外文翻译(英文部分)
- 格式:doc
- 大小:216.50 KB
- 文档页数:7
外文文献原稿和译文原稿Sodium Polyacrylate:Also known as super-absorbent or “SAP”(super absorbent polymer), Kimberly Clark used to call it SAM (super absorbent material). It is typically used in fine granular form (like table salt). It helps improve capacity for better retention in a disposable diaper, allowing the product to be thinner with improved performance and less usage of pine fluff pulp. The molecular structure of the polyacrylate has sodium carboxylate groups hanging off the main chain. When it comes in contact with water, the sodium detaches itself, leaving only carboxylions. Being negatively charged, these ions repel one another so that the polymer also has cross-links, which effectively leads to a three-dimensional structure. It has hige molecular weight of more than a million; thus, instead of getting dissolved, it solidifies into a gel. The Hydrogen in the water (H-O-H) is trapped by the acrylate due to the atomic bonds associated with the polarity forces between the atoms. Electrolytes in the liquid, such as salt minerals (urine contains 0.9% of minerals), reduce polarity, thereby affecting superabsorbent properties, especially with regard to the superabsorbent capacity for liquid retention. This is the main reason why diapers containing SAP should never be tested with plain water. Linear molecular configurations have less total capacity than non-linear molecules but, on the other hand, retention of liquid in a linear molecule is higher than in a non-linear molecule, due to improved polarity. For a list of SAP suppliers, please use this link: SAP, the superabsorbent can be designed to absorb higher amounts of liquids (with less retention) or very high retentions (but lower capacity). In addition, a surface cross linker can be added to the superabsorbent particle to help it move liquids while it is saturated. This helps avoid formation of "gel blocks", the phenomenon that describes the impossibility of moving liquids once a SAP particle gets saturated.History of Super Absorbent Polymer ChemistryUn til the 1980’s, water absorbing materials were cellulosic or fiber-based products. Choices were tissue paper, cotton, sponge, and fluff pulp. The water retention capacity of these types of materials is only 20 times their weight – at most.In the early 1960s, the United States Department of Agriculture (USDA) was conducting work on materials to improve water conservation in soils. They developed a resin based on the grafting of acrylonitrile polymer onto the backbone of starch molecules (i.e. starch-grafting). The hydrolyzed product of the hydrolysis of this starch-acrylonitrile co-polymer gave water absorption greater than 400 times its weight. Also, the gel did not release liquid water the way that fiber-based absorbents do.The polymer came to be known as “Super Slurper”.The USDA gave the technical know how several USA companies for further development of the basic technology. A wide range of grating combinations were attempted including work with acrylic acid, acrylamide and polyvinyl alcohol (PVA).Since Japanese companies were excluded by the USDA, they started independent research using starch, carboxy methyl cellulose (CMC), acrylic acid, polyvinyl alcohol (PVA) and isobutylene maleic anhydride (IMA).Early global participants in the development of super absorbent chemistry included Dow Chemical, Hercules, General Mills Chemical, DuPont, National Starch & Chemical, Enka (Akzo), Sanyo Chemical, Sumitomo Chemical, Kao, Nihon Starch and Japan Exlan.In the early 1970s, super absorbent polymer was used commercially for the first time –not for soil amendment applications as originally intended –but for disposable hygienic products. The first product markets were feminine sanitary napkins and adult incontinence products.In 1978, Park Davis (d.b.a. Professional Medical Products) used super absorbent polymers in sanitary napkins.Super absorbent polymer was first used in Europe in a baby diaper in 1982 when Schickendanz and Beghin-Say added the material to the absorbent core. Shortly thereafter, UniCharm introduced super absorbent baby diapers in Japan while Proctor & Gamble and Kimberly-Clark in the USA began to use the material.The development of super absorbent technology and performance has been largely led by demands in the disposable hygiene segment. Strides in absorption performance have allowed the development of the ultra-thin baby diaper which uses a fraction of the materials – particularly fluff pulp – which earlier disposable diapers consumed.Over the years, technology has progressed so that there is little if any starch-grafted super absorbent polymer used in disposable hygienic products. These super absorbents typically are cross-linked acrylic homo-polymers (usually Sodium neutralized).Super absorbents used in soil amendments applications tend to be cross-linked acrylic-acrylamide co-polymers (usually Potassium neutralized).Besides granular super absorbent polymers, ARCO Chemical developed a super absorbent fiber technology in the early 1990s. This technology was eventually sold to Camelot Absorbents. There are super absorbent fibers commercially available today. While significantly more expensive than the granular polymers, the super absorbent fibers offer technical advantages in certain niche markets including cable wrap, medical devices and food packaging.Sodium polyacrylate, also known as waterlock, is a polymer with the chemical formula [-CH2-CH(COONa)-]n widely used in consumer products. It has the ability to absorb as much as 200 to 300 times its mass in water. Acrylate polymers generally are considered to possess an anionic charge. While sodium neutralized polyacrylates are the most common form used in industry, there are also other salts available including potassium, lithium and ammonium.ApplicationsAcrylates and acrylic chemistry have a wide variety of industrial uses that include: ∙Sequestering agents in detergents. (By binding hard water elements such as calcium and magnesium, the surfactants in detergents work more efficiently.) ∙Thickening agents∙Coatings∙Fake snowSuper absorbent polymers. These cross-linked acrylic polymers are referred to as "Super Absorbents" and "Water Crystals", and are used in baby diapers. Copolymerversions are used in agriculture and other specialty absorbent applications. The origins of super absorbent polymer chemistry trace back to the early 1960s when the U.S. Department of Agriculture developed the first super absorbent polymer materials. This chemical is featured in the Maximum Absorbency Garment used by NASA.译文聚丙烯酸钠聚丙烯酸钠,又可以称为超级吸收剂或者又叫高吸水性树脂,凯博利克拉克教授曾经称它为SAM即:超级吸收性物质。
The smart gridSmart grid is the grid intelligent (electric power), also known as the "grid" 2.0, it is based on the integration, high-speed bidirectional communication network, on the basis of through the use of advanced sensor and measuring technology, advanced equipme nt technology, the advancedcontrol method, and the application of advanced technology of decision support system, realize the power grid reliability, security, economic, efficient, environmental friendly and use the security target, its main features include self-healing, incentives and include user, against attacks, provide meet user requirements of power quality in the 21st century, allow all sorts of different power generation in the form of access, start the electric power market and asset optimizatio n run efficiently.The U.S. department of energy (doe) "the Grid of 2030" : a fully automated power transmission network, able to monitor and control each user and power Grid nodes, guarantee from power plants to end users among all the nodes in the whole process of transmission and distribution of information and energy bi-directional flow.China iot alliance between colleges: smart grid is made up of many parts, can be divided into:intelligent substation, intelligent power distribution network, intelli gent watt-hourmeter,intelligent interactive terminals, intelligent scheduling, smart appliances, intelligent building electricity, smart city power grid, smart power generation system, the new type of energy storage system.Now a part of it to do a simple i ntroduction. European technology BBS: an integration of all users connected to the power grid all the behavior of the power transmission network, to provide sustained and effective economic and security of power.Chinese academy of sciences, institute of electrical: smart grid is including all kinds of power generation equipment, power transmission and distribution network, power equipment and storage equipment, on the basis of the physical power grid will be modern advanced sensor measurement technology, network technology, communicationtechnology, computing technology, automationand intelligent control technology and physical grid highly integrated to form a new type of power grid, it can realize the observable (all the state of the equipment can monitor grid), can be controlled (able to control the power grid all the state of the equipment), fully automated (adaptive and self-healing) and system integrated optimization balance (power generation, transmission and distribution, and the optimization of the balance between electricity), so that the power system is more clean, efficient, safe and reliable.American electric power research institute: IntelliGrid is a composed of numerous automation system of power transmission and distribution power system, in a coordinated, effective and reliable way to achieve all of the power grid operation: have self-healing function;Rapid response to the electric power market and enterprise business requirements;Intelligent communication architecture, realizes the real-time, security, and flexible information flow, to provide users with reliable, economic power services. State grid electric power research institute, China: on the basis of the physical power grid (China's smart grid is based on high voltage network backbone network frame, different grid voltage level based on the coordinated development of strong power grid), the modern advanced sensor measurement technology, communication technology, information technology, computer technology and control technology and the physical power grid highly integrated to form a new type of power grid.It to fully meet user demand for electricity and optimize the allocation of resources, guarantee the safety, reliability and economy of power supply, meet environmental constraints, ens ure the quality of electric energy, to adapt to the development of power market, for the purpose of implementing the user reliable, economic, clean and interactive power supply and value-added services.BackgroundStrong smart grid development in the wor ld is still in its infancy, without a common precisely defined, its technology can be roughly divided into four areas: advanced Measurement system, advanced distribution operation, advanced transmission operation and advanced asset management.Advanced meas urement system main function is authorized to the user, make the system to establish a connection with load, enabling users to support the operationof the power grid;Advanced core distribution operation is an online real-time decision command, goal is to disaster prevention and control, realizing large cascading failure prevention;Advanced transmission operation main role is to emphasize congestion ma nagement and reduce the risk of the large-scale railway;Advanced asset management is installed in the system can provide the system parameters and equipments (assets) "health" condition of advanced sensor, and thereal-time information collected by integrat ion and resource management, modeling and simulation process, improve the operation and efficiency of power grid.The smart grid is an important application of Internet of things, and published in the journal of computer smart grid information system archit ecture research is carried on the detailed discussion on this, and the architecture of the smart grid information system are analyzed.The market shareThe establishment of the smart grid is a huge historical works.At present many complicated smart grid project is underway, but the gap is still great.For the provider of the smart grid technology, promote the development of facing the challenges of the distribution network system i s upgrading, automation and power distribution substation transportation, smart grid network and intelligent instruments.According to the latest report of parker investigators, smart grid technology market will increase from $2012 in 33 billion to $2020 in 73 billion, eight years, the market accumulated up to $494 billion.China smart grid industry market foresight and investment forward-looking strategic planning analysis, points out that in our country will be built during the "twelfth five-year""three vertical and three horizontal and one ring" of uhv ac lines, and 11 back to u hv dc transmission project construction, investment of 300 billion yuan.Although during the period of "much starker choices-and graver consequences-in" investment slowed slightly, the investment is 250 billion yuan.By 2015, a wide range of national power grid, long distance transmission capacity will reach 250 million kilowatts, power transmission of 1.15 trillion KWH per year, to support the new 145 million kilowatts of clean energy generation given and sent out, can satisfy the demand of morethan 1 million electric cars, a grid resource configuration optimization ability, economic efficiency, safety and intelligent levels will be fully promoted.The abroad application of analysisIn terms of power grid development foundation, national electricity dema nd tends to be saturated, the grid after years of rapid development, architecture tends to be stable, mature, have a more abundant supply of electric power transmission and distribution capacity.Germany has "E - Energy plan, a total investment of 140 million euros, from 2009 to 2012, four years, six sites across the country to the smart grid demonstration experiment.At the same time also for wind power and electric car empirical experiments, testing and management of power consumption of the Internet.Big companies such as Germany's Siemens, SAP and Swiss ABB are involved in this plan.To smart grid Siemens 2014 annual market scale will reach 30 billion euros, and plans to take a 20% market share, make sure order for 6 billion euros a year.The advanced nat ureCompared with the existing grid, smart grid, reflects the power flow, information flow and business flow marked characteristics of highly integration, its advancement and advantage mainly displays in:(1) has a strong foundation of grid system and te chnical support system, able to withstand all kinds of external disturbance and attacks, can adapt to large-scale clean energy and renewable energy access, strong sex of grid reinforced and ascend.