当前位置:文档之家› 用特征曲线法求解线性偏微分方程

用特征曲线法求解线性偏微分方程

用特征曲线法求解线性偏微分方程
用特征曲线法求解线性偏微分方程

差分法求解偏微分方程MAAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程 姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程 一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:具体求解的偏微分方程如下: 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB程序实现五种差分格式对偏微分方程的求解及误差分析;

4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-differencemethods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+-(2-1) 求解区域的网格划分步长参数如下: 11k k k k t t x x h τ ++-=?? -=?(2-2) 2.1古典显格式 2.1.1古典显格式的推导 由泰勒展开公式将(,)u x t 对时间展开得 2,(,)(,)( )()(())i i k i k k k u u x t u x t t t o t t t ?=+-+-?(2-3) 当1k t t +=时有 21,112,(,)(,)( )()(())(,)()() i k i k i k k k k k i k i k u u x t u x t t t o t t t u u x t o t ττ+++?=+-+-??=+?+?(2-4) 得到对时间的一阶偏导数 1,(,)(,)()=()i k i k i k u x t u x t u o t ττ+-?+?(2-5) 由泰勒展开公式将(,)u x t 对位置展开得 223,,21(,)(,)()()()()(())2!k i k i k i i k i i u u u x t u x t x x x x o x x x x ??=+-+-+-??(2-6) 当11i i x x x x +-==和时,代入式(2-6)得

偏微分方程与特征线

偏微分方程与特征线 1函数空间的矢量场 给定一个矢量场i x i v ?=)(x v ,就在空间定义了曲线簇。比如,经过0x 点的积分曲线就可以描述为下列常微分方程的初值问题 )(x i i v x = ,n i ,...,1= 0)0(x x = 这些积分曲线就构成了曲线簇。如果形式地写出这个曲线来就是 x vt x t v t v vt t x t x t x x t x )exp(...)! 3!21(...!3!2)(33223 2=++++=++++= 此处x 是0时刻位置,v 是作用于x 的微分算符。 这些曲线,将空间点分成了类,也就是说每条曲线上的点属于一类。曲线集合的维数是n-1维。 矢量场的可积性 那么给定两个矢量场,就会产生两簇曲线,这两簇曲线能否组成面簇呢?我们先 看看从一点出发的曲线是否在一个曲面上的条件:从x 点出发的依此沿两簇直线运动的点若能回到来,就可以认为可以组成面。即 x x vd uc vb ua =)exp()exp()exp()(exp 如果a,b,c,d 都是1级以上的小量,这个表达式有二级以上的精度,就可以找到这样的a,b,c,d,使得方程精确满足。 按照各级展开,有 一级 0a 1111=+=+d b c 二级 v d b u c a vu uv b a )()()(222211+++=- … 由此,得到条件 v u vu uv v u βα+=-=],[

这就是两个矢量能够构成2维子空间(曲面)的条件,著名的Frobenius 定理。 n 个矢量积分形成n 维积分只空间的条件是,任意两个矢量的对易可以写成这n 个矢量组合。 可以按照下图进行直观理解 给定m 个矢量场,他们线性组合能够形成新的矢量场。组成的矢量场空间一般称为分布。 },{是任意函数i i i i a v a ∑=? 这个分布中任意两个矢量场对易仍然在这个分布之内,这样满足Frobenius 定理的分布称为闭分布, ????],[ 他们积分可以给出m 维积分子流形。 单参数李群 一个矢量场可以构造单参数李群,一个闭分布可以构造李群。 我们先看一下单参数李群的表现,它将1维参数空间(物理上经常是时间),映射为群空间。群元素可以形式地写为算符形式 )exp(vt g t = 在表示空间中也可以写为函数变换 ),(t x x g t ?= 这个函数变换是常微分方程的初值问题的解 x x t x v t x t ==?)0,() ,(),(??? 当然这个函数满足如下关系

