当前位置:文档之家› 高三一轮复习精题组函数的奇偶性与周期性(有详细答案)

高三一轮复习精题组函数的奇偶性与周期性(有详细答案)

高三一轮复习精题组函数的奇偶性与周期性(有详细答案)
高三一轮复习精题组函数的奇偶性与周期性(有详细答案)

§2.3 函数的奇偶性与周期性

1.函数的奇偶性

奇偶性,定义,图象特点偶函数,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数,关于y 轴对称

奇函数,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数,关于原点对称 2.周期性

(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.

1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.

( × ) (2)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称. ( √ ) (3)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.

( √ ) (4)若函数f (x )=x

(x -2)(x +a )

为奇函数,则a =2.

( √ )

(5)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( √ ) (6)函数f (x )为R 上的奇函数,且f (x +2)=f (x ),则f (2 014)=0. ( √ )

2.(2013·山东)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1

x ,则f (-1)等于( )

A .-2

B .0

C .1

D .2

答案 A

解析 f (-1)=-f (1)=-(1+1)=-2.

3.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是

( )

A .-13 B.13 C.12 D .-12

答案 B

解析 依题意b =0,且2a =-(a -1),

∴a =13,则a +b =13

.

4.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 015)等于

( )

A .-2

B .2

C .-98

D .98

答案 A

解析 ∵f (x +4)=f (x ),

∴f (x )是以4为周期的周期函数, ∴f (2 015)=f (503×4+3)=f (3)=f (-1). 又f (x )为奇函数,

∴f (-1)=-f (1)=-2×12=-2,即f (2 015)=-2.

5.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x

的取值范围是________. 答案 (-1,0)∪(1,+∞)

解析 画草图,由f (x )为奇函数知:f (x )>0的x 的取值范围为 (-1,0)∪(1,+∞).

题型一 判断函数的奇偶性 例1 判断下列函数的奇偶性: (1)f (x )=9-x 2+x 2-9;

(2)f (x )=(x +1) 1-x

1+x ;

(3)f (x )=4-x 2

|x +3|-3

.

思维启迪 确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称.若对称,再验证f (-x )=±f (x )或其等价形式f (-x )±f (x )=0是否成立.

解 (1)由?

????

9-x 2

≥0

x 2-9≥0,得x =±3.

∴f (x )的定义域为{-3,3},关于原点对称. 又f (3)+f (-3)=0,f (3)-f (-3)=0. 即f (x )=±f (-x ).

∴f (x )既是奇函数,又是偶函数.

(2)由?????

1-x 1+x ≥01+x ≠0,得-1

(3)由?

????

4-x 2

≥0|x +3|-3≠0,得-2≤x ≤2且x ≠0.

∴f (x )的定义域为[-2,0)∪(0,2],关于原点对称.

∴f (x )=4-x 2(x +3)-3=4-x 2

x .

∴f (x )=-f (-x ),∴f (x )是奇函数.

思维升华 (1)利用定义判断函数奇偶性的步骤:

(2)在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数))是否成立.

判断下列函数的奇偶性:

(1)f (x )=lg (1-x 2)

|x -2|-2;

(2)f (x )=????

?

x 2

+2(x >0)0(x =0)-x 2-2(x <0)

.

解 (1)由?

????

1-x 2>0

|x -2|-2≠0,得定义域为(-1,0)∪(0,1),

f (x )=l

g (1-x 2)-(x -2)-2

=-lg (1-x 2)

x .

∵f (-x )=-lg[1-(-x )2]-x =-lg (1-x 2)

-x =-f (x ).

∴f (x )为奇函数.

(2)f (x )的定义域为R ,关于原点对称,

当x >0时,f (-x )=-(-x )2-2=-(x 2+2)=-f (x ); 当x <0时,f (-x )=(-x )2+2=-(-x 2-2)=-f (x ); 当x =0时,f (0)=0,也满足f (-x )=-f (x ). 故该函数为奇函数. 题型二 函数周期性的应用

例2 (1)定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 015)等于

( )

A .335

B .336

C .1 678

D .2 012

(2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1

f (x )

,当2≤x ≤3时,f (x )=x ,则f (105.5)=________.

思维启迪 (1)f (x )的周期性已知,可以通过一个周期内函数值的变化情况求和.(2)通过题意先确定函数的周期性. 答案 (1)B (2)2.5

解析 (1)利用函数的周期性和函数值的求法求解. ∵f (x +6)=f (x ),∴T =6.

∵当-3≤x <-1时,f (x )=-(x +2)2; 当-1≤x <3时,f (x )=x ,

∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0, ∴f (1)+f (2)+…+f (6)=1,

∴f (1)+f (2)+…+f (6)=f (7)+f (8)+…+f (12)=…=f (2 005)+f (2 006)+…+f (2 010)=1,

∴f (1)+f (2)+…+f (2 010)=1×2 010

6=335.

而f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015) =f (1)+f (2)+f (3)+f (4)+f (5)=1+2-1+0-1=1. ∴f (1)+f (2)+…+f (2 015)=335+1=336. (2)由已知,可得f (x +4)=f [(x +2)+2]

=-1f (x +2)

=-1

-1f (x )=f (x ).

故函数的周期为4.

∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5.

思维升华 (1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)求函数周期的方法

(1)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)等于

( )

A .-1

B .1

C .-2

D .2

(2)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ???