(2) the information technology, sensor technology, automatic control technology organic combination with power grid infrastructure, a panoramic view of available power grid information, timely detection, foresee the possibility of failure.Fault occurs, the grid can be quickly isolate fault,realize self recovery,to avoid the occurrence of blackouts.(3) flexible ac/dc transmission, mesh factory coordination, intelligent scheduling, power storage, and distribution automation technology widespread application, makes the control of power grid operation more flexibl e,economic, and can adapt to a large number of distributed power supply, power grid and electric vehicle charging and discharging facility access.(4) communication, information, and the integrated use of modern management technology, will greatly improve the efficiency of power equipment, and reduce the loss of electrical power, making the operation of power grid is more economic and efficient.(5) the height of the real-time and non real-time information integration, sharing and utilization, to run the show management comprehensive, complete and fine grid operation state diagram, at the same time can provide decision support, control scheme and the corresponding response plans.(6) to establish a two-way interactive service mode, users can real-time understand the status of the power supply ability, power quality, price and power outage information, reasonable arrangement of electric equipment use;The electric power enterprise can obtain the user's electricity information in detail, to provide more value-added services.developmentaltrend"Twelfth five-year" period, the state grid will invest 500 billion yuan to build the connection of large ene rgy base and center of the "three horizontal three longitudinal" main load of ultra high voltage backbone network frame and 13 back to long branch, engineering, to form the core of the world first-class strong smart grid."Strong smart grid technology standards promulgated by the state grid system planning", has been clear about the strong smart grid technology standards roadmap, is the world's first used to guide the development of smart grid technology guiding standards.SGC planning is to built 2015 basic information, automation, interaction characteristics of strong smart grid, formed in north China, central China, east China, for the end to the northwest and northeast power grid for sending the three synchronous power grid, the grid resource allocati on ability, economic efficiency and safety level, technology level and improve intelligent level.(1) the smart grid is the inevitable developing trend ofpower grid technology.Such as communication, computer, automation technology has extensive applicati on in the power grid, and organic combination with traditional electric power technology, and greatly improve the intelligent level of the power grid.Sensor technology and information technology application in the power grid, the system state analysis and auxiliary decision provides the technical support, make it possible to grid self-healing.Scheduling technology, automation technology and the mature development of flexible transmission technology, for the development and utilization of renewable energy an d distributed power supply provides the basic guarantee.The improvement of the communication network and the popularization and application of user information collection technology, promote the two-way interaction with users of the grid.With the further development of various new technologies, application and highly integrated with the physical power grid, smart grid arises at the historic moment.(2) the development of smart grid is the inevitable choice of social and economic development.In order to ach ieve the development of clean energy, transport and given power grid must increase its flexibility and compatibility.To withstand the increasingly frequent natural disasters and interference, intelligent power grid must rely on means to improve its securit y defense andself-healing ability.In order to reduce operating costs, promote energy conservation and emissions reduction, power grid operation must be more economic and efficient, at the same time must to intelligent control of electric equipment, reduce electricity consumption as much as possible.Distributed generation and energy storage technology and the rapid development of electric cars, has changed the traditional mode of power supply, led power flow, information flow, business flow constantly fusion, in order to satisfy the demands of increasingly diverse users.PlanJapan plans to all the popularity of smart grid in 2030, officer of the people at the same time to promote the construction of overseas integrated smart grid.In the field of battery, Japanese firms' global market share goal is to strive to reach 50%, with about 10 trillion yen in the market.Japan's trade ministry has set up a "about the next generation of energy systems international standardizationresearch institute", the japan-american established in Okinawa and Hawaii for smart grid experimental project [6].Learns in the itu, in 2020 China will be built in high power grid with north China, east China, China as the center, northeast, northwest 750 kv uhv power grid as the sending, connecting each big coal base, large hydropower bases, big base for nuclear power, renewable energy base, the coordinated development of various grid strong smart grid.In north China, east China, China high voltage synchronous ZhuWangJia six "five longitudi nal and transverse" grid formation.The direction ofIn the green energy saving consciousness, driven by the smart grid to become the world's countries to develop a focus areas.The smart grid is the electric power network, is a self-healing, let consum ers to actively participate in, can recover from attacks and natural disasters in time, to accommodate all power generation and energy storage, can accept the new product, service and market, optimize asset utilization and operation efficiency, provide qua lity of power supply for digital economy.Smart grid based on integrated, high-speed bidirectional communication network foundation, aims to use advanced sensor and measuring technology, advanced equipment, technology and advanced control methods, and adv anced technology of decision support system, realize the power grid reliability, security, economic, efficient, environmental friendly, and the use of safe run efficiently.Its development is a gradual progressive evolution, is a radical change, is the product of the coordinated development of new and existing technologies, in ad dition to the network and smart meters also included the wider range.Grid construction in high voltage network backbone network frame, all levels of the coordinated development, informatization, automation, interaction into the characteristics of strong smart grid, improve network security, economy, adaptability and interactivity, strength is the foundation, intelligence is the key.meaningIts significance is embodied in the foll owing aspects:(1) has the strong ability of resources optimization allocation.After the completion of the smart grid in China, will implement the big water and electricity, coal, nuclear power, large-scale renewable energy across regions, long distance, large capacity, low loss, high efficiency, regional power exchange capacity improved significantly.(2) have a higher level of safe and stable operation.Grid stability and power supply reliability will be improved, the safety of the power grid close coord ination between all levels of line, have theability to against sudden events and serious fault, can effectively avoid the happening of a wide range of chain failure, improve power supply reliability, reduce the power loss.(3) to adapt and promote the dev elopment of clean energy.Grid will have wind turbines power prediction and dynamic modeling, low voltage across, and active reactive power control and regular units quickly adjust control mechanism, combined with the application of large capacity storage technology, the operation control of the clean energy interconnection capacity will significantly increased, and make clean energy the more economical, efficient and reliable way of energy supply.(4)implementing highly intelligent power grid scheduling.Co mpleted vertical integration, horizontal well versed in the smart grid scheduling technology support system, realize the grid online intelligent analysis, early warning and decision-making, and all kinds of new transmission technology and equipment of effi cient control and lean control of ac/dc hybrid power grid.(5)can satisfy the demands of electric cars and other new type electric power user services.Would be a perfect electric vehicle charging and discharging supporting infrastructure network, can meet the needs of the development of the electric car industry, to meet the needs of users, realize high interaction of electric vehicles and power grid.(6) realize high utilization and whole grid assets life cycle management.Can realize electric grid system of the whole life cycle management plan.Through smart grid scheduling and demand side management, power grid assets utilization hours, power grid assets efficiency improvedsignificantly.(7) to realize power convenient interaction between the user and the grid.Will form a smart electricity interactive platform, improving the demand side management, to provide users with high-quality electric power service.At the same time, the comprehensive utilization of the grid can be distributed power supply, intelli gent watt-hour meter, time-sharing electricity price policy and the electric vehicle charging and discharging mechanism, effectively balance electric load, reduce the peak valley load difference, reduce the power grid and power construction costs.(8)grid management informatization and the lean.Covering power grid will each link of communication network system, realize the power grid operation maintenance integrated regulation, data management, information grid spatial information services, and production and scheduling application integration, and other functions, to realize all-sided management informatization and the lean.(9) grid infrastructure of value-added service potential into full play.In power at the same time, the national strategy of "triple play" of services, to provide users with community advertising, network television, voice and other integrated services, such as water supply, heating, gas industry informatization, interactive platform support, expand the range of value-added services and improve the grid infrastructure and capacity, vigorously promote the development of smart city.(10)Gridto promote the rapid development of related industries.Electric power industry belongsto the capital-intensive and technology-intensive industry, has the characteristics of huge investment, long industrial chain.Construction of smart grid, which is beneficial to promote equipment manufacturing information and communication industry technology upgrade, for our country to occupy the high ground to lay the foundation in the field of electric power equipment manufacturing.Important significanceLife is convenientThe construction of strong smart grid, will promote the development of intelligent community, smart city, improve people's quality of life.(1) to make life more convenient.Home intelligent power system can not onlyrealize the real-time control of intelligent home appliances such as air conditioning, water heater and remote control;And can provide telecommunication network, Internet, radio and television network access services;Through intelligent watt-hour meter will also be able to achieve au tomatic meter reading and automatic transfer fee, and other functions.(2) to make life more low carbon.Smart grid can access to the small family unit such as wind power and photovoltaic roof, pushing forward the large-scale application of electric cars, so as to raise the proportion of clean energy consumption, reduce the pollution of the city.(3) to make life more economical.The smart grid can promote power user role transformation, both electricity and sell electricity twofold properties;To build a family for the user electricity integrated services platform, to help users choose the way of electricity, save energy, reduce the energy expense.Produce benefitThe development of a strong smart grid, the grid function gradually extended to promote the optim al allocation of energy resources, guarantee the safe and stable operation of power system, providing multiple open power service, promote the development of strategic emerging industries, and many other aspects.As China's important energy delivery and configuration platform, strong and smart grid from the investment construction to the operation of production process will be for the national economic development, energy production and use, environmental protection bring great benefits.