一阶线性偏微分方程

第七章 一阶线性偏微分方程 研究对象 一阶线性齐次偏微分方程 0),,,(),,,() ,,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X 1基本概念 1) 一阶线性齐次偏微分方程 形如 0),,,(),,,(),,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X (7.1) 的方程,称为一阶线性齐次偏微分方程,其中n x x x ,,,21 是自变量,u 是n x x x ,,,21 的未知函数,n X X X ,,,21 是域n R D ?内的已知函数,并设n X X X ,,,21 在域D 内不同时为零。 2) 一阶拟线性偏微分方程 形如 );,,,();,,,();,,,(21211211z x x x Z x z z x x x Y x z z x x x Y n n n n n =??++?? (7.2) 的方程,称为一阶拟线性偏微分方程,其中Z Y Y Y n ;,,,21 是1+n 个变元z x x x n ;,,,21 的已知函数。n Y Y Y ,,,21 在其定义域1+?'n R D 内不同时为零。 所谓“拟线性”是指方程仅对未知函数的各个一阶偏导数是线性的,以下总设n Y Y Y ,,,21 和Z 在域D '内连续可微。 3) 特征方程组 常微分方程组 n n X dx X dx X dx === 2211 (7.3) 称为一阶线性齐次偏微分方程(7.1)的特征方程组。 常微分方程组

二阶线性偏微分方程的分类与小结

第六章 二阶线性偏微分方程的分类与小结 一 两个自变量的二阶线性方程 1 方程变换与特征方程 两个自变量的二阶线性偏微分方程总表示成 f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ① 它关于未知函数u 及其一、二阶偏导数都是线性的,其中f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。 设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。取自变量变换 ),(y x ξξ=,),(y x ηη= 其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。 = ??),(),(y x ηξy x y x ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换, ),(ηξx x =,),(ηξy y = 因为 x x x u u u ηξξξ+=,y y y u u u ηξξξ+=

xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)( 将代入①使其变为 F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112 经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。并可验证 222112122211212))((x y y x a a a A A A ηξηξ--=- 这表明,在可逆变换下2 22112 12A A A -与22112 12 a a a -保持相同的正负号。 定理 在0M 的领域内,不为常数的函数),(y x ?是偏微分方程022*******=++y y x x a a a ????之解的充分必要条件是: C y x ≡),(?是常微分方程的 0)(2)(22212211=++dx a dxdy a dy a 通解。 2 方程的类型及其标准形式 根据以上结论简化方程的问题归结为寻求其特征曲线。为此将特征方程分解成两个方程: 11 22 11 2 12 12 a a a a a dx dy -+=,11 22 11 2 12 12 a a a a a dz dy --= (1) 若在0M 的邻域内022112 12>-a a a 时,方程可以化为

第一章 偏微分方程和一阶线性偏微分方程解

第一章 偏微分方程和一阶线性偏微分方程解 本章介绍典型的几个偏微分方程。给出了最简单的偏微分方程(一阶线性偏微分方程)解的特征线方法。 典型的偏微分方程:扩散方程t xx u ku =,t u k u =?;波动方程2tt xx u c u =,2tt u c u =?。这是本课程讨论的主要两类方程。 偏微分方程的各类边值条件也是本章讨论的一个重点。 §1.1 一维空间中的偏微分方程 例1 (刚性污染流的方程) 假设均匀直线管道中的水流含污染物质的线密度是(,)u x t (即x 处在时刻t 的污染物的密度) 。如果流速是c ,问题:(,)u x t 满足什么样的方程? 解 如图,在[,]x x x +?内的流体,经过时间t ?,一定处于[,]x c t x x c t +?+?+?。所含污染物应相同,即 (,)(,)x x x x c t x x c t u t d u t t d ξξξξ+?+?+?+?= +?? ? , 由此 (,)(,)u x t u x c t t t =+?+?, 从而, 0t x u cu +=。 【End 】 可见偏微分方程是一个至少为两元的函数及其偏导数所满足的方程。 例2 (扩散方程) 假设水流静止,在t ?时间内,流经x 处的污染物质(不计高阶无穷小)与该处浓度的方向导数(浓度变化)成正比,比例系数为k : ()x u dm t k dt ku dt x ?==?, 所以,在时间段12[,]t t 内,通过12[,]x x 的污染物为 2 1 2 1 [(,)(,)]t x x t k u x t u x t dt -?。 在时刻1t 和2t ,在12[,]x x 内的污染物分别为2 1 1(,)x x u x t dx ?和2 1 2(,)x x u x t dx ? ,由物质守恒定律 2 2 2 1 1 1 2 1 2 1 (,)(,)[(,)(,)]x x t x x x x t u x t dx u x t dx k u x t u x t dt -=-??? 由1t ,2t 的任意性,

数学物理方法之二阶线性偏微分方程的分类

第十三章二阶线性偏微分方程 的分类 本章将介绍二阶线性偏微分方程的基本概念、分类方法和偏微分方程的标准化. 特别对于常系数的二阶线性偏微分方程的化简方法也进行了详细讨论,这对后面的偏微分方程求解是十分有用的.