?-5

2等于 ( )

A .-12

B .-14

C.14

D.12

答案 (1)A (2)A

解析 (1)由f (x )是R 上周期为5的奇函数知 f (3)=f (-2)=-f (2)=-2, f (4)=f (-1)=-f (1)=-1, ∴f (3)-f (4)=-1,故选A.

(2)∵f (x )是周期为2的奇函数,

∴f ????-52=f ????-52+2=f ????-12=-f ???

?12 =-2×12×????1-12=-12. 题型三 函数性质的综合应用

例3 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x . (1)求f (π)的值;

(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积; (3)写出(-∞,+∞)内函数f (x )的单调区间.

思维启迪 可以先确定函数的周期性,求f (π);然后根据函数图象的对称性、周期性画出函数图象,求图形面积、写单调区间. 解 (1)由f (x +2)=-f (x )得,

f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), 所以f (x )是以4为周期的周期函数, ∴f (π)=f (-1×4+π)=f (π-4)=-f (4-π) =-(4-π)=π-4.

(2)由f (x )是奇函数与f (x +2)=-f (x ), 得:f [(x -1)+2]=-f (x -1)=f [-(x -1)], 即f (1+x )=f (1-x ).

故知函数y =f (x )的图象关于直线x =1对称.

又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.

当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,

则S =4S △OAB =4×????12×2×1=4. (3)函数f (x )的单调递增区间为[4k -1,4k +1] (k ∈Z ), 单调递减区间为[4k +1,4k +3] (k ∈Z ).

思维升华 关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题,体现了转化思想.

(1)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)

13的x 的取值

范围是

( )

A.????13,23

B.????

13,23 C.????12,23

D.????12,23

(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ) A .f (-25)

解析 (1)偶函数满足f (x )=f (|x |),根据这个结论,

有f (2x -1)

?13, 进而转化为不等式|2x -1|<1

3

解这个不等式即得x 的取值范围是????

13,23. (2)由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知, f (x )在[-2,2]上递增,

又f (x -4)=-f (x )?f (x -8)=-f (x -4)=f (x ), 故函数f (x )以8为周期,

f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1), f (80)=f (0),故f (-25)

忽视定义域致误

典例:(10分)(1)若函数f (x )=k -2x 1+k ·2x

在定义域上为奇函数,则实数k =________.

(2)已知函数f (x )=?

????

x 2

+1,x ≥0,

1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.

易错分析 (1)解题中忽视函数f (x )的定义域,直接通过计算f (0)=0得k =1. (2)本题易出现以下错误

由f (1-x 2)>f (2x )得1-x 2>2x ,忽视了1-x 2>0导致解答失误.

解析 (1)∵f (-x )=k -2-

x 1+k ·2-x =

k ·2x -1

2x +k , ∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)·(1+k ·2x )

(1+k ·2x )(2x +k )

=(k 2-1)(22x +1)(1+k ·2x )(2x +k )

. 由f (-x )+f (x )=0可得k 2=1,∴k =±1.

(2) 画出f (x )=?

????

x 2+1,x ≥0,

1,x <0的图象,

由图象可知,若f (1-x 2)>f (2x ),

则?

????

1-x 2

>0,1-x 2

>2x , 即???

-1

得x ∈(-1,2-1). 答案 (1)±1 (2)(-1,2-1)

温馨提醒 (1)已知函数的奇偶性,利用特殊值确定参数,要注意函数的定义域. (2)解决分段函数的单调性问题时,应高度关注: ①抓住对变量所在区间的讨论.

②保证各段上同增(减)时,要注意左、右段端点值间的大小关系. ③弄清最终结果取并还是交.

方法与技巧

1.正确理解奇函数和偶函数的定义,必须把握好两个问题:

(1)定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件; (2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.

2.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.

3.若对于函数f (x )的定义域内任一个自变量的值x 都有f (x +a )=-f (x )或f (x +a )=1

f (x )

或f (x +a )=-1

f (x )

(a 是常数且a ≠0),则f (x )是一个周期为2a 的周期函数. 失误与防范

1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.

2.判断函数f (x )是奇函数,必须对定义域内的每一个x ,均有f (-x )=-f (x ),而不能说存在x 0使f (-x 0)=-f (x 0).对于偶函数的判断以此类推.

3.分段函数奇偶性判定时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性.

A 组 专项基础训练

一、选择题

1.(2013·广东)定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是

( )

A .4

B .3

C .2

D .1

答案 C

解析 由奇函数的定义可知y =x 3,y =2sin x 为奇函数.

2.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)等于 ( )

A .-3

B .-1

C .1

D .3

答案 A

解析 ∵f (x )是奇函数,当x ≤0时,f (x )=2x 2-x , ∴f (1)=-f (-1)=-[2×(-1)2-(-1)]=-3.

3.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1

<0,则( )

A .f (3)

B .f (1)

C .f (-2)

D .f (3)

答案 A

解析 由题意知f (x )为偶函数,所以f (-2)=f (2), 又x ∈[0,+∞)时,f (x )为减函数,且3>2>1, ∴f (3)

4.定义两种运算:a b =a 2-b 2,a ?b =(a -b )2,则f (x )=x

2-(x ?2)是

( )

A .奇函数

B .偶函数

C .既奇又偶函数

D .非奇非偶函数

答案 A

解析 因为

x =4-x 2,x ?2=(x -2)2, 所以f (x )=4-x 22-(x -2)2=4-x 22-(2-x )=4-x 2

x ,

该函数的定义域是[-2,0)∪(0,2], 且满足f (-x )=-f (x ). 故函数f (x )是奇函数.

