当前位置:文档之家› Dynamical Properties of a Haldane Gap Antiferromagnet

Dynamical Properties of a Haldane Gap Antiferromagnet

Dynamical Properties of a Haldane Gap Antiferromagnet
Dynamical Properties of a Haldane Gap Antiferromagnet

a r X i v :c o n d -m a t /9212014v 1 9 D e c 1992DYNAMICAL PROPERTIES OF A

HALDANE GAP ANTIFERROMAGNET

O.Golinelli,Th.Jolic?ur,*and https://www.doczj.com/doc/0a1781078.html,caze ?

Service de Physique Th′e orique**

C.E.Saclay

F-91191Gif-sur-Yvette CEDEX,France

ABSTRACT We study the dynamic spin correlation function of a spin one antiferromagnetic chain with easy-plane single-ion anisotropy.We use exact diagonalization by the Lancz?o s method for chains of lengths up to N=16spins.We show that a single-mode approximation is an excellent description of the dynamical properties.A variational calculation allows us to clarify the nature of the excitations.The existence of a two-particle continuum near zero wavevector is clearly seen both in ?nite-size e?ects and in the dynamical structure factor.The recent neutron scattering experiments on the quasi-one-dimensional antiferromagnet NENP are fully explained by our results.

Submitted to:J.Phys.C:Condensed Matter

November 1992

PACS No:75.10J,74.50M,75.50E SPhT/92-135

I.INTRODUCTION

It was?rst argued by Haldane[1,2]that generic spin-S one-dimensional Heisen-berg antiferromagnets have an excitation gap for integer S.This picture is quite dif-

ferent from the usual,higher-dimensional,picture of antiferromagnets with massless

Goldstone magnons.On the theoretical side,there is now convincing evidence from numerical studies[3-10]of the S=1Heisenberg chain that it has a nonzero gap in

the thermodynamic limit.Exact diagonalizations by the Lancz?o s method have been

able to reach18spins and Monte-Carlo simulations extend the range to32spins.

All these data are suggestive of a Haldane gap.This leads to a ground state spin correlation length which is?nite and about six lattice spacings.Such a picture is in

striking contrast with the S=1/2solvable chain which is gapless and whose ground

state has algebraically decaying correlations.A spin1Heisenberg model with bi-quadratic exchange has also been discovered with an exactly solvable ground state

and a nonzero gap[11],thus reinforcing the belief in the Haldane conjecture.

On the experimental side there are several candidates to exhibit this quantum gap.The?rst experimental evidence came from neutron-scattering on CsNiCl3[12-

15].In this compound there are chains of spin one Ni2+ions with superexchange

through Cl?anions.There is however moderately small interchain couplings that

complicate the picture:this is revealed in recent experiments on the related com-pound RbNiCl3[16].The best candidate so far seems to be Ni(C2H8N2)2NO2ClO4

(NENP)[17-20],as shown by inelastic neutron-scattering(INS)and magnetization

measurements.The ratio of the interchain to intrachain magnetic coupling is es-timated to be J′/J≈4×10?4.No transition to N′e el order is found down to

1.2K which is consistent with the hypothesis of a?nite zero-temperature correla-

tion length.Nickel ions have spin1and are described by the following anisotropic

Heisenberg Hamiltonian[21]:

H=J i S i· S i+1+D i(S z i)2.(1.1) Best?t of INS gap values leads to J/k B=43.5K and easy-plane D/J=0.18[10].

There is also evidence for a smaller in-plane anisotropy that can be described by

adding to H a term E i[(S x i)2?(S y i)2].This perturbation is small and will be mostly ignored in the remainder of this paper.Its qualitative role will be discussed

in section V.

The?rst INS measurements[17-19]have concentrated on the neighborhood of Q=π(where Q is the wavevector along the chain)and showed the existence of two gaps:one for the in-plane(IP)magnetic?uctuations and a higher one for out-of-plane(OP)?uctuations.This splitting is due to the presence of a sizable easy-plane single-ion anisotropy D.The dispersion of the magnetic excitations was then studied in the range Q/π=0.9?1.0.Recent experiments have extended our knowledge throughout the whole Brillouin zone[22].Detailed theoretical work is required to test the hypothesis that the simple model Hamiltonian(1.1)is able to reproduce the dynamical properties of NENP.Two approaches have been followed up to now:small cluster numerical studies[3-10,23]and the use of e?ective?eld

theories[24,25].The previous numerical studies were limited to spectral calculations or have ignored the presence of in-plane anisotropy.

In this paper we present the results of a study of the dynamical structure factor S(Q,ω)of chains of length up to16spins by means of an exact diagonalization method.We also apply a variational technique proposed in ref.[26]to the anisotropic chain.This physically motivated method reproduces extremely well the numerical results.The results presented are valid in the absence of an external magnetic?eld and in the zero temperature limit,i.e.for temperatures well below the gap.In sect. II we present some general properties of the spin-1chain with easy-plane single-ion anisotropy.In sect.III we explain the methods used to obtain dynamical quantities. Sect.IV contains our results.They are extremely well reproduced in terms of a physically appealing single-mode approximation.The results of our variational calculation are presented there and we use them to understand the nature of the elementary excitations near Q=0and Q=π.We show in sect.V that they are in very good agreement with existing neutron data and we suggest an additional test of the theory.Sect.VI contains our conclusions.

II.GENERAL PROPERTIES

We brie?y review some known results about the isotropic Heisenberg spin1 antiferromagnetic(AF)chain:

H0=J

N

i=1 S i· S i+1.(2.1)

The vectors S i are quantum spin operators satisfying the SU(2)rotation algebra with length S2i=2.They are located along a one dimensional lattice of N sites with periodic boundary conditions.The exchange integral J is positive in the AF case.For any?nite lattice the ground state is a singlet and the higher-lying levels have energy increasing with increasing spin as is known rigorously[27].Above the singlet ground state one?nds a triplet state presumably for all values of N.In an AF quantum magnet,in the case of broken symmetry one expects that in the thermodynamic limit the triplet becomes degenerate with the ground state as do other states with spin S=2,3,...,in order to form the degenerate ground state of the in?nite volume limit.This can occur only for dimension greater than2(or equal).Haldane has argued that the spin-1chain is quantum disordered and that the singlet-triplet gap remains nonzero in the thermodynamic limit.This should be true for any integer value of the spin.This argument is based on a mapping of the in?nite-spin,semiclassical limit of the quantum chain onto a O(3)nonlinearσmodel [1].In the spin-1case of interest,numerical studies clearly points towards a gap close to≈0.41J[3-10,23].The physics of the O(3)nonlinearσmodel is that of a triplet of massive bosons with nontrivial scattering properties.This suggests a very simple e?ective?eld theory:a free theory of three massive bosons[25].Another route starting from an integrable model leads to an e?ective?eld theory of three massive fermions[24].

In such approaches,one has to adjust the gap values which are no longer deducible from the microscopic model but one can obtain simple and de?nite pre-diction on dynamical quantities.However both are approximate theories and their respective domain of validity is di?cult to assess.On the contrary,?nite chains calculations o?er unbiased theoretical predictions provided one is able to carefully

control?nite-size e?ects.Concerning the gap values this can be achieved by the use of the so-called Shanks transformation,suited to the removal of exponential tran-sients in sequences of?nite-chain data[28].It has been found that the convergence towards in?nite-volume is very good[6,10,23]as expected since we are dealing with a massive theory.

