当前位置:文档之家› 吸收塔的设计和选型

吸收塔的设计和选型

吸收塔的设计和选型
吸收塔的设计和选型

烟气脱硫工艺主要设备吸收塔设计和选型

4.1吸收塔的设计

吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 4.1.1 吸收塔的直径和喷淋塔高度设计

本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设

计、喷淋塔的直径设计

4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法:

(1) 喷淋塔吸收区高度设计(一)

达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为

h=H0×NTU (1)

其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。)

NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU=

)

ln(

)

()(*

**

2

2*11*2

2*1

12

121y

y y y y y y y y y a

k G y y y a

k G y m m

y m ------=?-

a k y =a

k Y =9.81×1025.07.04W

G -]

4[

82.0W

a k L ?=]

4[ (2)

其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)

*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)

k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )

x2,x1为喷淋塔石灰石浆液进出塔时的SO2组分摩尔比,kmol(A)/kmol(B)

G 气相空塔质量流速,kg/(m2﹒h)

W 液相空塔质量流速,kg/(m2﹒h)

y1×=mx1, y2×=mx2 (m为相平衡常数,或称分配系数,无量纲)

k Y a为气体膜体积吸收系数,kg/(m2﹒h﹒kPa)

k L a为液体膜体积吸收系数,kg/(m2﹒h﹒kmol/m3)

式(2)中?为常数,其数值根据表2[4]

表3 温度与?值的关系

采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。

以上是传统的计算喷淋塔吸收区高度的方法,此外还有另外一种方法可以计算。

(2)喷淋塔吸收区高度设计(二)采用第二种方法计算,为了更加准确,减少计算的误差,需要将实际的喷淋塔运行状态下的烟气流量考虑在内。而这部分的计算需要用到液气比(L/G)、烟气速度u(m/s)和钙硫摩尔比(Ca/S)的值。

本设计中的液气比L/G是指吸收剂石灰石液浆循环量与烟气流量之比值(L/M3)。如果增大液气比L/G,则推动力增大,传质单元数减少,气液传质面积就增大,从而使得体积吸收系数增大,可以降低塔高。在一定的吸收高度内液气比L/G增大,则脱硫效率增大。但是,液气比L/G增大,石灰石浆液停留时间减少,而且循环泵液循环量增大,塔内的气体流动阻力增大使得风机的功率增大,运行成本增大。在实际的设计中应该尽量使液气比L/G减少到合适的数值同时有保证了脱硫效率满足运行工况的要求。

湿法脱硫工艺的液气比的选择是关键的因素,对于喷淋塔,液气比范围在8L/m3-25 L/m3之间[5],根据相关文献资料可知液气比选择12.2 L/m3是最佳的数值[5][6]。

烟气速度是另外一个因素,烟气速度增大,气体液体两相截面湍流加强,气体膜厚度减少,传质速率系数增大,烟气速度增大回减缓液滴下降的速度,使得体积有效传质面积增大,从而降低塔高。但是,烟气速度增大,烟气停留时间缩短,要求增大塔高,使得其对塔高的降低作用削弱。

因而选择合适的烟气速度是很重要的,典型的FGD 脱硫装置的液气比在脱硫率固定的前提下,逆流式吸收塔的烟气速度一般在2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。

湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钙硫比(Ca/S)一般略微大于1,最佳状态为1.01-1.02,而比较理想的钙硫比(Ca/S)为1.02-1.05,因此本设计方案选择的钙硫比(Ca/S)为1.02。

(3)喷淋塔吸收区高度的计算

含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。

首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量

ζ=

h

C K V Q η0

= (3)

其中 C 为标准状态下进口烟气的质量浓度,kg/m 3

η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,m

K 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ; K 0=3600u ×273/(273+t)

由于传质方程可得喷淋塔内单位横截面面积上吸收二氧化硫的量]8[为: G (y 1-y 2)=a k y ×h ×m y ? (4)其中: G 为载气流量(二氧化硫浓度比较低,可以近似看作烟气流量),kmol/( m 2.s) Y 1,y 2 分别为、进塔出塔气体中二氧化硫的摩尔分数(标准状态下的体积分数) k y 单位体积内二氧化硫以气相摩尔差为推动力的总传质系数,kg/(m 3﹒s) a 为单位体积内的有效传质面积,m 2/m 3.

m y ?

为平均推动力,即塔底推动力,△y m =(△y 1-△y 2)/ln(△y 1/△y 2)

所以 ζ=G(y 1-y 2)/h (5)

吸收效率ζ=1-y 1/y 2,按照排放标准,要求脱硫效率至少95%。二氧化硫质量浓

度应该低于580mg/m 3(标状态)

所以 y 1η≥y 1-0.0203% (6)

又因为G=22.4×(273+t )/273=u(流速) 将式子(5)ζ的单位换算成kg/( m 2.s),可以写成

ζ=3600×

h

y u t

/*273273*

4

.22641η+ (7)

在喷淋塔操作温度

C

?

=+752

50

100下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95

前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=1.18×104mg/m 3

而原来烟气的流量(145C ?时)为20×104(m 3/h)换算成标准状态时(设为V a )

已经求得 V a =1.31×105 m 3/h=36.30 m 3/s

故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为 2

SO m =36.30×1.18×104mg/m 3=42.83×10mg 4=428.3g

V 2

SO =

L/mol 22.4/643.428?mol

g g =149.91L/s=0.14991 m 3/s ≈0.15 m 3

/s

则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等 故 y 1=

%

41.0%10030

.3615.0=?

又 烟气流速u=3.5m/s, y 1=0.41%,C t ?==75,95.0η

总结已经有的经验,容积吸收率范围在5.5-6.5 Kg/(m 3﹒s )之间[7],取ζ=6 kg/(m 3﹒s )

代入(7)式可得 6=(95

.0041.05.375

2732734

.22643600???+?

?

)/h

故吸收区高度h=18.33≈18.3m

(4)喷淋塔除雾区高度(h 3)设计(含除雾器的计算和选型)

吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m 3 [9] 。

除雾器一般设置在吸收塔顶部(低流速烟气垂直布置)或出口烟道(高流速

烟气水平布置),通常为二级除雾器。除雾器设置冲洗水,间歇冲洗冲洗除雾器。湿法烟气脱硫采用的主要是折流板除雾器,其次是旋流板除雾器。

① 除雾器的选型

折流板除雾器 折流板除雾器是利用液滴与某种固体表面相撞击而将液滴凝聚并捕集的,气体通过曲折的挡板,流线多次偏转,液滴则由于惯性而撞击在挡板被捕集下来。通常,折流板除雾器中两板之间的距离为20-30mm ,对于垂直安置,气体平均流速为2-3m/s ;对于水平放置,气体流速一般为6-10m/s 。气体流速过高会引起二次夹带。

旋流板除雾器 气流在穿过除雾器板片间隙时变成旋转气流,其中的液滴在惯性作用下以一定的仰角射出作螺旋运动而被甩向外侧,汇集流到溢流槽内,达到除雾的目的,除雾率可达90%-99%。

喷淋塔除雾区分成两段,每层喷淋塔除雾器上下各设有冲洗喷嘴。最下层冲洗喷嘴距最上层喷淋层(3-3.5)m ,距离最上层冲洗喷嘴(3.4-32)m 。

② 除雾器的主要设计指标

a.冲洗覆盖率:冲洗覆盖率是指冲洗水对除雾器断面的覆盖程度。冲洗覆盖率一般可以选在100 %~300 %之间。

冲洗覆盖率%=

%100*2

2A

tg h n α

π

式中 n 为喷嘴数量,20个;α为喷射扩散角,90

A 为除雾器有效通流面积 ,15 m 2

h 为冲洗喷嘴距除雾器表面的垂直距离,0.05m

所以 冲洗覆盖率%=

%100*2

2A

tg h n α

π=

22

200.051

100%15

π???=203%

b.除雾器冲洗周期:冲洗周期是指除雾器每次冲洗的时间间隔。由于除雾器冲洗期间会导致烟气带水量加大。所以冲洗不宜过于频繁,但也不能间隔太长,否则易产生结垢现象,除雾器的冲洗周期主要根据烟气特征及吸收剂确定。

c.除雾效率。指除雾器在单位时间内捕集到的液滴质量与进入除雾器液滴质量的比值。影响除雾效率的因素很多,主要包括:烟气流速、通过除雾器断面气流分布的均匀性、叶片结构、叶片之间的距离及除雾器布置形式等。

d.系统压力降。指烟气通过除雾器通道时所产生的压力损失 ,系统压力降越大 ,能耗就越高。除雾系统压降的大小主要与烟气流速、叶片结构、叶片间距及烟气带水负荷等因素有关。当除雾器叶片上结垢严重时系统压力降会明显提高 ,所以通过监测压力降的变化有助把握系统的状行状态 ,及时发现问题 ,并进行处理。

e.烟气流速。通过除雾器断面的烟气流速过高或过低都不利于除雾器的正常运行,烟气流速过高易造成烟气二次带水,从而降低除雾效率,同时流速高系统阻力大,能耗高。通过除雾器断面的流速过低,不利于气液分离,同样不利于提高除雾效率。设计烟气流速应接近于临界流速。根据不同除雾器叶片结构及布置形式,设计流速一般选定在3.5~5.5m/ s之间。本方案的烟气设计流速为6.9m/s。

f.除雾器叶片间距。除雾器叶片间距的选取对保证除雾效率,维持除雾系统稳定运行至关重要。叶片间距大,除雾效率低,烟气带水严重,易造成风机故障,导致整个系统非正常停运。叶片间距选取过小,除加大能耗外,冲洗的效果也有所下降,叶片上易结垢、堵塞,最终也会造成系统停运。叶片间距一般设计在20~95mm。目前脱硫系统中最常用的除雾器叶片间距大多在30~50mm。

g.除雾器冲洗水压。除雾器水压一般根据冲洗喷嘴的特征及喷嘴与除雾器之间的距离等因素确定,喷嘴与除雾器之间距离一般小于1m ,冲洗水压低时,冲洗效果差,冲洗水压过高则易增加烟气带水,同时降低叶片使用寿命。

h.除雾器冲洗水量。选择除雾器冲水量除了需满足除雾器自身的要求外,还需考虑系统水平衡的要求,有些条件下需采用大水量短时间冲洗,有时则采用小水量长时间冲洗,具体冲水量需由工况条件确定,一般情况下除雾器断面上瞬时冲洗耗水量约为1-4m3/m2.h

