因为随即反应的结果,大分子上的基团总有一些被单个孤立起来,从而不能再实现相邻两个基团都与同一试剂反应。

高聚物的取代反应(substitution reaction of Polymer):当化学试剂与高分子链发生反应时,原来大分子中的一些基团被其他基团所取代,出现了新的官能团。

高聚物的加成反应(addition reaction of Polymer):天然橡胶的氯化和氢氯化是加成反应。

高聚物的消除反应(elimination reaction of Polymer):聚氯乙稀、聚偏氯乙烯等受热会脱除氯化氢这种脱除是自由基链式反应,由于反复进行链转移和消除的反应,发生―拉链式‖的脱氯化氢反应。

降解(Degradation):降解是聚合度分子量变小的化学反应的总称。它是高分子链在机械力、热、超声波、光、氧、水、化学药品、微生物等作用下,发生解聚、无规断链及低分子物脱除等反应。

解聚(depolymerization):在热作用下,大分子末端断裂,生成自由基,然后按链式机理迅速逐一脱除单体而降解,脱除少量单体后,短期内残留物的分子量变化不大。这类反应称为解聚。

无归断链(random degradation):聚合物受热时主链发生随机断裂,分子量迅速下降,但单体收率很低,这类热解反应即为无归断链。

扩链(Chain-enlarging):分子量不高的聚合物,通过适当的方法,使多个大分子连接在一起,分子量因而增大的过程称为扩链。

交联(Cross-linking):聚合物在光、热、辐射、或交联剂作用下,分子链间形成共价键,产生凝胶或不溶物,这一过程称为交联。交联有化学交联和物理交联。交联的最终目的是提高聚合物的性能。如橡胶的硫化等。交联剂(Cross-linking Agent):使聚合物交联的试剂。

老化(Aging):聚合物及其制品在加工、贮存及使用过程中,由于受各种因素(热、氧、光、水、化学介质及微生物等)的综合作用,聚合物的化学组成和结构会发生一系列的变化以至最后丧失使用价值,这些现象和变化统称为老化。

管理学名词解释

一、名词解释 管理:是指管理者通过行使管理职能,调动和配置组织资源,进而实现组织目标的活动及过程。 企业流程再造:即对企业的业务流程进行根本性的再思考和彻底性的再设计,使企业在成本、质量、服务和速度等方面获得进一步的改善,将以职能为核心的传 统企业改造成以流程为核心的新型企业。 知识管理:对组织的集体知识与技能进行有效的规划,并通过适当的手段和方法将这些知识与技能分布到能够帮助企业实现最大产出和环节的过程。 企业社会责任:是工商企业追求有利于社会的长远目标的义务,而不是法律或经济所要求的义务。 精细化管理:是一个将精细化的操作、控制、核算、分析、规划、思想和作风贯彻到整个企业的所有管理活动中的管理模式。 柔化管理:是以“人性化”为标志,强调跳跃和变化、速度和反应、灵敏与弹性,注重平等和尊重、创造和直觉、主动和企业精神、远见和价值控制,依据信息 共享、虚拟整合、竞争性合作、差异性互补、虚拟实践社团等实现管理和运 营知识由隐性到显性的转化,从而创造优势的管理模式。 决策:是指组织为使未来行动目标优化或达到某种满意程度,在两个或两个以上备选方案中选择一个上佳方案并组织实施的过程,即管理者为实现一定的目标, 在所指定的若干方案中选择的过程。 程序化决策:是对常规的、经常重复发生的问题的决策,也就是对例行问题进行的决策。 非程序化决策:是对不经常发生的业务工作和管理工作所做的决策,也就是对例外问题进行的决策。 风险性决策:管理者在决策事件中面临者不可控因素,各种备选方案会出现多种不同结果,到底会出现哪种结果不能确定,但各种结果出现的可能性(即概率) 是预先知道的。无论选择哪个方案都存在风险,只能在计算各种方案不同的 自然状态(发难结果出现的可能性)损益值的情况下,比较各方案损益值后 在进行的决策。 计划:是组织在未来一定时期内关于行动方向、工作内容及方式的预案,也就是为了实现决策所确定的目标而预先进行的行动安排。 目标管理:以目标为导向,以人为中心,以成果为标准,而使组织和个人取得最佳业绩的现代管理方法。 组织:是为了实现既定的目标,按一定规则和程序而设置的并与外部环境相适应的有机群体。 非正式组织:是人们在共同的工作或生活中,基于共同的兴趣和爱好,以共同的利益和需要为基础的而自发形成的群体。 管理幅度:又称管理跨度,是指一名管理者直接管理的下属人员的数量。直接管理的下属多,称为管理幅度大或跨度宽。实际反映管理者直接控制和协调业务活 动的多少。 管理层次:又称组织层次,是组织内部管理从最高一级到最低一级的等级划分。实质反应组织内部纵向分工的关系,各个层次担负不同的管理职能。 事业部制:是一种具有分权性的组织形式,在公司总部下设一层独立经营的“事业部”,实行统一政策,事业部是独立经营的一种组织体制。