13.1 基本概念 (1)偏微分方程含有未知多元函数及其偏导数的方程,如 22222(,,,,,,,,,,)0u u u u u F x y u x y x y x y ??????????????=??????其中(,,)u x y ???是未知多元函数,而,,x y ???是未知变量;,,u u x y ???????为u 的偏导数. 有时为了书

写方便,通常记 2 2,,,,x y xx u u u u u u x y x ???==???=??????(2)方程的阶偏微分方程中未知函数偏导数的最高阶数称为方程的阶.(3)方程的次数偏微分方程中最高阶偏导数的幂次数称为偏微分方程的次数.

(4)线性方程一个偏微分方程对未知函数和未知函数的所有偏导数的幂次数都是一次的,就称为线性方程,高于一次以上的方程称为非线性方程. (5)准线性方程一个偏微分方程,如果仅对方程中所有最 高阶偏导数是线性的,则称方程为准线性方程. (6)自由项在偏微分方程中,不含有未知函数及其偏导数的项称为自由项.

例13.1.2:方程的通解和特解概念 二阶线性非齐次偏微分方程2xy u y x =?的通解为 2 21(,)()()2u x y xy x y F x G y =?++其中(),()F x G y 是两个独立的任意函数.因为方程为 例13.1.1:偏微分方程的分类(具体见课本P268)

(整理)一阶线性偏微分方程.

第七章 一阶线性偏微分方程 例7-1 求方程组 ()()()yz B A Cdz xz A C Bdy yz C B Adx -=-=- 通积分,其中C B A ,,为互不 相等的常数。 解 由第一个等式可得 xyz ydy A C B xyz xdx C B A -=-, 即有 0=---ydy A C B xdx C B A , 两边积分得方程组的一个首次积分 122,C y A C B x C B A z y x Φ=---= ),(。 由第二个等式可得 xyz zdz B A C xyz ydy A C B -=-, 即有 0=---zdz B A C ydy A C B , 两边积分得方程组的另一个首次积分 222,C z B A C y A C B z y x Ψ=---= ),(。 由于,雅可比矩阵 ? ???? ?????------=????? ???? ????ψ??ψ??ψ ??Φ??Φ ??Φ ?=?ψΦ?z B A C y A C B y A C B x C B A y y x z y x z y x 002),,(),( 的秩为2,这两个首次积分相互独立,于是原方程组的通积分为 122C y A C B x C B A =--- 222C z B A C y A C B =--- 。

评注:借助于方程组的首次积分求解方程组的方法称为首次积分法。要得到通积分需要求得n 个独立的首次积分,n 为组成方程组的方程个数。用雅可比矩阵的秩来验证首次积分的独立性。 例7-2 求方程组 () () ???????-+--=-+-=11d 222 2y x y x dt dy y x x y dt x 的通解。 解 由原方程组可得 )1)((2222-++-=+y x y x dt dy y dt dx x 即 dt y x y x y x d )1)((2)(2 2 2 2 2 2 -++-=+ 这个方程关于变量t 和2 2 y x +是可以分离的,因此易求得它的通积分为 122 2221),,(C e y x y x t y x t =+-+=Φ 这是原方程组的一个首次积分。 再次利用方程组,得到 )(22y x dt dx y dt dy x +-=-, 即有 1arctan -=?? ? ?? x y dt d 由此得到原方程组的另一个首次积分 2arctan ),,(C t x y t y x =+=ψ 。 由于,雅可比矩阵为 ()( ) ???? ? ?????? ?++-++=????????? ????ψ??ψ ??Φ??Φ ?=?ψΦ?2222 222 222 2222),(),(y x x y x y e y x y e y x x y x y x y x t t ,