5.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -

x +2(a >0,且a ≠1).若

g (2)=a ,则f (2)等于

( )

A .2 B.15

4

C.17

4

D .a 2

答案 B

解析 ∵f (x )为奇函数,g (x )为偶函数, ∴f (-2)=-f (2),g (-2)=g (2)=a , ∵f (2)+g (2)=a 2-a -

2+2,①

∴f (-2)+g (-2)=g (2)-f (2)=a -

2-a 2+2,②

由①、②联立,g (2)=a =2,f (2)=a 2-a -

2=154

.

二、填空题

6.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1

解析 ∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0, f (x )=-f (-x )=-(-x +1),

即x <0时,f (x )=-(-x +1)=--x -1.

7.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________. 答案 0

解析 ∵函数f (x )=x 2-|x +a |为偶函数,∴f (-x )=f (x ),即(-x )2-|-x +a |=x 2-|x +a |,∴|-x +a |=|x +a |,∴a =0.

8.已知函数f (x )满足:f (1)=1

4

,4f (x )f (y )=f (x +y )+f (x -y )(x ,y ∈R ),则f (2 015)=________.

答案 14

解析 方法一 令x =1,y =0时,4f (1)·f (0)=f (1)+f (1),

解得f (0)=1

2,

令x =1,y =1时,4f (1)·f (1)=f (2)+f (0),

解得f (2)=-1

4,

令x =2,y =1时,4f (2)·f (1)=f (3)+f (1),

解得f (3)=-1

2

依次求得f (4)=-14,f (5)=14,f (6)=12,f (7)=1

4

f (8)=-14,f (9)=-1

2,…

可知f (x )是以6为周期的函数,

∴f (2 015)=f (335×6+5)=f (5)=1

4

.

方法二 ∵f (1)=1

4

,4f (x )·f (y )=f (x +y )+f (x -y ),

∴构造符合题意的函数f (x )=12cos π

3

x ,

∴f (2 015)=12cos ????π3×2 015=14. 三、解答题

9.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x =1对称. (1)求证:f (x )是周期为4的周期函数;

(2)若f (x )=x (0

有f (x +1)=f (1-x ),即有f (-x )=f (x +2). 又函数f (x )是定义在R 上的奇函数, 故有f (-x )=-f (x ).故f (x +2)=-f (x ). 从而f (x +4)=-f (x +2)=f (x ), 即f (x )是周期为4的周期函数.

(2)解 由函数f (x )是定义在R 上的奇函数,有f (0)=0. x ∈[-1,0)时,-x ∈(0,1],f (x )=-f (-x )=--x . 故x ∈[-1,0]时,f (x )=--x . x ∈[-5,-4]时,x +4∈[-1,0], f (x )=f (x +4)=--x -4.

从而,x ∈[-5,-4]时,函数f (x )=--x -4. 10.已知函数f (x )=????

?

-x 2

+2x ,x >0,0,x =0,

x 2+mx ,x <0是奇函数.

(1)求实数m 的值;

(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,

所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx , 所以m =2.

(2)由(1)知f (x )在[-1,1]上是增函数, 要使f (x )在[-1,a -2]上单调递增. 结合f (x )的图象知?

????

a -2>-1,

a -2≤1,

所以1

B 组 专项能力提升

1.已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且g (x )=f (x -1),则f (2 013)+f (2 015)的值为

( )

A .-1

B .1

C .0

D .无法计算

答案 C

解析 由题意,得g (-x )=f (-x -1),

又∵f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,∴g (-x )=-g (x ),f (-x )=f (x ),

∴f (x -1)=-f (x +1),

∴f (x )=-f (x +2),∴f (x )=f (x +4), ∴f (x )的周期为4,

∴f (2 013)=f (1),f (2 015)=f (3)=f (-1), 又∵f (1)=f (-1)=g (0)=0, ∴f (2 013)+f (2 015)=0.

2.设奇函数f (x )的定义域为R ,最小正周期T =3,若f (1)≥1,f (2)=2a -3

a +1,则a 的取值范

围是

( )

A .a <-1或a ≥2

3

B .a <-1

C .-1

3

D .a ≤2

3

答案 C

解析 函数f (x )为奇函数,则f (1)=-f (-1). 由f (1)=-f (-1)≥1,得f (-1)≤-1; 函数的最小正周期T =3,则f (-1)=f (2), 由2a -3a +1

≤-1,解得-1

3.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=2x ,则有 ①2是函数f (x )的周期;

②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数; ③函数f (x )的最大值是1,最小值是0. 其中所有正确命题的序号是________. 答案 ①②

解析 在f (x +1)=f (x -1)中,令x -1=t ,则有f (t +2)=f (t ), 因此2是函数f (x )的周期,故①正确; 当x ∈[0,1]时,f (x )=2x 是增函数, 则f (x )在[-1,0]上是减函数,

根据函数的周期性知,函数f (x )在(1,2)上是减函数, 在(2,3)上是增函数,故②正确;

在区间[-1,1]上,f (x )的最大值为f (1)=f (-1)=2, f (x )的最小值为f (0)=1,故③错误.

4.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值;

(2)判断f (x )的奇偶性并证明你的结论;

(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围. 解 (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2),

∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.

(2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),

∴f (-1)=1

2f (1)=0.