③除雾器的最终设计参数

本设计中设定最下层冲洗喷嘴距最上层喷淋层3m。距离最上层冲洗喷嘴3.5m。

1)数量:1套×1units=套

2)类型:V型级数:2级

3)作用:除去吸收塔出口烟气中的水滴,以便减少烟囱出烟口灰尘量。

4)选材:外壳:碳钢内衬玻璃鳞片;除雾元件:阻燃聚丙烯材料(PP);冲洗管道:FRP;冲洗喷嘴:PP。

表4 除雾器进出口烟气条件基于锅炉100%BMCR工况进行设计

除雾器进口除雾器出口

烟气量----------- ------------

温度℃50 ------------

烟气压力mmAq 113(1.11kPaG) 93(0.91kPaG)

雾滴含量mg/m3N(D) ------------ ≤75

5)雾滴去除率:99.75% 为达到除雾器出口烟气雾滴含量小于75mg/Nm3(干态),除雾器的雾滴去除率需要达到99.75% 以上。

6)除雾器内烟气流速:6.9m/s

a.重散布速度

大直径的雾滴颗粒可以通过除雾器元件惯性作用产生颗粒间碰撞从而去除雾滴。(平均颗粒直径大小为100~200μm )。

因此,烟气流速越高,雾滴去除率越高。但是,被去除的雾滴会重新散布,而降低雾滴去除效率。这就是雾滴重散布速度的概念。 b .通过除雾器的烟气流速

为了使除雾器的雾滴去除率达到99.75% 以上,根据吸收塔出口端(即除雾器入口端)雾滴颗粒直径的实际分布状况,直径大于17μm 的雾滴颗粒必须100%完全去除。

综上所述,除雾区的最终高度确定为3.5m ,即h 3=3.5m (5) 喷淋塔浆液池高度设计(设高度为h 2)

浆液池容量V 1按照液气比L/G 和浆液停留时间来确定,计算式子如下: 11N L V V t G

=

??

其中 L/G 为 液气比,12.2L/m 3

V N 为烟气标准状态湿态容积,V N =V g =39.40m 3/s T 1=2-6 min [8],取t 1=2.8min=168s 由上式可得喷淋塔浆液池体积

V !=(L/G) ×V N ×t !=12.20×39.40×168=80.02 m 3

选取浆液池内径等于吸收区内径,内径D 2= D i =3.8m

而V 1=0.25×3.14×D 2×D 2×h 2=0.25×3.14×3.8×3.8×h 2 所以 h 2=7.06m (6) 喷淋塔烟气进口高度设计(设高度为h 4)

根据工艺要求,进出口流速(一般为12m/s-30m/s )确定进出口面积,一般希望进气在塔内能够分布均匀,且烟道呈正方形,故高度尺寸取得较小,但宽度不宜过大,否则影响稳定性.

因此取进口烟气流速为20m/s ,而烟气流量为36.30 m 3/s , 可得 s m s m m h /30.36/253224=? 所以 h 4=1.20m

2×1.20=2.40m(包括进口烟气和净化烟气进出口烟道高度)

综上所述,喷淋塔的总高(设为H,单位m )等于喷淋塔的浆液池高度h 2 (单位m)、喷淋塔吸收区高度h (单位m)和喷淋塔的除雾区高度h 3(单位m )相加起来

的数值。此外,还要将喷淋塔烟气进口高度h 4(单位m )计算在内 因此喷淋塔最终的高度为

H= h+h 2+h 3+ h 4=18.47+7.06+3.50+2.40=31.43m 取圆整值32m 4.1.1.2 喷淋塔的直径设计

根据锅炉排放的烟气,计算运行工况下的塔内烟气体积流量,此时要考虑以下几种引起烟气体体积流量变化的情况:塔内操作温度低于进口烟气温度,烟气容积变小;浆液在塔内蒸发水分以及塔下部送入空气的剩余氮气使得烟气体积流量增大。喷淋塔内径在烟气流速和平均实际总烟气量确定的情况下才能算出来,而以往的计算都只有考虑烟道气进入脱硫塔的流量,为了更加准确,本方案将浆液蒸发水分V 2 (m 3/s)和氧化风机鼓入空气氧化后剩余空气流量V 3 (m 3/s) 均计算在内,以上均表示换算成标准准状态时候的流量。

(1) 吸收塔进口烟气量V a (m 3/s)计算

该数值已经由设计任务书中给出,烟气进口量为:36.30(m 3/s)

然而,该计算数值实质上仅仅指烟气在喷淋塔进口处的体积流量,而在喷淋塔内延期温度会随着停留时间的增大而降低,根据PVT 气体状态方程,要算出瞬间数值是不可能的,因此只能算出在喷淋塔内平均温度下的烟气平均体积流量。

(2) 蒸发水分流量V 2 (m 3/s)的计算

烟气在喷淋塔内被浆液直接淋洗,温度降低,吸收液蒸发,烟气流速迅速达到饱和状态,烟气水分由6%增至13%,则增加水分的体积流量 V 2 (m 3/s)为:

V 2=0.07×36.30(m 3/s)=2.541(m 3/s)(标准状态下)

(3) 氧化空气剩余氮气量V 3 (m 3/s)

在喷淋塔内部浆液池中鼓入空气,使得亚硫酸钙氧化成硫酸钙,这部分空气对于喷淋塔内气体流速的影响是不能够忽略的,因此应该将这部分空气计算在内。 假设空气通过氧化风机进入喷淋塔后,当中的氧气完全用于氧化亚硫酸钙,即最终这部分空气仅仅剩下氮气、惰性气体组分和水汽。理论上氧化1摩尔亚硫酸钙需要0.5摩尔的氧气。(假设空气中每千克含有0.23千克的氧气 ) 又V SO2=0.15 m 3/s 质量流率G SO2=

s g /644

.221000

0.15??=0.42857kg/s ≈0.43 kg/s

根据物料守蘅,总共需要的氧气质量流量G O2=0.43×0.5kg/s=0.214Kg/s 该质量流量的氧气总共需要的空气流量为空气G = G O2/0.23=0.932 Kg/s

标准状态下的空气密度为1.293kg/ m 3 [2]

故V 空气=0.932/1.293(m 3/s)=0.72 (m 3/s)

V 3=(1-0.23) ×V 空气=0.77×0.72 m 3/s=0.56 m 3/s 综上所述,喷淋塔内实际运行条件下塔内气体流量

V g=V a+V2+V3=36.30+2.54+0.56(m3/s)=39.40(m3/s)

(4)喷淋塔直径的计算

假设喷淋塔截面为圆形,将上述的因素考虑进去以后,可以得到实际运行状态下烟气体积流量V g,从而选取烟速u,则塔径计算公式为:

D

i = 2 ×

u

V

g

π

其中:V g为实际运行状态下烟气体积流量,39.40 m3/s u为烟气速度,3.5m/s

因此喷淋塔的内径为D

i = 2 ×

u

V

g

π

=2×

5.3

14

.3

40

.

39

?

=3.786m≈3.8m

4.1.2吸收塔喷淋系统的设计(喷嘴的选择配置)

在满足吸收二氧化硫所需表面积的同时,应该尽量把喷淋造成的压力损失降低到最小,喷嘴是净化装置的最关键部分,必须满足以下条件:

(1)能产生实心锥体形状,喷射区为圆形,喷射角度为60-120;

(2)喷嘴内液体流道大而畅通,具有防止堵塞的功能;

(3)采用特殊的合金材料制作,具有良好的防腐性能和耐磨性能;

(4)喷嘴体积小,安装清洗方便;

(5)喷雾液滴大小均匀,比表面积大而又不容易引起带水;

雾化喷嘴的功能是将大量的石灰石浆液转化为能够提供足够接触面积的雾化小液滴以有效脱除烟气中二氧化硫。湿法脱硫采用的喷嘴一般为离心压力雾化喷嘴,可粗略分为旋转型和离心型。常用的有空心锥切线型、实心锥切线型、双空心锥切线型、实心锥型、螺旋型等5种。

喷嘴布置分成2-6层,一般情况下为4层;层数的安排可以根据脱硫效率的具体要求来增减。底负荷时可以停止使用某一层,层间距0.8-2米,离心式喷嘴1.7米。实际上从浆液池液面到除雾器,整个高度都在进行吸收反应。因而实际吸收区高度要比h高6-8米。

本方案采用4层喷嘴,层间距为1.5米。每台吸收塔再循环泵均对应一个喷淋层,喷淋层上安装空心锥喷嘴,其作用是将石灰石/石膏浆液雾化。浆液由吸收塔再循环泵输送到喷嘴,喷入烟气中。喷淋系统能使浆液在吸收塔内均匀分布,流经每个喷淋层的流量相等。一个喷淋层由带连接支管的母管制浆液分布管道和喷嘴组成,喷淋组件及喷嘴的布置成均匀覆盖吸收塔的横截面,并达到要求的喷淋浆液覆盖率,使吸收浆液与烟气充分接触,从而保证在适当的液/气比(L/G)下可靠地实现至少95%的脱硫效率,且在吸收塔的内表面不产生结垢。喷嘴系统管道采用FRP玻璃钢,喷嘴采用SIC,是一种脆性材料,但是特别耐磨,而且抗

化学腐蚀,可以长期运行而无腐蚀、无磨损、无石膏结垢以及堵塞等问题。 4.1.2.1喷嘴布置设计原理 (1) 喷管管数的确定

根据单层浆体总流量Q l 和单个喷嘴流量Q s ,可得单层喷嘴个数n Q l = 480.68/4=120.17(L/s)

而单个喷嘴流量为Q s =0.75L/s

N=Q l /Q s

所以 N=120.17/0.75=160.22取整数值161个

单喷管最大流量

V

D Q s max max,4

π

=

单喷淋层主喷管数

1int max,+???

?