(1)in power system.Can save system effective capacity;Reducing the system total power generation fuel cost;Improving the efficiency of grid equipment, reduce construction investment;Ascension grid transmission efficiency, reduce the line loss.(2)in terms of power customers.Can realize the bidirectional interaction, to provide convenient services;Improving terminal energy efficiency, save power consumption;To improve power supply reliability, and improve power quality.(3) in the aspect of energy saving and environment.Can improve the efficiency of energy utilization, energy conservation and emissions reduction benefit.To promote clean energy development, realize the alternative reductionbenefits;Promote the overall utilization of land resources, saving land usage.(4) other aspects.Can promote the economic development, jobs;To ensure the safety of energy supply;Coal for power transmission and improve the efficiency of energy conversion, reducing the transportation pressure.Propulsion system(1) can effectively improve t he security of power system and power supply e of strong smart grid "self-healing" function, can accurately and quickly isolate the fault components, and in the case of less manual intervention make the system quickly returned to normal, so as to improve the security and reliability of power supply system.(2) the power grid to realize the sustainable development.Strong smart grid technology innovation can promote the power grid construction, implementation technology, equipment, operation an d management of all aspects of ascension, to adapt to the electric power market demand, promote the scientific and sustainable development of power grid.(3) reduce the effective ing the power load characteristics in different regions of the ch aracteristics of big differences through the unification of the intelligent dispatching, the peakand peak shaving, such as networking benefit;At the same time through the time-sharing electricity price mechanism, and guide customers low power, reduce the peak load, so as to reduce the effective capacity.(4) to reduce the system power generation fuel costs.Construction of strong smart grid, which can meet the intensive development of coal base, optimization of power distribution in our country, thereby red ucing fuel transportation cost;At the same time, by reducing the peak valley load difference, can improve the efficiency of thermal power unit, reduce the coal consumption, reduce the cost.(5)improve the utilization efficiency of grid equipment.First of all, by improving the power load curve, reduce the peak valley is poor, improve the utilization efficiency of grid equipment;Second, by self diagnosis, extend the life of the grid infrastructure.(6) reduce the line loss.On the important basis of uhv transmission technology of strong smart grid, will greatly reduce the loss rate in the electric power transmission;Intelligent scheduling system, flexible transmission technology and real-time two-way interaction with customers, can optimize the tide distribut ion, reducing line loss;At the same time, the construction and application of distributed power supply, also reduce the network loss of power transmission over a long distance.Allocation of resourcesEnergy resources and energy demand in the reverse distribution in our country, more than 80% of the coal, water power and wind power resource distribution in the west, north, and more than 75% of the energy demand is concentrated in the eastern and central regions.Energy resources and energy demand unbalance d distribution of basic national conditions, demand of energy needs to be implemented nationwide resource optimizing configuration.The construction of strong smart grid, for optimal allocation of energy resources provides a good platform.Strong smart grid is completed, will form a strong structure and sending by the end of the power grid power grid, power capacity significantly strengthened, and the formation of the intensity, stiffness of uhv power transmission network, realize the big water and electricit y, coal, nuclear power, large-scale renewable energy across regions, long distance, large capacity, low loss, high efficiency transport capacity significantly increased power a wide range of energy resources optimization.Energy developmentThe development and utilization of clean energy such as wind power and solar energy to produce electricity is given priority to, in the form of the construction of strong smart grid can significantly improve the grid's ability to access, given and adjust clean energy, vigorously promote the development of clean energy.(1) smart grid, the application of advanced control technology and energy storage technology, perfect the grid-connected clean energy technology standards, improve the clean energy acceptance ability.Clean energy base, (2) the smart grid, rational planning of large-scale space truss structure and sending the power structure, application of uhv, flexible transmission technology, meet the requirements of the large-scale clean energy electricitytransmission.(3) the smart grid for large-scale intermittent clean energy to carry on the reasonable and economic operation, improve the operation performance of clean energy production.(4) intelligent with electric equipment, can achieve acceptance and coordinated cont rol of distributed energy, realize the friendly interaction with the user, the user to enjoy the advantages of new energy power.Energy conservation and emissions reductionStrong smart grid construction to promote energy conservation and emissions reduc tion,development of low carbon economy is of great significance: (1) to support large-scale clean energy unit net, accelerate the development of clean energy, promote our country the optimization of energy structure adjustment;(2) to guide users reasonable arrangement of electricity, reducing peak load, stable thermal power unit output, reduce power generation coal consumption;(3) promote ultra-high voltage, flexible transmission, promotion and application of advanced technology such as economic operation, reduce the transmission loss, improve power grid operation efficiency;(4) to realize the power grid to interact with users effectively, promote intelligent power technology, improve the efficiency of electricity;(5) to promote the electric car of large-scale application, promote the development of low-carbon economy, achieve emission reduction benefits.There are three milestones of the concept of smart grid development:The first is 2006, the United States "smart grid" put forward by the IBM solution.IBM smart grid is mainly to solve, improve reliability and safety of power grid from its release in China, the construction of the smart grid operations management innovation - the new train of thought on the development of China's power "the white paper can be seen that the scheme provides a larger framework, through to the electric power production, transmission, the optimization of all aspects of retail management, for the relevant enterprises to improve operation efficiency and reliability, reduce cost dep icts a blueprint.IBM is a marketing strategy.The second is the energy plan put forward by the Obama took office, in addition to the published plan, the United States will also focus on cost $120 billion a year circuit。
Strengths优势All these private sector banks hold strong position on CRM part, they have professional, dedicated and well-trained employees.所以这些私人银行在客户管理部分都持支持态度,他们拥有专业的、细致的、训练有素的员工。
Private sector banks offer a wide range of banking and financial products and financial services to corporate and retail customers through a variety of delivery channels such as ATMs, Internet-banking, mobile-banking, etc. 私有银行通过许多传递通道(如自动取款机、网上银行、手机银行等)提供大范围的银行和金融产品、金融服务进行合作并向客户零售。
The area could be Investment management banking, life and non-life insurance, venture capital and asset management, retail loans such as home loans, personal loans, educational loans, car loans, consumer durable loans, credit cards, etc. 涉及的领域包括投资管理银行、生命和非生命保险、风险投资与资产管理、零售贷款(如家庭贷款、个人贷款、教育贷款、汽车贷款、耐用消费品贷款、信用卡等)。
Private sector banks focus on customization of products that are designed to meet the specific needs of customers. 私人银行主要致力于为一些特殊需求的客户进行设计和产品定制。
因为学校对毕业论文中的外文翻译并无规定,为统一起见,特做以下要求:1、每篇字数为1500字左右,共两篇;2、每篇由两部分组成:译文+原文.3 附件中是一篇范本,具体字号、字体已标注。
外文翻译(包含原文)(宋体四号加粗)外文翻译一(宋体四号加粗)作者:(宋体小四号加粗)Kim Mee Hyun Director, Policy Research & Development Team,Korean Film Council(小四号)出处:(宋体小四号加粗)Korean Cinema from Origins to Renaissance(P358~P340) 韩国电影的发展及前景(标题:宋体四号加粗)1996~现在数量上的增长(正文:宋体小四)在过去的十年间,韩国电影经历了难以置信的增长。
上个世纪60年代,韩国电影迅速崛起,然而很快便陷入停滞状态,直到90年代以后,韩国电影又重新进入繁盛时期。
在这个时期,韩国电影在数量上并没有大幅的增长,但多部电影的观影人数达到了上千万人次。
1996年,韩国本土电影的市场占有量只有23.1%。
但是到了1998年,市场占有量增长到35。
8%,到2001年更是达到了50%。
虽然从1996年开始,韩国电影一直处在不断上升的过程中,但是直到1999年姜帝圭导演的《生死谍变》的成功才诞生了韩国电影的又一个高峰。
虽然《生死谍变》创造了韩国电影史上的最高电影票房纪录,但是1999年以后最高票房纪录几乎每年都会被刷新。
当人们都在津津乐道所谓的“韩国大片”时,2000年朴赞郁导演的《共同警备区JSA》和2001年郭暻泽导演的《朋友》均成功刷新了韩国电影最高票房纪录.2003年康佑硕导演的《实尾岛》和2004年姜帝圭导演的又一部力作《太极旗飘扬》开创了观影人数上千万人次的时代。
姜帝圭和康佑硕导演在韩国电影票房史上扮演了十分重要的角色。
从1993年的《特警冤家》到2003年的《实尾岛》,康佑硕导演了多部成功的电影。
译文交通拥堵和城市交通系统的可持续发展摘要:城市化和机动化的快速增长,通常有助于城市交通系统的发展,是经济性,环境性和社会可持续性的体现,但其结果是交通量无情增加,导致交通拥挤。
道路拥挤定价已经提出了很多次,作为一个经济措施缓解城市交通拥挤,但还没有见过在实践中广泛使用,因为道路收费的一些潜在的影响仍然不明。
本文首先回顾可持续运输系统的概念,它应该满足集体经济发展,环境保护和社会正义的目标.然后,根据可持续交通系统的特点,使拥挤收费能够促进经济增长,环境保护和社会正义。
研究结果表明,交通拥堵收费是一个切实有效的方式,可以促进城市交通系统的可持续发展。
一、介绍城市交通是一个在世界各地的大城市迫切关注的话题。
随着中国的城市化和机动化的快速发展,交通拥堵已成为一个越来越严重的问题,造成较大的时间延迟,增加能源消耗和空气污染,减少了道路网络的可靠性.在许多城市,交通挤塞情况被看作是经济发展的障碍.我们可以使用多种方法来解决交通挤塞,包括新的基础设施建设,改善基础设施的维护和操作,并利用现有的基础设施,通过需求管理策略,包括定价机制,更有效地减少运输密度.交通拥堵收费在很久以前就已提出,作为一种有效的措施,来缓解的交通挤塞情况。
交通拥堵收费的原则与目标是通过对选择在高峰拥挤时段的设施的使用实施附加收费,以纾缓拥堵情况.转移非高峰期一些出行路线,远离拥挤的设施或高占用车辆,或完全阻止一些出行,交通拥堵收费计划将在节省时间和降低经营成本的基础上,改善空气中的质量,减少能源消耗和改善过境生产力。
此计划在世界很多国家和地方都有成功的应用。
继在20世纪70年代初和80年代中期挪威与新加坡实行收费环,在2003年2月伦敦金融城推出了面积收费;直至现在,它都是已经开始实施拥挤收费的大都市圈中一个最知名的例子。
然而,交通拥堵收费由于理论和政治的原因未能在实践中广泛使用。
道路收费的一些潜在的影响尚不清楚,和城市发展的拥塞定价可持续性,需要进一步研究。
Pyrolysis of oil sludge first by thermogravimetry/mass spectroscopy (TG/MS) and then in a horizontal quartz reactor with an electrical laboratory furnace under different pyrolysis conditions was carried out. The influence of heating rate from 5 to 20 °Camin-1, final pyrolysis temperature from 400 to 700 °C, various interval holding stage, and catalyst on the products were investigated in detail. The TG/MS results show that pyrolysis reaction of oil sludge starts at a low temperature of about 200 °C, and the maximum evolution rate is observed between the temperatures of 350-500 °C. A higher final pyrolysis temperature, an interval holding stage, and adding catalyst can promote the pyrolysis conversion (in terms of less solid residue production). In all parameters, an interval holding stage for 20 min near the peak temperature of 400 °C can enhance the yield of oil and improve its quality. Three additives used in this work as catalysts do not improve oil product quality markedly in spite of increasing pyrolysis conversion greatly.油泥的裂解首先通过热重/质谱分析(TG / MS),然后在水平石英反应器中具有不同热解条件下的电气实验室炉进行。
1、外文原文(复印件)A: Fundamentals of Single-chip MicrocomputerTh e si ng le-ch i p mi cr oc om pu ter is t he c ul mi nat i on o f bo th t h e d ev el op me nt o f th e d ig it al com p ut er an d t he int e gr at ed ci rc ui ta r gu ab ly th e t ow m os t s i gn if ic ant i nv en ti on s o f t h e 20t h c en tu ry[1].Th es e to w typ e s of a rc hi te ctu r e ar e fo un d i n s in gl e-ch ip m i cr oc om pu te r. So m e em pl oy t he sp l it p ro gr am/d ata me mo ry o f th e H a rv ar d ar ch it ect u re, sh ow n i n -5A, ot he rs fo ll ow th e ph i lo so ph y, w i de ly a da pt ed fo r g en er al-p ur pos e c om pu te rs an d m i cr op ro ce ss or s, o f m a ki ng no lo gi c al di st in ct io n b e tw ee n p ro gr am a n d da t a m em ory a s i n th e Pr in cet o n ar ch it ec tu re,sh ow n in-5A.In g en er al te r ms a s in gl e-chi p m ic ro co mp ut er i sc h ar ac te ri zed b y the i nc or po ra tio n of al l t he uni t s o f a co mp ut er i n to a s in gl e dev i ce, as s ho wn in Fi g3-5A-3.-5A-1 A Harvard type-5A. A conventional Princeton computerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM).R OM i s u su al ly f or th e p er ma ne nt, n o n-vo la ti le s tor a ge o f an a pp lic a ti on s pr og ra m .M an ym i cr oc om pu te rs an d mi cr oc on tr ol le r s a re in t en de d fo r h ig h-v ol ume a p pl ic at io ns a nd h en ce t he e co nom i ca l ma nu fa ct ure of t he d ev ic es r e qu ir es t ha t the co nt en ts o f the pr og ra m me mo ry b e co mm it te dp e rm an en tl y d ur in g th e m an uf ac tu re o f c hi ps . Cl ear l y, th is im pl ie sa ri g or ou s a pp roa c h t o R OM co de d e ve lo pm en t s in ce c ha ng es ca nn otb e m ad e af te r man u fa ct ur e .T hi s d e ve lo pm en t pr oce s s ma y in vo lv e e m ul at io n us in g a s op hi st ic at ed deve lo pm en t sy st em w i th a ha rd wa re e m ul at io n ca pa bil i ty a s we ll a s th e u se of po we rf ul so ft wa re t oo ls.So me m an uf act u re rs p ro vi de ad d it io na l RO M opt i on s byi n cl ud in g i n th ei r ra ng e de vi ce s wi th (or i nt en de d fo r us e wi th) u s er pr og ra mm ab le m em or y. Th e s im p le st of th es e i s us ua ll y d ev ice w h ic h ca n op er ate in a m ic ro pr oce s so r mo de b y usi n g so me o f th e i n pu t/ou tp ut li ne s as a n ad dr es s an d da ta b us f or acc e ss in g e xt er na l m e mo ry. T hi s t ype o f d ev ic e c an b e ha ve fu nc ti on al l y a s t he si ng le c h ip mi cr oc om pu te r fr om wh ic h i t i s de ri ve d a lb eit w it h r es tr ic ted I/O an d a mo di fie d e xt er na l ci rcu i t. T he u se o f t h es e RO Ml es sd e vi ce s is c om mo n e ve n in p ro du ct io n c ir cu it s wh er e t he v ol um e do es n o t ju st if y th e d e ve lo pm en t co sts of c us to m on-ch i p RO M[2];t he re c a n st il l b e a si g ni fi ca nt s a vi ng in I/O a nd ot he r c hi ps co mp ar ed t o a c on ve nt io nal mi cr op ro ce ss or b as ed c ir cu it. M o re e xa ctr e pl ac em en t fo r RO M d ev ic es c an b e o bt ai ne d in t he f o rm o f va ri an ts w i th 'pi gg y-ba ck'EP RO M(Er as ab le p ro gr am ma bl e ROM)s oc ke ts o rd e vi ce s w it h EP ROM i ns te ad o f R OM 。