令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数. (3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数, ∴f (x -1)<2?f (|x -1|)

又f(x)在(0,+∞)上是增函数.

∴0<|x-1|<16,解之得-15

∴x的取值范围是{x|-15

5.设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上只有f(1)=f(3)=0.

(1)试判断函数y=f(x)的奇偶性;

(2)试求方程f(x)=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论.

解(1)∵f(1)=0,且f(x)在[0,7]上只有f(1)=f(3)=0,

又∵f(2-x)=f(2+x),令x=-3,f(-1)=f(5)≠0,

∴f(-1)≠f(1),且f(-1)≠-f(1).

∴f(x)既不是奇函数,也不是偶函数.

(2)f(10+x)=f[2+8+x]=f[2-(8+x)]

=f(-6-x)=f[7-(13+x)]=f[7+13+x]

=f(20+x),

∴f(x)以10为周期.

又f(x)的图象关于x=7对称知,f(x)=0在(0,10)上有两个根,

则f(x)=0在(0,2 005]上有201×2=402个根;

在[-2 005,0]上有200×2=400个根;

因此f(x)=0在闭区间上共有802个根.

函数的奇偶性试题及高考常见

课题:函数的奇偶性 教学目标:掌握函数的奇偶性的定义及图象特征,并能判断和证明函数的奇偶性,能利 用函数的奇偶性解决问题. 教学重点:函数的奇偶性的定义及应用. (一) 主要知识: 1.函数的奇偶性的定义:设()y f x =,x A ∈, 如果对于任意x A ∈,都有()()f x f x -=-,则称函数()y f x =为奇函数;如果对于任意x A ∈,都有()()f x f x -=,则称函数()y f x =为偶函数; 2.奇偶函数的性质: ()1函数具有奇偶性的必要条件是其定义域关于原点对称; ()2()f x 是偶函数?()f x 的图象关于y 轴对称; ()f x 是奇函数?()f x 的图象关于原点对称; ()3奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的 单调性. 3.()f x 为偶函数()()(||)f x f x f x ?=-=. 4.若奇函数()f x 的定义域包含0,则(0)0f =. (二)主要方法: 1.判断函数的奇偶性的方法: ()1定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式; ()2图象法; ()3性质法:①设 ()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域 1 2D D D =上:奇±奇=奇,偶±偶=偶,奇?奇=偶,偶?偶=偶,奇?偶=奇; ②若某奇函数若存在反函数,则其反函数必是奇函数; 2. 判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=, () 1() f x f x =±-. (三)典例分析: 问题1.判断下列各函数的奇偶性: ()1 ()(f x x =- ()2 2lg(1) ()|2|2 x f x x -=--; ()3 ())f x x =; ()4 22 (0)()(0)x x x f x x x x ?+?? 问题2. ()1已知()f x 是R 上的奇函数,且当(0,)x ∈+∞时,()(1f x x =+, 则()f x 的解析式为 ()2(04上海)设奇函数()f x 的定义域为[]5,5-若当[x ∈

(完整版)函数的单调性与奇偶性练习题基础

1 函数单调性(一) (一)选择题 1.函数x x f 3 )(= 在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1 B .x y 2 = C .y =x 2-4x +5 D .y =|x -1|+2 3.设函数y =(2a -1)x 在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( ) A .必是增函数 B .不一定是增函数 C .必是减函数 D .是增函数或减函数 (二)填空题 5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______. 6.若函数x a x f = )(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)4 3(f 的大小关系是______。 *9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. (三)解答题 10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断: 甲说f (x )在定义域上是增函数; 乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。 11.已知函数.21 )(-= x x f (1)求f (x )的定义域; (2)证明函数f (x )在(0,+∞)上为减函数. 12.已知函数| |1)(x x f = . (1)用分段函数的形式写出f (x )的解析式;

高一数学函数奇偶性练习题及答案解析

高一数学函数奇偶性练习题及答案解析 数学函数奇偶性练习题及答案解析 1.下列命题中,真命题是 A.函数y=1x是奇函数,且在定义域内为减函数 B.函数y=x3x-10是奇函数,且在定义域内为增函数 C.函数y=x2是偶函数,且在-3,0上为减函数 D.函数y=ax2+cac≠0是偶函数,且在0,2上为增函数 解析:选C.选项A中,y=1x在定义域内不具有单调性;B中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+cac≠0在0,2上为减函数,故选C. 2.奇函数fx在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f-6+f-3的值为 A.10 B.-10 C.-15 D.15 解析:选C.fx在[3,6]上为增函数,fxmax=f6=8,fxmin=f3=-1.∴2f-6+f-3=-2f6- f3=-2×8+1=-15. 3.fx=x3+1x的图象关于 A.原点对称 B.y轴对称 C.y=x对称 D.y=-x对称 解析:选A.x≠0,f-x=-x3+1-x=-fx,fx为奇函数,关于原点对称. 4.如果定义在区间[3-a,5]上的函数fx为奇函数,那么a=________. 解析:∵fx是[3-a,5]上的奇函数, ∴区间[3-a,5]关于原点对称, ∴3-a=-5,a=8. 答案:8 1.函数fx=x的奇偶性为