偏微分方程数值解法试题与答案

x 1 ?若步长趋于零时,差分方程的截断误差 R m 0,则差分方程的解 U i m 趋近于微分方 程的解U m ?此结论 ________ (错或对); 1 2.一 阶 Sobolev 空间 H ( ) f (x,y) f , f x , f y L ?() 关于内积(f,g )1 _____________________________________ 是Hilbert 空间; 3 ?对非线性(变系数)差分格式,常用 ____________ 系数法讨论差分格式的 ________ 稳定性; 4?写出y x 3在区间[1,2]上的两个一阶广义导数: ______________________________________ _____ ____ ______________ _ ____ ________ ; 5 ?隐式差分格式关于初值是无条件稳定的 ?此结论 ________ (错或对)。 (13分)设有椭圆型方程边值问题 0.1作正方形网格剖分 。 (1) 用五点菱形差分格式将微分方程在内点离散化; (2) 用截断误差为 O (h 2)的差分法将第三边界条件离散化; (3) 整理后的差分方程组为 U C 三.(12)给定初值问题 u x,0 x 1 取时间步长 0.1,空间步长h 0.2。试合理选用一阶偏心差分格式(最简显格式) 2 u ~2 x 2 u ~2 y 0 x 0.3 0.2 x 0.3 2y 1, — u n 2x y 0.2

并以此格式求出解函数u(x,t)在x 0.2,t 0.2处的近似值。 x

1.所选用的差分格式是: 2 .计算所求近似值: 1 a k 1 四.(12分)试讨论差分方程 u l 1 k k k 1 u | r u | 1 u | , r h a 1 h 逼近微分方程 u a u 0 t x 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点( l+1/2,k+1/2 )展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。 2 —2 ,考虑 Du Fort-Frankel 格式 X 试论证该格式是否总满足稳定性的 Von-Neumann 条件? 六. (12分)(1 )由Green 第一公式推导 Green 第二公式: (2) 对双调和方程边值问题 n 2 选择函数集合(空间)为: 推导相应的双线性泛函和线性泛函: A (u,v ) F (v ) 相应的虚功问题为: 极小位能问题为 七. ( 12分)设有常微分方程边值问题 y y f (x ) , a x b y a 1, y b 1 五.(12分) 对抛物型方程 U |k1 U |k 2 |k 1 (U |k1 U |k1) U |k 1 ) 2 (u)vdxdy G (u) u vdxdy :[v v u ]ds n f (x,y) (x,y) g 1(x , y), g 2(x, y) (x,y),

第二章 二阶线性偏微分方程的分类

第二章 二阶线性偏微分方程的分类 1.把下列方程化为标准形式: (1)02=+++++u cu bu au au au y x yy xy xx 解:因为 02 22112 12=?-=-a a a a a a 所以该方程是抛物型方程,其特征方程为 12 2 =-± =a a a a dx dy 。 它只有一族实的特征线 c x y =- 在这种情况下,我们设x y -=ξ,x =η(或令y =η,总之,此处η是与ξ无关的任一函数,当然宜取最简单的函数形式x =η或y =η)。 方法一:用抛物型方程的标准形式 ][12122 F Cu u B u B A +++- =ηξηηη 先算出: ? ??? ? ? ?? ? ? ?-====?+?+?+?+?=++++=?+-+?+?+?=++++==?+?+=++=b c C b c b a a a b b a a a B c b a a a b b a a a B a a a a a a a A y x yy xy xx y x yy xy xx y y x x 0F ,1010020 2 1)1(0020 2 002 2212212112 2122121112 221221122ηηηηηξξξξξηηηη ∴])[(1 u bu u c b a u +++--=ηξηη 即 01=+ + -+ u a u a b u a b c u ηξηη 方法二:应用特征方程,作自变量变换,求出 ??? ??=+-=+-=+--==+-= ,2 ,ξξηξξξηηξηξξηηηξξηξξξηξu u u u u u u u u u u u u u u u u u yy xy xx y x 代入原方程得,0)(=++-+u bu u b c au ηξξη

二阶线性偏微分方程的分类与小结

二阶线性偏微分方程的分类与小结

————————————————————————————————作者: ————————————————————————————————日期:

第六章 二阶线性偏微分方程的分类与小结 一 两个自变量的二阶线性方程 1 方程变换与特征方程 两个自变量的二阶线性偏微分方程总表示成 f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ① 它关于未知函数u 及其一、二阶偏导数都是线性的,其中 f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数, 假设它们的一阶偏 导数在某平面区域D 内都连续,而且 221211a a a ,,不全为0 。 设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。取自变量变换 ),(y x ξξ=,),(y x ηη= 其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。 = ??),(),(y x ηξy x y x ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换, ),(ηξx x =,),(ηξy y = 因为 x x x u u u ηξξξ+=,y y y u u u ηξξξ+=

xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)( 将代入①使其变为 F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112 经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。并可验证 222112122211212))((x y y x a a a A A A ηξηξ--=- 这表明,在可逆变换下2 22112 12A A A -与22112 12 a a a -保持相同的正负号。 定理 在0M 的领域内,不为常数的函数),(y x ?是偏微分方程022*******=++y y x x a a a ????之解的充分必要条件是: C y x ≡),(?是常微分方程的 0)(2)(22212211=++dx a dxdy a dy a 通解。 2 方程的类型及其标准形式 根据以上结论简化方程的问题归结为寻求其特征曲线。为此将特征方程分解成两个方程: 11 22 11 2 12 12 a a a a a dx dy -+=,11 22 11 2 12 12 a a a a a dz dy --= (1) 若在0M 的邻域内022112 12>-a a a 时,方程可以化为

一阶线性偏微分方程

第七章一阶线性偏微分方程 7-1求下列方程组的通积分及满足指定条件的解。 dx dt dy dt 空2z dt 解之得 所以,方程组的通积分为 1 1 2t 1(t,x, y ) (x y -t -)e G , 2 4 z C 1e 2t 即得一个首次积分为 1 (t, x, y) (x 1t 2 1 y 2t 1 4)e 2t C 1。 方程组的两式相减,得 d (x y ) dt 解之得另一个首次积分为 2(t, x, y ) 1 t 1 2 2 C 2。 易验证det x det 0。 因此,1(t,x, y) C 1和 2 (t,x, y ) C 2是两个独立的首次积分, 1) 2) 3) dx dt dy dt dx 1) 2y dy x z ,当 t 0 时,x y 1 dz d(x y) dt x y ,上方程化为一阶线性方程 方程组的两式相加,得 2(x y ) t 。

从中可解得通解为 即 i (t,x,y) (x y)2 y 2 C ;。 给方程组第一式乘以 y ,第二式乘以x ,再相减得 yx yy xy yy 2 2 (x y) y yx yy xy yy 1 1 (x y) y 两边积分,得另一个首次积分为 y 2 (t,x, y) arctan t C 2, x y 2 易验证 i (t,x, y) C i 和 2(t,x,y) C 2是两个独立的首次积分, 222 y 所以,方程组的通积分为 (x y) y C i ,arctan t C 2, x y x (C 2 CJcost (C 2 C i )si nt ,其中 C I C i si nc 2,C 2 C 1 cosC 2。 y C 1 cost C 2 si nt C 2 1 2 1 1 t -t — 4 4 8 C 2 1 2 1 1 -t -t 4 4 8 dx x 2y dy x y 2ydy ydx xdy 0, x C i e 2t y C i e 2t 2)方程组的两式相比,得 变形得恰当方程 xdx 容易得满足t 0时,x y 1的解为 x cost sint y cost 3) 三个分式相加,得 d(x y z) dy x z dz y x 解之得一个首次积分为 2 2 x 2y 2xy C 1, yx xy (x 2 2y 2 2xy) [(x y)2 y 2], 通解为