1、 外文原文(复印件)A: Fundamentals of Single-chip MicrocomputerT h e sin gle -ch ip mi c ro co m p u t e r is t h e cu lm in at io n of b ot h t h e d e ve lo p me nt of t h e d ig ita l co m p u t e r a n d t h e i nte g rated c ircu it a rgu ab l y t h e to w mo st s ign if i cant i nve nt i o n s of t h e 20t h c e nt u ry [1].T h ese to w t yp e s of arch ite ct u re are fo u n d in s in gle -ch ip m i cro co m p u te r. S o m e e mp l oy t h e sp l it p ro gra m /d at a m e m o r y of t h e H a r va rd arch ite ct u re , s h o wn in -5A , ot h e rs fo l lo w t h e p h i lo so p hy, wid e l y ad a p ted fo r ge n e ral -p u rp o se co m p u te rs an d m i cro p ro ce ss o rs , of m a kin g n o l o g i ca l d i st in ct i o n b et we e n p ro gra m an d d ata m e m o r y as in t h e P rin c eto n a rch ite ct u re , sh o wn in -5A.In ge n e ra l te r m s a s in g le -ch ip m ic ro co m p u t e r is ch a ra cte r ized b y t h e in co r p o rat io n of all t h e u n its of a co mp u te r into a s in gle d e vi ce , as s h o w n in F i g3-5A-3.-5A-1A Harvard type-5A. A conventional Princeton computerProgrammemory Datamemory CPU Input& Output unitmemoryCPU Input& Output unitResetInterruptsPowerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM).RO M is u su a l l y fo r t h e p e r m an e nt , n o n -vo lat i le sto rage of an ap p l i cat io n s p ro g ram .M a ny m i c ro co m p u te rs a n d m i cro co nt ro l le rs are inte n d ed fo r h i gh -vo lu m e ap p l i cat io n s a n d h e n ce t h e e co n o m i cal man u fa c t u re of t h e d e vi ces re q u ires t h at t h e co nt e nts of t h e p ro gra m me mo r y b e co mm i ed p e r m a n e nt l y d u r in g t h e m a n u fa ct u re of c h ip s . C lea rl y, t h i s imp l ies a r i go ro u s ap p ro a ch to ROM co d e d e ve lo p m e nt s in ce ch an ges can n o t b e mad e af te r m an u fa ct u re .T h i s d e ve l o p m e nt p ro ces s m ay i nvo l ve e mu l at i o n u sin g a so p h ist icated d e ve lo p m e nt syste m wit h a h ard wa re e mu l at i o n capab i l it y as we ll as t h e u s e of p o we rf u l sof t war e to o l s.So m e m an u fa ct u re rs p ro vi d e ad d it i o n a l ROM o p t io n s b y in clu d in g in t h e i r ran ge d e v ic es w it h (o r inte n d ed fo r u s e wit h ) u se r p ro g ram m a b le m e mo r y. T h e s im p lest of t h e se i s u su a l l y d e v i ce wh i ch can o p e rat e in a m i cro p ro ce s so r mo d e b y u s in g s o m e of t h e in p u t /o u t p u t l in es as an ad d res s a n d d ata b u s fo r a cc es sin g exte rn a l m e m o r y. T h is t yp e o f d e vi ce can b e h ave f u n ct i o n al l y as t h e s in gle ch ip m i cro co m p u t e r f ro m wh i ch it i s d e ri ved a lb e it wit h re st r icted I/O an d a m o d if ied exte rn a l c ircu it. T h e u s e of t h e se RO M le ss d e vi ces i s co mmo n e ve n in p ro d u ct io n circu i ts wh e re t h e vo lu m e d o e s n ot ju st if y t h e d e ve lo p m e nt co sts of cu sto m o n -ch ip ROM [2];t h e re ca n st i ll b e a si gn if i cant sav in g in I/O an d o t h e r ch ip s co m pared to a External Timing components System clock Timer/ Counter Serial I/O Prarallel I/O RAM ROMCPUco nve nt io n al m i c ro p ro ces so r b ased circ u it. M o re exa ct re p l a ce m e nt fo rRO M d e v ice s can b e o b tain ed in t h e fo rm of va ria nts w it h 'p i g g y-b a c k'E P ROM(E rasab le p ro gramm ab le ROM )s o cket s o r d e v ice s w it h E P ROMin stead of ROM 。
外文文献翻译译稿1可用性和期望值来自Willliam S.Green, Patrick W.Jordan.产品的愉悦:超越可用性根据人机工程学会(HFES)的观点,人机工程学着眼于“发现和共享可用于各种系统和设备设计的、关于人的特点的知识”。
人们通常只是把它作为生物力学和人体测量所关注的内容,实际上它是从更广泛的意义上的一种对人(产品用户)的全面和综合的理解。
HFES从二战中有军方从事的系统分析中发展而来。
其中的三种主要研究的是人体测量、复杂信息的解释和管理,以及在部队和装备调配中应用的系统分析。
系统分析在尺度和复杂性方面跨度很大,大的系统分析有类似于诺曼底登陆准备的大型系统规划,小到去理解如何从合理性和规模的角度才最佳的布置和装备人员。
诺曼底登陆是20世纪最复杂的事件之一。
他要求建立一个在战斗开始之前还不确定的庞大的人员和物资的合理分配系统。
在更小的规模上,装备和军事人物的布置意味着如何去组织、训练和安排战士,最大限度的发挥他们的长处。
士兵必须迅速地接受训练,并且能够有效地使用和维护在二战中发展起来的一系列技术装备。
其中,对于飞行员、潜艇人员和坦克驾驶员有神采的限制。
复杂的新装备的开发要求找到最好的税收、密码便医院、破译人员、雷达和声纳操作员、轰炸机驾驶员和机组人员。
在战后,随着公司及其产品在尺度、领域和复杂性方面的增长,很多系统分析人员在商用领域找到了发展机会。
尽管是战后的发展才导致了1957年人机工程协会(HFES)的建立,但人机研究的起源可以追溯到大批量生产方式的成型阶段,是当时提高生产效率的要求。
随着工作方式从手工生产和农业生产中的转移,新的工厂工作的概念逐步发展起来。
福特的流水生产线和泰勒的效率理论开始对生产的规划和教育产生影响。
即使在家庭生活中,妇女们也开始接受了现代家庭管理理论,并运用这些理论来组织和规划家庭。
在20世纪末,一种涵盖面更广的人机工程正在发展之中。
新的人机工程学是为了适应已经被广泛意识到的对用户行为模式更深入的需求而诞生的,它开始应用定型研究方法,并探索人的情感和认知因素。
xxxxxx 大学本科毕业设计外文翻译Project Cost Control: the Way it Works项目成本控制:它的工作方式学院(系): xxxxxxxxxxxx专业: xxxxxxxx学生姓名: xxxxx学号: xxxxxxxxxx指导教师: xxxxxx评阅教师:完成日期:xxxx大学项目成本控制:它的工作方式在最近的一次咨询任务中,我们意识到对于整个项目成本控制体系是如何设置和应用的,仍有一些缺乏理解。
所以我们决定描述它是如何工作的.理论上,项目成本控制不是很难跟随。
首先,建立一组参考基线。
然后,随着工作的深入,监控工作,分析研究结果,预测最终结果并比较参考基准。
如果最终的结果不令人满意,那么你要对正在进行的工作进行必要的调整,并在合适的时间间隔重复。
如果最终的结果确实不符合基线计划,你可能不得不改变计划.更有可能的是,会 (或已经) 有范围变更来改变参考基线,这意味着每次出现这种情况你必须改变基线计划。
但在实践中,项目成本控制要困难得多,通过项目数量无法控制成本也证明了这一点。
正如我们将看到的,它还需要大量的工作,我们不妨从一开始启用它。
所以,要跟随项目成本控制在整个项目的生命周期.同时,我们会利用这一机会来指出几个重要文件的适当的地方。
其中包括商业案例,请求(资本)拨款(执行),工作包和工作分解结构,项目章程(或摘要),项目预算或成本计划、挣值和成本基线。
所有这些有助于提高这个组织的有效地控制项目成本的能力。
业务用例和应用程序(执行)的资金重要的是要注意,当负责的管理者对于项目应如何通过项目生命周期展开有很好的理解时,项目成本控制才是最有效的。
这意味着他们在主要阶段的关键决策点之间行使职责。
他们还必须识别项目风险管理的重要性,至少可以确定并计划阻止最明显的潜在风险事件。
在项目的概念阶段•每个项目始于确定的机会或需要的人.通常是有着重要性和影响力的人,如果项目继续,这个人往往成为项目的赞助。
B. R. Stern1 and J. J. Kneiss2,†1EA Engineering, Science, and Technology, Silver Spring, MD 20910, USA2Oxygenated Fuels Association, Arlington, V A 22209, USAKey words: methyl tertiary-butyl ether, MTBE, oxygenated fuels, reformulated gasoline, healthOxygenates are liquid fuel compounds that add oxygen to gasoline and help reduce harmful gasoline emissions, while expanding the total available supply of motor fuels in the USA. reformulated with oxygenates is a major step toward developing a sustainable, clean transportation fuel for the 21st century. Despite improvements in motor vehicle technology over the past 25 years, cars and trucks remain a major source of air pollution in the USA.1 The development of reformulated fuels is part of a comprehensive national strategy for reducing motor vehicle pollution, as described in the 1990 Clean Air Act Amendments. Oxygenates are currently used in more than 30% of the US gasoline pool. By the end of the century, this figure is expected to reach as much as 70% .在美国,增氧剂是一种液体燃料,添加于汽油中增氧氧并帮助减少有害汽油排放量,同时扩大汽车燃料总的可用供应。
本科毕业设计(论文) 外文翻译(附外文原文)系 ( 院 ):资源与环境工程系课题名称:英文翻译专业(方向):环境工程班级:2004-1班学生:3040106119指导教师:刘辉利副教授日期:2008年4月20使用褐煤(一种低成本吸附剂)从酸性矿物废水中去除和回收金属离子a. 美国, 大学公园, PA 16802, 宾夕法尼亚州立大学, 能源部和Geo 环境工程学.b. 印度第80号邮箱, Mahatma Gandhi ・Marg, Lucknow 226001, 工业毒素学研究中心, 环境化学分部,于2006 年5月6 日网上获得,2006 年4月24 日接受,2006 年3月19 日;校正,2006 年2月15 日接收。
摘要酸性矿物废水(AMD), 是一个长期的重大环境问题,起因于钢硫铁矿的微生物在水和空气氧化作用, 买得起包含毒性金属离子的一种酸性解答。
这项研究的主要宗旨是通过使用褐煤(一种低成本吸附剂)从酸性矿水(AMD)中去除和回收金属离子。
褐煤已被用于酸性矿水排水AMD 的处理。
经研究其能吸附亚铁, 铁, 锰、锌和钙在multi-component 含水系统中。
研究通过在不同的酸碱度里进行以找出最适宜的酸碱度。
模拟工业条件进行酸性矿物废水处理, 所有研究被进行通过单一的并且设定多专栏流动模式。
空的床接触时间(EBCT) 模型被使用为了使吸附剂用量减到最小。
金属离子的回收并且吸附剂的再生成功地达到了使用0.1 M 硝酸不用分解塔器。
关键词:吸附; 重金属; 吸附; 褐煤; 酸性矿物废水处理; 固体废料再利用; 亚铁; 铁; 锰。
文章概述1. 介绍2. 材料和方法2.1. 化学制品、材料和设备3. 吸附步骤3.1. 酸碱度最佳化3.2. 固定床研究3.2.1 单一栏3.2.2 多栏4. 结果和讨论4.1. ZPC 和渗析特征4.2 酸碱度的影响4.3. Multi-component 固定吸附床4.3.1 褐煤使用率4.4. 吸附机制4.5. 解吸附作用研究5. 结论1. 介绍酸性矿物废水(AMD) 是一个严重的环境问题起因于硫化物矿物风化, 譬如硫铁矿(FeS2) 和它的同素异形体矿物(α-FeS) 。
翻译专业中英文对照外文翻译文献(文档含英文原文和中文翻译)Translation EquivalenceDespite the fact that the world is becoming a global village, translation remains a major way for languages and cultures to interact and influence each other. And name translation, especially government name translation, occupies a quite significant place in international exchange.Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. While interpreting—the facilitating of oral or sign-language communication between users of different languages—antedates writing, translation began only after the appearance of written literature. There exist partial translations of the Sumerian Epic of Gilgamesh (ca. 2000 BCE) into Southwest Asian languages of the second millennium BCE. Translators always risk inappropriate spill-over of source-language idiom and usage into the target-language translation. On the other hand, spill-overs have imported useful source-language calques and loanwords that have enriched the target languages. Indeed, translators have helped substantially to shape the languages into which they have translated. Due to the demands of business documentation consequent to the Industrial Revolution that began in the mid-18th century, some translation specialties have become formalized, with dedicated schools and professional associations. Because of the laboriousness of translation, since the 1940s engineers havesought to automate translation (machine translation) or to mechanically aid the human translator (computer-assisted translation). The rise of the Internet has fostered a world-wide market for translation services and has facilitated language localizationIt is generally accepted that translation, not as a separate entity, blooms into flower under such circumstances like culture, societal functions, politics and power relations. Nowadays, the field of translation studies is immersed with abundantly diversified translation standards, with no exception that some of them are presented by renowned figures and are rather authoritative. In the translation practice, however, how should we select the so-called translation standards to serve as our guidelines in the translation process and how should we adopt the translation standards to evaluate a translation product?In the macro - context of flourish of linguistic theories, theorists in the translation circle, keep to the golden law of the principle of equivalence. The theory of Translation Equivalence is the central issue in western translation theories. And the presentation of this theory gives great impetus to the development and improvement of translation theory. It‟s not difficult for us to discover that it is the theory of Translation Equivalence that serves as guidelines in government name translation in China. Name translation, as defined, is the replacement of the name in the source language by an equivalent name or other words in the target language. Translating Chinese government names into English, similarly, is replacing the Chinese government name with an equivalentin English.Metaphorically speaking, translation is often described as a moving trajectory going from A to B along a path or a container to carry something across from A to B. This view is commonly held by both translation practitioners and theorists in the West. In this view, they do not expect that this trajectory or something will change its identity as it moves or as it is carried. In China, to translate is also understood by many people normally as “to translate the whole text sentence by sentence and paragraph by paragraph, without any omission, addition, or other changes. In both views, the source text and the target text must be “the same”. This helps explain the etymological source for the term “translation equivalence”. It is in essence a word which describes the relationship between the ST and the TT.Equivalence means the state or fact or property of being equivalent. It is widely used in several scientific fields such as chemistry and mathematics. Therefore, it comes to have a strong scientific meaning that is rather absolute and concise. Influenced by this, translation equivalence also comes to have an absolute denotation though it was first applied in translation study as a general word. From a linguistic point of view, it can be divided into three sub-types, i.e., formal equivalence, semantic equivalence, and pragmatic equivalence. In actual translation, it frequently happens that they cannot be obtained at the same time, thus forming a kind of relative translation equivalence in terms of quality. In terms of quantity, sometimes the ST and TT are not equivalent too. Absolutetranslation equivalence both in quality and quantity, even though obtainable, is limited to a few cases.The following is a brief discussion of translation equivalence study conducted by three influential western scholars, Eugene Nida, Andrew Chesterman and Peter Newmark. It‟s expected that their studies can instruct GNT study in China and provide translators with insightful methods.Nida‟s definition of translation is: “Translation consists in reproducing in the receptor language the closest natural equivalent of the source language message, first in terms of meaning and secondly in terms of style.” It is a replacement of textual material in one language〔SL〕by equivalent textual material in another language(TL). The translator must strive for equivalence rather than identity. In a sense, this is just another way of emphasizing the reproducing of the message rather than the conservation of the form of the utterance. The message in the receptor language should match as closely as possible the different elements in the source language to reproduce as literally and meaningfully as possible the form and content of the original. Translation equivalence is an empirical phenomenon discovered by comparing SL and TL texts and it‟s a useful operational concept like the term “unit of translation”.Nida argues that there are two different types of equivalence, namely formal equivalence and dynamic equivalence. Formal