东华大学高分子材料复试英语翻译

1. 用英文作自我介绍 回答问题: 请简单说明什么事聚合物的粘弹性,并说明它与低分子液体流动的区别? 朗读并翻译以下段落 Larger diameter (50-10nm) vapor grown carbon nanofibers can be well dispersed in polypropylene melt, while singe wall carbon nanotubes(swnt) were not as well dispersed, techniques such as end-group functionalization, use of ionic surfactants, shear mixing and plasma coating have been used to improve dispersion and exfoliation of carbon nanotubes in polypropylene compatibility with fillers has been improved by matrix modification by grafting it with reactive moieties,such as acrylic acid,acrylic esters,and maleic anhydride. 2.高聚物与高聚物之间相容性的好坏可以通过什么方法加以评价? A new copolyamide,nylon 6 11,was prepared by hydrolytic polymerization and melt polycondensation and characterized by means of intrinsic viscosity,fourier transform infraed(ftir) spectroscopy and differemtial scanning calorimetry(DSC)in this paper.it was found that the intrinsic viscosity of nylon 6 11 copolymerization time under vacuum. however,the incorporation of caprolactam into nylon 11 chains did not transform the crystal phase of nylon 11. 3.请问聚合物分子量的测试方法有哪些?并描述其中两种测试方法的测试原理? Solutions of poly(ethylene-co-vinyl alcohol) or evoh,ranging in composition from 56 to71 wt% vinyl alcohol,can be readily electrospun at room temperature from solutions in 70% 2-propanol/water. The solutions are prepared at 80? And allowed to cool to room temperature. Interestingly, the solutions are not stable at room temperature and eventually the polymer precipitates after several hours. However,prior to precipitation,electrospinning is extensive and rapid,allowing coverage of fibers on various substrates. Fiber diameters of ca. 0.2-0.8um were obtained depending upon the solution concentration. 4.用于生产合成纤维的高分子的分子量与橡胶、塑料相比有什么不同,结构有何差异? The use of macromonomers is a convenient method for preparing branched polymers. However,graft copolymers obtained by conventional radical copolymerization of macromonomers often exhibit poorly controlled molecular weights and high polydispersities as well as large compositional heterogeneities from chain-to-chain. In contrast,the development of “living”/contolled radical polymerization has facilitated the precise synthesis of well-defined polymers with low polydispersities in addition to enabling synthetic chemists to prepare polymers with novel and complex

高分子材料与工程专业考研学校选择

高分子材料与工程专业考研学校选择作者:admin 更新时间:2009-3-9 20:25:14 在全国高校中在高分子领域领先: 工科: 偏合成的:浙江大学(国内高分子鼻祖,尤其在合成方面)、华东理工、北京化工大学、清华大学; 偏加工和应用的:四川大学、华南理工大学、东华大学(原中国纺织大学)、上海交通大学理科:偏合成的:北京大学(好像北大遥遥领先,其他象南开、南京大学明显差一些);偏性能形态研究的:中科院北化所(明显领先)、南京大学、复旦大学、北京大学(上述为网上摘录,不一定全面)简单评述下 浙江大学是出高分子院士最多的学校。 北京大学合成做的好,特别是高分子液晶。 复旦大学的研究偏向理论研究,有杨玉良和江明两位院士,实力不凡。上海交通大学也有新评上一个高分子方面的院士:颜德岳, 华南理工和北京化工大学研究领域较广,在橡胶、塑料、纤维方面做的都不错。华南理工大学有3位中科院院士程镕时、姜中宏生、曹镛、长江学者特聘教授2人、珠江学者特聘教授2人、博士生导师43人),副教授、副研究员和高级工程师67人;高分子加工实力很强的。在全国排前3名。 四川大学有高分子材料工程国家重点实验室,主要是做塑料的加工改性,实力虽有下滑,但仍然很强,毕竟其根基很厚。 东华大学的研究重点在纤维方面,建有纤维素改性国家重点实验室。 中科院长春应化所和中科院北京化学研究所共同建有高分子化学与物理国家重点实验室。长春应化所在一直是在做合成方面比较强。化学所在前两年还有个工程塑料国家重点实验室,不过现在降格为中科院的重点实验室了。所以化学所的合成和加工做的都还不错。 青岛科技大学在高分子方面主要的特色是其橡胶,2003年建成了教育部橡塑工程重点实验室,也是多年来对青岛科技大学研究工作的肯定。 研究生的方向很多,大的方面大概一下几个:树脂合成(环氧,丙烯酸,聚苯,聚酯等每个方向都很多);塑料/纤维加工(加工工艺川大最强的,模具和机械华南理工及北化都不错);生物医用高分子(华东理工等);高分子理论及表征(中科院化学所及南京大学最强);液晶高分子(吉大,北大,北科大等);导电高分子(化学所等);纳米高分子(化学所);碳纤维/碳纳米(北化,清华);有机硅(化学所)等等 而在珠三角这一带,华南理工中山大学都是不错选择,有志在高分子领域深入了解的同学可以报读。 下面附有2009年华南理工大学科学与工程学院硕士招生目录及初复试科目材料高分子材料与工程专业考研学校选择 作者:admin 更新时间:2009-3-9 20:25:14 高分子化学与物理专业设置如下研究方向 01 高分子物理、02高分子合成与高分子化学、03 功能高分子、04高分子结构与性能、05天然高分子与生物医用高分子、06环境友好高分子 09年初试科目:①101政治② 201英语③629物理化学(一) ④865有机化学复试:复试笔试科目:979高分子化学与物理 材料物理与化学专业设置如下研究方向: 01 、高分子光电材料与器件物理、02 金属材料表面物理化学、03 生态环境材料、04功能材料制备、结构与性能、05纳米材料与纳米技术、06纳米材料与新型能源材料、07非线性