As shown with the Perron-Frobenius theorem[29],the lowest-lying triplet has

wavevector Q=π,while the singlet ground state has Q=0.Most theoretical and experimental studies have concentrated on this Q=πpart of the spectrum.In the nonlinearσmodel,there are no bound states and,if we believe that it is the e?ective theory of the spin1chain,this implies that the Q=0gap is due to two massive Q=πparticles and thus twice the Q=πgap[2].This has been checked

by a quantum Monte-Carlo simulation in the isotropic case[8]and Lancz?o s studies [23]have shown that this property persists in the presence of anisotropy(as long as it is not too large).As a consequence,the states near Q=0should be members of a two-particle continuum contrary to the states near Q=πthat should appear as long-lived well-de?ned excitations.INS measurements for Q=0[30]reveal a

vanishing structure factor in this regime.The curve of the lowest excited triplet at wavevector Q is thus bell-shaped but asymmetrical with respect to Q=π/2.

Let us now discuss the in?uence of easy-plane single-ion anisotropy,i.e.adding to H0a term of the following form:

H=H0+D i(S z i)2.(2.2) The full rotational symmetry of Hamiltonian(2.1)is broken to rotational symmetry around the z axis.Only the z component S z= i S z i of the total spin is conserved. There is also a discrete symmetry S z→?S z that is preserved in the Hamiltonian

(2.2).As a consequence of the anisotropy,the?rst excited triplet state is split into

a higher-energy singlet S z=0and a lower-lying doublet S z=±1.These three states retain their wavevectors unchanged(Q=π)with respect to the D=0case (by continuity)since the Hamiltonian(2.2)still possesses translational symmetry. The Haldane gap is split into two components:one gap G(?)between the ground state(with S z=0)and the doublet S z=±1and one gap G(+)inside the S z=0 subspace between the?rst two levels.G(?)decreases while G(+)increases with increasing D as shown quantitatively in ref.[10].

We expect this simple picture to be true for all wavevectors0≤Q≤πsince the triplet states with arbitrary Q will be split also by the anisotropy.There is thus two distinct magnetic modes throughout the Brillouin zone:one IP(in-plane) mode(doubly degenerate)and one OP(out-of-plane)mode.The IP mode is seen in the S z=±1sector while the OP mode appears in the S z=0sector.The dispersion of the IP mode has been obtained for various anisotropies including that

of NENP in[23].INS experiments[17-19,22]have resolved these two modes in the neighborhood of Q=π:the OP mode is found at2.5meV and the IP mode is even further resolved into two components at1.05meV and1.25meV.This splitting is due to a small in-plane anisotropy of the type E i[(S x i)2?(S y i)2]that lifts the degeneracy of the doublet states S z=±1.These values of the gaps(ignoring the in-plane anisotropy)leads to J=44K and D/J=0.18[10].Detailed interpretation of INS requires a calculation of the structure factor S(Q,ω).

III.EV ALUATING DYNAMICAL QUANTITIES

We describe in this section the methods used to compute the dynamical struc-ture factor:

Sαα(Q,ω)= dt e iωt<0|Sα?Q(t)SαQ(0)|0>,α=x,y,z.(3.1)

Here we denote the ground state by|0>and the components of the Fourier trans-form of the spin vectors are SαQ(t)in the Heisenberg representation.We?rst write the structure factor as:

Sαα(Q,ω)= nδ(ω?(?n??0))||2,(3.2)

where the sum over|n>means over all excited eigenstates of the system and?n denotes the energy of|n>.In a?nite system calculation,one obtains a?nite set of delta functions with weights given by the matrix elements appearing in Eq.(3.2). The Lancz?o s method which is commonly used to obtain the ground state wavefunc-tion and the?rst few excited levels is suited to the study of the dynamical properties [31].

We proceed as follows:

i)One needs to know?rst the vector|0>.We use the Lancz?o s algorithm applied to the Hamiltonian H.In fact,any kind of algorithm can be used at this level.

ii)One constructs the state:

|Φ0>=SαQ|0>.(3.3) This state|Φ0>is then used to build a new Lancz?o s sequence of states|Φn>by the standard procedure of applying the Hamiltonian to|Φk>and orthonormal-ization with respect to the last two vectors|Φk>and|Φk?1>.The Hamiltonian H is then tridiagonal in the basis{|Φn>}.The nonzero elements of H in this basis are directly provided by the orthonormalization procedure.We exhaust the corresponding subspace and store the tridiagonal form of the Hamiltonian.

iii)One diagonalizes the tridiagonal Hamiltonian by a standard routine.This leads to a set of eigenenergies?n as well as the eigenvectors whose?rst coordinate in the Lancz?o s basis are precisely the overlap matrix elementsthat appear in the de?nition of the structure factor Eq.(3.2).We thus obtain the weight of each delta function peak.This has to be done separately for each Q as well as forα=x,z.

In the isotropic D=0case the ground state is a singlet:SαQ=0|0>=0and thus Sαα(Q=0,ω)=0.The vanishing with Q will occur quadratically.In the pres-ence of easy-plane anisotropy the ground state is invariant only under z rotations: S z Q=0|0>=0and thus S zz(Q=0,ω)=0,while S xx(=S yy)will be nonzero at Q=0and of order O(D2).With in-plane anisotropy E i[(S x i)2?(S y i)2]even S zz(Q=0)will be nonzero and O(E2).

IV.RESULTS FOR S(Q,ω)

We have computed the structure factors S xx(Q,ω)and S zz(Q,ω)for chains of lengths N=4,6,8,10,12,14,16.Some Q=0and Q=πparts of the spectrum have been computed also for N=18.We have concentrated on the case D/J=0.18 quantitatively relevant to the study of NENP.Our results extend smoothly for not too large anisotropy D

According to the de?nition(3.2),we will discuss?rst the peak positions and then the corresponding weights.What we observe is that for all?xed wavevector Q,as a function ofωthe lowest lying peak concentrates almost all of the spectral weight.This remark will be made quantitatively precise at the end of this section. This lowest-lying peak occurs when the frequencyωmatches the energy of the?rst excited level with the right quantum numbers.

In the correlation S xx we?nd the excitation spectrum from S z=0to S z=±1that we obtained previously[23].This is plotted in?g.1as a function of the momenta by crosses of various sizes.For Q=0and Q=πthere is enough data to allow an extrapolation to the thermodynamic limit by use of the Shanks tranformation.We have also computed the these gaps(Q=0and Q=π)for a N=18chain.The extrapolation leads to0.301J at Q=πand0.986J at Q=0.In the interval[0,π]there is only the middle of the Brillouin zone Q=π/2where we obtain several data points from N=4,8,12,16.Shanks extrapolation leads then to 2.75J for Q=π/2.

In the correlation S zz we?nd the excitation spectrum inside the S z=0sub-space.The lowest lying excitation is plotted in?g.1with empty octogons.At Q=πthe?nite-lattice data extrapolate to0.655J.The convergence in this case Q=πis very good as expected from a massive theory yielding well-separated eigenvalues in the?nite systems[23].On the contrary at Q=0the convergence is extremely bad and one can only suggest a value of0.60±0.05J for this gap.This is clearly due to the presence of a continuum of states starting immediately above this gap.Such a phenomenon is expected if one describes the spectrum near Q=0as due to two particles with momenta near Q=π[8].

We note that the excitations in this sector(zz)are above the in-plane excita-tions in the neighborhood of Q=πbut they cross for Q/π≈0.75and on the top of the dispersion curve it is the in-plane mode which has highest energy:2.75J against 2.65J(extrapolated value)for the out-of-plane mode.This behaviour persists in the region0≤Q≤π/2of the Brillouin zone.