correspondence focuses attention on the message itself, in both form and content, whereas dynamic equivalence is based upon “the principle of equivalent effect”.Formal correspondence consists of a TL item which represents the closest equivalent of a ST word or phrase. Nida and Taber make it clear that there are not always formal equivalents between language pairs. Therefore, formal equivalents should be used wherever possible if the translation aims at achieving formal rather than dynamic equivalence. The use of formal equivalents might at times have serious implications in the TT since the translation will not be easily understood by the target readership. According to Nida and Taber, formal correspondence distorts the grammatical and stylistic patterns of the receptor language, and hence distorts the message, so as to cause the receptor to misunderstand or to labor unduly hard.Dynamic equivalence is based on what Nida calls “the principle of equivalent effect” where the relat ionship between receptor and message should be substantially the same as that which existed between the original receptors and the message. The message has to be modified to the receptor‟s linguistic needs and cultural expectation and aims at complete naturalness of expression. Naturalness is a key requirement for Nida. He defines the goal of dynamic equivalence as seeking the closest natural equivalent to the SL message. This receptor-oriented approach considers adaptations of grammar, of lexicon and of cultural references to be essential in order to achieve naturalness; the TL should not show interference from the SL, and the …foreignness …of the ST setting is minimized.Nida is in favor of the application of dynamic equivalence, as a moreeffective translation procedure. Thus, the product of the translation process, that is the text in the TL, must have the same impact on the different readers it was addressing. Only in Nida and Taber's edition is it clearly stated that dynamic equivalence in translation is far more than mere correct communication of information.As Andrew Chesterman points out in his recent book Memes of Translation, equivalence is one of the five element of translation theory, standing shoulder to shoulder with source-target, untranslatability, free-vs-literal, All-writing-is-translating in importance. Pragmatically speaking, observed Chesterman, “the only true examples of equivalence (i.e., absolute equivalence) are those in which an ST item X is invariably translated into a given TL as Y, and vice versa. Typical examples would be words denoting numbers (with the exception of contexts in which they have culture-bound connotations, such as “magic” or “unlucky”), certain technical terms (oxygen, molecule) and the like. From this point of view, the only true test of equivalence would be invariable back-translation. This, of course, is unlikely to occur except in the case of a small set of lexical items, or perhaps simple isolated syntactic structure”.Peter Newmark. Departing from Nida‟s rece ptor-oriented line, Newmark argues that the success of equivalent effect is “illusory “and that the conflict of loyalties and the gap between emphasis on source and target language will always remain as the overriding problem in translation theory and practice. He suggests narrowing the gap by replacing the old terms with those of semanticand communicative translation. The former attempts to render, as closely as the semantic and syntactic structures of the second language allow, the exact contextual meani ng of the original, while the latter “attempts to produce on its readers an effect as close as possible to that obtained on the readers of the original.” Newmark‟s description of communicative translation resembles Nida‟s dynamic equivalence in the effect it is trying to create on the TT reader, while semantic translation has similarities to Nida‟s formal equivalence.Meanwhile, Newmark points out that only by combining both semantic and communicative translation can we achieve the goal of keeping the …spirit‟ of the original. Semantic translation requires the translator retain the aesthetic value of the original, trying his best to keep the linguistic feature and characteristic style of the author. According to semantic translation, the translator should always retain the semantic and syntactic structures of the original. Deletion and abridgement lead to distortion of the author‟s intention and his writing style.翻译对等尽管全世界正在渐渐成为一个地球村,但翻译仍然是语言和和文化之间的交流互动和相互影响的主要方式之一。
Wind turbine gearbox OverviewOverview:Wind turbine gearbox is an important mechanical components, and its main function is to wind round the momentum generated by wind is passed to the generator and make the appropriate speed. Usually wind wheel speed is very low, far less than required by the generator speed, the growth rate effect of the gearbox gear vice, so the gearbox will also be called a growth box. According to the general layout of the unit, sometimes the wind turbine wheel is directly connected to the drive shaft (commonly known as the shaft) and the gear box together as one, shaft and gearbox are arranged, during which the tension device or coupling connected structure. Brakes in order to increase the braking capacity of the unit, often set in the input or output of the gearbox, with the tip brake (fixed pitch wind wheel) or pitch from the brake to the unit drive system combined braking.Unit installed in the mountains, wilderness, beaches, islands and other outlet by the impact of erratic change to the variable load wind and strong gusts of perennial withstand extreme temperatures and extreme temperature variations, combined with the natural environment in which the traffic inconvenience, The gear box is installed in the narrow space within the tower, once the failure, repair is very difficult, so its reliability and service life are much higher than the average mechanical demands. For example, the requirements of the component materials, in addition to the normal state of the mechanical properties, but also should have the characteristics of low temperature resistance to cold brittleness; should ensure the smooth work of the gear box to prevent vibration and shock; to ensure adequate lubrication conditions, and so on. Huge temperature difference between summer and winter areas, to configure the appropriateheating and cooling devices. Also set up monitoring points remote operation and lubrication state.Different forms of wind turbines are not the same requirements, the arrangement of form and structure of the gearbox and therefore vary. The horizontal axis wind turbine in the wind power sector is the most common fixed parallel shaft gear drive and the planetary gear drive.As mentioned earlier, the wind power generation by natural conditions, the emergence of some special meteorological conditions, all of which might lead to the failure of wind turbine not like small cabin on the ground as a solid base foundation of the entire powertrain power matching and torsional vibration factor is always concentrated reflection of a weak link, and a lot of practice, this link is often the gearbox in unit. Therefore, the strengthening of the gearbox, the great importance of its maintenance work is particularly important.The design requirementsThe design must guarantee to meet the reliability and life expectancy under the premise, to simplify the structure and the lightest. Normally be by CAD design, schedule the best transmission scheme, the choice of design parameters, select reliable components and has good mechanical properties as well as in the environmental extreme temperature remains stable material, and so on.First, the design loadGearbox as components of the transmission of power during operation at the same time withstand the dynamic and static load. Dynamic load part depends on the wind wheel, the characteristics and the shaft of the generator, the quality of the coupling stiffness and damping values, as well as the generator of external working conditions. Load spectrum of the wind turbine gearbox design calculation on the basis of the load spectrum by the measured, calculated and determined in accordance withthe standards of the JB/T10300.When the spectrum calculated in accordance with the measured load, the gear box using the coefficient of the KA = 1. When can not get the load spectrum, take the KA = 1.3 for three-bladed wind turbine.Second, the design requirementsGrowth of wind turbine design parameters of the box, except as otherwise provided, is often used to optimize the design, namely the use of computer analysis and calculation, to obtain the optimal design program to meet the constraints.(A) EfficiencyThe efficiency of the gearbox power loss calculation or get measured in the experiment. The power loss including the gear meshing, bearing friction, lubricant splashing and mixing losses, windage loss, and other mechanical damping. The efficiency of the gear under different conditions is inconsistent.Wind turbine gearbox professional standards require that the mechanical efficiency of the gear box should be greater than 97%, refers to the indicators to be achieved under standard conditions.(B) noise levelNoise standards for wind power growth rate box for around 85dB (A). The noise from the various transmission parts, it should take the appropriate measures to reduce noise:1.appropriate increase in the precision gears, tooth repair edge to increase the engagement degree of coincidence;2 .increase the stiffness of the shaft and bearing;3.rational arrangement of the shaft and the transmission gear train, to avoid resonance;4. Installation to take the necessary damping mechanical vibration of the gearbox control GB/T8543 the provisions of the C(C) ReliabilityIn accordance with the requirements of the assumed life expectancy of at least 20 years, depending on the load spectrum listed in the load distribution of the fatigue analysis, limit state of the whole and parts of the gear box design and the use of limit state, ultimate strength analysis, fatigue analysis, stability, and deformation limits analysis, dynamic analysis. Analysis methods can be simulated host operating conditions in addition to the usual recommended design calculation method of component testing.The reliability analysis must be carried out in the beginning of the program design, and again after the completion of the construction design of a detailed reliability analysis of computing, including carefully selected good reliability structures and the reliability of estimates of important spare parts and machine.Gear boxMany different types of wind turbine gearbox in accordance with the conventional type can be divided into the growth of cylindrical gear boxes, planetary growth box, gear box as well as their combination with each other up; in accordance with the transmission of the series can be divided into single and multi-stage gear box; in accordance with the rotation of the arrangement can be divided into the expansion, diversion, and coaxial-type and mixed type and so on.HeaderThe cabinet is made of the important parts of the gearbox, which bear the reaction force generated from the force of the wind wheel and gear drive, you must have sufficient rigidity to withstand the forces and moments to prevent the deformation, to ensure the transmission quality. The cabinet design should be arranged in accordance with the layout of the wind turbine power transmission, processing and assembly conditions,to facilitate inspection and maintenance requirements to carry out. Should pay attention to the different directions of the bearing support and the base supporting the anti-force and its relative value, select the appropriate support structure and wall thickness, and the addition of the necessary ribs. The location of the tendons shall be consistent with the direction of cabinet deformation caused by force.Box stress situation is very complex and uneven distribution, only the use of modern calculation methods, such as finite element and fracture mechanics methods supplemented by photoelastic experiment simulates actual working conditions, in order to more accurately calculate the stress distribution situation. Using computer-aided design, can be obtained with the actual stress is very close to the results. Gearbox lubricationLubrication of the gear box is very important, good lubrication can serve as adequate protection for gears and bearings. Therefore, we must attach great importance to the lubrication of the gear box, and long-term in the best condition in strict accordance with specifications to maintain lubrication system. The gear box is often used splash lubrication or forced lubrication is more common, usually with forced lubrication.Therefore, with a reliable lubrication system is particularly important. Will be electric gear pump oil from the tank by the oil filter transmitted to the gear box lubrication piping, lubricating the various parts of the gear and transmission pipeline is equipped with a variety of monitoring devices to ensure that the gearbox in operation which does not appear off the oil.Lubricating oil requirements should be considered:1)reduce the friction and wear, with a high carrying capacity, to prevent the glue; 2)to absorb shock and vibration; 3) to prevent fatigue pitting; 4) cooling, rust, corrosion-resistant. Transmission of different types have differentrequirements. Wind turbine gearbox is a type of enclosed gear drives, the main form of failure is glued pitting Therefore, the choice of lubricant, the focus is to ensure adequate oil film thickness and the boundary film strength. Work in a larger temperature difference, the viscosity index is relatively high. To improve the carrying capacity and impact resistance of the gear appropriate to add some extreme pressure additives is also necessary to have some side effects, but the additives must be careful in the choice of when. The gearbox manufacturer generally recommend a variety of lubricants according to their experience or experimental studies, such as MOBIL632,MOBIL630 or L-CKC320 L-CKC220GB5903-95 gear oil is selected according to the tooth surface contact stress and the use of environmental conditions.Gear damageGear damage the impact of many factors, including material selection, design calculations, processing, heat treatment, installation and commissioning, lubrication and maintenance. Common damage of the gear tooth surface damage and tooth broken two.(A) of the tooth fracture (broken teeth)断齿常由细微裂纹逐步扩展而成。