考研高分子物理名词解释

高分子物理总复习 第一章高分子链的结构 一、名词解释 链结构:指单个分子的结构和形态。 近程结构:(一次结构)化学结构,包括高分子的组成和构型。 远程结构:(二次结构)高分子的大小及其在空间的形态,链的柔顺性及构象。 聚集态结构:(三次结构)通过范德华力和氢键形成具有一定规则排列的聚集态结构。 构型:是指分子中由化学键所固定的原子在空间的排列。 构造:是指链中原子的种类和排列,取代基和端基的种类单体单元的排列顺序,支链的类型和长度等。 几何异构(顺反异构):由于主链双键的碳原子上的取代基不能绕双键旋转,当组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺式、反式两种构型,它们称作几何异构。 键接异构(顺序异构):是指结构单元在高分子链中的连接方式。一般头-尾相连占主导优势,而头-头(或尾-尾)相连所占比例较低。 旋光异构:具有不对称C﹡原子的这种有机物,能构成互为镜象的两种异构体,表现出不同的旋光性,称为旋光异构体。但是含不对称C﹡的高分子没有旋光性的,原因是多个不对称C﹡原子的内消旋或外消旋的作用。 有规立构:有两种旋光异构单元完全是全同立构或间同立构的高分子。 规整度:(等规度)是指聚合物种全同立构和间同立构的聚合物占所有聚合物分子总的百分比。 规整聚合物:全同立构和间同立构的高分子。 全同立构:高分子链全部由一种旋光异构单元键接而成。 间同立构:高分子链由两种旋光异构单元交替键接而成。 无规立构:高分子链由两种旋光异构单元无规键接而成。 线性:高分子链呈直线形 交联:高分子链之间通过支链联结成一个三维空间网状大分子 支化:在缩聚过程中有官能度>=3的单体存在,或在加聚过程中,有自由基的链转移反应发生,或双烯类单体中第二双键的活化等生成支化的或交联的高分子。 支化度:以支化点密度或两相邻支化点之间的链的平均分子量来表示支化程度 交联:缩聚反应中有三个或三个以上官能度的单体存在时,高分子链之间通过支链联结成一个三维空间网形大分子时即成交联结构 交联度:用相邻两个交联点之间的链的平均分子量Mc来表示。交联度愈大,Mc愈小。 共聚物的序列结构:是指共聚物根据单体的连接方式不同所形成的结构,共聚物的序列结构分为四类:无规共聚物、嵌段共聚物、交替共聚物、接枝共聚物 共聚物:由两种或两种以上的结构单元组成的高分子。 均聚物:由一种单体聚合而成的聚合物称为均聚物。 嵌段数:指在100个单体单元中出现的各种嵌段的总和。 单键内旋转:高分子链上存在大量C-C单键,单键由σ电子组成,电子云分布是轴向对称的,因此高分子在运动时,C-C单键可以绕轴旋转,称为单键内旋转。 构象:由于σ单键内旋转而产生的分子在空间的不同形态。 位垒:顺式构象与反式构象的位能差。 位阻效应:单健内旋转总是不完全自由的,因为C原子上总是带有其它原子或基团,当这些原子充分接近时,原子的外层电子之间将产生排斥力使之不能接近。这一作用被称为位阻

周三多版管理学必背名词解释考研复习期末复习

周三多《管理学原理》名词解释 1.管理: 管理是管理者为了有效实现组织目标、个人发展和社会责任,运用管理职能进行协调的过程。 管理是人类有意识有目的的活动; 管理应当是有效的; 管理的本质是协调; 协调是运用各种管理职能的过程。 2.管理的职能: 计划、组织、领导、控制、创新。 3.管理的自然属性: 管理的出现是由人类活动的特点决定的;管理是人类社会劳动过程中一种特殊职能;管理也是生产力。 4.管理的社会属性: 管理是为了达到预期目的而进行的具有特殊职能的活动;管理从来就是为了统治阶级、生产资料所有者服务的;管理是一定社会关系的反应; 5.管理者的角色: 人际角色(代表人、领导者、联络人)、信息角色(发言人、监督者、传播者)、决策角色(企业家、风险应对者、资源分配者、谈判人) 6.管理者的技能: 人际技能:成功与别人打交道并与别人沟通的能力。 技术技能:运用管理者所监督的专业领域的过程、惯例、技术和工具的能力。 概念技能:把观点设想出来并加以处理以及将关系抽象化的精神能力。 7.中国古代管理思想: 宏观的治国学和微观的治生学。顺道、重人、人和、守信、利器、、对策、节俭、法治。 8.泰罗制的三个观点: ①科学管理的根本目的是达到最高工作效率; ②达到最高工作效率的重要手段,是运用科学的管理方法代替旧的经验管理; ③实施科学管理的核心问题是,要对管理人员和工人在思想上和精神上来一个彻底的变 革。 9.泰罗制的五项制度: ①对工人提出科学的操作方法,以便合理的利用工时,提高工效; ②在工资制度上实行差别计件工资制; ③对工人进行科学的选拔、培训和提高; ④制定科学的工艺规程,并以文件的形式固定下来,以利推广; ⑤将管理和劳动分离,管理工作称为计划职能,工人的劳动称为执行职能。 10.泰罗制的四点评价: ①将科学引入管理领域,并创立了一套具体的科学管理方法,这是管理理论的创新,为 管理实践开辟了新局面; ②提高了生产效率,推动了生产的发展,适应了资本主义经济发展的需要; ③由于管理职能和执行职能的分离,使管理理论的创立和发展有了实践基础; ④把人看做纯粹的“经济人”,而忽视了工人之间的交往以及工人的感情、态度等社会 因素的影响。