To gain understanding of the nature of the excitations we have performed a variational calculation along the lines proposed by G′o mez-Santos[26].One discards the states with parallel spins,either if they are nearest-neighbors or separated by any number of zeros.The typical states in this subspace are of the form:

|...↑↓↑0↓00↑↓...>(4.1) There is strict N′e el ordering of the S z=±1sites but there can be any number of intermediate zeros.In this subspace the true degrees of freedom are then the”spin-zero defects”i.e.sites with S z i=0.These domain walls are then represented as

fermions(which is a natural way of enforcing no double occupancy).The fermionic

Hamiltonian can then be treated by approximate methods.It has been shown that

a simple Hartree-Fock decoupling leads to a good approximation of the spectrum

for D=0.The best results are obtained by using the variational improvement

introduced by G′o mez-Santos where one allows a small admixture of states with

parallel spins.The Haldane gap,as computed by this method,is found to be0.45J

for D=0.It is straightforward to include anisotropy of the form D i(S z i)2.We have obtained a spectrum of massive fermions E(Q)that is plotted as a continuous

curve in?g.1.This curve should be the excitation spectrum in the S z=0subspace

due to the restriction to the subspace(4.1).The gap at Q=πis found to be≈0.70J

when D/J=0.18.The single-fermion curve E(Q)reproduces extremely well the OP

dispersion in the regionπ/2

Figure1

Dispersion of magnetic excitations S z=0and S z=±1at D=0.18J for momenta

ranging from0toπ.The continuous line is the result of a variational calculation.

The dashed line is the corresponding edge of two-particle excitations.

We now turn to the discussion of the spectral weight associated to the peak positions.For all chain lengths studied for all wavevectors in the interval[≈0.3?1.0]×πwe?nd that both S xx and S zz are dominated by a single peak as a function of the frequency.This peak concentrates at least98per cent of the spectral weight. Multimagnon contributions are thus extremely small in the whole range[≈0.3?1.0]×π.As typical examples we plot in?g.2S xx(Q=π,ω)+S zz(Q=π,ω) from the N=16chain.The peaks have been broadened for clarity.In?g.3we plot the Q=π/2case showing the interchange of the two modes.A single-mode approximation will be an extremely good description of the physics in this part of the Brillouin zone.The simple picture described above breaks down for small values of Q.In the N=16chain,for Q=3π/8there is still the one-peak structure while for Q=π/4there are several peaks as a function ofω:see?g.4.In the N=14chain we ?nd that the continuum appears already for Q=2π/7but is not there for3π/7.It is di?cult to give a precise value of the wavevector at which this phenomenon appears since the discretization of the momenta imposed by the chain length is coarse.As discussed below,this can be interpreted as evidence for a two-particle continuum. Our present data suggest that the continuum sets in at≈0.3πfor both IP and OP sectors.We see no reason why the continuum boundary should the same for both modes although we are unable to see any quantitative di?erence in our present data between IP and OP modes in this respect.

Let us discuss the nature of the two-particle excitations.If a single-particle ex-citation has a dispersion E(Q),the lower edge of the continuum of two-particle exci-tations is given by E(2)(Q)=min K(E(K)+E(Q?K))in the non-interacting case. Such a free picture seems to apply to the spin1chain[1,2,24].In the anisotropic system it is possible to construct several continua since there are two distinct modes (IP and OP).

In the S z=±1subspace two-particle states are obtained from one S z=±1 excitation and one S z=0excitation.The gap of this continuum at Q=0will be the sum of the IP and the OP gap at Q=πi.e.≈0.301J+0.655J in agreement with our extrapolation of0.986J.The continuum is also seen in the poor convergence of ?nite-size data.Its progressive build-up is seen in?g.4.

In the S z=0subspace there are two ways of building two-particle states: either with two S z=0states or with one excitation S z=+1and one excitation S z=?1.In the?rst case we can obtain an approximation for the continuum boundary by using the fermionic method cited above:the curve E(2)(Q)for two fermionic excitations belonging to the S z=0sector is plotted as a dash-dotted line in?g.1.The two-fermion continuum is clearly above the OP(and IP)mode for 0

Figure2,3,4

The structure factor S(xx)(Q,ω)+S(zz)(Q,ω),for Q=π,π/2,π/4respectively,as a function of the frequencyω(in units of J)for chain length N=16.In?g.2each of the two functions S(αα)has a single-peak structure:a single-mode approximation works very well.The IP mode is doubly degenerate and appears only in S(xx)while the OP appears in S(zz).In?g.3the IP and OP modes are interchanged with respect to?g.2.In?g.4a single-mode approximation no longer holds and the two-particle continuum is seen:spectral weight is transferred to multimagnon excitations.

The agreement between the ab initio data and the variational calculation con-?rms the relevance of domain walls in the whole Haldane phase,as is also pointed out in[32].The disordered-?at phases obtained in the solid-on-solid picture of the spin-1chain[33]also correspond to the subspace of spin-zero defects which is so successfull in the description of the elementary excitations.

Finally we quote results for the static structure factors S(αα)(Q)obtained by integration over frequency.In?g.5these quantities are plotted in a logarithmic scale as a function of momentum.Due to our limited chain length,we cannot make any?rm statement about the prediction[1]of square-root Lorentzian behaviour near Q=π.Our data are compatible with previous studies[34,35]concluding to a correlation length≈6lattice spacings in the D=0case:the correlation length does not change much when D/J=0.18.The behaviour of S(zz)(Q)≈Q2sets in only for very small wavevectors:for the largest part of the Brillouin zone excepting the neighborhood of Q=πit is rather close to Q3/2.

Figure5

The static structure factors S(xx)and S(zz)for all chain lengths as a function of momentum.The symbol sizes are the same as in?gs.1and6.Crosses stand for S(xx)and octogons for S(zz).

https://www.doczj.com/doc/0a1781078.html,PARISON WITH NEUTRON SCATTERING EXPERIMENTS The two magnetic modes in the neighborhood of Q=πhave been observed by INS in ref.[17-20].The values of the gaps lead to J≈3.8meV and D/J=0.18. These values are very close to those extracted from magnetization measurements [36].The dispersion has been studied throughout the whole Brillouin zone[22].A good?t is obtained through the following formula:

ω±(Q)= 2).(5.1)

The parameters are?+=2.5meV,??=1.2meV,v=9.6meV and A=6.1meV. Scaling by J=4meV we plotω±(Q)as continuous lines in?g.6.For clarity we have also plotted our Lancz?o s points.The edges of two-particle continuum extracted from the?ts(5.1)are also plotted in?g.6.The lower dashed line corresponds to the(S z=+1)+(S z=?1)continuum while the upper dashed line corresponds to (S z=+1)+(S z=0).

Figure6

Lancz?o s results compared to experimental?ts.The two continuous curves are taken from Eq.(5.1).They reproduce the?ndings of ref.22.The two dash-dotted lines are the two-magnon continuum boundaries obtained also from(5.1).The size of the symbols is chosen as in?g.1.

There is very good agreement with the theoretical results in the neighborhood of Q=πwhere the IP and OP modes are separated by the experimental resolution [17-20,22].In the regionπ/2

With respect to what has already been done,it would be very interesting to separate the two modes nearπ/2where intensity is not dramatically weak.The observation of the two-particle continuum on the contrary should be quite di?cult since it appears only for Q<0.25πwhere magnetic scattering is very weak.The observation of very long-lived modes[22]is thus in very good agreement with the physics of an anisotropic spin1chain.