3-电气工程及其自动化专业外文文献英文文献外文翻译1、外文原文(复印件)A: Fundamentals of Single-chip MicrocomputerThe single-chip microcomputer is the culmination of both the development of the digital computer and the integrated circuit arguably the tow most significant inventions of the 20th century [1].These tow types of architecture are found in single-chip microcomputer. Some employ the split program/data memory of the Harvard architecture, shown in Fig.3-5A-1, others follow the philosophy, widely adapted for general-purpose computers and microprocessors, of making no logical distinction between program and data memory as in the Princeton architecture, shown in Fig.3-5A-2.In general terms a single-chip microcomputer is characterized by the incorporation of all the units of a computer into a single device, as shown in Fig3-5A-3.ProgramInput& memoryOutputCPU unitDatamemoryFig.3-5A-1 A Harvard typeInput&Output CPU memoryunitFig.3-5A-2. A conventional Princeton computerExternal Timer/ System Timing Counter clock componentsSerial I/OReset ROMPrarallelI/OInterrupts RAMCPUPowerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM).ROM is usually for the permanent,non-volatile storage of an applications program .Many microcomputers and microcontrollers are intended for high-volume applications and hence the economical manufacture of the devices requires that the contents of the program memory be committed permanently during the manufacture of chips . Clearly, this implies a rigorous approach to ROM code development since changes cannot be made after manufacture .This development process may involve emulation using a sophisticated development system with a hardware emulation capability as well as the use of powerful software tools.Some manufacturers provide additional ROM options by including in their range devices with (or intended for use with) user programmablememory. The simplest of these is usually device which can operate in a microprocessor mode by using some of the input/output lines as an address and data bus for accessing external memory. This type of device can behave functionally as the single chip microcomputer from which itis derived albeit with restricted I/O and a modified external circuit. The use of these ROMlessdevices is common even in production circuits where the volume does not justify the development costs of custom on-chip ROM[2];there canstill be a significant saving in I/O and other chips compared to a conventional microprocessor based circuit. More exact replacement for ROM devices can be obtained in the form of variants with 'piggy-back' EPROM(Erasable programmable ROM )sockets or devices with EPROM instead of ROM 。
道路路桥工程中英文对照外文翻译文献中英文资料中英文资料外文翻译(文档含英文原文和中文翻译)原文:Asphalt Mixtures-Applications。
Theory and Principles1.ApplicationsXXX is the most common of its applications。
however。
and the onethat will be XXX.XXX “flexible” is used to distinguish these pavements from those made with Portland cement,which are classified as rigid pavements。
that is。
XXX it provides they key to the design approach which must be used XXX.XXX XXX down into high and low types,the type usually XXX product is used。
The low typesof pavement are made with the cutback。
or emulsion。
XXX type may have several names。
However。
XXX is similar for most low-type pavements and XXX mix。
forming the pavement.The high type of asphalt XXX中英文资料XXX grade.中英文资料Fig.·1 A modern XXX.Fig.·2 Asphalt con crete at the San Francisco XXX.They are used when high wheel loads and high volumes of traffic occur and are。
Utilization of urban sewage sludge: Chinese perspectives Purpose Urbanization and industrialization in China has resulted in a dramatic increase in the volume of wastewater and sewage sludge produced from wastewater treatment plants. Problems associated with sewage sludge have attracted increasing attention from the public and urban planners. How to manage sludge in an economically and environmentally acceptable manner is one of the critical issues that modern societies are facing.Methods Sludge treatment systems consist of thickening, dewatering,and several different alternative main treatments(anaerobic digestion, aerobic digestion, drying, composting, and incineration). Agricultural application, landfill, and incineration are the principal disposal methods for sewage sludge in China. However, sewage sludge disposal in the future should focus on resource recovery, reducing environmental impacts and saving economic costs.Results The reuse of biosolids in all scenarios can be environmentally beneficial and cost-effective. Anaerobic digestion followed by land application is the preferable options due to low economic and energy costs and material reuse.Conclusion It is necessary to formulate a standard suitable for the utilization of sewage sludge in China.1 IntroductionIn 2008, it is estimated that 57 billion tons of municipal wastewater was discharged in China, 58% of which came from municipal domestic sewage, while the production of municipal wastewater and dewatered sewage in China increased approximately 5% per year on average from 1998 to 2009 as shown in Fig.1.Sewage sludge as an inevitable by-product of wastewater treatment process presents a number of environmental concerns.Wastewater treatment processes concentrate various pollutants such as heavy metals, organic micro-pollutants, and pathogens into sludge. Sludge disposal can thereby result in the release of toxins into the environment and subsequently into the food chain. On the other hand, it has been estimated that depending on technology choice, approximately 30∼60% of sewage treatment plant operating costs are related to sludge treatment activities. Therefore, the management of sewage sludge in an economically and environmentally acceptable way is a matter of increasing importance.Fig. 1 Production of municipal wastewater and dewatered sewage sludge in ChinaAn ideal way to solve the issue of sludge waste is to minimize its production in biological wastewater treatment processes, rather than rely on post-treatment. When mechanical wastewater treatment is used, a diversity of approaches for sewage sludge treatment processes and end use exists, each with different associated costs and environmental impacts. Strategies on end uses of biosolids have traditionally been based on cost, regulatory, environmental, and public acceptance considerations. In recent years, several methods have been used to evaluate their economic and environmental acceptability. Hospido et al considered land application as an acceptable option for anaerobic digested sludge by evaluating environmental and economic costs of threescenarios (land application, incineration, and pyrolysis of dried sludge), but the environmental impact of construction was ignored. Also little detailed economic analysis information is available for other alternative scenarios. Barber used a model comparing the environmental impacts and economic costs of different alternative treatment and disposal scenarios. Nevertheless, the transport costs associated with the full range of biosolids management options were not discussed, which may be one of the limiting factors of sludge land application in China. Few investigations have been reported on the environmental and economic impacts of pyrolysis and gasification scenario, partly due to their high cost and scarce application in practice. Therefore, more detailed papers should be investigated for an overall comparison of different treatment and end use of urban sewage sludge, to determine which combinations are more sustainable.There are 1,258 municipal wastewater treatment plants(WWTPs) in China. The method of sewage sludge disposal is carried out using four processes: 45% of the sludge produced is being utilized in agriculture, 3.5% is being incinerated, 34.5% is landfilled including 3.5% with domestic waste, while 3.5% is used in some other areas (Fig. 2). There are political and economic incentives to increase the agriculture application of sludge since it contains large amounts of organic matter and nutrients, such as N and P. However, the reduced availability of land, increased public comprehension of pathogen risk, the potential for food chain contamination by heavy metals, and the risk of uncertainty surrounding organic micropollutants act to limit sludge land application. Landfill is also decreasing because of technology, economic capacity, and new legislation. Incineration due to significant dry solid volume reduction and energy recovery from the sludge can contribute to a sustainable biosolids strategy, but environmental pollution and the cost should becarefully treated. Other disposal options such as pyrolysis, gasification,combustion,and co-combustion of sewage sludge with other materials and use as an energy source in the production of cement or building materials have been intensively investigated. These processes which can recover energy from sewage sludge will probably become the future trends of development.Fig. 2 Ways of sludge disposal and utilization in China (2010)Based on the above considerations, it can be expected that studies for the treatment of sewage sludge shall focus on the following aspects: safe handling, resource recovery, and low economic costs. In all these respects, the recovery of sustainable energy from sewage sludge will be of obvious importance. Another issue of concern is to reduce toxins in sewage sludge before the final treatment and minimize the negative impacts on human and ecosystem health. The aim of this paper is to discuss the current situation and future outlook for sewage sludge treatment and disposal and estimate the environmental and economic impacts of various options from sewage sludge. It also provides some reference for decision makers to better manage sewage sludge.2 Composition of sewage sludge in ChinaThe composition and characteristics of sewage sludge depend on several factors, such as the origin of the wastewater, the purification treatment of the wastewater, stabilization treatment, time and storage conditions, or the coagulant agents used. Generally, sewage sludge is composed of organic compounds, macronutrients, and a wide range of micronutrients, non-essential trace metals, organic micropollutants, and microorganisms. It should be stated that some parameters are important when considering the ultimate disposal of the processed sludge and energy reuse from the sludge during treatment. Dry matter has an effect on fuel requirements, exhaust gas production at the incineration process, and the cost of sludge transportation. V olatile matter, a measure of the sludge organic content, is the most important parameter regarding the energetic use of sewage sludge. Other factors, such as harmful organic compounds, micropollutants, nutrients, and heavy metal, cannot be neglected. According to Hua et al., polynuclear aromatic hydrocarbons have become one of the primary pollutants in sludge of Zhejiang WWTPs instead of heavy metals, which has a great influence on agriculture application of sewage sludge. Emerging contaminants such as pharmaceuticals, personal care products, illicit drugs, flame retardants, and perfluorinated compounds should be focused on, due to their endocrine-disrupting properties. N and P are essential resources especially with respect to P. Natural P deposits of sufficient quality are becoming scare, prompting rapid price increase. As a result, large quantities of sludge are applied to farmland. Heavy metal content which is very sensitive to the wastewater source decides whether sewage sludge can be applied to land or not. The threshold value of heavy metal for sludge end use should meet the Pollutants Control Standard of Sludge.3 Sewage sludge treatment process and anaerobic digestionSludge treatment process Biosolids management was divided into categories for sludge treatment and end use, which are likely to be realized by different entities—the wastewater treatment plant and the recipient of treated sludge. Sludge treatment systems generally consist of thickening, dewatering, and several alternative main treatments, such as anaerobic digestion, aerobic digestion, drying, composting, and incineration, which are critical in determining biosolids quality and post-treatment options. Anaerobic digestion or composting is used to meet regulatory requirement for pathogen and remnant organic materials reduction prior to land application. Although incineration can significantly decrease dry solid volume and effectively attain a 100% reduction of pathogens and viruses, it produces dioxins, furans, and fly ash, as incurring as higher running/operational costs. Drying is a necessary process prior to thermal utilization of sewage sludge. The moisture content should meet standards regulated by Chinese legislation after sludge treatment.Life cycle assessment as an environmental information analysis tool to aid planners in the wastewater treatment plant has been extensively applied to sludge treatment. Hong et al carried out a quantified environmental and economic analysis of six alternative scenarios: dewatering, dewatered sludge composting, dewatered