东华大学高分子材料《文献检索》期末作业

智能型水凝胶的制备 高分子0902 陈骏091100117 摘要智能型水凝胶是一类具有广泛应用前景的功能高分子材料, 但由于传统水凝胶存在一些缺点因而限制了其应用, 因此近年来围绕提高传统水凝胶的性能做了大量研究工作。本文从四个主要方面综述了近年来智能型水凝胶制备的研究进展。 关键词水凝胶微凝胶IPN水凝胶快速响应性 智能型水凝胶是一类对外界刺激能产生敏感响应的水凝胶, 外界刺激可以是温度、pH 值、溶剂、盐浓度、光、化学物质等。根据对外界刺激的响应情况, 智能型水凝胶分为: 温度响应性水凝胶、pH2响应性水凝胶、光响应性水凝胶、压力响应性水凝胶、生物分子响应性水凝胶、电场响应性水凝胶等。由于智能型水凝胶的独特响应性, 在化学转换器、记忆元件开关、传感器、人造肌肉、化学存储器、分子分离体系、活性酶的固定、组织工程、药物载体等方面具有很好的应用前景, 因而对于这一类物质的研究引起越来越多科学家的注意。但由于传统水凝胶存在一些缺点(例如机械性能比较差, 响应速度慢等) , 因而大大限制了水凝胶的应用; 因此近年来围绕提高水凝胶的响应速度、机械强度等性能问题, 科学家展开了一系列广泛的研究工作, 这方面的研究报道与日俱增。智能型水凝胶近年来的发展主要可归结为以下四大方面。 1快速响应性水凝胶 传统水凝胶溶胀速度较慢, 吸收水的时间需要几小时甚至几天。虽然慢的溶胀对于许多应用是有利的, 但也有许多场合需要高分子网络能很快地溶胀。为了提高水凝胶的响应速度, 在传统水凝胶的基础上制备了几种新型水凝胶。 2物理交联水凝胶 由于交联剂不仅会影响包埋物质的完整性, 而且经常是有毒的化合物, 因此化学交联水凝胶使用之前必须除去未反应的交联剂。而制备物理交联凝胶则可以避免使用交联剂, 因此近年对于物理交联水凝胶的兴趣越来越浓。物理交联水凝胶的另一个优点是可以原位形成凝胶: 物理交联水凝胶在一定条件下是高分子溶液, 当条件(如温度、pH 等) 改变时, 形成凝胶。因此, 物理交联水凝胶可用于制备可注射式药物缓释体系, 即: 使药物在温和的条件下混合在高分子溶液中, 然后注射到身体的一定部位, 在一定的生理条件下高分子溶液形成水凝胶, 其中的药物通过凝胶的分解或以其它方式缓慢释放, 从而达到控制药物释放的目的。 3具有规则构造的水凝胶 溶胀的水凝胶通常是无定型的, 因此没有特别的分子水平的有序结构, 这可能是合成高分子水凝胶缺乏机械强度以及快速响应的原因之一。生物凝胶通常能形成非常有序的聚集体, 从而使得生物器官具有足够的机械强度和灵活的功能。因此合成具有规则构造的水凝胶也是智能型水凝胶改性的一个主要研究方向。 4互穿聚合物网络( IPN)水凝胶 高分子水凝胶的应用已引起越来越多人的兴趣, 尤其是在药用和医用方面, 但它们的许多潜在应用却因其机械强度低而受到限制。为提高凝胶的机械性能, 现已开发了许多新类型的凝胶。在这些工作中许多是倾向于合成有微观相分离形态的高分子, 比如嵌段共聚物(其中亲水微区和疏水微区交替出现) , 这种多微区结构似乎能够满足血液相容性, 且机械性能得到提高。另一种实现这一目标的方法是通过形成互穿聚合物网络来提高水凝胶的机械强度。IPN是由两种或两种以上聚合物通过网络互穿缠结而形成的一类独特的聚合物共混物或聚合物合金。IPN 特有的强迫作用能使两种性能差异很大或具有不同功能的聚合物形成稳定的结合, 从而实现组分之间性能的互补; 同时IPN 的特殊细胞状结构、界面互穿、双相连续等结构形态特征, 又使得它们在性能或功能上产生特

全国高分子化学与物理排名

07中国研究生教育分专业排行榜(武汉大学中国科学评价研究中心):070305高分子化学与物理 排名学校等级排名学校等级排名学校等级 1 吉林大学A+ 6 南京大学A 11 中国科学技术大学A 2 复旦大学A+ 7 浙江大学A 12 北京化工大学A 3 南开大学A+ 8 四川大学A 13 清华大学A 4 北京大学A 9 上海交通大学A 14 武汉大学A 5 中山大学A 10 华南理工大学A B+ 等(22 个) :兰州大学、苏州大学、西北工业大学、东华大学、华中科技大学、郑州大学、华东理工大学、湘潭大学、山东大学、湖南大学、青岛科技大学、西北师范大学、大连理工大学、厦门大学、福建师范大学、河北大学、河南大学、安徽大学、福州大学、西北大学、广东工业大学、湖北大学 B 等(22 个) :东南大学、华侨大学、东北大学、河北工业大学、济南大学、哈尔滨工业大学、合肥工业大学、华东师范大学、南京工业大学、江西师范大学、西安交通大学、鲁东大学、北京师范大学、南京理工大学、江苏工业学院、北京航空航天大学、哈尔滨理工大学、上海大学、太原理工大学、华南师范大学、中北大学、陕西师范大学 C 等(15 个) :名单略 国家重点学科 北京大学南开大学中山大学复旦大学吉林大学南京大学 博士点 安徽大学北京大学北京化工大学北京师范大学大连理工大学东北师范大学东华大学福建师范大学福州大学复旦大学河北大学河南大学湖南大学华东理工大学华东师范大学华南理工大学华中科技大学吉林大学兰州大学南京大学南开大学青岛科技大学清华大学山东大学山西大学陕西师范大学上海交通大学四川大学苏州大学天津大学同济大学武汉大学西北大学西北工业大学西北师范大学厦门大学湘潭大学浙江大学郑州大学中国科学技术大学中国科学院研究生院中山大学

高分子物理名词解释22953

近程结构:高分子中与结构单元相关的化学结构,包括结构单元的构造与构型 远程结构:指与整个高分子链相关的结构 构型:分子链中由化学键所固定的原子在空间的几何排布方式 构象:分子链中单键内旋转所形成的原子或基团在空间的几何排列图像 碳链高分子:高分子主链全部由碳原子组成,且碳原子之间以共价键连接而成的高分子 杂链高分子:主链上除碳原子外,还有氧氮硫等其他原子存在,原子键以共价键相连接的高分子元素有机高分子:主链不含碳原子,由Si,B,P,Al,Ti,As,O等无机元素组成,侧基为有机取代基团 链接异构:结构单元在分子链中因键接顺序或连接方式不同而形成的异构体 序列异构:不同序列排布方式形成的键接异构体 旋光异构:d型和l型旋光异构单元在分子链中排列方式不同而构成的异构体 几何异构:根据内双键连接的两个碳原子上键接基团在键两侧的排列方式分出顺式和反式两种立体异构体,称为顺反异构体,也称为几何异构体 全同立构:分子链中所有不对称碳原子均以相同的构型键接 间同立构:分子链中的不对称碳原子分别以d型和l型交替键接 无规立构:分子链中的不对称碳原子以d和l构型任意键接 线性高分子:具有一维拓扑结构的线性长链,长径比大,每个分子链带有两个端基 支化高分子:分子主链上带有与其化学组成相同而长短不一的支链的高分子,端基数目大于2 交联网络:经交联后,分子链形成的具有一定强度的网状结构 内旋转:与σ键相连的两个原子可以做相对旋转而不影响σ键电子云的分布,称为σ键的内旋转 内旋转势垒:内旋转时需要消耗一定能量以克服所受的阻力,所需能量即为内旋转势垒 内旋转势能差:内旋转异构体之间的势能差称为内旋转势能差 静态分子链柔顺性:又称为平衡态柔顺性,指高分子链在热力学平衡条件下的柔顺性 动态分子链柔顺性:指分子链在一定外界条件下,微构象从一种平衡态构象转变到另一种平衡态构