Finally we comment on the uncertainties in the numerical data.For the gap values there is very good convergence for Q=πand there one can use all the chain lengths at our disposal.For other values of Q it is only at the top of the spectrum that an extrapolation can be performed.Concerning the values of Q at which some-thing interesting happens(i.e.crossing of the two modes or entering the continuum) without being able to make re?ned extrapolations we can only observe that they do not depend much on the chain length.The corresponding numbers should be regarded as tentative(i.e.0.75πfor the crossing and0.3πfor the continuum).

High resolution INS experiments[30]have revealed that the IP mode is split by in-plane anisotropy E i[(S x i)2?(S y i)2].Our results neglecting this further splitting thus will apply to the description of actual experiments as long as the resolution is not very high.This e?ect is not expected to change much the numerical?gures.

VI.CONCLUSION

We have studied the dynamical properties of a spin1chain with single-ion easy-plane anisotropy thought to be relevant to the magnetic behaviour of the compound NENP.The dynamical structure factor S(αα)(Q,ω)has been computed by a Lancz?o s method on chains of lengths up to16spins while some parts of the spectrum have been obtained on a18spins chain.We have performed a variational calculation to obtain the spectrum of elementary excitations in the S z=0sector.Both ab initio and approximate methods agree very well,elucidating the role of the spin-zero defects in the Haldane phase.

We?nd that the magnetic excitations are described by two distinct long-lived modes throughout most of the Brillouin zone0.3?1.0πwhere the lowest excited state in each sector(S z=0and S z=±1)carries almost all of the spectral weight: a single-mode approximation is thus adequate.We?nd that these modes merge into a two-particle continuum for Q<0.3πas seen in the frequency dependence of the structure factor.We have shown that these results reproduce the INS experiments on NENP.The dispersion of the magnetic modes as well as their intensity is close to that found theoretically.

Our results show that in principle it should be possible to observe the crossing of the two IP and OP magnetic modes.At the top of the dispersion curve their separation and intensity should allow observation.On the contrary the edge of the two-particle continuum appear only for very small Q<0.3πwhere magnetic intensity is very weak as found in recent experiments[22].We mention?nally that it would be very interesting to measure the static form factors of an anisotropic chain by a method that allows to reach the neighborhood of Q=πsince here we are limited by the coarse-graining due to our small chains.Quantum Monte-Carlo calculation that works e?ciently for static quantities can reach this goal.

ACKNOWLEDGEMENTS We thank S.Ma et al.for sending us a copy of ref.22prior to publication.Thanks are also due to L.P.Regnault for discussions about neutron scattering experiements on NENP.We also thank Th.Garel and J. Miller for reading our manuscript.

Note added:while preparing this manuscript,we received a preprint by M.Taka-hashi which addresses similar questions.

REFERENCES

[1]F.D.M.Haldane,Phys.Rev.Lett.50(1983)1153;Phys.Lett.A93(1983)

464.

[2]For a recent review see:I.A?eck,J.Phys.Cond.Matter1(1989)3047.

[3]R.Botet and R.Jullien,Phys.Rev.B27,613(1983);M.Kolb,R.Botet and

R.Jullien,J.Phys.A16,L673(1983);R.Botet,R.Jullien and M.Kolb,Phys.

Rev.B28,3914(1983),Phys.Rev.B30,215(1984).

[4]J.B.Parkinson and J.C.Bonner,Phys.Rev.B32,4703(1985);J.C.Bonner,

J.Appl.Phys.61(8),3941(1987).

[5]A.Moreo,Phys.Rev.B35,8562(1987).

[6]T.Sakai and M.Takahashi,Phys.Rev.B42,1090(1990),Phys.Rev.B42,

4537(1990).

[7]M.P.Nightingale and H.W.J.Bl¨o te,Phys.Rev.B33,659(1986).

[8]M.Takahashi,Phys.Rev.Lett.62,2313(1989).

[9]J.Deisz,M.Jarrell and D.L.Cox,Phys.Rev.B42,4869(1990).

[10]O.Golinelli,Th.Jolic?ur and https://www.doczj.com/doc/0a1781078.html,caze,Phys.Rev.B45,9798(1992).

[11]I.A?eck,T.Kennedy,E.H.Lieb and H.Tasaki,Phys.Rev.Lett.59,799

(1987);Comm.Math.Phys.115,477(1988).

[12]W.J.L.Buyers,R.M.Morra,R.L.Armstrong,P.Gerlach and K.Hirakawa,

Phys.Rev.Lett.56,371(1986);R.M.Morra,W.J.L.Buyers,R.L.

Armstrong and K.Hirakawa,Phys.Rev.B38,543(1988).

[13]M.Steiner,K.Kakurai,J.K.Kjems,D.Petitgrand and R.Pynn,J.Appl.

Phys.61,3953(1987).

[14]Z.Tun,W.J.L.Buyers,R.L.Armstrong,E.D.Hallman and D.P.Arovas,

J.Phys.(Paris)Colloq.49,Suppl.12,C8-1431(1988).

[15]Z.Tun,W.J.L.Buyers,R.L.Armstrong,K.Hirakawa and B.Briat,Phys.

Rev.B42,4677(1990).

[16]Z.Tun,W.J.L.Buyers,A.Harrison and J.A.Rayne,Phys.Rev.B43,13331

(1991).

[17]J.P.Renard,M.Verdaguer,L.P.Regnault,W.A.C.Erkelens,J.Rossat-

Mignod and W.G.Stirling,Europhys.Lett.3,945(1987).

[18]J.P.Renard,L.P.Regnault,M.Verdaguer,J.Phys.(Paris),C8-1425(1988).

[19]J.P.Renard,M.Verdaguer,L.P.Regnault,W.A.C.Erkelens,J.Rossat-

Mignod,J.Ribas,W.G.Stirling and C.Vettier,J.Appl.Phys.63(8),3538 (1988).

[20]K.Katsumata,H.Hori,T.Takeuchi,M.Date,A.Yamagishi and J.P.Renard,

Phys.Rev.Lett.63,86(1989).

[21]A.Meyer,A.Gleizes,J.-J.Girerd,M.Verdaguer and O.Kahn,Inorg.Chem.

21,1729(1982).

[22]S.Ma,C.Broholm,D.H.Reich,B.J.Sternlieb and R.W.Erwin,”Dominance

of long-lived excitations in the antiferromagnetic spin-1chain NENP”,preprint 1992.

[23]O.Golinelli,Th.Jolic?ur and https://www.doczj.com/doc/0a1781078.html,caze,Phys.Rev.B46,10854(1992).

[24]A.M.Tsvelik,Phys.Rev.B42,10499(1990).

[25]I.A?eck and R.A.Weston,Phys.Rev.B45,4667(1992).

[26]G.G′o mez-Santos,Phys.Rev.Lett.63,790(1989).

[27]E.H.Lieb and D.C.Mattis,J.Math.Phys.3,749(1961);D.C.Mattis,“The

Theory of Magnetism”,Vol.I and II,Springer Verlag(Berlin)1985.

[28]C.M.Bender and S.A.Orszag,“Advanced Numerical Methods for Scientists

and Engineers”,MacGraw and Hill(New York)1987.

[29]F.R.Gantmacher,“Matrix Theory”,Chelsea(New York)1964.

[30]L.P.Regnault,J.Rossat-Mignod and J.P.Renard,J.Mag.Mag.Mater,104,

869(1992).

[31]E.Gagliano and C.Balseiro,Phys.Rev.Lett.59,2999(1987).

[32]H.J.Mikeska,Europhys.Lett.19,39(1992);N.Elstner and H.J.Mikeska,

preprint1992.

[33]M.den Nijs and K.Rommelse,Phys.Rev.B40,4709(1989).