阶偏微分方程基本知识

一阶偏微分方程基本知识 这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。 1一阶常微分方程组的首次积分 首次积分的定义 从第三章我们知道,n 阶常微分方程 ()()() 1,,'',',-=n n y y y x f y Λ, ( ) 在变换 ()1'12,,,,n n y y y y y y -===L ( ) 之下,等价于下面的一阶微分方程组 ()()()1 112221212,,,,,,,,,,,,,,. n n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=?? ?=???? ?=??L L M M M M L ( ) 在第三章中,已经介绍过方程组( )通解的概念和求法。但是除了常系 数线性方程组外,求一般的( )的解是极其困难的。然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组( )的问题。先看几个例子。 例1 求解微分方程组 ()()22221, 1.dx dy y x x y x y x y dt dt =-+-=--+- ( ) 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()() 12222-++-=+y x y x dt dy y dt dx x , ()()()2222221 12 d x y x y x y dt +=-++-。 这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为 122 2221C e y x y x t =+-+, ( ) 1C 为积分常数。( )叫做( )的首次积分。

求解偏微分方程的几种特殊方法

求解偏微分方程的几种特殊方法 程哲 PB06001070 (中国科学技术大学数学系, 合肥, 230026) 摘要:经过一个学期偏微分方程课程的学习,我们掌握了几种求解初等拟(半)线性方程,特别是三种典型方程的方法,如特征曲线法、反射法、降维法、分离变量法、特征函数展开法、求解非齐次方程的Duhamel 原理等。此外,我们通过学习还掌握了求解波动方程的D'Alembert 公式,求解高维波动方程的Kirchhoff 公式和Poisson 公式,求解位势方程的Green 公式等等。这些经典方法的综合运用可以求解很多初等偏微分方程,故而是基本而重要的。本文还将总结作者了解的几种求解偏微分方程的特殊方法,它们是:级数法,Laplace 变换法,Fourier 变换法。 关键词:偏微分方程 级数法Laplace 变换 Fourier 变换 1. 级数法求解偏微分方程 1.1 波动方程Cauchy 问题的级数解法 1.1.1 问题引入 我们以三维波动方程的初值问题(P)为例: 2()0,(1)()(,,,0)(,,),(,,,0)(,,) tt xx yy zz t u a u u u P u x y z x y z u x y z x y z ??++=??=Φ=Ψ?? 由叠加原理易知问题(P)可分解为两个问题的叠加: 2()0,()(,,,0)0,(,,,0)(,,) tt xx yy zz t u a u u u I u x y z u x y z x y z ??++=??==Ψ?? 2()0,()(,,,0)(,,),(,,,0)0 tt xx yy zz t u a u u u II u x y z x y z u x y z ??++=??=Φ=??

第一章--偏微分方程定解问题

第一章 偏微分方程定解问题 引言:在研究、探索自然科学和工程技术中,经常遇到各种微分方程。 如 牛顿定律 22d x dt m g = ------(1) 波动方程 222222222(,,,)f t x y z u u u u a t x y z ?? ? ???+????=++????------(2) 热传导方程 2222222(,,,)f t x y z u u u u a t x y z ?? ? ??? +????=++???? ------(3) 静电场位方程 2222 222(,,)f x y z u u u a x y z ?? ?=- ??? ???++??? ------(4) 激波方程 0u u u t x ??+=?? ------(5) 等等。 其中(1)为一维常微分方程;(2)----(4)为三维偏微分方程;(5)为一维偏微分方程。 这些数学中的微分方程均来自物理问题,有着各自的物理背景,从数量关系上反映着相应的物理规律,称为数学物理方程,简称数理方程。 数学物理方程是数学与物理学的交叉分支学科。从物理上讲它是理论物理的基本工具;在数学上属于应用数学的(偏)微分方程分支。 本课程主要研究和讨论三类数理方程(2),(3),(4)的建立(导出)以及几种常用的典型的求解方法。 为了下面研究和讨论的方便,先引入有关微分方程的几个基本概念

(术语)。 1. 常,偏微分方程 只含一个自变量,关于该变量的未知函数,以及未知函数对该变量的导数的微分方程为常微分方程,如(1)。 含有多个自变量,关于这些变量的未知函数,以及未知函数对这些变量的偏导数的微分方程为偏微分方程,如(2)----(5)。 2. 阶 上述(1)----(5)均可改写成如下形式 220d x m g dt -= ------(1’) 222 30u t a u f -???-= -------(2’) 230u t a u f -???-= ------(3’) 230a u f ?+= ------(4’) 0u u t x u +????= ------(5’) 其中 222 3222x y z ????=++???,x=x(t),u=u(t,x,y,z)或u(x,y,z),f=f(t,x,y,z) 或f(x,y,z)。 这些方程可归纳为如下形式 12 121212,,,,,,,,,,n m n m m m n n u u u u F x x x u x x x x x x ?? ? ?? ? ?????????????????????????=0, 其中12n m m m m =++???+为导数的最高阶数,成为方程的阶。 3. 线性、非线性偏微分方程