sludge drying, dewatered sludge incineration, incinerated ash melting, and dewatered sludge melting, each with and without digestion. The results show that sewage sludge digestion leads to the lower economic and environmental impacts, while dewatered sludge melting is an environmentally optimal and economically affordable method. Murry et al. did an integrated study, comparing nine alternative treatment schemes and arranged them in order of environmental and economic impacts. They proposed that anaerobic digestion (no lime) is overall the most preferable sludge treatment option whereas incineration, particularly coal-fired, is the most costly. Acommon feature of these methods was the utilization of the resource embodied in sludge; for example, heat drying with compost takes advantage of embodied nutrients, anaerobic digestion, and incineration of sewage sludge takes advantage of embodied energy. Overall, in order to decrease the environmental and economic impacts during sludge treatment, maximizing potential offsets, including the efficiency of the thickening process, energy capture from anaerobic digestion, and the electricity production rate generated from biogas, is required.Anaerobic digestion Anaerobic digestion is considered an essential process in a modern WWTP due to reduction of sludge volume, generation of energy-rich biogas, and production of a nutrient-rich final product. Compared with other technologies, it is the most efficient method to capture energy from biosolids with high water content. Barber reported that the conversion of methane produced from anaerobic digestion to electricity and heat is the main contributor to renewable energy within the WWTP. In the EU, 50% of sewage treatment plants have anaerobic digestion, 18% incorporate aerobic digestion, and 4% lime stabilization, whereas 24% of the plants undertake no sludge stabilization. The same tendency is observed in China, but no detailed available information was reported. However, its application has often been limited by very long retention times and low overall degradation efficiency. In order to increase biodegradability and enhance anaerobic digestion with lower retention time and higher biogas production, various sludge pretreatment techniques have been applied in sludge digestion. These processes include biological (largely thermal phased anaerobic), thermal hydrolysis, mechanical (such as ultrasound, high pressure and lysis), chemical with oxidation (mainly ozonation), alkali, and combined pretreatment.Currently, combined sludge digestion with other processes to achieve maximum utilization has attracted more and more attention. Using energy released by microbial decomposition to complete water evaporation in the process of biological drying is a promising method for dewatering sludge. There are some advantages in this process such as low-cost and energy consumption since no fossil fuel is depleted in such systems. Moreover, CO2 emission can also be significantly reduced, while the remaining sludge can be converted into amino acid salt with a content of 90% amino acid after acidification. An effective project like this has already been applied in Qinhuangdao City, China.4 Ways of sludge disposal and utilization4.1 Main disposal methods in ChinaLandfill Landfill is economical and low energy consumption due to its low-technology processes. However, it is a significant source of CH4and N2O, which are greenhouse gases with a high global warming potential. Leachate containing P and heavy metal can threaten surface and ground waters, and none of the nutrient or energy content is recovered from landfill. Biosolid management technologies for very small towns, with limited technical and financial resources, may justifiably consider investing in biofiltration or methane trapping and flaring at their local landfill.Land application Land application of sewage sludge has a great incentive in view of its fertility and soil conditioning properties. It has been shown that the use of sewage sludge derived soil amendments can improve soil physical properties, such as porosity, aggregate stability, bulk density, water retention and movement, and sequester carbon in the soil, thereby reducing atmospheric CO2content and global warming potential. The environmental offset in electricity and fuel consumption is also great when sludge is usedin place of synthetic fertilizers.Land application of sewage sludge is convenient and low requirements. Various stabilized biosolids such as slurry, dewatered cake, and dried pellets can be applied to land. However, sludge utilization can be limited due to its heavy metal, organic micropollutants, and pathogen content. Heavy metal concentrations depending on the relative contributor of industrial wastewaters to the overall flow can be decreased from sludge via source control. Pathogens are removed by pretreatment such as thermophilic anaerobic digestion, or composting.Land application is available only when the sludge quality meets the local criteria with respect to pathogens and heavy metal content. In addition, the doses and rates of sludge application should also be carefully considered. Reports show that excessive application of sludge has increased the bioavailability of heavy metals, which might pose a serious risk to human health. While long-term application of sewage sludge can result in leaching of P and heavy metals, the risks of which are greater than the transfer of heavy metals into plant tissue and the food chain in the case of crops.In addition, recovery of N and P should also be taken seriously. It is generally accepted that with the rapid urbanization in China, increasing amounts of N and P are entering the cities through food consumption. It is estimated that N and P contained in urban sewage sludge were 31,500 and 23,600 tons, respectively, in 2009. With increasing urbanization, the improvement of sewage treatment systems and nutrient use efficiency in food production systems, it is anticipated that nutrients contained in the urban waste stream are likely to increase dramatically in China in the next 10–20 years. Although the absolute amounts of N and P in sewage sludge are not great as compared to chemical fertilizersapplied to agricultural land in China, their emission to the environment will have serious impacts on water quality and ecosystem health. P, as a nonrenewable resource, is becoming depleted, and production of P fertilizer is increasingly more expensive, thus threatening food security globally. Therefore, recovery of nutrients from sewage sludge in a sustainable way is becoming an important challenge for environmental engineers.4.2 Thermochemical processes for sludgeIncineration Incineration of sewage sludge is a process in which its organic matter is completely transformed into CO2 and H2O under high-temperature and aerobic conditions, while inorganic compounds remain in the ash. It is an effective way to dispose of sludge with advantages such as large reduction of sludge volume, thermal destruction of toxic organic compounds, and minimization of odor generation. The final sludge volume after incineration is approximately 10% of that after mechanical dewatering. The energy produced in the incineration process can be used for drying the mechanically dewatered sludge cake prior to the incineration process or can be used for the production of electricity. The amount of energy produced strongly depends upon the water content of the sludge and performance of the incineration.Incineration as an attractive disposal method has been applied worldwide. For example, the amount of sludge being incinerated in Denmark has already reached 24% of the sludge produced, 20% in France, 15% in Belgium, and 14% in Germany, while in USA and Japan the percentage has increased to 25% and 55%, respectively. The main problems for combustion of sludge are high running cost and environmental impacts. Environmental problems relate to the accumulation of heavy metals in ashes and exhaust gases to the atmosphere. The former can be solved by using incineration ash as raw materials in cementmanufacturing, during which process heavy metals are immobilized in cement. Exhaust gases consist of dioxins, furans, and other pollutants (CO2, NO x, N2O, and SO x). Emissions of dioxins and furans are not generally a problem if temperatures above 600°C are kept and flue gases are rapidly cooled below 400°C. N2O can effectively be eliminated by increasing the combustion temperature to 880°C. Addition facilities such as electrostatic precipitators, wet scrubber system, etc. are also needed to comply with the strict exhaust gas emission standards. Large investment for the purification of flue gases may raise social objections.Co-combustion of sewage sludge with other natural resources (coal, lignite, or wood) or municipal solid waste is also an alternative method for the management of sewage sludge. Environmentally and economically, technology scenarios for co-combusting of biosolids meet Waste Incineration Directive emission criteria and provide a net energy gain, but absence of policy and legal clarity, supply chain insecurity, and market immaturity hinder the development of co-combustion.Incineration is suitable for cities; for example, Hangzhou has switched to incineration as the preferred option in sewage management, where land is very valuable. To avoid the high operation cost for sludge incineration and also to improve the energy recovery efficiency, exploiting new types of sewage sludge incinerators, implementation of a combined heat and power production unit at incineration plants, and the use of the polluted drying gas in the incineration process are feasible. It is expected that incineration will play an increasingly important role in sewage management in China in the coming decade. Pyrolysis Pyrolysis is a thermal decomposition of organic substances in the absence of air or in an oxygen-deficient atmosphere. The products of pyrolysis are biogas (noncondensable), bio-oil (condensable volatiles), and carbonaceous bio-char residue all of which have a potential end use and can be maximized by modulating the process conditions. Compared to incineration, pyrolysis has some potential advantages. One advantage is that the conversion of the combustible gases into electrical power can be achieved more efficiently.In addition, the formation and emission of toxic organic compounds, such as dioxins, NO x, and SO x, can be avoided in pyrolysis with low oxygen concentration.Using steam pyrolysis to treat sludge is currently a practice being conducted in China, for example, in the city of Shenzhen. After treatment, the moisture content of sludge is reduced from 80% to 50%, resulting in the final sludge volume decreasing by 60%. During this process, pathogen and odor can be thoroughly removed. The treatment sludge can be made into organic fertilizer, which can be used for horticulture and forestry cultivation. It is a proof of concept for the sustainable development of the circular economy.Other technologies, such as production of bio-oil from the pyrolysis of sewage sludge, have attracted attention due to the non-renewable nature and the increasing price of fossil fuel. Because the mechanism of such a process is complex, many parameters such as temperature, sewage sludge types, retention time, and the catalysts used affect bio-oil production. Literature concerning the production of bio-oil from sludge has demonstrated that the temperature and volatile solid content were the primary factors affecting oil and char yields. The maximum oil yield was achieved with primary sludge at 500°C, and the optimum pyrolysis temperature for waste activated sludge was 400°C. It is also stated that the optimal pyrolysis temperature for bio-oil production is 450°C. Experimental studies on pyrolysis liquids obtained from different sewage sludge have come to very interestingconclusions: High sewage sludge ash content favored the decrease in the char yield and the generation of nonvolatile gases, while the sewage sludge with less content of oxygen-containing compounds would favor the quality of the pyrolysis liquids. It elucidates some recommendable characteristics in order to use sewage sludge as pyrolysis feedstock. Metal oxide catalysts can have different influence on pyrolysis. The presence of Fe2O3 and ZnO probably inhibited the decomposition of organic matters in demineralized sludge samples to generate more solid residues, while Al2O3,CaO,and TiO2 promoted the degradation of organic matters to produce less solid residues. Al2O3 and TiO2 may decrease pyrolysis time, while CaO, Fe2O3, and ZnO may prolong pyrolysis time. It is therefore important to formulate optimal catalysts for such systems.However, the acceptance of this technology may be limited by the low economic value of the product, as well as the relative complexity of the processing equipments. The economic viability of pyrolysis may be improved if the yield of oil were enhanced or if value-added products such as adsorbents could be produced from the pyrolysis chars.5 PerspectivesThis paper reviews present and future directions of sewage sludge management in China. Up until now, most of the sewage sludge produced in the process of wastewater treatment has been used in agriculture or disposed of in landfills, or via incineration. Sewage sludge is rich in resources including nutrients and energy. Given the vast population and rapid urbanization in China, sewage sludge represents a major issue in environment and resource management. To resolve this issue, we propose that a holistic approach should be taken to manage sewage sludge in China, and future research and commercialization should focus on the following aspects:• Life-cycle analysis of food and water consumption in urbanized regions to provide a full account of nutrient flow within urban ecosystems and to calculate the value of sewage sludge within a given boundary/region• Diverse resource recovery systems (for nutrients, bioenergy, and raw substances for building materials) should be developed and applied for sewage sludge management, and in many cases, these systems should be integrated and optimized depending on the quality of sewage sludge and the scale of the region producing sewage sludge. Cost–benefit analysis should also be conducted so that the best technology available can be selected for different scenarios• Novel and environmentally friendly materials derived from sewage sludge, such as PHA, are appealing, and the potential of different bacterial species and recombinant strains should be explored further in the context of increased PHA yield and productivity• For sustainable management of sewage sludge, frameworks for risk assessment should be developed for different options of resource recovery, and the risks should be communicated to the public• New energy policies and regulations such as the climate change levy and enforcing source control to municipal sewers are critical in determining the sustainability of the future in sludge management。