[34]M.Takahashi,Phys.Rev.B38,5188(1988).

[35]K.Nomura,Phys.Rev.B40,2421(1989);S.Liang,Phys.Rev.Lett.64,

1597(1990).

[36]T.Delica,K.Kopinga,H.Leschke and K.K.Mon,Europhys.Lett.15,55

(1991).

从实践的角度探讨在日语教学中多媒体课件的应用

从实践的角度探讨在日语教学中多媒体课件的应用 在今天中国的许多大学,为适应现代化,信息化的要求,建立了设备完善的适应多媒体教学的教室。许多学科的研究者及现场教员也积极致力于多媒体软件的开发和利用。在大学日语专业的教学工作中,教科书、磁带、粉笔为主流的传统教学方式差不多悄然向先进的教学手段而进展。 一、多媒体课件和精品课程的进展现状 然而,目前在专业日语教学中能够利用的教学软件并不多见。比如在中国大学日语的专业、第二外語用教科书常见的有《新编日语》(上海外语教育出版社)、《中日交流标准日本語》(初级、中级)(人民教育出版社)、《新编基础日语(初級、高級)》(上海译文出版社)、《大学日本语》(四川大学出版社)、《初级日语》《中级日语》(北京大学出版社)、《新世纪大学日语》(外语教学与研究出版社)、《综合日语》(北京大学出版社)、《新编日语教程》(华东理工大学出版社)《新编初级(中级)日本语》(吉林教育出版社)、《新大学日本语》(大连理工大学出版社)、《新大学日语》(高等教育出版社)、《现代日本语》(上海外语教育出版社)、《基础日语》(复旦大学出版社)等等。配套教材以录音磁带、教学参考、习题集为主。只有《中日交流標準日本語(初級上)》、《初級日语》、《新编日语教程》等少数教科书配备了多媒体DVD视听教材。 然而这些试听教材,有的内容为日语普及读物,并不适合专业外语课堂教学。比如《新版中日交流标准日本语(初级上)》,有的尽管DVD视听教材中有丰富的动画画面和语音练习。然而,课堂操作则花费时刻长,不利于教师重点指导,更加适合学生的课余练习。比如北京大学的《初级日语》等。在这种情形下,许多大学的日语专业致力于教材的自主开发。 其中,有些大学的还推出精品课程,取得了专门大成绩。比如天津外国语学院的《新编日语》多媒体精品课程为2007年被评为“国家级精品课”。目前已被南开大学外国语学院、成都理工大学日语系等全国40余所大学推广使用。

新视野大学英语全部课文原文

Unit1 Americans believe no one stands still. If you are not moving ahead, you are falling behind. This attitude results in a nation of people committed to researching, experimenting and exploring. Time is one of the two elements that Americans save carefully, the other being labor. "We are slaves to nothing but the clock,” it has been said. Time is treated as if it were something almost real. We budget it, save it, waste it, steal it, kill it, cut it, account for it; we also charge for it. It is a precious resource. Many people have a rather acute sense of the shortness of each lifetime. Once the sands have run out of a person’s hourglass, they cannot be replaced. We want every minute to count. A foreigner’s first impression of the U.S. is li kely to be that everyone is in a rush -- often under pressure. City people always appear to be hurrying to get where they are going, restlessly seeking attention in a store, or elbowing others as they try to complete their shopping. Racing through daytime meals is part of the pace

新视野大学英语第三版第二册课文语法讲解 Unit4

新视野三版读写B2U4Text A College sweethearts 1I smile at my two lovely daughters and they seem so much more mature than we,their parents,when we were college sweethearts.Linda,who's21,had a boyfriend in her freshman year she thought she would marry,but they're not together anymore.Melissa,who's19,hasn't had a steady boyfriend yet.My daughters wonder when they will meet"The One",their great love.They think their father and I had a classic fairy-tale romance heading for marriage from the outset.Perhaps,they're right but it didn't seem so at the time.In a way, love just happens when you least expect it.Who would have thought that Butch and I would end up getting married to each other?He became my boyfriend because of my shallow agenda:I wanted a cute boyfriend! 2We met through my college roommate at the university cafeteria.That fateful night,I was merely curious,but for him I think it was love at first sight."You have beautiful eyes",he said as he gazed at my face.He kept staring at me all night long.I really wasn't that interested for two reasons.First,he looked like he was a really wild boy,maybe even dangerous.Second,although he was very cute,he seemed a little weird. 3Riding on his bicycle,he'd ride past my dorm as if"by accident"and pretend to be surprised to see me.I liked the attention but was cautious about his wild,dynamic personality.He had a charming way with words which would charm any girl.Fear came over me when I started to fall in love.His exciting"bad boy image"was just too tempting to resist.What was it that attracted me?I always had an excellent reputation.My concentration was solely on my studies to get superior grades.But for what?College is supposed to be a time of great learning and also some fun.I had nearly achieved a great education,and graduation was just one semester away.But I hadn't had any fun;my life was stale with no component of fun!I needed a boyfriend.Not just any boyfriend.He had to be cute.My goal that semester became: Be ambitious and grab the cutest boyfriend I can find. 4I worried what he'd think of me.True,we lived in a time when a dramatic shift in sexual attitudes was taking place,but I was a traditional girl who wasn't ready for the new ways that seemed common on campus.Butch looked superb!I was not immune to his personality,but I was scared.The night when he announced to the world that I was his girlfriend,I went along

操作系统文件管理_答案

第六部分文件管理 1、文件系统的主要目的就是( )。 A、实现对文件的按名存取 B、实现虚拟存储 C、提供外存的读写速度 D、用于存储系统文件 2、文件系统就是指( )。 A、文件的集合 B、文件的目录集合 C、实现文件管理的一组软件 D、文件、管理文件的软件及数据结构的总体 3、文件管理实际上就是管理( )。 A、主存空间 B、辅助存储空间 C、逻辑地址空间 D、物理地址空间 4、下列文件的物理结构中,不利于文件长度动态增长的文件物理结构就是( )。 A、顺序文件 B、链接文件 C、索引文件 D、系统文件 5、下列描述不就是文件系统功能的就是( )。 A、建立文件目录 B、提供一组文件操作 C、实现对磁盘的驱动调度 D、实现从逻辑文件到物理文件间的转换 6、文件系统在创建一个文件时,为它建立一个( )。 A、文件目录 B、目录文件 C、逻辑结构 D、逻辑空间 7、索引式(随机)文件组织的一个主要优点就是( )。 A、不需要链接指针 B、能实现物理块的动态分配 C、回收实现比较简单 D、用户存取方便 8、面向用户的文件组织机构属于( )。 A、虚拟结构 B、实际结构 C、逻辑结构 D、物理结构 9、按文件用途来分,编译程序就是( )。 A、用户文件 B、档案文件 C、系统文件 D、库文件 10、将信息加工形成具有保留价值的文件就是( )。 A、库文件 B、档案文件 C、系统文件 D、临时文件 11、文件目录的主要作用就是( )。 A、按名存取 B、提高速度 C、节省空间 D、提高外存利用率 12、如果文件系统中有两个文件重名,不应采用( )。 A、一级目录结构 B、树型目录结构 C、二级目录结构 D、A与C 13、文件系统采用树型目录结构后,对于不同用户的文件,其文件名( )。 A、应该相同 B、应该不同 C、可以不同,也可以相同 D、受系统约束 14、文件系统采用二级文件目录可以( )。 A、缩短访问存储器的时间 B、实现文件共享 C、节省内存空间 D、解决不同用户间的文件命名冲突