管理学原理名词解释大全精编

管理学原理名词解释 1.管理学:是一门系统地研究管理过程的普遍规律,基本原理和一般方法的科学。 2.管理:组织中的管理者,通过实施计划,组织,人员配备,领导,控制等职能来协调他人的活动,使他人同自己一起实现既定目标的活动过程。 3.系统:是指由相互作用和相互依赖的若干组成部份结合而成的,具有特定功能的有机整体,系统本身又是它从属的一个更大的系统的组成部份。 4.霍桑试验:1924-1932年间,美国国家研究委员会和西方电气公司合作进行了一项研究。由于研究是在西方电气公司的霍桑工厂进行的,因此后人称之为霍桑试验。分为:工场照明试验;继电器装配室试验;大规模的访问和普查;电话线圈装配工试验。 5.管理理论丛林:第二次世界大战以后,随着现代自然科学技术和生产力的迅速发展,引起了人们对管理理论的普遍重视并从各自所处的角度,结合自己本专业的知识去研究现代管理问题,形成了多种管理学派。美国管理学家孔茨把管理理论的各个流派称之为"管理理论丛林". 6.战略管理:是组织制定和实施战略的活动过程,其核心问题是确保组织的自身条件与外部环境相适应,求得组织长期稳定的发展。 7.全面质量管理TQM:一个组织以质量为中心,以全员参与为基础,目的在于通过让顾客满意和本组织所有成员及社会受益而达到长期成功的管理途径。 8.环境的不确定性:是指组织环境的复杂程度和变化程度。 9.社会责任:是指组织在遵守,维护和改善社会秩序,保护增加社会福利等方面所承担的职责和义务。 10.计划工作:是指制定计划,就是根据组织内外部的实际情况,权衡客观需要的主观可能,通过科学地预测,提出在未来一定时期内组织所要达到的目标以及实现目标的方法。 11.许诺原理:是指任何一项计划都是对完成某项工作所能做出的许诺,许诺越大,所需的时间越长,因而实现目标的可能性越小。 12.目标:是根据组织的使命而提出的组织在一定时期内所要达到的预期成果。 13.目标管理:是让组织的管理人员和员工亲自参加目标的制定,在工作中实行自我控制并努力完成目标的一种管理制度或方法。 14.战略:是为了实现企业的使命和目标对所要采取的行动方针和资源使用方向的一种总体项目。是为了回答使命和目标而对发展方向,行动方针,以及资源配置等提出的总体规划。分为:企业总体战略,事业战略和职能战略。 15.政策:是组织在决策或处理问题昔用来指导和沟通思想与行动的方针和明文规定。 16.决策:是为达到一定的目标,从两个以上的可行方案中选择一个合理方案的分析判断过程。 17.外推法:是利用过去的资料来预测未来状态的方法。 18.德尔菲法:专家预测法,美国兰德公司在50年代初与道格拉斯公司协作研究如何通过有控制的反馈使得收集专家的意见更为可*,以德菲尔作为方法的名称。 19.组织工作:是设计和维持一种有助于有效的集体活动的组织结构的活动过程。 20.组织结构:是组织中划分,组合和协调人们的活动和任务的一种正式的框架,表现为组织各部份的排列顺序,空间位置,聚集状态,联系方式和相互关系。 21.目标统一原理:是指组织中每个部门或每个人的贡献越是有利于实现组织目标,组织结构就越是合理有效。 22.职位设计:就是将若干工作任务组合起来构成一项完整的职位。

东华大学高分子材料成型原理复习材料

1-1.通用高分子材料主要有那几大类? 答:纤维、塑料、橡胶、胶黏剂、涂料 1-2.高分子材料加工与高分子合成的区别? 答:“高分子材料加工”定义为“对聚合物材料或体系进行操作以扩大其用途的工程”,它是把聚合物原材料经过多道工序转变成某种制品的过程。经过高分子材料加工得到的制品在物理上处于和原材料不同的状态,但化学成分基本相同;而高分子合成是指经过一定的途径,从气态、液态、固态的各种原料中得到化学上不同于原料的高分子材料。 1-3.高性能纤维有哪些? 答:低热稳定性,高强度纤维:UHMWPE、PVA 高热稳定性,高强度纤维(200-300℃):对位芳纶、芳族聚酯、杂环聚合物纤维 高热稳定性、耐热纤维(≤350℃):间位芳纶、聚酰亚胺纤维、酚醛纤维、碳纤维 高热稳定性、无机纤维:碳化硅纤维、玻璃纤维、氧化铝纤维 1-4.判断题 经过加工过程,高分子材料在物理上处于和原材料相同的状态。(×) 1-5 选择题 高强高模聚乙烯纤维材料和Lyocell纤维材料分别属于③。 ①生态高分子材料和智能高分子材料 ②智能高分子材料和功能高分子材料 ③高性能高分子材料和生态高分子材料 ④功能高分子材料和高性能高分子材料 为什么纤维素材料的加工不能采用先熔融再成型的方法? 纤维素大分子中含有大量的-OH基团,由于氢键的作用,使大分子间作用力较大,这将导致熔融热焓△H较大;另一方面,纤维素大分子中存在环状结构,使分子链的刚性较大,这将导致熔融熵变△S较小。这两方面的原因使得熔融纤维素的温度(= △H / △S )将变得较高,而纤维素的分解温度又相对较低,因此,当加热纤维素至一定温度时,会出现纤维素未开始熔融便已被分解的现象,因此,纤维素材料的加工不能采用先熔融再成型的方法。 请阐述选择聚合物溶剂的几种实用方法及其适用范围 1. 可根据极性相近规律即极性的聚合物易溶于极性溶剂、非极性的聚合物易溶于非极性或弱极性溶剂的规律来初步选择溶剂。 2. 可根据溶度参数理论,按照溶剂与聚合物的内聚能密度或溶度参数应尽可能接近的规则来选择溶剂。 (1) 对于非极性分子体系(即非极性聚合物与非极性溶剂体系),可直接利用该规则选择溶剂。一般来讲,所选溶剂与聚合物间的溶解度参数之差绝对值应小于1.7-2.0。 (2) 非极性混合溶剂的选择一般也可利用该方法,其中,混合溶剂的溶解度参数δmix在混合前后无体积变化时可按δmix=(χ1ν1δ1+χ2ν2δ2)/(χ1ν1+χ2ν2)计算。(式中χi—i(i=1,2)组分的摩尔数;vi—摩尔体积;δi—溶度参数。) (3) 对于极性分子或易形成氢键的体系,必须对溶度参数理论修正,应利用三维溶度参数(δd, δp, δh)、由聚合物的三维溶度参数为球心通过作三维溶度参数图来预测选择溶剂。该方法对非极性聚合物/溶剂体系和极性聚合物/溶剂体系均适用。 3. 还可根据高分子——溶剂相互作用参数(哈金斯参数)χ1来半定量地判断溶剂对