A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数 解析:选D.定义域为{x|x≥0},不关于原点对称. 2.下列函数为偶函数的是 A.fx=|x|+x B.fx=x2+1x C.fx=x2+x D.fx=|x|x2 解析:选D.只有D符合偶函数定义. 3.设fx是R上的任意函数,则下列叙述正确的是 A.fxf-x是奇函数 B.fx|f-x|是奇函数 C.fx-f-x是偶函数 D.fx+f-x是偶函数 解析:选D.设Fx=fxf-x 则F-x=Fx为偶函数. 设Gx=fx|f-x|, 则G-x=f-x|fx|. ∴Gx与G-x关系不定. 设Mx=fx-f-x, ∴M-x=f-x-fx=-Mx为奇函数. 设Nx=fx+f-x,则N-x=f-x+fx. Nx为偶函数. 4.已知函数fx=ax2+bx+ca≠0是偶函数,那么gx=ax3+bx2+cx A.是奇函数 B.是偶函数 C.既是奇函数又是偶函数

基本初等函数专项训练经典题

一、简答题 1、设. (1)判断函数的奇偶性; (2)求函数的定义域和值域. 2、设函数 (Ⅰ)讨论的单调性; (Ⅱ)求在区间的最大值和最小值. 3、已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数. (1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围; (2)解关于x的方程f(x)=|f′(x)|; (3)设函数g(x)=,求g(x)在x∈[2,4]时的最小值. 4、经市场调查,某旅游城市在过去的一个月内(以30天计),旅游人数f(t)(万人)与时间t(天)的函数关系近似满足f(t)=4+,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115-|t-15|. (1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式; (2)求该城市旅游日收益的最小值(万元). 5、某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是: P(x)=x(x+1)(41-2x)(x≤12且x∈N*)

(1)写出第x月的需求量f(x)的表达式; (2)若第x月的销售量g(x)= (单位:件),每件利润q(x)元与月份x的近似关系为:q(x)=,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403) 6、已知函数f(x)=x2-(1+2a)x+a ln x(a为常数). (1)当a=-1时,求曲线y=f(x)在x=1处切线的方程; (2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间. 7、某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y=+2是否符合公司要求的奖励函数模型,并说明原因; (2)若该公司采用模型函数y=作为奖励函数模型,试确定最小的正整数a的值. 8、已知函数图象上一点P(2,f(2))处的切线方程为. (Ⅰ)求的值; (Ⅱ)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底,); (Ⅲ)令,如果图象与轴交于,AB中点为,求 证:. 9、已知命题p:函数y=log a(1-2x)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x 恒成立.若p∨q是真命题,求实数a的取值范围.

函数的奇偶性练习题

函数的奇偶性 一、选择题 1.若)(x f 是奇函数,则其图象关于( ) A .x 轴对称 B .y 轴对称 C .原点对称 D .直线x y =对称 2.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数y f x =()图象 上的是( ) A . (())a f a ,- B . (())--a f a , C . (())---a f a , D .(())a f a ,- 3.下列函数中为偶函数的是( ) A .x y = B .x y = C .2x y = D .13+=x y 4. 如果奇函数)(x f 在[]7,3上是增函数,且最小值是5,那么)(x f 在[]3,7--上是( ) A .增函数,最小值是-5 B .增函数,最大值是-5 C .减函数,最小值是-5 D .减函数,最大值是-5 5. 已知函数)(1 22 2)(R x a a x f x x ∈+-+?= 是奇函数,则a 的值为( ) A .1- B .2- C .1 D .2 6.已知偶函数)(x f 在],0[π上单调递增,则下列关系式成立的是( ) A .)2()2 ()(f f f >- >-π π B .)()2 ()2(ππ ->->f f f C .)2 ()2()(π π- >>-f f f D .)()2()2 (ππ ->>- f f f 二、填空题 7.若函数)(x f y =是奇函数,3)1(=f ,则)1(-f 的值为____________ . 8.若函数)(x f y =)(R x ∈是偶函数,且)3()1(f f <,则)3(-f 与)1(-f 的大小关系为__________________________. 9.已知)(x f 是定义在[)2,0-?(]0,2上的奇函数,当0>x 时,)(x f 的图象如右图所示,那么f (x ) 的值域是 .

2020高考数学刷题首选卷考点测试7函数的奇偶性与周期性(理)(含解析)

考点测试7 函数的奇偶性与周期性 高考概览 本考点是高考的必考知识点,常考题型为选择题、填空题,分值5分,中等难度 考纲研读 1.结合具体函数,了解函数奇偶性的含义 2.会运用函数图象理解和研究函数的奇偶性 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性 一、基础小题 1.若函数f (x )=x (2x +1)(x -a )为奇函数,则实数a =( ) A .12 B .23 C .3 4 D .1 答案 A 解析 函数f (x )的定义域为xx ≠-1 2且x ≠a . ∵奇函数定义域关于原点对称. ∴a =1 2 .故选A . 2.已知定义在R 上的函数f (x )是奇函数,且是以2为周期的周期函数,则f (1)+f (4)+f (7)=( ) A .-1 B .0 C .1 D .4 答案 B 解析 由题意知f (-x )=-f (x )且f (x +2)=f (x ),所以f (1)+f (4)+f (7)=f (1)+