毕业设计外文资料翻译题目建筑结构在冲击负载作用下的连续倒塌分析方法学院土木建筑学院专业土木工程班级土木1107学生陈浩学号20110622014指导教师林明强二〇一五年三月一日TRANSACTIONS OF TIANJIN UNIVERSITY, 2008,14(5) Methods for Progressive Collapse Analysis of Building Structures Under Blast and Impact LoadsLI Zhongxian(李忠献),SHI Yanchao(师燕超)(School of Civil Engineering,Tianjin University,Tianjin 300072,China) Abstract:Progressive collapse of building structures under blast and impact loads has attracted great attention all over the world.Progressive collapse analysis is essential for an economic and safe design of building structures against progressive collapse to blast and impact loads. Because of the catastrophic nature of progressive collapse and the potentially high cost of constructing or retrofitting buildings to resist it,it is imperative that the progressive collapse analysis methods be reliable[1]. For engineers their methodology to carry out progressive collapse evaluation need not only be accurate and concise,but also be easily used and works fast.Thus,many researchers have been spending lots of effort in developing reliable,efficient and straightforward progressive collapse analysis methods recently. In the present paper,current progressive collapse analysis methods available in the literature are reviewed.Their suitability applicability and reliability are discussed.Our recent proposed new method for progressive collapse analysis of reinforced concrete frames under blast loads is also introduced.Keywords:progressive collapse analysis;building structures;blast load;impact load Progressive collapse is defined as“the spread of an initial local failure from element to element resulting in the collapse of an entire structure or a disproportionately large part of it”[1]. It refers to the failure of one or a group of key structural load—carrying members that give rise to a more widespread failure of the surrounding members and partial or complete structural collapse[2].Progressive collapse of building structures might be induced by a series of accidental and intentional events such as false construction order,local failure due to accidental overload,damage of critical component by explosion and earthquake.This paper only focuses on progressive collapse analysis of building structures induced by abnormal loads,such as blast and impact.With the recent progressive collapse of Alfred P.Murrah Federal Building and world Trade Center (WTC))researches are more focused than ever on constructing buildings safer from progressive collapse induced by blast and impact loads.Progressive collapse analysis is essential for an economic and safe design of building structures against progressive collapse to blast and impact loads.Because of the catastrophic nature of progressive collapse and the potentially high cost of constructing or retrofitting buildings to resist it,itis imperative that the progressive collapse analysis methods be reliable[3].For engineers,their methodology to carry out progressive collapse evaluation need not only to be accurate and concise,but also be easily used and works fast.Thus,many researchers have been spending lots of effort in developing reliable,efficient and straightforward progressive collapse analysis methods recently.The current available methods in analyzing structural progressive collapse could be classified into two major categories,namely the direct simulation method,in which the blast loading effects on structural damage and building collapse are directly simulated,and uncoupled alternative load path method with analysis of the structure by simulating various levels of damage by the removal of key load—carrying members[4].In the present paper,the available progressive collapse analysis methods in the literature are reviewed according to their categories.Both advantages and disadvantages of each method are listed.Their suitability,applicability and reliability are also discussed.Our recently proposed new method for progressive collapse analysis of reinforced concrete frames under blast 1oads is also introduced.1. Progressive collapse analysis methods for building structures.In this section,the current methods for analyzing structural progressive collapse available in the literature are presented in two major categories,namely the direct simulation method and the alternative load path method.1.1 Direct simulation methodFor the direct simulation method,the building structures,air,and explosive are all modeled in detail.Explosion,blast wave propagation and its interaction with structures all need to be simulated,if not,blast and impact loads acting on the building structure should be derived and directly applied to structural component[5]s.The material nonlinear behavior and dynamic effects and damage due to blast or impact are mostly included in the simulation.This section will list typical applications of direct simulation method in progressive collapse analysis of building structures recently,each with its own characteristic.1.1.1 Direct simulation of building collapse under blast loadsLuccioni et al[6] carried out an analysis of structural collapse of an actual building,the AMIA (Israel’s Mutual Society of Argentina)building,which had suffered a terrorist attack and collapsed.In the analysis,the building was modeled using 3一dimensional solid elements,including the reinforced concrete columns,beams and masonry walls.Fig.1 gives the configuration of the building model and the location of the explosion.The analysis of the structural collapse of the building was performed in two stages.The first part of the analysis consisted of the simulation of the explosion itself from the detonation instant and the second part consisted of the analysis of the effect and interaction with the building of the blast wave generated by the explosion[7].Only the load produced by the air blast wave was considered in the analysis.The ground motion generated by the explosion was not taken into account.Fig.2 shows the numerical results of the collapsed building.The comparison of numerical results with photographs taken after the terrorist attack showed that the numerical analysis accurately reproduced the collapse of the building under the blast load.The good agreement between actual damage and that one numerically obtained proves that the detailed simulation of the structure,materials and blast effects are needed for this type of analysis and nowadays represent the only way to successfully run a complete collapse analysis of an entire building.This case represents a good example of using direct simulation method to carry out the progressive collapse analysis of structures.That is,the method could successfully predict the progressive collapse process of the structure under blast and impact loads.However,this accuracy is achieved at great cost.In order to derive the accurate material parameters,experiments should be carried out first.The building structures,air,and,explosive should be modeled in detail,which need thousands of elements.Special algorithms and software were also needed to calculate the blast wave-structure interaction and to catch the damage and collapse behavior of the building structure.Therefore,it is extremely time consuming,and requires a profound knowledge of structural dynamics,damage mechanics,dynamic material properties and computational skills.1.1.2 Collapse analysis of the World Trade CenterQuan and Brinbaum[8] carried out a 3-dimensiona1 computer simulation of impact and collapse of the WTC North Tower using AUT0DYN 3D computer program to numerically reproduce the entire event of impact and collapse of the North Tower of WTC on September l1.Their model included the entire building of the WTC North Tower and a Boeing 767 passenger jet.The three—dimensional finite element model used in the simulation contained a total of 270 000 beam and shell elements.All the columns on the perimeter wall as well as inside the central core were simplified,being modeled by beam elements instead of using solid elements or shell elements.Floors and roof were modeled by the AUTODYN shell solver.The Boeing 767 airplane was also modeled in detail using AUTODYN shell solver and Lagrange solver.Fig.3 gives the AUTODYN-generated 3一dimensional finite element model of the WTC North Tower and the Boeing 767 airplane.The complete simulation consists of four stages:static equilibrium calculation to get the initial stresses and strains from gravity;simulation of a Boeing 767 airplane impacting the tower;the reduction of the strength and stiffness of the tower resulting from the post-impact fuel fire;and finally,the progressive collapse of the Tower driven by gravity.Fig.4 gives one of the typical results,which presents the material location of the tower at 6.5 s after the impact.As can be seen,the building had already collapsed to half of its height.The numerical results showed that a scientifically substantiated plausible scenario for the impact and collapse event of the North Tower could be obtained through the numerical simulation.In the progressive analysis,a reasonable simplification in the modeling such as using simple elements to represent complex behavior of structural members will not affect the accuracy of the results,while this might dramatically reduce the size of the mode1.This could save lots of computer memories and computing time,especially for the complex structures,such as tall buildings[9].Of course certain finite elements are still needed to be developed.1.1.3 DYN method in progressive analysis of RC flameHao et al[10]proposed a DYN method based on the continuum damage mechanics theory.The main difference between this method and other direct simulation methods is that the explosion initialization and blast wave propagation were not directly modeled.Instead,blast loads acting on the structure were calculated first using the formulae given in TM5—1300[11] and Ref..Then they are directly applied on front,side,roof and rear of the building structure.This method was used to analyze structural progressive collapse of a three-storey and two-span reinforced concrete (RC)frame structure[12].Computer software LS.DYNA with user—defined subroutines was used to perform the analyses.Fig.5 gives the configuration of the RC frame and the explosive location.In the analysis,the blast was assumed to be detonated on ground surface.The blast weight was chosen to be 1 000kg equivalent of TNT,while the scaled distance used was 1.7 m/kg1/3,at which only the first floor middle column would collapse due to blast effects.Fig.6 shows the numerical results of the structural progressive collapse obtained from DYN method analysis.As can be seen,DYN method gives reasonable prediction of the RC frame collapse under critical blast load.In their study,comparisons were also made between results from DYN method,GSA and DoD guidelines based alternative load path methods[13].It was found both the GSA and DoD based alternative load path methods may not give reliable prediction of structural progressive collapse and usually underestimate the stress and strain response at the supporting joint above the blast damaged columns[15].As mentioned above,the great improvement of the DYN method is that,interaction between the blast wave and building structure[14],blast initial and blast wave propagation are not needed to be directly simulated.It uses the profound knowledge of blast load distribution to define the blast loads and then directly apply them to the structure.This could dramatically decrease the size of finite element model and increase the efficiency of the simulation[15].To sum up,the direct simulation method can yield reliable predictions of structural collapse to blast and impact loads,but it is extremely time consuming,and requires a profound knowledge of structural dynamics,damage mechanics,dynamic material properties and computational skills.It is therefore not practical for common engineering application[16].The practicability of this category of methods could be improved in the following way:1)Developing new finite element,which is not only simple to be established and calculated,but also can represent the complex behavior of structural components such as nonlinear and dynamic effects;2)Proposing new method of accurately predicting blast loads around the building structures in different blast scenarios.With the development of computer science,with the improvement of the finite element model and the progress of the load application method,the direct simulation method might become an accurate and efficient way in doing progressive collapse analysis of structural building under blast and impact loads.。