新视野大学英语读写教程第一册课文翻译及课后答案

Unit 1 1学习外语是我一生中最艰苦也是最有意义的经历之一。虽然时常遭遇挫折,但却非常有价值。 2我学外语的经历始于初中的第一堂英语课。老师很慈祥耐心,时常表扬学生。由于这种积极的教学方法,我踊跃回答各种问题,从不怕答错。两年中,我的成绩一直名列前茅。 3到了高中后,我渴望继续学习英语。然而,高中时的经历与以前大不相同。以前,老师对所有的学生都很耐心,而新老师则总是惩罚答错的学生。每当有谁回答错了,她就会用长教鞭指着我们,上下挥舞大喊:“错!错!错!”没有多久,我便不再渴望回答问题了。我不仅失去了回答问题的乐趣,而且根本就不想再用英语说半个字。 4好在这种情况没持续多久。到了大学,我了解到所有学生必须上英语课。与高中老师不。大学英语老师非常耐心和蔼,而且从来不带教鞭!不过情况却远不尽如人意。由于班大,每堂课能轮到我回答的问题寥寥无几。上了几周课后,我还发现许多同学的英语说得比我要好得多。我开始产生一种畏惧感。虽然原因与高中时不同,但我却又一次不敢开口了。看来我的英语水平要永远停步不前了。 5直到几年后我有机会参加远程英语课程,情况才有所改善。这种课程的媒介是一台电脑、一条电话线和一个调制解调器。我很快配齐了必要的设备并跟一个朋友学会了电脑操作技术,于是我每周用5到7天在网上的虚拟课堂里学习英语。 6网上学习并不比普通的课堂学习容易。它需要花许多的时间,需要学习者专心自律,以跟上课程进度。我尽力达到课程的最低要求,并按时完成作业。 7我随时随地都在学习。不管去哪里,我都随身携带一本袖珍字典和笔记本,笔记本上记着我遇到的生词。我学习中出过许多错,有时是令人尴尬的错误。有时我会因挫折而哭泣,有时甚至想放弃。但我从未因别的同学英语说得比我快而感到畏惧,因为在电脑屏幕上作出回答之前,我可以根据自己的需要花时间去琢磨自己的想法。突然有一天我发现自己什么都懂了,更重要的是,我说起英语来灵活自如。尽管我还是常常出错,还有很多东西要学,但我已尝到了刻苦学习的甜头。 8学习外语对我来说是非常艰辛的经历,但它又无比珍贵。它不仅使我懂得了艰苦努力的意义,而且让我了解了不同的文化,让我以一种全新的思维去看待事物。学习一门外语最令人兴奋的收获是我能与更多的人交流。与人交谈是我最喜欢的一项活动,新的语言使我能与陌生人交往,参与他们的谈话,并建立新的难以忘怀的友谊。由于我已能说英语,别人讲英语时我不再茫然不解了。我能够参与其中,并结交朋友。我能与人交流,并能够弥合我所说的语言和所处的文化与他们的语言和文化之间的鸿沟。 III. 1. rewarding 2. communicate 3. access 4. embarrassing 5. positive 6. commitment 7. virtual 8. benefits 9. minimum 10. opportunities IV. 1. up 2. into 3. from 4. with 5. to 6. up 7. of 8. in 9. for 10.with V. 1.G 2.B 3.E 4.I 5.H 6.K 7.M 8.O 9.F 10.C Sentence Structure VI. 1. Universities in the east are better equipped, while those in the west are relatively poor. 2. Allan Clark kept talking the price up, while Wilkinson kept knocking it down. 3. The husband spent all his money drinking, while his wife saved all hers for the family. 4. Some guests spoke pleasantly and behaved politely, while others wee insulting and impolite. 5. Outwardly Sara was friendly towards all those concerned, while inwardly she was angry. VII. 1. Not only did Mr. Smith learn the Chinese language, but he also bridged the gap between his culture and ours. 2. Not only did we learn the technology through the online course, but we also learned to communicate with friends in English. 3. Not only did we lose all our money, but we also came close to losing our lives.

智能化系统建设方案

精品文档 一.背景描述: 江南海岸总体规划和设计均体现了传统中国居家理想和现代生 活方式的有机融合,是依照21世纪人居标准精心打造的高级住宅小区。 整个小区无不营造一个舒适休闲的生活空间,是一所环境优雅,闹中 取静的花园式住宅小区,满足住户对高品质生活的追求。 二.工程说明: 江南海岸位于三明市列东区,由14栋高层住宅小区组成,总建 筑面积29.7627万平方米,其中包括4栋27层,6栋25层,4栋29 层,会所1间,负一层,一层。住户总数为1182户。 项目要求: 江南海岸,是集住宅、花园、会所于一体的高级住宅小区。小区智能化系统的工程建设具有投资大、工程复杂、专业性强等特点。小区要求建设成具有国内先进水平的,既具有自身特点,又具有时代潮流特色的高尚住宅楼宇。 整个工程规划、设计、实施上要求充分体现技术的先进性、系统的复杂性、严密的安防集控管理。注重整体功能强大,中心设备完善,系统配置科学合 理,真正体现高技术、高标准、高水平的现代化智能小区。 四.需求分析: 4.1分析与评估:

本方案以江南海岸小区住宅智能化管理及安全防范为设计目标为将力求建设成为高水平、高质量、高标准的信息化智能小区。我方提出以下见解,请发包方领导参考。 ①小区建设要求基于系统可靠、稳定、先进的基础上,既能满足用户住宅 的实际需求,同时又力求经济、实用、合理。 ②整个系统的结构要求清晰合理,小区实现全封闭管理,各个子系统既 相互关联又相对独立,形成一个全方位智能安防管理系统。 ③要求考虑未来系统扩展的需求,为小区以后系统功能的增加、升级,提 供良好的环境空间。 因此,考虑江南海岸属于大型的综合住宅小区,建筑规模庞大、结构复杂,小区各项功能模块齐备,因此在智能化建设方面,产品的集成度、统一化、高效管理方面尤为重要,同时,还必须考虑小区规模的不断扩大,智能化产品必须具备高度的扩展及冗余,顺应小区的发展。 我方进行多项分析与评估,结合小区建筑结构的分布特点、规模发展,以及对小区各功能模块的深层了解,建议江南海岸智能化系统工