f (0)+f (-1)=0.故选B . 3.已知f (x )为奇函数,在[3,6]上是增函数,且在[3,6]上的最大值为8,最小值为-1,则2f (-6)+f (-3)=( ) A .-15 B .-13 C .-5 D .5 答案 A 解析 因为函数在[3,6]上是增函数,所以f (6)=8,f (3)=-1.又因为函数为奇函数,所以2f (-6)+f (-3)=-2f (6)-f (3)=-2×8+1=-15.故选A . 4.已知函数f (x )为奇函数,当x >0时,f (x )=x 2 -x ,则当x <0时,函数f (x )的最大值为( ) A .-14 B .14 C .12 D .-12 答案 B 解析 解法一:设x <0,则-x >0,所以f (-x )=x 2+x ,又函数f (x )为奇函数,所以 f (x )=-f (-x )=-x 2-x =-? ?? ?? x +12 2+14,所以当x <0时,函数f (x )的最大值为14 .故选B . 解法二:当x >0时,f (x )=x 2-x =? ????x -122-14 ,最小值为-14, 因为函数f (x )为奇函数, 所以当x <0时,函数f (x )的最大值为1 4 .故选B . 5.已知f (x )是定义在R 上的函数,且f (x +2)=-f (x ).当x ∈(0,2)时,f (x )=2x 2 ,则f (7)=( ) A .-2 B .2 C .-98 D .98 答案 A 解析 由f (x +2)=-f (x ),得f (7)=-f (5)=f (3)=-f (1)=-2.故选A . 6.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -x B .12(e x +e -x ) C .e x +e -x D .12(e x -e -x ) 答案 D 解析 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).故选D . 7.已知函数f (x )=g (x )+x 2 ,对于任意x ∈R 总有f (-x )+f (x )=0,且g (-1)=1,则g (1)=( ) A .-1 B .1 C .3 D .-3

(完整版)函数奇偶性知识点和经典题型归纳

函数奇偶性 知识梳理 1. 奇函数、偶函数的定义 (1)奇函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=-, 则这个函数叫奇函数. (2)偶函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=, 则这个函数叫做偶函数. (3)奇偶性:如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性. (4)非奇非偶函数:无奇偶性的函数是非奇非偶函数. 注意:(1)奇函数若在0x =时有定义,则(0)0f =. (2)若()0f x =且()f x 的定义域关于原点对称,则()f x 既是奇函数又是偶函数. 2.奇(偶)函数的基本性质 (1)对称性:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)单调性:奇函数在其对称区间上的单调性相同,偶函数在其对称区间上的单调性相反. 3. 判断函数奇偶性的方法 (1)图像法 (2)定义法 ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f(-x)与f(x)的关系; ○ 3 作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 例题精讲 【例1】若函数2()f x ax bx =+是偶函数,求b 的值. 解:∵函数 f (x )=ax 2+bx 是偶函数, ∴f (-x )=f (x ).∴ax 2+bx= ax 2-bx. ∴2bx=0. ∴b =0. 【例3】已知函数21()f x x =在y 轴左边的图象如下图所示,画出它右边的图象. 题型一 判断函数的奇偶性 【例4】判断下列函数的奇偶性. (1)2()||(1)f x x x =+; (2)1()f x x x =;

函数的奇偶性练习题

函数的奇偶性 1.函数f (x )=x(-1﹤x ≦1)的奇偶性是 ( ) A .奇函数非偶函数 B .偶函数非奇函数 C .奇函数且偶函数 D .非奇非偶函数 2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 3. (2005重庆)若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数, 且f (2)=0,则使得f (x )<0的x 的取值范围是 ( ) A.(-¥,2) B. (2,+¥) C. (-¥,-2)è(2,+¥) D. (-2,2) 4.(2006春上海) 已知函数f (x )是定义在(-∞,+∞)上的偶函数. 当x ∈(-∞,0)时,f (x )=x -x 4,则 当x ∈(0.+∞)时,f (x )= . 5. 判断下列函数的奇偶性: (1)f (x )=lg (12+x -x ); (2)f (x )=2-x +x -2 (3) f (x )=???>+<-).0()1(),0()1(x x x x x x 6.已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。 7.定义在(-1,1)上的奇函数f (x )是减函数,且f(1-a)+f(1-a 2)<0,求a 的取值范围 8.已知函数21()(,,)ax f x a b c N bx c +=∈+是奇函数,(1)2,(2)3,f f =<且()[1,)f x +∞在上是增函数, (1)求a,b,c 的值; (2)当x ∈[-1,0)时,讨论函数的单调性. 9.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.

高一数学函数的奇偶性练习题

1、判断奇偶性:2211)(x x x f -+-= 2、已知8)(35-++=bx ax x x f 且10)2(=-f ,那么=)2(f 3、判断函数???<≥-=) 0()0()(22x x x x x f 的奇偶性。

4、若3)3()2()(2+-+-=x k x k x f 是偶函数,讨论函数)(x f 的单调区间 6、定义在R 上的偶函数)(x f 在)0,(-∞是单调递减,若)2()6(a f a f <-,则a 的取值范围是如何 7、设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时, f(x)的图象如右图,则不等 式()0

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

奇偶性的典型例题

函数的奇偶性 一、关于函数的奇偶性的定义 定义说明:对于函数)(x f 的定义域内任意一个x : ⑴)()(x f x f =- ?)(x f 是偶函数; ⑵)()(x f x f -=-?)(x f 奇函数; 函数的定义域关于原点对称是函数为奇(偶)函数的必要不充分条件。 二、函数的奇偶性的几个性质 ①、对称性:奇(偶)函数的定义域关于原点对称; ②、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; ③、可逆性: )()(x f x f =- ?)(x f 是偶函数; )()(x f x f -=-?)(x f 奇函数; ④、等价性:)()(x f x f =-?0)()(=--x f x f )()(x f x f -=-?0)()(=+-x f x f ⑤、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称; ⑥、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、 非奇非偶函数。 三、函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法: 第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①、定义域是否关于原点对称; ②、数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性 ⑴、x x x f 2)(3+= ⑵、2 432)(x x x f += ⑶、1 )(2 3--=x x x x f ⑷、2)(x x f = []2,1-∈x

⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-= 解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数 ⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数 注:教材中的解答过程中对定义域的判断忽略了。 例2:判断函数???<≥-=)0()0()(22x x x x x f 的奇偶性。 .)(),()() ()()()(,0,0) ()()(,0,0) (0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-== 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。 四、关于函数的奇偶性的几个命题的判定。 命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分 条件。 此命题正确。如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。 命题2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。 此命题错误。一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有定义;另一方面,两个奇函数的差或两个偶函数的差可能既是奇函数又是偶函数,如f(x)=x(x ∈〔-1,1〕),g(x)=x(x ∈〔-2,2〕),可以看出函数f(x)与g(x)都是定义域上的函数,它们的差只在区间〔-1,1〕上有定义且f(x)-g(x)=0,而在此区间上函数f(x)-g(x)既是奇函数又是偶函数。 命题3 f(x)是任意函数,那么|f(x)|与f(|x|)都是偶函数。 此命题错误。一方面,对于函数|f(x)|=? ??<-≥),0)((),(0)((),(x f x f x f x f 不能保证f(-x)=f(x)或f(-x)=-f(x);另一方面,对于一个任意函数f(x)而言,不能保证它的定义域关于原点对称。如果所给函数的定义域关于原点对称,那么函数f(|x|)是偶函数。 命题4 如果函数f(x)满足:|f(x)|=|f(-x)|,那么函数f(x)是奇函数或偶 函数。

函数的奇偶性练习题及答案

函数的奇偶性练习题 一、选择题 1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) A .a=1/3,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( ) A .y =x (x -2) B .y =x (|x |-1) C .y =|x |(x -2) D .y =x (|x |-2) 4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 5.函数1111)(22+++-++=x x x x x f 是( )A 偶函数B 奇函数C 非奇非偶函数D 既是奇函数又是偶函数 6.若)(x ?,g (x )都是奇函数,2)()(++=x bg a x f ?在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5 B .最大值-5 C .最小值-1 D .最大值-3 二、填空题 7.函数212 2)(x x x f ---=的奇偶性为________(填奇函数或偶函数) 8.若y =(m -1)x 2+2mx +3是偶函数,则m =_________ 9.已知f (x )是偶函数,g (x )是奇函数,若11 )()(-=+x x g x f ,则f (x )的解析式为_______ 10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________ 三、解答题 11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围 12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0, 试证f (x )是偶函数 13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2 —1,求f (x )在R 上的表达式 14.f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明 15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2), 求证f (x )是偶函数

函数的基本性质(考点加经典例题分析)

函数的基本性质 函数的三个基本性质:单调性,奇偶性,周期性 一、单调性 1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。) 3.二次函数的单调性:对函数c bx ax x f ++=2 )()0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2- =的左侧单调减小,右侧单调增加; 当0-x f x f x f x f 或; ⑸根据定义下结论。 例2、判断函数1 2)(-+= x x x f 在)0,(-∞上的单调性并加以证明.

5.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表: 以上规律还可总结为:“同向得增,异向得减”或“同增异减”。 例3:函数322-+=x x y 的单调减区间是 ( ) A.]3,(--∞ B.),1[+∞- C.]1,(--∞ D.),1[+∞ 6.函数的单调性的应用: 判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。 例4:求函数1 2-= x y 在区间]6,2[上的最大值和最小值. 二、奇偶性 1.定义: 如果对于f(x)定义域内的任意一个x,都有)()(x f x f =-,那么函数f(x)就叫偶函数; (等价于:0)()()()(=--?=-x f x f x f x f ) 如果对于f(x)定义域内的任意一个x,都有)()(x f x f -=-,那么函数f(x)就叫奇函数。 (等价于:0)()()()(=+-?-=-x f x f x f x f ) 注意:当0)(≠x f 时,也可用1) ()(±=-x f x f 来判断。 2.奇、偶函数的必要条件:函数的定义域在数轴上所示的区间关于原点对称。 若函数)(x f 为奇函数,且在x=0处有定义,则0)0(=f ; 3.判断一个函数的奇偶性的步骤 ⑴先求定义域,看是否关于原点对称; ⑵再判断)()(x f x f -=-或)()(x f x f =- 是否恒成立。

函数的奇偶性问题练习题(含答案)