非线性偏微分方程

非线性偏微分方程及其几种解法综述 姓名:柏宝红 学号:BY1004120

目录 1、绪论 (3) 1.1背景 (3) 1.2 现状 (7) 2、非线性偏微分方程的几种解法 (10) 2.1逆算符法 (10) 2.2 齐次平衡法 (11) 2.3 Jacobi椭圆函数方法 (12) 2.4 辅助方程方法 (14) 2.5 F-展开法 (15) 2.6 双曲正切函数展开法 (17)

1、绪论 以应用为目的,或以物理、力学等其他学科问题为背景的微分方程的研究,不仅是传统应用数学中一个最主要的内容,也是当代数学的一个重要组成部分.它是数学理论与实际应用之间的一座重要桥梁,研究工作一直十分活跃,研究领域日益扩大。 目前微分方程研究的主体是非线性微分方程,特别是非线性偏微分方程(NLPDE).很多意义重大的自然科学和工程技术问题都可归结为非线性偏微分方程的研究.现实生活的许多领域内数学模型都可以用NLPDE来描述,很多重要的物理、力学等学科的基本方程本身就是NLPDE,另外,随着研究的深入,有些原先可用线性微分方程近似处理的问题,也必须考虑非线性的影响,所以对NLPDE的研究,特别是NLPDE求解精确解的研究工作就显示出了很重要的理论和应用价值,但是数学研究的结果,在目前还未能提供一种普遍有效的求精确解的方法.20世纪50年代以来,人们对非线性现象的研究中提出了“孤子”的概念,进而使得对NLPDE求解的研究成为非线性科学中的热点。下面介绍一下孤立子理论的研究背景、研究现状。 1.1背景 孤立子理论己经成为应用数学和数学物理的一个重要组成部分,在流体力学,等离子物理,经典场论,量子论等领域有着广泛的应用。 随着近代物理学和数学的发展,早在1834年由英国科学家Russell发现的孤立波现象近二十多年来引起了人们的极大关注,对

线性偏微分方程理论

一、教学目标和要求: 在本科生所学数学物理方程基础上,系统介绍一般线性偏微分方程多种定解问题经典解的存在唯一性及弱解的存在唯一性与正则性,特征理论,要求学生掌握线性偏微半一些基本理论,方法及先验估计的技巧 二、教学大纲(含章节目录): 第一章预备知识 第二章极值原理及应用 第三章L2理论 第四章散度形式方程的解和Holder连续性 第五章解的L p估计 第六章Schauder估计 第七章抛物型方程的极值原理和应用 第八章抛物型方程第一边值问题

第九章高维双曲型方程 I. Teaching Goals and Requirements: on basis of Mathematical Physics equation, introduces systematically some kinds of solution problerms in linear partial differential equation,,the existation and uniqueness of classical solution and the existation and regularity properties of weak solution, eigen theory to stenents. Make the students to master some fundamental theory,methods,skills of prior estimate. II. Teaching Syllabus (chapters, including sections) chapter 1:prepared knowledge