linux下各目录作用和功能

/bin:是binary的缩写,这个目录是对Unix系统习惯的沿袭,存放着使用者最经常使用的命令。如:ls,cp,cat等。 /boot:这里存放的是启动Linux时使用的一些核心文档。 /dev:是device的缩写.这个目录下是任何Linux的外部设备,其功能类似Dos下的.sys 和Win下的.vxd。在Linux中设备和文档是用同种方法访问的。例如:/dev/hda代表第一个物理IDE硬盘。 /etc:这个目录用来存放任何的系统管理所需要的配置文档和子目录。 /home:用户主目录,比如说有个用户叫sina,那他的主目录就是/home/sina,说到这里打个岔.您现在应该明白,在我们访问一些个人网页。如:https://www.doczj.com/doc/0a1781078.html,/sina的时候,sina就是表示访问 https://www.doczj.com/doc/0a1781078.html, 站点中的用户sina的用户主目录.假如这个网站的操作系统是Linux,那就是表示/home/sina。 /lib:这个目录里存放着系统最基本的动态链接共享库,其作用类似于Windows里的.dll文档。几乎任何的应用程式都需要用到这些共享库。 /lost+found:这个目录平时是空的,当系统不正常关机后,这里就成了一些无家可归的文档的避难所。对了,有点类似于Dos下的.chk文档。 /mnt:这个目录是空的,系统提供这个目录是让用户临时挂载别的文档系统。 /proc:这个目录是个虚拟的目录,他是系统内存的映射,我们能够通过直接访问这个目录来获取系统信息。也就是说,这个目录的内容不在硬盘上而是在内存里啊。 /root:系统管理员,也叫终极权限者的用户主目录。当然系统的拥有者,总要有些特权啊。/sbin:s就是Super User的意思,也就是说这里存放的是一些系统管理员使用的系统管理程式。 /tmp:这个目录不用说,一定是用来存放一些临时文档的地方了。 /usr:这是个最庞大的目录,我们要用到的很多应用程式和文档几乎都存放在这个目录了。具体来说: /usr/X11R6:存放X-Windows的目录。 /usr/bin:存放着许多应用程式. /usr/sbin:给终极用户使用的一些管理程式就放在这. /usr/doc:这就是Linux文档的大本营. /usr/include:Linux下研发和编译应用程式需要的头文档在这里找. /usr/lib:存放一些常用的动态链接共享库和静态档案库. /usr/local:这是提供给一般用户的/usr目录,在这安装软件最适合. /usr/man:是帮助文档目录. /usr/src:Linux开放的源代码,就存在这个目录,爱好者们别放过哦! /var:这个目录中存放着那些不断在扩充着的东西,为了保持/usr的相对稳定,那些经常被修改的目录能够放在这个目录下,实际上许多系统管理员都是这样干的.顺便说一下,系统的日志文档就在/var/log目录中. /usr/local/bin 本地增加的命令 /usr/local/lib 本地增加的库根文件系统 通常情况下,根文件系统所占空间一般应该比较小,因为其中的绝大部分文件都不需要, 经常改动,而且包括严格的文件和一个小的不经常改变的文件系统不容易损坏。 除了可能的一个叫/ v m l i n u z标准的系统引导映像之外,根目录一般不含任何文件。所有其他文件在根文件系统的子目录中。

新大学日语简明教程课文翻译

新大学日语简明教程课文翻译 第21课 一、我的留学生活 我从去年12月开始学习日语。已经3个月了。每天大约学30个新单词。每天学15个左右的新汉字,但总记不住。假名已经基本记住了。 简单的会话还可以,但较难的还说不了。还不能用日语发表自己的意见。既不能很好地回答老师的提问,也看不懂日语的文章。短小、简单的信写得了,但长的信写不了。 来日本不久就迎来了新年。新年时,日本的少女们穿着美丽的和服,看上去就像新娘。非常冷的时候,还是有女孩子穿着裙子和袜子走在大街上。 我在日本的第一个新年过得很愉快,因此很开心。 现在学习忙,没什么时间玩,但周末常常运动,或骑车去公园玩。有时也邀朋友一起去。虽然我有国际驾照,但没钱,买不起车。没办法,需要的时候就向朋友借车。有几个朋友愿意借车给我。 二、一个房间变成三个 从前一直认为睡在褥子上的是日本人,美国人都睡床铺,可是听说近来纽约等大都市的年轻人不睡床铺,而是睡在褥子上,是不是突然讨厌起床铺了? 日本人自古以来就睡在褥子上,那自有它的原因。人们都说日本人的房子小,从前,很少有人在自己的房间,一家人住在一个小房间里是常有的是,今天仍然有人过着这样的生活。 在仅有的一个房间哩,如果要摆下全家人的床铺,就不能在那里吃饭了。这一点,褥子很方便。早晨,不需要褥子的时候,可以收起来。在没有了褥子的房间放上桌子,当作饭厅吃早饭。来客人的话,就在那里喝茶;孩子放学回到家里,那房间就成了书房。而后,傍晚又成为饭厅。然后收起桌子,铺上褥子,又成为了全家人睡觉的地方。 如果是床铺的话,除了睡觉的房间,还需要吃饭的房间和书房等,但如果使用褥子,一个房间就可以有各种用途。 据说从前,在纽约等大都市的大学学习的学生也租得起很大的房间。但现在房租太贵,租不起了。只能住更便宜、更小的房间。因此,似乎开始使用睡觉时作床,白天折小能成为椅子的、方便的褥子。

新视野大学英语第一册Unit 1课文翻译

新视野大学英语第一册Unit 1课文翻译 学习外语是我一生中最艰苦也是最有意义的经历之一。 虽然时常遭遇挫折,但却非常有价值。 我学外语的经历始于初中的第一堂英语课。 老师很慈祥耐心,时常表扬学生。 由于这种积极的教学方法,我踊跃回答各种问题,从不怕答错。 两年中,我的成绩一直名列前茅。 到了高中后,我渴望继续学习英语。然而,高中时的经历与以前大不相同。 以前,老师对所有的学生都很耐心,而新老师则总是惩罚答错的学生。 每当有谁回答错了,她就会用长教鞭指着我们,上下挥舞大喊:“错!错!错!” 没有多久,我便不再渴望回答问题了。 我不仅失去了回答问题的乐趣,而且根本就不想再用英语说半个字。 好在这种情况没持续多久。 到了大学,我了解到所有学生必须上英语课。 与高中老师不同,大学英语老师非常耐心和蔼,而且从来不带教鞭! 不过情况却远不尽如人意。 由于班大,每堂课能轮到我回答的问题寥寥无几。 上了几周课后,我还发现许多同学的英语说得比我要好得多。 我开始产生一种畏惧感。 虽然原因与高中时不同,但我却又一次不敢开口了。 看来我的英语水平要永远停步不前了。 直到几年后我有机会参加远程英语课程,情况才有所改善。 这种课程的媒介是一台电脑、一条电话线和一个调制解调器。 我很快配齐了必要的设备并跟一个朋友学会了电脑操作技术,于是我每周用5到7天在网上的虚拟课堂里学习英语。 网上学习并不比普通的课堂学习容易。 它需要花许多的时间,需要学习者专心自律,以跟上课程进度。 我尽力达到课程的最低要求,并按时完成作业。 我随时随地都在学习。 不管去哪里,我都随身携带一本袖珍字典和笔记本,笔记本上记着我遇到的生词。 我学习中出过许多错,有时是令人尴尬的错误。 有时我会因挫折而哭泣,有时甚至想放弃。 但我从未因别的同学英语说得比我快而感到畏惧,因为在电脑屏幕上作出回答之前,我可以根据自己的需要花时间去琢磨自己的想法。 突然有一天我发现自己什么都懂了,更重要的是,我说起英语来灵活自如。 尽管我还是常常出错,还有很多东西要学,但我已尝到了刻苦学习的甜头。 学习外语对我来说是非常艰辛的经历,但它又无比珍贵。 它不仅使我懂得了艰苦努力的意义,而且让我了解了不同的文化,让我以一种全新的思维去看待事物。 学习一门外语最令人兴奋的收获是我能与更多的人交流。 与人交谈是我最喜欢的一项活动,新的语言使我能与陌生人交往,参与他们的谈话,并建立新的难以忘怀的友谊。 由于我已能说英语,别人讲英语时我不再茫然不解了。 我能够参与其中,并结交朋友。