??=s

l

Q Q N 式中 m a x D 为单喷淋管可选最大管径,0.04m ; V 为喷淋管内最大流速,6m/s 。

所以 V D Q s m a x

m a x ,

4

π

==0.25×3.14×0.04×0.04×6=7.536L/S

1i n t

m a x

,+?

???

??

=s l Q Q

N =int(120.17/7.536)+1=16 (2) 各喷管间距的确定

根据脱硫塔直径、喷嘴个数等参数,各喷管之间间距:

sp

im sp N D L =

式中 D im 为脱硫塔内径

N sp 为喷嘴间距

(3) 各支喷管直径的确定

根据布置在主管、各支管的喷嘴个数以及单喷嘴流量,可以确定主管各段、各支管喷管直径

V

Q D i

i π4=

式中Q i 为节点i 处浆体流量,m 3/s ;D i 为节点i 处喷管直径,m 。 (4) 喷淋层在塔内覆盖率的确定 喷淋层在脱硫塔内覆盖率为:

100

?=

A

A EFF α

则 100

?=

A

A EFF α=

2

20

0.25 3.8

π??=176%

式中 A EFF 为单层喷嘴在脱硫塔内的有效覆盖面积,20m 2

A 为脱硫塔面积,11.3m 2

计算主要包括喷淋层内主喷管数、各支喷管的管径及流速、喷嘴在塔内位置等的计算及设计。根据上述设计方法、结合实际经验,确定喷淋层内各喷管直径、各个喷嘴位置等几何参数。

在确定喷嘴布置设计中,需要确定喷嘴在塔内的位置坐标在确定各支喷管直径时,要根据厂家提供的标准管径来选取。在确定各个支喷管直径后,还要根据厂家提供的喷嘴与各主、支喷管之间间距要求,对初步喷嘴位置进行调整,以避免喷出的液滴与喷管发生喷射碰撞。

在喷嘴布置完成后,需要确定喷淋层在塔内的履盖率以及多层覆盖状况,验证喷嘴布置的合理性。

4.1.2.2进行喷嘴在塔内布置设计中应该注意以下问题:

(1)选择合理的喷嘴覆盖高度,通常根据喷嘴特性及两层喷淋之间距离来确定。

(2)选择合理的单层喷嘴个数。一般来说,喷嘴个数根据工艺计算来确定。 (3)当喷嘴覆盖高度确定以后,就可以计算单个喷嘴的覆盖面积,

??

?

??=2220?πtg H A

(?为喷雾角)

则??

?

??=2220?πtg H A =3.14×1×1=3.142

m

(4)当在脱硫塔内布置喷嘴时,选择合适的喷嘴之间的距离。通常根据喷嘴个数和脱硫塔直径来选择喷嘴间距,并要与连接喷嘴的喷管布置方案整体考虑。

(5)选择合理的经济流速,并根据喷管产品的标准来确定石灰石浆液母管和支管直径。

(6)当检验喷淋层在脱硫塔覆盖率时,不仅要考虑喷嘴液流与母管、支管和支撑的碰撞对覆盖率的影响,还要考虑所有喷嘴在脱硫塔内覆盖均匀度。

4.1.3 吸收塔底部搅拌器及相关配置

在吸收塔底部,石灰石浆液经过脱硫过程之后,变成了CaSO3和CaSO3﹒1/2 H2O,此时为了使氧化风机鼓入的空气能够充分地和CaSO3和CaSO3﹒1/2 H2O 接触,以便充分氧化,需要CaSO3和CaSO3﹒1/2 H2O的混合溶液内部颗粒分布均匀,在这种情况下,需要使用搅拌器来使溶液悬浮颗粒均匀混合,同时增大和空气接触的面积。

由于底部溶液是固体悬浮溶液,根据

不同搅拌过程的搅拌器型式推荐表2-5[1]

搅拌器型式适用条件表2-6[1]

搅拌器型式使用范围表2-7[1]

在吸收塔浆液池的下部,沿塔径向布置四台侧进式搅拌器,其作用是使浆液的固体维持在悬浮状态,同时分散氧化空气。搅拌器安装有轴承罩、主轴、搅拌叶片、机械密封。搅拌器叶片安装在吸收塔降池内,与水平线约为10度倾角、与中心线约为-7度倾角。搅拌桨型式为三叶螺旋桨,轴的密封形式为机械密封。

在吸收塔旁有人工冲洗设施,提供安装和检修所需要的吊耳、吊环及其他专用滑轮。采用低速搅拌器,有效防止浆液沉降。吸收塔搅拌器的搅拌叶片和主轴的材质为合金钢。在运行时严禁触摸传动部件及拆下保护罩。向吸收塔加注浆液时,搅拌器必须不停地运行。

叶片和叶轮的材料等级是ANSI/ASTMA176—80a,搅拌器轴为固定结构,转速适当控制,不超过搅拌机的临界转速。所有接触被搅拌流体的搅拌器部件,必须选用适应被搅拌流体的特性的材料,包括具有耐磨损和腐蚀的性能。

4.1.4 吸收塔材料的选择

因为脱硫塔承受压力不大,而且16MnR钢材综合力学性能、焊接性能以及低温韧性、冷冲压以及切削性能比较好,低温冲击韧性也比较优越,价格低廉,应用比较广泛。故塔壁面由16MnR钢材制造,为了节约材料和防止腐蚀,内衬橡胶板防腐层,其烟气入口部分内衬玻璃鳞片加耐酸瓷砖。

4.1.5吸收塔壁厚的计算(包括计算壁厚和最小壁厚)

4.1.

5.1吸收塔计算壁厚的计算

由于操作压力不大,假设计算壁厚小于16毫米,根据附表九[3]16MnR钢板在操作温度下的许用应力为t]

[σ=170Mpa。

对于浆液池部分由于浆液会对塔壁产生压力,因此计算时还要这部分压力考虑在内,同时假设塔内的计算压力取0.202 MPa (2个标准大气压)P C’=0.202+gh

ρ(ρ为浆液密度1257kg/m3,g=9.81m/s2,h浆液池高度7.06m)

所以P C ’=0.202+gh ρ=0.202610?+1257×9.81×7.06=0.292×106Pa=0.292MPa

又根据式4-5[3]可知:吸收塔(喷淋塔)的计算壁厚公式为:

S=

c

t

i

c P D P -Φ][2σ (mm)

其中: P c 计算压力,对于浆液池以上部分取二倍大气压,0.202 MPa P C ’=0.292MPa

D i 圆筒或者球壳内径,为3800mm

Φ 焊接接头系数,取Φ=1; C 壁厚附加量,取C=1.00mm C 2 腐蚀裕量,mm ; C 1 钢板厚度负偏差,mm 对于喷淋塔顶部以下浆液池以上的部分(简称上部分)

S=

c

t

i

c P D P -Φ][2σ=

mm

259.28

.3396.767202

.0117023800202.0==

-???

根据取腐蚀裕量C 2=1.00mm [3],根据表4-7[3]可得 C 1=0.25mm 则 C 1 + C 2=0.25+1=1.25mm

2.259+C=2.259+1.25=

3.509mm 圆整后取S n =

4.00mm

因此脱硫塔上部分应该选用的壁厚为4.00mm 的16MnR 钢材,与上面的假设相符4.0mm 〈16.00mm

对于喷淋塔浆液池部分(简称下部分)

S ’=

mm P D P c

t

i c 31.37

.3398.1124292

.0117023800292.0][2'

'

==

-???=

-Φσ

根据取腐蚀裕量C 2=1.00mm ]3[,根据表4-7[3[可得 C 1=0.5mm

则 C 1+ C 2=0.5+1=1.5mm

3.31+C=3.31+1.5=

4.81mm 圆整后取S n ’=5mm

4.1.

5.2吸收塔(喷淋塔)计算壁厚的液压试验校核 上部分:e

e i T T

S S D P 2)

(+=

σ

(设计试验温度为200度,则[σ]=170Mpa )

P T =1.25×P ×

Mpa

Mpa Mpa t

170170202.025.1]

[][?

?=σσ=0.253Mpa

S e =S n -C=4-1.25=2.75mm D i =3800mm 故 e

e i T T S S D P 2)

(+=

σ=0.253×(3800+2.75)/2×2.75=174.93Mpa ≈175Mpa

而 0.9Φσ)(2.0σs =0.9×1×274=246.6Mp 因此e

e i T T S S D P 2)

(+=σ=175MPa 〈0.9Φσ)(2.0σs =246.6Mpa 所以液压试验强度符

合要求

下部分:e

e i T

T

S

S D P

''

'

12)(+=

σ≤0.9Φσ)(2.0σs

P 'T =1.25×P 'c ×

Mpa

Mpa Mpa t

170170292.015.1]

[][?

?=σσ=0.365Mpa

S 'e =S 'n -C=5-1.5=3.5mm D i =3800mm

故 e

e i T

T

S

S D P

''

'

12)(+=

σ=0.365×(3800+3.5)/(2×3.5)=201Mpa

而 0.8Φσ)(2.0σs =0.8×1×274=219.2MPa 因此e

e i T

T

S

S D P

''

'

12)(+=σ=201MPa 〈0.9Φσ)(2.0σs =219.2Mpa 所以液压试验强度

符合要求

综上所述,设计的材料选择,壁厚计算数值和试验强度均符合实际操作要求。 4.1.5.3吸收塔最小壁厚的计算

根据相关规定,塔壳圆筒不包括腐蚀裕度的最小厚度,对于碳钢和低合金钢制造的塔设备为0.2%的塔径[20],而且不小于4mm 。

而喷淋塔的内径为3800mm ,所以最小壁厚S min =0.2%×3800=7.6mm

根据取腐蚀裕量C 2=1.00mm ]3[,根据表4-7[3[可得 C 1=0.8mm

则 C 1+C 2=0.8+1=1.8mm

7.6+C=7.6+1.8=9.4mm 圆整后取S n =10mm

综合以上计算壁厚和最小壁厚的结果,最终台喷淋塔的壁厚为10mm 4.1.6吸收塔封头选择计算

考虑到封头与筒体采用双面焊接的焊接方法进行焊接,根据力学有关 知识,为了不使应力集中破坏设备,决定两端封头采用浅碟形封头,根据相关知识,在浅碟形封头内部:

(1)球面部分半径R i 不得大于筒体内径R i ≤ D i ,故R i ≤ D i ,一般取R i =0.9D i (2)折边半径r 在任何情况下不得小于筒体内径D i 的10%即380mm ,而且不应该小于3倍的封头名义壁厚S n (封头)。

因此 r ≥3 S n 且r ≥10% D i =380mm

浅碟形封头的尺寸是:D i =3800 mm ;R i =0.9D i =3420mm ;r 取400mm 则 浅碟形封头的形状系数M=r

R i +

3(*41

)=0.25×(3+

)400

3420

92.2400

3420==

r

R i 取

r

R i =3.00(根据表4-12]3[)

Pc=0.292Mpa,材料选用16MnR 钢材,故t ][σ=170Mpa, Φ=1,取C 2=2.00mm 浅碟形封头的计算壁厚S=

c

t

i

c P R MP 5.0][2-Φσ(根据式4-23]3[)

所以S=

mm

mm mm 41.48

.33996.1497292

.05.0117023420292.05.1==

?-????