中国高校中高分子的分布

在全国高校中在高分子领域领先: 工科: 偏合成的:浙江大学(国内高分子鼻祖,尤其在合成方面)、华东理工、北京化工大学、清华大学; 偏加工和应用的:四川大学、华南理工大学、东华大学(原中国纺织大学)、上海交通大学 理科: 偏合成的:北京大学(好像北大遥遥领先,其他象南开、南京大学明显差一些); 偏性能形态研究的:中科院北化所(明显领先)、南京大学、复旦大学、北京大学 上述为网上摘录,不一定全面 简单评述下 浙江大学是出高分子院士最多的学校。 北京大学合成做的好,特别是高分子液晶。 复旦大学的研究偏向理论研究,有杨玉良和江明两位院士,实力不凡。 上海交通大学也有新评上一个高分子方面的院士:颜德岳 华南理工和北京化工大学研究领域较广,在橡胶、塑料、纤维方面做的都不错。华南理工大学有3位中科院院士程镕时、姜中宏生、曹镛、长江学者特聘教授2人、珠江学者特聘教授2人、博士生导师43人),副教授、副研究员和高级工程师67人;高分子加工实力很强的。在全国排前3名。 四川大学有高分子材料工程国家重点实验室,主要是做塑料的加工改性,实力虽有下滑,但仍然很强,毕竟其根基很厚。 东华大学的研究重点在纤维方面,建有纤维改性国家重点实验室,近几年尤其在高性能纤维领域取得长足发展,筹备中教育部重点实验室就是主要面向这个方向,现有院士三名。中科院长春应化所和中科院北京化学研究所共同建有高分子化学与物理国家重点实验室。长春应化所在一直是在做合成方面比较强。化学所在前两年还有个工程塑料国家重点实验室,不过现在降格为中科院的重点实验室了。所以化学所的合成和加工做的都还不错。 青岛科技大学在高分子方面主要的特色是其橡胶,2003年建成了教育部橡塑工程重点实验室,也是多年来对青岛科技大学研究工作的肯定。 研究的方向很多,大的方面大概一下几个: 树脂合成(环氧,丙烯酸,聚苯,聚酯等每个方向都很多); 塑料/纤维加工(加工工艺川大最强的,模具和机械华南理工及北化都不错); 生物医用高分子(华东理工等); 高分子理论及表征(中科院化学所及南京大学最强); 民/军用高性能纤维/树脂以及复合材料/特种纤维/纤维改性(东华大学);

高分子物理名词解释

第二章名词解释 1.凝聚态:根据物质的分子运动在宏观力学性能上的表现来区分为固体、液体、气体。 2.单分子链凝聚态:大分子特有现象,高分子最小单位。 3.内聚能:1mol凝聚体汽化时需要的能量,△E = CE =△HV-RT(△HV——摩尔蒸发热,RT——汽化时做膨胀功) 4.晶胞:晶体结构中具有周期性排列的最小单位。 5.晶系:晶体按其几何形态的对称程度。 https://www.doczj.com/doc/052450754.html,ler指数:是一种特殊的,以结晶学单胞三条棱为坐标系时确定的指数。 7.单晶:晶体的整体在三维方向上由同一空间格子组成。 8.球晶:浓溶液中析出或熔体中析出,在不存在应力的条件下,形成圆球形的晶体。 9.片晶厚度:结晶聚合物的长周期与结晶度的乘积。 10.结晶度:试样中结晶部分所占的质量分数或体积分数。 11.高分子链的缠结:高分子链之间形成物理交联点,构成网络结构,使分子链的运动受到周围分子的羁绊和限制。 12.聚合物液晶:一些物质的结晶结构受热熔融或被溶剂溶解后,表观上失去了固体物质的刚性,具有流动性,结构上仍保持有序结构,表现各向异性,成为固体-液体过渡状态。 13.溶致液晶:一种包含溶剂化合物在内的两种或多种化合物形成的液晶。 14.热致液晶:加热液晶物质时,形成的各向异性熔体。 15.液晶晶型:向列相(N相):完全没有平移有序 手征性液晶(胆甾相,手征性近晶相) 层状液晶(近晶A,近晶C )一维平移有序 盘状液晶相(向列相ND) 16.取向:在某种外力作用下,分子链或其他结构单元沿着外力作用方向择优排列的结构 取向度:f=1/2(3cos2θ-1)(θ:分子链主轴与取向方向之间的夹角,称为取向角) 17.双折射:一条入射光线产生两条折射光线的现象。 18.相容性:共混物各组分彼此相互容纳,形成宏观均匀材料的能力。 19.多组分聚合物:多组分聚合物又称高分子合金,指该体系中存在两种或两种以上不同的聚合物组分,不论组分之间是否以化学键相互连接。 20.自组装:基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。 21.海-岛结构:两种高聚物相容性差,共混后形成非均相体系,分散相分散在连续相中,像小岛分散在海洋中一样,称为海岛结构。 22.核壳结构:由一种材料通过化学键或其他作用力将另一种材料包覆起来形成的有序组装结构。 23.包藏结构:海岛结构的粒子内部包藏着其他聚合物的结构。 24.电子显微镜:简称EM,电子显微镜由镜筒、真空装置和电源柜三部分组成。 25.X射线衍射:当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有X射线衍射分析相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关,每种晶体所产生的衍射花样都反映出该晶体内部的原子分配规律。 26.偏光显微镜:用于研究所谓透明与不透明各向异性材料的一种显微镜。 27.差示扫描量热法(DSC):在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关系。