判定线性偏微分方程组解的完备性的一个符号计算方法

文章编号:1000-0887(2002)10-1008-05判定线性偏微分方程组解的完备性的一个符号计算方法Ξ 张鸿庆, 谢福鼎, 陆 斌 (大连理工大学应用数学系,大连116024) (我刊编委张鸿庆来稿) 摘要: 从微分代数的角度出发,借助于吴微分特征集理论,对于线性偏微分方程组,给出了判定它的解的完备性的一个符号计算方法? 这个算法是一个机械化的算法,借助于符号计算软件Maple ,可以在计算机上实现?  关 键 词: 微分代数; 偏微分方程组; 符号计算; 特征集 中图分类号: O155;O175.2 文献标识码: A 引 言 考虑线性微分代数方程组 Σ: P i (y 1,y 2,…,y n )=0 (i =1,2,…,r ), 系数在一个特征为0的微分域K 内? 如何求解方程组,是偏微分方程理论研究的一个重要问题? 通过变换,我们可以把它化成一个容易求解的偏微分方程组,一般地,我们不能保证Σ的解是完备的? 张鸿庆[1]对于常系数的情况,给出了变换的一般形式,且提出了恰当解的概念? 张鸿庆[2]、王敏中[3]等研究了胡海昌解的完备性? 直到目前为止,尚无一个一般性的方法去判定线性偏微分代数方程组的完备性? 随着计算机的发展和应用领域的不断扩大,符号计算在数学领域中体现出了日益强大的生命力,微分代数[4,5]是研究代数形式偏微分方程组的一个有力的工具,吴微分特征集[6]的研究与应用,对代数形式偏微分方程组的计算提供了理论基础和方法? 本文正是在以上的基础上,给出了一个判定线性偏微分方程组解的完备性的符号计算方法?  1 预备知识 1.1 概念和符号 设K 是一个特征为0的微分域,K 具有有限多个微分算子:δ1,δ2,…,δm ,且δi δj =δj δi ,i , j =1,2,…,m ;Θ是一个由δ1,δ2,…,δm 生成的自由幺半群,具有幺元ε=δ01… δ0 m ,Θ的一个元素称为导数算子? 一个导数算子θ=δi 11…δi m m 的阶(order )定义为ord (θ)=i 1+…+i m ,i j ∈8 001 应用数学和力学,第23卷第10期(2002年10月) Applied Mathematics and Mechanics 应用数学和力学编委会编重庆出版社出版  Ξ收稿日期: 2001-06-16;修订日期: 2002-04-09 基金项目: 国家973资助项目(G 1998030600);国家自然科学基金资助项目(10072013) 作者简介: 张鸿庆(1936— ),男,黑龙江人,教授,博士生导师.

第一章偏微分方程定解问题

引言:在研究、探索自然科学和工程技术中,经常遇到各种微分方程。 如 牛顿定律 22 d x dt m g = ------(1) 波动方程 222222222(,,,)f t x y z u u u u a t x y z ?? ? ??? +????=++????------(2) 热传导方程 2222222(,,,)f t x y z u u u u a t x y z ?? ? ??? +????=++???? ------(3) 静电场位方程 2222 222(,,)f x y z u u u a x y z ?? ?=- ??? ???++??? ------(4) 激波方程 0u u u t x ??+=?? ------(5) 等等。 其中(1)为一维常微分方程;(2)----(4)为三维偏微分方程;(5)为一维偏微分方程。 这些数学中的微分方程均来自物理问题,有着各自的物理背景,从数量关系上反映着相应的物理规律,称为数学物理方程,简称数理方程。 数学物理方程是数学与物理学的交叉分支学科。从物理上讲它是理论物理的基本工具;在数学上属于应用数学的(偏)微分方程分支。 本课程主要研究和讨论三类数理方程(2),(3),(4)的建立(导出)以及几种常用的典型的求解方法。 为了下面研究和讨论的方便,先引入有关微分方程的几个基本概念

(术语)。 1. 常,偏微分方程 只含一个自变量,关于该变量的未知函数,以及未知函数对该变量的导数的微分方程为常微分方程,如(1)。 含有多个自变量,关于这些变量的未知函数,以及未知函数对这些变量的偏导数的微分方程为偏微分方程,如(2)----(5)。 2. 阶 上述(1)----(5)均可改写成如下形式 220d x m g dt -= ------(1’) 22230u t a u f -???-= -------(2’) 230u t a u f -???-= ------(3’) 230a u f ?+= ------(4’) 0u u t x u +????= ------(5’) 其中 222 3222x y z ????=++???,x=x(t),u=u(t,x,y,z)或u(x,y,z), f=f(t,x,y,z)或f(x,y,z)。 这些方程可归纳为如下形式 12 121212,,,,,,,,,,n m n m m m n n u u u u F x x x u x x x x x x ?? ? ?? ? ?????????????????????????=0, 其中12n m m m m =++???+为导数的最高阶数,成为方程的阶。 3. 线性、非线性偏微分方程

相关主题
文本预览
相关文档 最新文档