S+ C 2=6.41mm,根据表4-7[3],负偏差C 1=0.5mm,C= C 1+C 2=2+0.5=2.5mm S+ C 1+C 2=4.41+2.5=6.91mm 圆整后取S n =7.00mm 此时浅碟形封头的最大允许工作压力[P e

i e t

w S MR S 5.0][2]+=

φσMpa(根据式4-25[3])

[P e

i e t

w S MR S 5.0][2]+=

φσ=

MPa

MPa 202.0298.05

.45.034205.15.41702?=?+???

故脱硫塔的浅碟形封头设计强度不够。为了运行安全,应该增加壁厚,选择封头的壁厚和筒体壁厚一致,则封头壁厚为10mm. 此时浅碟形封头的最大允许工作压力[P ''

'2[]]0.5t e w i e

S

M R S

σφ=

+Mpa(根据式4-25[3])

[P ''

'2[]]0.5t e w i e

S

M R S

σφ=

+=

21707.525500.4960.2021.534200.57.5

5130 3.75

M Pa M Pa

??=

=??+?+

故强度符合要求,因此浅碟形封头的壁厚为10mm 。

下端碟形封头与塔体采用焊接的方式,上端碟形封头与塔体采用法兰盘的连接方式。

4.1.7吸收塔裙式支座选择计算

立式容器的支座主要有耳式支座、腿式支座、支承式支座和裙式支座四种。中小型直立容器采用前三种支座,高大的塔设备则采用裙式支座。

本设计中,吸收塔(喷淋塔)内径为3800mm ,而吸收塔(喷淋塔)的高度为32m,根据服表4-9[3]可知,选用的裙座规格为:

;5.15.;2.8mm S mm S r s ==基础环厚度裙座圈厚度 地脚螺栓个数20个,公称直径M27

裙座的材料选用Q238-AR 钢材,塔体与裙座采用对接焊接,塔体接头焊接系

1=φ,裙座的壁厚取12mm,裙座的壁厚附加量取C=2mm 。

4.1.8吸收塔配套结构的选择

(1) 吸收塔(喷淋塔)进料浆液管道和配套阀门的设计选择

设计时应该充分考虑到石灰石浆液对管道系统的腐蚀与磨损,一般应该选用衬胶管道或者玻璃钢管道。管道内介质流速的选择既要 考虑到应该避免浆液沉淀,同时又要考虑到管道的磨损和屹立损失减少到最小[9]。而且浆液管道上的阀门应该选用蝶阀,尽量少采用调节阀门。阀门的流通直径与管道一致[9]。 (2) 吸收塔(喷淋塔)配套结构的选择(人孔选择)

塔设备内径大于2500mm ,封头和筒体都应该开设人孔,室外露天设备,考虑清洗,检修方便,一般选用公称直径450mm 或者500mm 的人孔;常压大型设备,贮槽则选用公称直径为500mm 或者600mm 的人孔。

综上所述,本设计方案中的吸收塔应该选用公称直径为500mm 的人孔。 d w ×S

D

D 1 B

b

B 1 B 2 H 1 H 2 螺栓直径长度 530×6 620 585

300 14

10

12

160

90

M16×5

4.2吸收塔最终参数的确定

(1)吸收塔(喷淋塔)数量:1 套×1 units=1 套 (2)类型:管道内置型吸收塔(喷淋塔)

(3)作用:烟气中的二氧化硫气体由吸收塔(喷淋塔)的浆液吸收并去除,为了使得烟气和浆液充分接触,应该合理地设计吸收塔(喷淋塔)内的除雾器、喷嘴、搅拌器。 4.2.1设计条件

(1)烟气条件 吸收塔(喷淋塔)进出口烟气设计条件基于锅炉100%BMCR 工况。

进口 出口 备注

烟气量(m 3/s) 33.60(标况) 39.40(标况) 大气压:101325Pa 温度(℃)

100

50 SO 2浓度(mg/ m 3) 11800(标况) 590(标况)

设计工况压力

进口/出口平均值:0.202Mpa(2atm)

(2)二氧化硫脱硫效率:95%(最小值) (3)钙硫率:1.02(最大) (4)烟气流速:3.5m/s

(5)吸收塔(喷淋塔)液气比:12.20L/ m 3 (6)浆液池循环时间:≥4min ; (7)排浆时间:≥16.5h

以上数值为经验值,该时间可以确保浆液池内充分的石膏产品和晶体生长(参考设计讲义)。 4.2.2吸收塔尺寸的确定

4.2.2.1喷淋区截面面积以及尺寸

根据吸收塔(喷淋塔)出口实际烟气流量和上升和下降段烟气流速,喷淋区

域截面面积如下所示: 2

40.10/36001/5.31(W)31,000m3/h 1m

h

s s

m =?

?

2

40.104

1m

D D =???π(此处没有将氧化空气和饱和蒸汽考虑在内)

根据该面积算出D=3.64m<3.8m,所以取内径为3.8m 符合设计要求

4.2.2.2吸收塔(喷淋塔)浆液循环量

根据吸收塔(喷淋塔)出口烟气量和液气比,浆液循环量计算如下所示: s L s m m L /68.480/40.39/20.1233=?

125L/s×4=500L/s

4.2.2.3喷淋区域高度和喷淋层数:

喷淋层数目:4层;

喷淋区域高度:1.5 m×4 层=6.0 m

4.2.2.4已确定的参数尺寸(mm)

吸收塔(喷淋塔)3800Φ×32000

喷淋区6000

出口烟道1200

进口烟道1200

反应池7100

4.2.2.5选材及防腐

塔本体:碳钢16MnR钢材

塔内部螺栓、螺母类:6%Mo不锈钢材料

塔内壁:衬里施工前经表面预处理,喷砂除锈,内衬材料为丁基橡胶板

塔内件支撑:碳钢衬丁基橡胶

丁基橡胶是由异丁烯中混以1.5%—4.5%的异戌二烯具有化学稳定性好、对臭氧、酸碱的耐腐蚀能力强、无吸水性等优良性能。丁基橡胶经改性后有卤化丁基橡胶,包括氯化丁基橡胶和溴化丁基橡胶,基本特性有:

(1)具有优良的耐水气渗透性能、耐浆液磨损性能、耐腐蚀性特别是耐Fˉ性、耐SO2、耐CL-性及耐热性等。结合脱硫工程浆液介质条件,通常来说厚度为4mm 即可,在磨损严重的部位衬2层4mm丁基橡胶。

(2)气体透过性小,气密性好回弹性小,在较宽温度范围内(30~50℃)均不大20% ,因而具有吸收振动和冲击能量的特性。

(3)耐热老化性优良,且有良好的耐臭氧老化、耐天候老化和对化学稳定性以及耐电晕性能与电绝缘性好。

(4)耐水性好、水渗透率极低,因而适于做绝缘材料。缺点是硫化速度慢、粘合性和自粘性差、与金属粘合性不好、与不饱和橡胶相容性差,不能并用。

4.2.3吸收塔的强度和稳定性校核

4.2.3.1强度和稳定性校核条件

(1)塔体内径D i=3800mm,塔高度32000mm,裙座高度3060 mm,计算压力0.292MPa,设计温度200℃。

(2)设置地区:基本风压350N/m2,地震防烈度8度,场地土地类:B类。(3)沿塔高开设3个人孔,相应在人孔处安装圆形平台3个,平台宽度

B=900mm,高度为1000 mm。

(4)塔外设置保温层厚度为100 mm ,密度300kg/m 3. (5)塔体与封头选用16MnR 钢材,其MPa t 170][=σ

MPa

E MPa MPa t S

5

109.1,345,170][?===σ

σ

(6)裙座材料选用Q238-AR

(7)塔体与裙座对接焊接,塔体焊接系数1=φ

(8)塔体与封头壁厚附加量取C=2.00 mm ,裙座壁厚附加量取C=2.00 mm 。 4.2.3.2塔设备质量载荷计算

(1) 塔体圆筒、封头、裙座质量m 01

圆筒质量kg m 3.1873243.315961=?= 封头质量260021200m kg =?= 裙座质量3596 3.061823.76m kg =?=

0112321756m m m m kg

=++=

其中 塔体高度为31.43米,查得DN3800 mm ,壁厚10 mm 的圆筒每米质量为596kg;;

查得DN3800 mm ,壁厚10 mm 的封头每米质量为600kg ;裙座高度3060 mm 。

(2) 塔内件质量,取m a x

01

020*********a W e m m m m m m m m kg =++++++= 02100m kg

=

(3) 保温层质量22'

0302031[(22)(2)]24

i n i n m D S D S H m πδρ=++-++

22

031 3.14[(380020.0120.1)(380020.01)]31.433002(1.54 1.18)300

4

m =

?+?+?-+???+-? =11836.7kg

其中 '03m 封头保温层质量 (4) 平台扶梯质22

04011[(222)(22)]

4

2

i n i n F F

m D S B D S nq q H πδδ=

+++-++++

22

0411[(380020.0120.120.9)(380020.0120.1)]

3.504034

4

2

m π=

+?+?+?-+?+???+?