管理学原理名词解释-考试复习专用

管理学原理名词解释,考试复习专用 管理:是指住址中的管理者,通过实施计划,组织,人员配备,领导,控制等职能来协调他人的活动,使他人同自己一起实现既定目标的过程。管理学:是一门系统的研究管理过程的普遍规律,基本原理和一般方法的原理。系统:是指由相互作用和相互依赖的若干组成部分结合而成的,具有特定功能的有机整体,系统本身又是一个更大系统的组成部分。管理的基本特征:是一种文化现象和社会现象,管理的主体是管理者,管理的任务,职能,与层次,管理的核心是处理好人际关系。管理的特点:一般性。历史性,多科性,实践性。系统的特性:整体性,目的性,开放性,较换性,相互依存性。系统的观点:整体观点,开放性与封闭性,封闭则消亡的观点,模糊分界的观点,保持体内动态平衡的观点,信息反馈的观点,分级观点,不断分化和完善的观点,等效观点。社会责任:是指组织在遵守,维护,和改善社会秩序,保护增加社会福利等方面所承担的职责和义务。管理道德:道德是指规定行为是非的惯例或原则组织活动本身极其结果往往对社会造成很大的影响,这促使人们关注组织的管理者如何做出决策或采取行动,以及其背后所依据的准则,即管理道德问题。一般环境包括哪些因素:一般环境包括经济环境,政治和法律环境,社会文化环境,科技环境,全球化环境。具体环境,往往称为产业环境或者行业环境,是指哪些对管理者的决策和行动产生直接影响并实现组织目标直接相关的要素,包括,顾客,供应商,竞争者,其他具体环境因素。简述外部环境的类型:依据环境的复杂程度和变化程度,可以将组织环境划分为四种状况,简单动态,复杂动态,简单稳定,复杂稳定。简述影响管理道德的因素:管理者所处的道德阶段,管理者的个人特征,组织结构,组织文化,道德问题的强度等。计划工作:是指指定计划,就是根据组织内外部的实际情况,权衡客观需要的主管可能,通过科学的预测,提出在未来一定时期内组织索要达到的目标以及实现目标的方法。限定因素原理:是指在计划工作中越是能够了解和找到对达到所要求目标起限制性和决定性的作用因素,就越能准确的客观的选择可行方案。灵活性原理:是指计划工作中体现的灵活性越大,则由于未来意外事件引起的损失的危险性就越小。许诺原理:是指任何可一项计划都是对完成某项工作所做出的许诺,许诺越大,所需时间越长,因而实现目标的可能性就越小。改变航道原理:是指计划工作为将来承诺的越多,管理者定期地检查现状和预期前景,以及保证所要达到的目标而重新制定计划就越重要。计划工作的基本特征:有四个方面,1目标性,组织是通过精心安排的合作去实现目标而得以生存和发展的。2主导性,计划工作应在组织工作,人员配备,领导工作以及控制工作之前进行。3普遍性,计划工作是各级管理者的一个基本职能,具有普遍性。4经济性,也就是说计划工作要讲究效率。计划工作的意义:1弥补不肯定性和变化带来的问题2有利于管理人员把注意力集中于目标3有利于更经济地进行管理4有利于控制。计划工作的程序:1估量机会2确定目标3确定前提条件4确定可供选择的方案5评价各种方案6选择方案7制定派生计划8用预算形式使计划数字化。5W1H:做什么,讨论为什么要做,确定何时做,何地做,何人做,以及如何做。目标:是根据组织的使命而提出的组织在一定时期内所要达到的预期成果。目标是使命的具体化,是一个组织在一定的时间内奋力争取达到的所希望的未来状况。目标管理:是指组织的最高管理层根据组织面临的形势和社会需,制定出一定时期内组织经营活动索要达到的总目标,然后层层落实,要求下属部各部门管理人员以至每个员工根据上级指定的目标和保证措施,形成一个目标体系,并把目标完成情况作为各部门或个人的考核依据。使命:是社会对该组织的基本要求,各种有组织的活动都应当有一个使命。使命表明组织是干什么的,应该干什么。政策:是组织在决策或处理问题时用来指导和沟通思想与行动的方针和明文规定。战略:是为了回答使命和目标而对发展方向,行动方针,以及资源配置等提出的总体规划。核心能力:是竞争对手无法迅速模仿的能力,是企业获得竞争优势的关键。目标的性质:;1目标可分为突破性目标和控制性目标2目标的纵向性3网络性4多样性5时间性6可考核性。目标的作用;1为管理工作指明方向2激励作用3凝聚作用4是考核管理人员和员工绩效的客观标准。目标的SMART特点;目标要具体明确specific,目标可以测量或度量measurable,目标可以实现achievable,目标之间相互关联relevant,时间限定timebond。目标管理的特点;是参与管理的一种形式2强调“自我控制”3促使下放权力4注重成果第一的方针。目标管理的过程;1建立一套完整的目标体系2组织实施3检查和评价4进入下一轮循环。目标管理的局限性;1对目标管理的原理和方法宣传的不够2没有