. .. 函数的奇偶性问题 一、选择题 1.已知函数f (x )=ax 2 +bx +c (a ≠0)是偶函数,那么g (x )=ax 3 +bx 2 +cx () A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 解析:f (x )=ax 2 +bx +c 为偶函数,x x =)(?为奇函数, ∴g (x )=ax 3 +bx 2 +cx =f (x )·)(x ?满足奇函数的条件. 答案:A 2.已知函数f (x )=ax 2 +bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则() A .3 1 = a , b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 解析:由f (x )=ax 2 +bx +3a +b 为偶函数,得b =0. 又定义域为[a -1,2a ],∴a -1=2a ,∴3 1 =a .故选A . 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2 -2x ,则f (x )在R 上的表达式是( ) A .y =x (x -2) B .y =x (|x |-1) C .y =|x |(x -2) D .y =x (|x |-2) 解析:由x ≥0时,f (x )=x 2 -2x ,f (x )为奇函数, ∴当x <0时,f (x )=-f (-x )=-(x 2 +2x )=-x 2 -2x =x (-x -2). ∴(2) (0)()(2) (0),, x x x f x x x x ?? ?-≥=--<即f (x )=x (|x |-2)答案:D 4.已知f (x )=x 5 +ax 3 +bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 解析:f (x )+8=x 5 +ax 3 +bx 为奇函数, f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A 5.函数1 11 1)(22+++-++= x x x x x f 是( ) A .偶函数 B .奇函数 C .非奇非偶函数 D .既是奇函数又是偶函数 解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.若)(x ?,g (x )都是奇函数,2)()(++=x bg a x f ?在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( ) A .最小值-5 B .最大值-5 C .最小值-1 D .最大值-3 解析:)(x ?、g (x )为奇函数,∴()2()()f x a x bg x φ-=+为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3. ∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C 二、填空题 7.函数2 122)(x x x f ---= 的奇偶性为____奇函数____(填奇函数或偶函数) . 8.若y =(m -1)x 2 +2mx +3是偶函数,则m =____0_____. 解析:因为函数y =(m -1)x 2 +2mx +3为偶函数, ∴f (-x )=f (x ),即(m -1)(-x )2 +2m (-x )+3=(m —1)x 2 +2mx +3,整理,得m =0. 9.已知f (x )是偶函数,g (x )是奇函数,若1 1)()(-=+x x g x f ,则f (x )的 解析式为____1 1)(2 -= x x f ___. 解析:由f (x )是偶函数,g (x )是奇函数,

函数的奇偶性例题解析

函数的奇偶性例题解析 [例1]判断下列函数的奇偶性. (1)f (x )=|x |(x 2+1); (2)f (x )=x x 1+; (3)f (x )=x x -+ -22; (4)f (x )=1122-++-x x 。 选题意图:本题主要考查函数的奇偶性的概念,利用定义判断或证明函数的奇偶性的方法. 解:(1)此函数的定义域为R. ∵f (-x )=|-x |[(-x )2+1]=|x |(x 2+1)=f (x ), ∴f (-x )=f (x ),即f (x )是偶函数. (2)此函数的定义域为x >0,由于定义域关于原点不对称,故f (x )既不是奇函数也不是偶函数. (3)此函数的定义域为{2},由于定义域关于原点不对称,故f (x )既不是奇函数也不是偶函数. (4)此函数的定义域为{1,-1},且f (x )=0,可知图象既关于原点对称、又关于y 轴对称,故此函数既是奇函数又是偶函数. 点评:用定义判断函数的奇偶性的步骤是:定义域(关于原点对称)→验证f (-x )=±f (x )→下结论,还可以利用图象法或定义的等价命题f (-x )±f (x )=0或 ) ()(x f x f -=1±(f (x )≠0)来判断. [例2]设f (x )是R 上的奇函数,且当x ∈[0,+∞)时,f (x )=x (1+3x ),那么当x ∈(-∞,0)时,求f (x )解析式. 选题意图:本题考查函数的奇偶性,利用奇偶性质求某区间未知解析式的方法. 解:∵f (x )是奇函数, ∴当x <0时,-x >0. 由已知f (-x )=-x (1+3x -), -f (x )=-x (1-3x ), ∴f (x )=x (1-3x ) (x <0),

函数的奇偶性的典型例题

函数的奇偶性的典型例题 函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法: 第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①、定义域是否关于原点对称; ②、数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性 ⑴、x x x f 2)(3+= ⑵、2 432)(x x x f += ⑶、1 )(2 3--=x x x x f ⑷、2)(x x f = []2,1-∈x ⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-= 解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数 ⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数 注:教材中的解答过程中对定义域的判断忽略了。 例2:判断函数???<≥-=)0()0()(22x x x x x f 的奇偶性。 .)(),()() ()()()(,0,0) ()()(,0,0) (0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-== 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。 四、关于函数的奇偶性的几个命题的判定。 命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分

高三一轮复习精题组函数的奇偶性与周期性(有详细答案)

§2.3函数的奇偶性与周期性 1.函数的奇偶性 奇偶性,定义,图象特点偶函数,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数,关于y轴对称 奇函数,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数,关于原点对称 2.周期性 (1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值 时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正 数就叫做f(x)的最小正周期.

1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.( × ) (2)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( √ ) (3)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.( √ ) (4)若函数f (x )=x (x -2)(x +a ) 为奇函数,则a =2.( √ ) (5)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( √ ) (6)函数f (x )为R 上的奇函数,且f (x +2)=f (x ),则f (2 014)=0.( √ ) 2.(2013·山东)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1 x ,则f (-1)等于( ) A .-2 B .0 C .1 D .2 答案 A 解析 f (-1)=-f (1)=-(1+1)=-2. 3.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是() A .-13B.13C.12D .-12 答案 B 解析 依题意b =0,且2a =-(a -1), ∴a =13,则a +b =13 . 4.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 015)等于( ) A .-2 B .2 C .-98 D .98 答案 A 解析 ∵f (x +4)=f (x ), ∴f (x )是以4为周期的周期函数,

相关主题
文本预览
相关文档 最新文档