=8659.5 kg

(5) 操作时物料质量2

2051021114

4

i W i f m D h D h V πρπρρ=

+

+

2

2

051113.14387.061257 3.14 3.8(31.437.06) 1.014

4

f m V ρ=

????+

???-?+

=100874 kg

其中 W h 为石灰质浆液高度,7.06m 0h 除浆液区外的塔高,31.43-7.06m 1ρ石灰石浆液密度,12573/kg m 2ρ空气在

10050

752

C

?

+=时候的密度,1.013/kg m

(6) 附件质量a m ,按照经验值取010.250.25215765439a m m kg =?=?= (7) 充水质量2

0124

W i f m D H V πρρ=+

2

13.143.831.431000

21.181000

4

W m =

????+??=358631 kg 下面将塔分成六段,计算下列各质量载荷 表6 吸收塔各计算段的质量 塔段

0-1

1-2 2-3 3-4 4-5 5-塔顶 合计 人孔与平台数量 0

1

2

3

塔板数

0 0 0 0 0 0

01i

m

621.6 1243 4351 6216 6216 3108 21576

02i

m

0 0 10 40 40 12 100

冷却塔选型计算28843

冷却塔选型须知 1、请注明冷却塔选用的具体型号,或每小时处理的流量。 2 、冷却塔进塔温度和出塔水温。 3、请说明给什么设备降温、现场是否有循环水池,现场安装条件如何。 4、若需要备品备件及其他配件,有无其他要求等请注明。 5、非常条件使用请说明使用环境和具体情况,以便选择适当的冷却塔型号。 6、特殊情况、型号订货时请标明,以双方合同、技术协议约定专门进行设计。 冷却塔详细选型: 1、首先要确定冷却塔进水温度,从而选择标准型冷却塔、中温型冷却塔还是高温型冷却塔。 2、确定使用设备或者可以按照现场情况对噪声的要求,可以选择横流式冷却塔或者逆流式冷却塔。 3、根据冷水机组或者制冷机的冷却水量进行选择冷却塔流量,一般来讲冷却塔流量要大于制冷机的冷却水量。(一般取1.2—1.25倍)。 4、多台并联时尽量选择同一型号冷却塔。 其次,冷却塔选型时要注意: 1、冷却塔的塔体结构材料要稳定、经久耐用、耐腐蚀,组装配合精确。 2、配水均匀、壁流较少、喷溅装置选用合理,不易堵塞。 3、冷却塔淋水填料的型式符合水质、水温要求。 4、风机匹配,能够保证长期正常运行,无振动和异常噪声,而且叶片耐水侵蚀性好并有足够的强度。风机叶片安装角度可调,但要保证角度一致,且电机的电流不超过电机的额定电流。 5、电耗低、造价低,中小型钢骨架玻璃冷却塔还要求质量轻。 6﹑冷却塔应尽量避免布置在热源、废气和烟气发生点、化学品堆放处和煤堆附近。 7、冷却塔之间或塔与其它建筑物之间的距离,除了考虑塔的通风要求,塔与建筑物相互影响外,还应考虑建筑物防火、防爆的安全距离及冷却塔的施工及检修要求。 8、冷却塔的进水管方向可按90°、180°、270°旋转。 9、冷却塔的材料可耐-50℃低温,但对于最冷月平均气温低于-10℃的地区订货时应说明,以便采取防结冰措施。冷却塔造价约增加3%。 10、循环水的浊度不大于50mg/l,短期不大于100mg/l不宜含有油污和机械性杂质,必要时需采取灭藻及水质稳定措施。 11、布水系统是按名义水量设计的,如实际水量与名义水量相差±15%以上,订货时应说明,以便修改设计。 12、冷却塔零部件在存放运输过程中,其上不得压重物,不得曝晒,且注意防火。冷却塔安装、运输、维修过程中不得运用电、气焊等明火,附近不得燃放爆竹焰火。 13、圆塔多塔设计,塔与塔之间净距离应保持不小于0.5倍塔体直径。横流塔及逆流方塔可并列布置。 14、选用水泵应与冷却塔配套,保证流量,扬程等工艺要求。 15、当选择多台冷却塔的时候,尽可能选用同一型号。 此外,衡量冷却塔的效果还通常采用三个指标: (1)冷却塔的进水温度t1和出水温度t2之差Δt。Δt被称为冷却水温差,一般来说,温差越大,则冷却效果越好。对生产而言,Δt越大则生产设备所需的冷却水的流量可以减少。但如果进水温度t1很高时,即使温差Δt很大,冷却后的水温不一定降低到符合要求,因此这样一个指标虽是需要的,但说明的问题是不够全面的。 (2)冷却后水温t2和空气湿球温度ξ的接近程度Δt’。Δt’=t2-ξ(℃)Δt’称为冷却幅高。Δt’值越小,

吸收塔的设计和选型

烟气脱硫工艺主要设备吸收塔设计和选型 4.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 4.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设 计、喷淋塔的直径设计 4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= ) ln( ) ()(* ** 2 2*11*2 2*1 12 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -] 4[ 82.0W a k L ?=] 4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型 (2) 喷淋塔吸收区高度设计(二) 对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。 逆流式吸收塔的烟气速度一般在2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。 湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。 (3)喷淋塔吸收区高度的计算 含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。 首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量 ζ=h C K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3 η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,m K 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ; K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。二氧化硫质量浓度应该低于580mg/m 3 (标状态) ζ的单位换算成kg/( m 2.s),可以写成 ζ=3600× h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度10050752 C ?+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×

冷却塔、冷却水泵及冷冻水泵选型计算方法

冷却塔及冷却水泵选型计算方法: 1冷却塔冷却水量 方法一: 冷却水量=860×Q(kW)×T/5000=559 m3/h T------系数,离心式冷水机组取1.3,吸收式制冷机组取2.5 5000-----每吨水带走的热量 方法二: 冷却水量: G= 3.6 Q/C (tw1-tw2)=559 m3/h Q—冷却塔冷却热量,kW,对电制冷机取制冷负荷1.35倍左右,吸收式取2.5倍左右。C—水的比热(4.19kJ/kg.k) tw1-tw2—冷却塔进出口温差,一般取5℃;压缩式制冷机,取4~5℃;吸收式制冷机,取6~9℃ 冷却塔吨位=559×1.1=614 m3/h 2冷却水泵扬程 冷却水泵所需扬程 H p=(h f+h d)+h m+h s+h o 式中h f,h d——冷却水管路系统总的沿程阻力和局部阻力,mH2O; h m——冷凝器阻力,mH2O;

h s——冷却塔中水的提升高度(从冷却盛水池到喷嘴的高差),mH2O;(开式系统有,闭式系统没哟此项) h o——冷却塔喷嘴喷雾压力,mH2O,约等于5 mH2O。 H p=(h f+h d)+h m+h s+h o=0.02×50+5.8+19.8+5=31.6mH2O 冷却水泵所需扬程=31.6×1.1=34.8 mH2O 冷却水泵流量=262×2×1.1=576 m3/h 3冷冻水泵扬程 冷冻水泵所需扬程 H p=(h f+h d)+h m+h s+h o 式中h f,h d——冷冻水管路系统总的沿程阻力和局部阻力,mH2O ; h m——蒸发器阻力,mH2O ; h s——空调器末端阻力,mH2O ; h o——二通调节阀阻力,mH2O 。 H p=(h f+h d)+h m+h s+h o=0.02×150+5+2.78+4=14.78mH2O 冷却水泵所需扬程=14.78×1.1=16.3 mH2O

脱硫塔设计

目录 1.设计任务书 (2) 1.1 设计题目 (2) 1.2 设计内容 (2) 1.3 主要设计参数 (3) 2.脱硫工艺的选择与工艺流程简介 (3) 2.1 脱硫工艺的选择 (3) 2.2 工艺流程简介 (4) 3. 工艺流程中主要发生的化学反应 (5) 4. 脱硫塔设计 (6) 4.1 物料衡算 (6) 4.1.1 入塔的煤气质量 (6) 4.1.2 出塔煤气的变化量 (8) 4.1.3 m3的计算 (12) 4.1.4 m4的计算 (12) 4.1.5 脱硫塔的液气比 (12) 4.2 热量衡算 (12) 4.2.1 入塔脱硫煤气带入的热量 (12) 4.2.2 出脱硫塔的煤气带走的热量 (13) 4.2.3 脱硫过程中发生的熔解热和反应热 (14) 4.2.4 总的热量衡算 (15) 4.3 设备计算 (15) 4.3.1 选择填料 (15) 4.3.2 塔径的计算 (16) 4.3.3 传质面积和填料高度 (17) 5.脱硫塔工艺设计结果表 (18) 5.1 总表 (18) 5.2 煤气入塔物质汇总表 (19) 5.3 出塔物质汇总表 (20) 5.4 其他数据 (20) 6.设计小结 (20) 7.参考文献 (23)

1. 设计任务书 1.1 设计题目 干煤气量为 40000Nm 3/h 的炼焦煤气的脱硫的工艺计算。 入口煤气 出口煤气 温度/℃ 34 36 压力(表压)/Pa 17000 15000 煤气中S H 2含量/g/Nm 3 99.5 1.0 入口煤气中杂质的含量: 组分 焦油 苯 S H 2 HCN 3NH 萘 水汽 含量/g/Nm 3 微量 28.45 5.99 1.57 8.37 0.4 23.97 剩余氨水:12470Kg/h ,t=75℃,P=0.45MPa ,氨的质量分数10%。 1.2 设计内容 (1)脱硫工艺的选择与工艺流程介绍; (2)脱硫塔的物料衡算; (3)脱硫塔的工艺尺寸计算; 3NH S H 2 2CO HCN 挥发氨 24Kg/h 97%3NH 0.18g/L 1.3g/L 0.04g/L 固定氨 18Kg/h 90%3NH

脱硫塔的设计

目录 1 处理烟气量计算 (3) 2 烟气道设计 (3) 3吸收塔塔径设计 (3) 4 吸收塔塔高设计 (3) 5 浆液浓度的确定 (5) 6 喷淋区的设计 (5) 7 除雾器的设计 (7) 8 氧化风机与氧化空气喷管 (9) 9 塔内浆液搅拌设备 (9) 10 排污口及防溢流管 (9) 11 附属物设计 (10) 12 防腐 (10)