东华大学2019自命题考试大纲818 高分子物理及化学

高分子物理硕士研究生考试复习大纲 第一章高分子链的结构 第一节高分子结构的概念:高分子结构的特点,高分子结构的层次 第二节高分子链的近程结构:结构单元的化学组成,键接结构,分子链的构型,支化与交联,共聚物的结构 第三节高分子链的远程结构:高分子的大小与分布,高分子链的构象,高分子链的柔顺性,影响高分子柔顺性的因素 第四节高分子链的构象统计:均方末端距的几何计算法,均方末端距的库恩统计法,高分子链的均方旋转半径,高分子链柔性的定量表征 第二章聚合物的晶态结构 第一节聚合物的晶体结构:晶体结构的基本概念,分子链在晶体中的构象,几种典型的聚合物晶体结构 第二节聚合物的结晶形态:折叠链片晶,串晶和纤维状晶,伸直链片晶,球晶;聚合物的晶态结构和非晶态结构模型 第四节聚合物的结晶动力学:高分子结构与结晶的能力,描述等温结晶过程的Avrami关系,结晶速度与温度的关系,影响结晶速度的其它因素 第五节聚合物的结晶热力学:结晶聚合物的熔融特点,分子结构对熔点的影响,结晶条件对熔点的影响,影响熔点的其它因素,玻璃化温度与熔点的关系 第六节结晶度的含义及其测定:结晶度的含义,结晶度的测定,结晶度对聚合物性能的影响 第三章聚合物的取向态结构、液晶态与聚合物的织态结构 第一节聚合物的取向与表征:聚合物的取向,聚合物取向度的表征 第二节取向函数f的测定:双折射法测定取向函数f B,声速法测取向函数fs,X-射线衍法测晶区取向函数fx,二色性法测定取向函数fd 第三节聚合物的液晶态结构:液晶与中介相,液晶的分子结构特征与分类,液晶的物理结构,液晶纺丝 第四节聚合物共混物的织态结构:聚合物共混物的概念,高分子的相容性,不相容共混体系典型的相形态特征 第四章聚合物的分子运动 第一节聚合物分子的热运动:聚合物分子运动的特点,聚合物的热转变与力学状态,聚合物的次级松弛 第二节聚合物的玻璃态:玻璃化转变现象及转变温度Tg的测定,玻璃化转变的机理,时温等效原理-WLF方程的导出,影响玻璃化温度的因素 第三节聚合物黏性流动的特点,影响黏流化转变温度和黏性流动的因素 第五章聚合物的高弹性和黏弹性 第一节聚合物的高弹态:高弹态分子运动的特点,橡胶态形变的热力学分析 第二节聚合物的黏弹性:聚合物的静态力学黏弹性现象,描述聚合物黏弹性的力学模型,松弛时间谱和推迟时间谱,聚合物的动态黏弹性,WLF方程的应用──叠合曲线

高分子物理名词解释

1.名词解释 凝聚态,内聚能密度,晶系,结晶度,取向,高分子合金的相容性。 凝聚态:为物质的物理状态,是根据物质的分子运动在宏观力学性能上的表现来区分的,通常包括固体、液体和气体。 内聚能密度:CED定义为单位体积凝聚体汽化时所需要的能量,单位: 晶系:根据晶体的特征对称元素所进行的分类。 结晶度:试样中的结晶部分所占的质量分数(质量结晶度)或者体积分数(体积结晶度)。取向:聚合物的取向是指在某种外力作用下,分子链或其他结构单元沿着外力作用方向的择优排列。 高分子合金的相容性:两种或两种以上高分子,通过共混形成微观结构均一程度不等的共混物所具有的亲和性。 3.聚合物在不同条件下结晶时,可能得到哪几种主要的结晶形态?各种结晶形态的特征是什么? 答:(1)可能得到的结晶形态:单晶、树枝晶、球晶、纤维状晶、串晶、柱晶、伸直链晶体;(2)形态特征: 单晶:分子链垂直于片晶平面排列,晶片厚度一般只有10nm左右; 树枝晶:许多单晶片在特定方向上的择优生长与堆积形成树枝状; 球晶:呈圆球状,在正交偏光显微镜下呈现特有的黑十字消光,有些出现同心环; 纤维状晶:晶体呈纤维状,长度大大超过高分子链的长度; 串晶:在电子显微镜下,串晶形如串珠; 柱晶:中心贯穿有伸直链晶体的扁球晶,呈柱状; 伸直链晶体:高分子链伸展排列晶片厚度与分子链长度相当。 1.溶度参数的含义是什么?“溶度参数相近原理”判断溶剂对聚合物溶解能力的依据是什么? 答:(1)溶度参数:是指内聚能密度的平方根; (2)依据是:,因为溶解过程>0,要使<0,越小越好,又 因为?,所以与越相近就越小,所以可用“溶度参数相近原理”判断溶剂对聚合物的溶解能力。 2.什么叫高分子θ溶液?它与理想溶液有何本质区别? 答:(1)高分子θ溶液:是指高分子稀溶液在θ温度下(Flory温度),分子链段间的作用力,分子链段与溶剂分子间的作用力,溶剂分子间的作用力恰好相互抵消,形成无扰状态的溶液。此时高分子—溶剂相互作用参数为1/2,内聚能密度为0.(2)理想溶液三个作用力都为0,而θ溶液三个作用力都不为0,只是合力为0. 4.什么叫排斥体积效应?Flory-Kingbuam稀溶液理论较之晶格模型理论有何进展? 答:(1)排斥体积效应:在高分子稀溶液中,“链段”的分布实际上是不均匀的,高分子链以一个被溶剂化了的松懈的链球散布在纯溶剂中,每个链球都占有一定的体积,它不能被其他分子的“链段”占有。 (2)进展:把“链段”间的排斥体积考虑进去,更符合实际。

相关主题
文本预览
相关文档 最新文档