脱硫塔的结构设计,包括储浆段、烟气入口、喷淋层、烟气出口、喷淋层间距、喷淋层与除雾器和脱硫塔入口的距离、喷喷嘴特性(角度、流量、粒径分布等)、喷嘴数量和喷嘴方位的设计 烟道设计 塔体设计: 脱硫塔上主要的人孔、安装孔管道孔:除雾器安装孔,每级至少一个;喷淋浆液管道安装孔,至少一个;脱硫塔底部清渣孔,至少一个;烟气入口烟道设置一人孔,以便大修时清理烟道可能的积垢。 脱硫塔上主要的管孔:循环泵浆液管道入口,一般为3个;液位计接口,一般为2~3个,石膏浆液排出口1~2个;排污口1个;溢流口1个;滤液返回口1个;事故罐浆液返回口1个;地坑浆液返回1个;搅拌机接口2~6个;差压计接口2~4个。 储液区:一般塔底液面高度h1=6m~15m; 喷淋区:最低喷淋层距入口顶端高度h2=1.2~4m;最高喷淋层距入口顶端高度h3≥vt,v为空塔速度,m/s,t为时间,s,一般取t≥1.0s;喷淋层之间的间距h4≥1.5~2.5m; 除雾区:除雾器离最近(最高层)喷淋层距离应≥1.2m,当最高层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m; 喷淋泵 喷淋头 曝气泵

1 处理烟气量计算 得到锅炉烟气量,根据实际的气体温度转化成当时的处理烟气量。根据燃料的属性计算出烟气中SO2的含量,并根据国家相关环保标准以及甲方的要求确定烟气排放SO2的含量,并计算脱硫效率 2 烟气道设计 进气烟道中的气速一般为13m/s,排气烟道中的气速一般为11m/s,由此算出截面积,烟道截面一般为矩形,自行选取长宽。 3吸收塔塔径设计 直径由工艺处理烟气量及其流速而定。根据国内外多年的运行经验,石灰法烟气脱硫的典型操作条件下,吸收塔内烟气的流速应控制在u<4.0m/s为宜。(一般配30万kW机组直径为Φ13m~Φ14m,5万kW机组直径约为Φ6m~Φ7m)。 喷淋塔塔径D: 则喷淋塔截面面积 将D代入反算出实际气流速度u`: 4 吸收塔塔高设计 4.1 浆液高(h1) 由工艺专业根据液气比需要的浆液循环量及吸收SO2后的浆液在池内逐步氧化反应成石膏浆液所需停留时间而定,一个是停留时间大于4.5min 4.2 烟气进口底部至浆液面距离(c) 一般定为800mm~1200mm范围为宜。考虑浆液鼓入氧化空气和搅拌时液位有所波动;入口烟气温度较高、浆液温度较低可对进口管底部有些降温影响;加之该区间需接进料接管, 4.3 烟气进出口高度

化工原理课程设计-填料吸收塔的设计

化工原理课程设计-填料吸收塔的设计

课程设计 题目:填料吸收塔的设计 教学院:化学与材料工程学院 专业:化学工程与工艺(精细化工方向) 学号: 学生姓名: 指导教师: 2012 年 5 月31 日

《化工原理课程设计》任务书 2011~2012 学年第2学期 学生姓名:专业班级:化学工程与工艺(2009) 指导教师:工作部门:化工教研室 一、课程设计题目:填料吸收塔的设计 二、课程设计内容(含技术指标) 1. 工艺条件与数据 煤气中含苯2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸 收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时 处理含苯煤气2000m3;冷却水进口温度<25℃,出口温度≤50℃。 2. 操作条件 吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充 新鲜吸收剂;过程中热效应忽略不计。 3. 设计内容 ①吸收塔、解吸塔填料层的高度计算和设计; ②塔径的计算; ③其他工艺尺寸的计算。 三、进度安排 1.5月14日:分配任务; 2.5月14日-5月20日:查询资料、初步设计; 3.5月21日-5月27日:设计计算,完成报告。 四、基本要求 1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。设计说明 书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程 和设备选型作出技术上和经济上的论证和评价。应按设计程序列出计算公式和计 算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。 设计说明书应附有带控制点的工艺流程图。 设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作 条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算; 设计结果概览;附录;参考文献等。 2. 图纸1套:包括工艺流程图(3号图纸)。 教研室主任签名: 年月日

(完整版)冷却塔的选型

冷却塔的选型 冷却塔是用水作为循环冷却剂,从一系统中吸收热量排放至大气中,以降低水温的装置;其冷是利用水与空气流动接触后进行冷热交换产生蒸汽,蒸汽挥发带走热量达到蒸发散热、对流传热和辐射传热等原理来散去工业上或制冷空调中产生的余热来降低水温的蒸发散热装置,以保证系统的正常运行,装置一般为桶状,故名为冷却塔。英文名叫做The cooling tower。 最近几年,冷却塔高速发展,产品不断更新。正因如此,才使玻璃钢冷却塔问世。玻璃钢冷却塔开始和闭式,玻璃钢维护结构的冷却塔冷却塔设计气象条件大气压力: P =99.4×103 kPa 干球温度:θ=31.5℃ 湿球温度:τ=28℃(方形和普通型为27℃) 冷却塔设计参数1.标准型:进塔水温37℃,出塔水温32℃ 2.中温型:进塔水温43℃,出塔水温33℃ 3.高温型:进塔水温60℃,出塔水温35℃ 4.普通型:进塔水温37℃,出塔水温32℃ 5.大型塔:进塔水温42℃,出塔水温32℃工业中,使热水冷却的一种设备。水被输送到塔内,使水和空气之间进行热交换,或热、质交换,以达到降低水温的目的。 分类编辑 一、按通风方式分有自然通风冷却塔、机械通风冷却塔、混合通风冷

却塔。 二、按热水和空气的接触方式分有湿式冷却塔、干式冷却塔、干湿式冷却塔。 三、按热水和空气的流动方向分有逆流式冷却塔、横流(交流)式冷却塔、混流式冷却塔。 四、按用途分一般空调用冷却塔、工业用冷却塔、高温型冷却塔。 五、按噪声级别分为普通型冷却塔、低噪型冷却塔、超低噪型冷却塔、超静音型冷却塔。 六、其他如喷流式冷却塔、无风机冷却塔、双曲线冷却塔等。 七、按玻璃钢冷却塔的外形分为圆型玻璃钢冷却塔和方型玻璃钢冷却塔。 适用范围编辑 工业生产或制冷工艺过程中产生的废热,一般要用冷却水来导走。冷却塔的作用是将挟带废热的冷却水在塔内与空气进行热交换,使废热传输给空气并散入大气中。例如:火电厂内,锅炉将水加热成 高温高压蒸汽,推动汽轮机做功使发电机发电,经汽轮机作功后的废汽排入冷凝器,与冷却水进行热交换凝结成水,再用水泵打回锅炉循环使用。这一过程中乏汽的废热传给了冷却水,使水温度升高,挟带废热的冷却水,在冷却塔中将热量传递给空气,从风筒处排入大气环境中。冷却塔应用范围:主要应用于空调冷却系统、冷冻系列、注塑、制革、发泡、发电、汽轮机、铝型材加工、空压机、工业水冷却等领域,应用最多的为空调冷却、冷冻、塑胶化工行业。

吸收塔的设计和选型

XXXXXXXXXXXXXXXXXXXXX-环境工程部 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX. Environmental Engineering Department 脱硫塔设计及选型指导手册 Guide Handbook for design and selection of desulphurizing tower 签署: 日期:

目录 1.1吸收塔的设计 (3) 1.1.1 吸收塔的直径和喷淋塔高度设计 (3) 1.1.2吸收塔喷淋系统的设计(喷嘴的选择配置) (13) 1.1.3 吸收塔底部搅拌器及相关配置 (16) 1.1.4 吸收塔材料的选择 (17) 1.1.5吸收塔壁厚的计算(包括计算壁厚和最小壁厚) (17) 1.1.6吸收塔封头选择计算 (19) 1.1.7吸收塔裙式支座选择计算 (21) 1.1.8吸收塔配套结构的选择 (21) 1.2吸收塔最终参数的确定 (22) 1.2.1设计条件 (22) 1.2.2吸收塔尺寸的确定 (22) 1.2.3吸收塔的强度和稳定性校核 (24)

1.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 1.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[

冷却塔选型

目录 1、冷却塔的作用 2、冷却塔的分类 3、各种冷却塔简述 4、冷却塔的设计与测试 1、冷却塔的作用 工业消费或制冷工艺历程中发生的废热,个别要用冷却水来导走。从江、河、湖、海等天然水体中汲取肯定量的水作为冷却水,冷却工艺装备汲取废热使水温降低,再排入江、河、湖、海,这种冷却方法称为直流冷却。当不具有直流冷却条件时,则须要用冷却塔来冷却。冷却塔的作用是将挟带废热的冷却水在塔内与空气进行热替换,使废热传输给空气并散**气。 如图 1 所示的火电厂为例,锅炉回将水加热成低温低压蒸汽;推进汽轮机(2)作功使发电机(3)发电。经汽轮机作功后的乏汽排入凝汽器(4),与冷却水进行热替换凝聚成水,再用水泵打回锅炉循环运用。这一热力循环历程中;乏汽的废热在凝汽器中传给了冷却水,使水温降低.挟带废热的冷却水,在冷却塔(5)中将其热量传给空气(6),从塔筒出口排**气。在冷却塔内冷却过的水变为低温水,水泵将其再送入凝汽器,循环运用。前一循环为锅炉中水的循环,后一循环为冷却水的循环、其他工业部门,如石油、化工、钢铁等,也普遍运用冷却塔。冷却塔中水和空气的热替换方法之一是,流过水外表的空气与水间接接触,通过接触传热和蒸发散热,把水中的热量传输给空气.用这种冷却方法的称为湿式冷却塔(简称湿塔)。湿塔的热替换效力高,水被冷却的极限温度为空气的湿球温度.然而,水因蒸发而形成损耗;蒸发又依循环的冷却水含盐度增添,为了稳定水质,必需排掉一局部含盐度较高的水;风吹也会形成水的丧失。这些水的盈余必需有足够的新水连续弥补,因此,湿塔须要有补给水的水源。缺水地域,弥补水有艰难的状况下;只能采取干式冷却塔(简称干塔或空冷塔)。干塔中空气与水(也有空气与乏汽)的热替换;是通过由金属管组成的散热器外表传热,将管内的水或乏汽的热量传输给散热器外活动的空气。干塔的热替换效力比湿塔低,冷却的极限温度为空气的干球温度。 2、冷却塔的分类 目前已经被淘汰的冷却塔型这里不再介绍,现还在运用的塔型,分类如下。 A、按通风方法分 按通风方法分有: 天然通风冷却塔 机械通风冷却塔 混杂通风冷却塔。 B、按热水和空气的接触方法分 按热水和空气的接触方法分有: 湿式冷却塔; 干式冷却塔; 干湿式冷却塔。 C、按热水和空气的活动方向分

冷却塔选型计算

冷却塔选型 1.冷却水流量计算: L=(Q1+Q2)/(Δt*1.163)*1.1 L—冷却水流量(m3/h) Q1—乘以同时使用系数后的总冷负荷,KW Q2—机组中压缩机耗电量,KW Δt—冷却水进出水温差,℃,一般取4.5-5 冷却塔的水流量= 冷却水系统水量×(1.2~1.5); 冷却塔的能力大多数为标准工况下的出力(湿球温度28 ℃,冷水进出温度32o C/37oC),由于地区差异,夏季湿球温度会不同, 应根据厂家样册提供的曲线进行修正.湿球温度可查当地气象参数获得. 冷却塔与周围障碍物的距离应为一个塔高。 冷却塔散冷量冷吨的定义:在空气的湿球温度为27℃,将13L/min(0.78m3/h)的纯水从37℃冷却到32℃,为1冷吨,其散热量为4.515KW。 湿球温度每升高1℃,冷却效率约下降17% 2.冷却塔冷却能力计算: Q=72*L*(h1-h2) Q-冷却能力(Kcal/h) L-冷却塔风量,m3/h h1-冷却塔入口空气焓值 h2-冷却塔出口空气焓值 3.冷却塔若做自控,进出水必须都设电动阀,否则单台对应控制时倒吸或溢水。 4.冷却水泵扬程的确定 扬程为冷却水系统阻力+冷却塔积水盘至布水器的高差+布水器所需压力 5.冷却塔不同类型噪音及处理方法:

. 6.冷却水管径选择

7.冷却水泵扬程: 扬程通常是指水泵所能够扬水的最高度,用H表示。最常用的水泵扬程计算公式是H=(p2-p1)/ρg+(c2-c1)/2g+z2-z1。 其中,H——扬程,m;p1,p2——泵进出口处液体的压力,Pa;c1,c2——流体在泵进出口处的流速,m/s;z1,z2——进出口高度,m;ρ——液体密度,kg/m3;g——重力加速度,m/s2。 通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。 按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程计算公式(mH2O):Hmax=△P1+△P2+0.05L(1+K) △P1为冷水机组蒸发器的水压降。 △P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。 L为该最不利环路的管长 K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.6。 8.冷却塔的选择:

脱硫塔技术方案范本

脱硫塔技术方案

第一章项目条件 1.1 工程概述 本技术方案适用于陶瓷有限公司干燥塔窑炉排出的粉尘、烟气、二氧化硫(SO2)排放超标的问题,经过对现有系统的技术分析,做出改造方案。 为了保护公司周围的生产、生活环境,并使排放的粉尘、烟气达到国家的排放标准,同时满足地方环保总量控制要求,需配套建设成熟高效的布袋式除尘和湿法烟气脱硫装置。 1.2 工程概况 本工程属环境保护项目,对干燥塔、窑炉排出的烟气的粉尘、二氧化硫(SO2)进行综合治理,达到达标排放,计划为合同生效后3个月内建成并满足协议要求。 1.3 基础数据 喷雾干燥塔窑炉排出的烟气的基础数据

窑炉排出的烟气的基础数据 第二章设计依据和要求 2.1 设计依据 2.2 主要标准规范 综合标准 序号编号名称 1 《陶瓷行业大气污染物排放标准》 2 GB3095- 《环境空气质量标准》 3 GB8978- 《环境空气质量标准》 4 GB12348- 《工厂企业界噪声标准》 5 GB13268∽3270-97 《大气中粉尘浓度测定》 设计标准 序号编号名称 1 GB50034- 《工业企业照明设计标准》

2 GB50037-96 《建筑地面设计规范》 3 GB50046- 《工业建筑防蚀设计规范》 4 HG20679-1990 《化工设备、管道外防腐设计规定》 5 GB50052- 《供配电系统设计规范》 6 GB50054- 《低压配电设计规范》 7 GB50057- 《建筑物防雷设计规范》 8 GBJ16- 《建筑物设计防火规范》 9 GB50191- 《构筑物抗震设计规范》 10 GB50010- 《混凝土结构设计规范》 11 GBJ50011- 《建筑抗震设计规范》 12 GB50015- 《建筑给排水设计规范》 13 GB50017- 《钢结构设计规范》 14 GB50019- 《采暖通风与空气调节设计规范》 15 GBJ50007- 《建筑地基基础设计规范》 16 GBJ64-83 《工业与民用电力装置的过电压保护设计规范》 17 GB7231- 《工业管道的基本识别色和识别符号的安全知识》 18 GB50316- 《工业金属管道设计规范》 19 GBZ1- 《工业企业设计卫生标准》 20 HG/T20646-1999 《化工装置管道材料设计规定》 21 GB4053.4-1983 《固定式钢斜梯及工业钢平台》 设备、材料标准 序号编号名称 1 GB/T13927- 《通用阀门压力试验》

湿法脱硫工艺吸收塔及塔内件的设计选型

湿法脱硫工艺吸收塔及塔内件的设计选型 1 吸收塔塔型的选择 在湿法脱硫工艺中,吸收塔是一个核心部件,一个湿法脱硫工程能否成功,关键看吸收塔、塔内件及与之相匹配的附属设备的设计选型是否合理可靠。在脱硫工程中运行阻力小、操作方便可靠的吸收塔和塔内件的布置形式,将具有较大的发展前景。 目前,在国内的脱硫工程中,应用较多的吸收塔塔型有喷淋吸收空塔、托盘塔、液柱塔、喷射式鼓泡塔等。国内学者曾在实验室里对各种塔型做了实验测试(见图1),从测试情况看,在塔内烟气流速相同的情况下,喷淋吸收空塔的系统阻力最小,液柱塔的阻力次之,托盘塔的阻力相对较大。 由于喷淋吸收空塔塔内件较少,结垢的机率较小,运行维修成本较低,因此喷淋吸收空塔已逐渐成为目前应用最广泛的塔型之一。图2为喷淋吸收空塔(以下简称吸收塔)的结构简图。 2 喷淋吸收空塔主要工艺设计参数 (1)烟气流速

在保证除雾器对烟气中所携带水滴的去除效率及吸收系统压降允许的条件下,适当提高烟气流速,可加剧烟气和浆液液滴之间的湍流强度,从而增加两者之间的接触面积。同时,较高的烟气流速还可持托下落的液滴,延长其在吸收区的停留时间,从而提高脱硫效率。 另外,较高的烟气流速还可适当减少吸收塔和塔内件的几何尺寸,提高吸收塔的性价比。在吸收塔中,烟气流速通常为3~4.5m/s。许多工程实践表明,3.6m/s≤烟气流速(110%过负荷)≤4.2m/s是性价比较高的流速区域。 (2)液气比(L/G) L/G决定了SO2的吸收表面积。在吸收塔中,喷淋雾滴的表面积与浆液的喷淋速率成一定的比例关系。当烟气流速确定以后,L/G成为了影响系统性能的最关键变量,这是因为浆液循环率不仅会影响吸收表面积,还会影响吸收塔的其他设计,如雾滴的尺寸等。L/G的主要影响因素有:吸收区体积、SO2的去除效率、吸收塔空塔速率、原烟气的SO2浓度、吸收塔浆液的氯含量等。 根据吸收塔吸收传质模型及气液平衡数据计算出液气比(L/G),从而确定浆液循环泵的流量。 美国能源部编制的FGD-PRISM程序的优化计算,L/G以15L/m3为宜,此时,SO2的去除效率已接近100%。L/G超过15.5L/m3后,脱硫效率的提高非常缓慢,而且提高L/G将使浆液循环泵的流量增大,增加循环泵的设备费用,同时还会提高吸收塔的压降,加大增压风机的功率及设备费用。 (3)吸收塔浆池尺寸 吸收塔浆池尺寸可通过以下工艺设计参数确定: 1)石膏颗粒(晶种)生长的停留时间 湿法脱硫系统中,亚硫酸钙、硫酸钙的析出是在循环浆液的固体颗粒(晶种)表面上进行的,为了晶体的生长和结晶,循环浆池里的石膏颗粒必须有足够的停留时间,反应时间也必须足够长。停留时间的计算公式为: RT=(V×ρ×SC)/TSP 其中:RT—停留时间(min);TSP—石膏成品产量(干基)(kg/min);V—浆池体积(m3);ρ—浆液密度(kg/m3);SC—浆液含固量(%)。如生产的石膏要在水泥或石膏行业使用,FGD的石膏成品含水量必须<10%,石膏必须结晶成平均直径为35~50μm的立方晶体,停留时间必须>15小时。对于抛弃系统,由于石膏成品要被抛弃,石膏成品含水量可>15%,这样系统的停留时间可缩小到10小时左右。 2)石灰石溶解的停留时间 如要求吸收塔内的石灰石充分溶解,则石灰石在循环浆池内必须有足够长的停留时间。一般来说,石灰石的停留时间须>4.3min。石灰石溶解的停留时间按下式计算: T=V/(N×RF) 其中:T—停留时间(min);V—浆池体积(m3);N—循环泵数;RF—单台循环泵流量(m3 /h)。 3)氧化反应的体积和氧气从空气转移到液体的深度氧气从空气转移到液体的深度,是指吸收塔浆液池内释放氧化空气的曝气管或喷枪的位置。亚硫酸盐或亚硫酸氢盐的氧化分为两部分,一部分是吸收塔内烟气中的氧气进入浆液液滴的自然氧化,另一部分是空气通过曝气管网进入浆液池后的强制氧化。

冷却塔选型

冷却塔选型 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

冷却塔选型 冷却水量的计算: [1]. Q = m s △ t Q 冷却能力 Kcal / h (冷冻机/ 空调机的冷冻能力) m 水流量(质量) Kg / h s 水的比热值 1 Kcal / 1 kg - ℃ △ t 进入冷凝器的水温与离开冷凝器的水温之差 [2]. Q 的计算 Q = 72 q ( I 入口- I 出口 ) Q 冷却能力 Kcal / h q 冷却水塔的风量 CMM I 入口冷却水塔入口空气的焓(enthalpy) I 出口冷却水塔出口空气的焓(enthalpy) [3]. q 冷却水塔的风量 CMM 的计算 q = Q / 72 ( I 入口- I 出口 ) 上述计算系依据基本的热力学理论,按空气线图(psychrometrics)的湿空气性能,搭配基本代数式计算之。 更深入的数学式依Merkel Theory的Enthalpy potential 观念导算出类似更精确的计算方程式: Q = K ×S × ( hw -ha ) Q 冷却水塔的总传热量 K 焓的热传导系数 S 冷却水塔的热传面积 hw 空气与冷却水蒸发的混合湿空气之焓 ha 进入冷却水塔的外气空气之焓 此时,导入冷却水流量(质量),建立 KS / L 的积分(Integration) 遂计算出更为精确的冷却水塔热传方程式。详细的计算你可以从Heat Transfer的热力学内查阅。 冷却水塔的正确选用,是根据外气的湿球温度计算而来,绝非凭经验而来。诸多人士认为冷却水塔的能力一定大于冷冻空调的主机,这是完全错误的导论与说法,实不足为取。这是一种「积非成是,以讹传讹」的谬论。 顺便一提,楼上有一位兄弟提到,湿球温度从27℃→28℃,冷却水塔的能力降低,why?其实这就是基础热力学上湿球温度的应用。 湿球温度愈高,湿球温度的冷却能力愈差。所以,当湿球温度增高时,冷却水塔的能力下降,换言之,冷却水塔的出水量减少了。 从事空调制冷,空气的性能曲线图──Psychrometrics(空气线图)一定得充分认识、了解。Psychrometrics 就像医学上的X 光照片、心电图等等一样,让我门100%掌握空气性能的变化,所有制冷空调的问题均迎刃而解。

吸收塔的设计

课程设计任务书 1.设计题目:水吸收二氧化硫过程填料吸收塔的设计 矿石焙烧炉送出的气体冷却到25℃后送入填料塔中,用20℃清水洗涤除去其中的SO2。 入塔的炉气流量为2250m3/h,其中进塔SO2的摩尔分数为0.05,要求SO2的吸收率为96%。 吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。 吸收剂的用量为最小量的1.4倍。 2.工艺操作条件: (1) 操作平均压力常压101.325kpa (2) 操作温度t=20℃ (4) 所用填料为D N38聚丙烯阶梯环形填料。 3.设计任务 完成填料吸收塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统工艺流程图和吸收塔工艺条件图,编写设计说明书。

目录 摘要 (1) 1绪论 (2) 1.1吸收技术概况 (2) 1.2吸收过程对设备的要求及设备的发展概况 (2) 1.3吸收在工业生产中的应用 (2) 1.3.1吸收的应用概况 (3) 1.3.2典型吸收过程 (3) 2设计方案 (4) 2.1吸收方法及吸收剂的选择 (4) 2.1.1吸收方法 (4) 2.1.2吸收剂的选择: (4) 2.2吸收工艺的流程 (5) 2.2.1吸收工艺流程的确定 (5) 2.2.2吸收工艺流程图及工艺过程说明 (6) 2.3操作参数的选择 (6) 2.3.1操作温度的选择 (6) 2.3.2操作压力的选择 (6) 2.3.3吸收因子的选择 (7) 2.4吸收塔设备及填料的选择 (8) 2.4.1吸收塔的设备选择 (8) 2.4.2填料的选择 (8) 3吸收塔的工艺计算 (9) 3.1基础物性数据 (9) 3.1.1液相物性数据 (9) 3.1.2气相物性数据 (9) 3.1.3气液平衡数据 (9) 3.2物料衡算 (10) 3.3塔径的计算 (10) 3.3.1塔径的计算 (10) 3.3.2泛点率校核 (11) 3.3.3填料规格校核: (11) 3.3.4液体喷淋密度校核 (11) 3.4填料层高度计算 (11) 3.4.1传质单元高度 H计算 (11) OG

吸收塔的设计和选型

烟气脱硫工艺主要设备吸收塔设计和选型 吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 4.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 4.1.1.1 喷淋塔的高度设计喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1)喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总 传质系数,a为塔内单位体积中有效的传质面积。) NTU为传质单元数,近似数值为NTU=(y 1-y 2 )/ △y m ,即气相总的浓度 变化除于平均推动力△y m =(△y 1 -△y 2 )/ln(△y 1 /△y 2 )(NTU是表征吸收困难程度 的量,NTU越大,则达到吸收目标所需要的塔高随之增大。

根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =×1025.07.04W G -]4[ 82 .0W a k L ?=] 4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a ) x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B) G 气相空塔质量流速,kg/(m 2﹒h) W 液相空塔质量流速,kg/(m 2﹒h) y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲) k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa) k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3) 式(2)中?为常数,其数值根据表2[4] 表3 温度与?值的关系 采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有 喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。

脱硫塔烟气系统

本体.吸收塔为圆柱形,尺寸为Φ15.3×36.955m,结构如图8-1 所示。 由锅炉引风机来的烟气,经增压风机升压后,从吸收塔中下部进入吸收塔,脱硫除雾后的净烟气从塔顶侧向离开吸收塔。塔的下部为浆液池,设四个侧进式搅拌器。氧化空气由四根矛式喷射管送至浆池的下部,每根矛状管的出口都非常靠近搅拌器。烟气进口上方的吸收塔中上部区域为喷淋区,喷淋区的下部设置一合金托盘,托盘上方设三个喷淋层,喷淋层上方为除雾器,共二级。塔身共设六层钢平台,每个喷淋层、托盘及每级除雾器各设一个钢平台,钢平台附近及靠近地面处共设六个人孔门。 图8-1 吸收塔本体1-烟气出口2-除雾器3-喷淋层4-喷淋区5-冷却区6-浆液循环泵7-氧化空气管8-搅拌器9-浆液池10-烟7进口11-喷淋管12-除雾器清洗喷嘴13-碳化硅空心锥喷嘴 技术特点该FGD 装置吸收塔采用美国B&W公司开发并具有多年成功运行经验的带托盘的就地强制氧化喷淋塔,该塔具有以下特点: 1)吸收塔包括一个托盘,三层喷淋装置,每层喷淋装置上布置有549 +122 个空心锥喷嘴,流量为51. 8m3/h 的喷嘴549 个,喷嘴流量为59.62m3/h 的122 个,进口压头为103.4KPa,喷淋层上部布置有两级除雾器。 2)液/气比较低,从而节省循环浆液泵的电耗。 3)吸收塔内部表面及托盘无结垢、堵塞问题。 4)优化了PH 值、液/气比、钙/硫比、氧化空气量、浆液浓度、烟气流速等性能参数,从而保证FGD 系统连续、稳定、经济地运行。 5)氧化和结晶主要发生在吸收塔浆池中。吸收塔浆液池的尺寸保证能提供足够的浆液停留时间完成亚硫酸钙的氧化和石膏(CaSO4.2H2O)的结晶。吸收塔浆池上设置4 台侧进式搅拌器使浆液罐中的固体颗粒保持悬浮状态并强化亚硫酸钙的氧化。 6)吸收塔浆池中的混合浆液由浆液循环泵通过喷淋管组送到喷嘴, 形成非常细小的液滴喷入塔内。 7)在吸收塔浆池的溢流管道上设置了吸收塔溢流密封箱,它可以容纳吸收塔在压力密封时发生的溢流。密封箱的液位由周期性地补充工艺水来维

脱硫装置吸收塔的设计计算

(一)设计方案的确定 用水吸收S02,为提高传质效率,选用逆流吸收过程。因用水作为吸收剂,且S02不作为产品,故采用纯溶剂。 (二)填料的选择 该系统不属于难分离的系统,操作温度及压力较低,可采用散装填料,系统中有S02,有一定的腐蚀性,故考虑选用塑料鲍尔环,由于系统压降无特殊要求,考虑到不同尺寸鲍尔环的传质性能选用D g38塑料鲍尔填料。 (三)设计步骤 本课程设计从以下几个方面的内容来进行设计 (1)吸收塔的物料衡算; (2)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降; (3)设计液体分布器及辅助设备的选型; (4)绘制有关吸收操作图纸。 (四)基础数据 1、液相的物性数据 对于低浓度的吸收过程,溶液的物性数据可以近似取水的物性数据,由手册查得,20℃时水的有关物性数据如下: 密度 ρ=998.2 kg/m3 L 粘度 μ=0.001 Pa·s=3.6 kg/(m·h) L

表面张力 L σ=73 dyn/cm=940 896 kg/h 2 S02在水中的扩散系数 L D =1.47×10-5 cm 2 /s=5.29×10-6 m 2 /h 2、 气相的物性数据 混合气体的平衡摩尔质量 M =0.04×64.06+0.96×29=30.40 g/mol 混合气体的平均密度 G ρ=101.330.408.31427330??+() =1.222 kg/m 3 混合气体的粘度可以近似取空气的粘度,查手册20℃时空气的粘度为 G μ=1.81×10-5 Pa ·s=0.065 kg/(m ·h) 查手册得S02在空气中的扩散系数为 G D =0.108 cm 2 /s =0.039 m 2 /h 3、 气液相平衡数据 查手册,常压下20℃时: S02在水中的亨利系数 E=3.55×1O 3 kPa 相平衡常数为 m E P = =3.55×1O 3 /101.3=35.04 溶解度系数 L L H EM ρ= =998.2/3.55×1O 3 /18.02=0.0156 kmol/h 4、填料的填料因子及比表面积数据 泛点填料因子 F φ=184 /m

相关主题
文本预览
相关文档 最新文档