告诉你C盘里面每个文件夹是什么作用

Documents and Settings是什么文件? 答案: 是系统用户设置文件夹,包括各个用户的文档、收藏夹、上网浏览信息、配置文件等。补:这里面的东西不要随便删除,这保存着所有用户的文档和账户设置,如果删除就会重新启动不能登陆的情况,尤其是里面的default user、all users、administrator和以你当前登陆用户名的文件夹。 Favorites是什么文件? 答案: 是收藏夹,存放你喜欢的网址。可以在其中放网址快捷方式和文件夹快捷方式,可以新建类别(文件夹)。 Program Files是什么文件? 答案: 应用软件文件夹装软件的默认路径一般是这里!当然里面也有些系统自身的一些应用程序Common Files是什么文件? 答案: Common Files. 这个文件夹中包含了应用程序用来共享的文件,很重要,不能乱删除Co mmon Files这个文件是操作系统包扩系统程序和应用程序Common Files是应用程序运行库文件数据库覆盖了大约1000多个最流行的应用程序的插件,补丁等等文件夹com mon files里很多都是系统文件,不能随意删除,除非确定知道是干什么用的,没用的可以删掉。不过就算删掉了有用的东西,也没大的关系,顶多是某些软件用不了,不会造成系统崩溃。 ComPlus Applications是什么文件? 答案: ComPlus Applications:微软COM+ 组件使用的文件夹,删除后可能引起COM+ 组件不能运行 DIFX是什么文件? 答案: 不可以删除,已有的XML数据索引方法从实现思想上可分为两类:结构归纳法和节点定位法.这两种方法都存在一定的问题,结构归纳法的缺点是索引规模较大而且难以有效支持较复杂的查询,而节点定位法的主要缺点是容易形成过多的连接操作.针对这些问题,提出了一种新的动态的XML索引体系DifX,它扩展了已有的动态索引方法,采用一种动态的Bisimil arity的概念,可以根据实际查询需求以及最优化的要求动态决定索引中保存的结构信息,以实现对各种形式的查询最有效的支持.实验结果证明DifX是一种有效而且高效的XML索引方法,其可以获得比已有的XML索引方法更高的查询执行效率. Internet Explorer是什么文件? 答案: 不用说了,肯定不能删除,IE,浏览网页的! Kaspersky Lab是什么文件? 答案:卡巴斯基的文件包,这个是卡巴的报告,在C:\Documents and Settings\All Users\Application Data\Kaspersky Lab\AVP6\Report 的更新文件中有很多repor t文件很占地

新大学日语阅读与写作1 第3课译文

习惯与礼仪 我是个漫画家,对旁人细微的动作、不起眼的举止等抱有好奇。所以,我在国外只要做错一点什么,立刻会比旁人更为敏锐地感觉到那个国家的人们对此作出的反应。 譬如我多次看到过,欧美人和中国人见到我们日本人吸溜吸溜地出声喝汤而面露厌恶之色。过去,日本人坐在塌塌米上,在一张低矮的食案上用餐,餐具离嘴较远。所以,养成了把碗端至嘴边吸食的习惯。喝羹匙里的东西也象吸似的,声声作响。这并非哪一方文化高或低,只是各国的习惯、礼仪不同而已。 日本人坐在椅子上围桌用餐是1960年之后的事情。当时,还没有礼仪规矩,甚至有人盘着腿吃饭。外国人看见此景大概会一脸厌恶吧。 韩国女性就座时,单腿翘起。我认为这种姿势很美,但习惯于双膝跪坐的日本女性大概不以为然,而韩国女性恐怕也不认为跪坐为好。 日本等多数亚洲国家,常有人习惯在路上蹲着。欧美人会联想起狗排便的姿势而一脸厌恶。 日本人常常把手放在小孩的头上说“好可爱啊!”,而大部分外国人会不愿意。 如果向回教国家的人们劝食猪肉和酒,或用左手握手、递东西,会不受欢迎的。当然,饭菜也用右手抓着吃。只有从公用大盘往自己的小盘里分食用的公勺是用左手拿。一旦搞错,用黏糊糊的右手去拿,

会遭人厌恶。 在欧美,对不受欢迎的客人不说“请脱下外套”,所以电视剧中的侦探哥隆波总是穿着外套。访问日本家庭时,要在门厅外脱掉外套后进屋。穿到屋里会不受欢迎的。 这些习惯只要了解就不会出问题,如果因为不知道而遭厌恶、憎恨,实在心里难受。 过去,我曾用色彩图画和简短的文字画了一本《关键时刻的礼仪》(新潮文库)。如今越发希望用各国语言翻译这本书。以便能对在日本的外国人有所帮助。同时希望有朝一日以漫画的形式画一本“世界各国的习惯与礼仪”。 练习答案 5、 (1)止める並んでいる見ているなる着色した (2)拾った入っていた行ったしまった始まっていた

新视野大学英语(第三版)读写教程第二册课文翻译(全册)

新视野大学英语第三版第二册读写课文翻译 Unit 1 Text A 一堂难忘的英语课 1 如果我是唯一一个还在纠正小孩英语的家长,那么我儿子也许是对的。对他而言,我是一个乏味的怪物:一个他不得不听其教诲的父亲,一个还沉湎于语法规则的人,对此我儿子似乎颇为反感。 2 我觉得我是在最近偶遇我以前的一位学生时,才开始对这个问题认真起来的。这个学生刚从欧洲旅游回来。我满怀着诚挚期待问她:“欧洲之行如何?” 3 她点了三四下头,绞尽脑汁,苦苦寻找恰当的词语,然后惊呼:“真是,哇!” 4 没了。所有希腊文明和罗马建筑的辉煌居然囊括于一个浓缩的、不完整的语句之中!我的学生以“哇!”来表示她的惊叹,我只能以摇头表达比之更强烈的忧虑。 5 关于正确使用英语能力下降的问题,有许多不同的故事。学生的确本应该能够区分诸如their/there/they're之间的不同,或区别complimentary 跟complementary之间显而易见的差异。由于这些知识缺陷,他们承受着大部分不该承受的批评和指责,因为舆论认为他们应该学得更好。 6 学生并不笨,他们只是被周围所看到和听到的语言误导了。举例来说,杂货店的指示牌会把他们引向stationary(静止处),虽然便笺本、相册、和笔记本等真正的stationery(文具用品)并没有被钉在那儿。朋友和亲人常宣称They've just ate。实际上,他们应该说They've just eaten。因此,批评学生不合乎情理。 7 对这种缺乏语言功底而引起的负面指责应归咎于我们的学校。学校应对英语熟练程度制定出更高的标准。可相反,学校只教零星的语法,高级词汇更是少之又少。还有就是,学校的年轻教师显然缺乏这些重要的语言结构方面的知识,因为他们过去也没接触过。学校有责任教会年轻人进行有效的语言沟通,可他们并没把语言的基本框架——准确的语法和恰当的词汇——充分地传授给学生。

智能化系统配置项目及要求

智能化系统初步配置方案 一、设计原则 1、智能化系统设计,应综合考虑项目投资额度的可控性、设备选型的灵活性、工程施工的可行性、系统功能的可扩展性、系统运行维护的便利性和物业管理 的规范性等要求。 2、智能化系统的设计应参照本要求,其配置标准不得低于”初步配置方案” 的要求,同时应有一定的升级和扩展能力,并预留相应的接口。 3、智能化系统设计除了满足国家标准与规范的相关规定,以及本标准基本配 置要求外,还应满足建筑、结构以及与智能化系统存在设计相关联的其他专业 的设计规范和要求,特别需要注意符合项目当地现行有关标准和规范的特殊要求。 4、智能化系统设计与工程项目建设地点的实际情况相适应。 5、智能化系统所采用的设备及线路材料等均应符合国家现行的规定,并具有 产品合格证、质量检验证书和产品须通过国家的CCC认证。 二、智能化系统基本配置要求 1、安全防范系统 a、安全防范系统包括闭路电视监控、防盗报警系统、门禁系统、电子巡更系统及无线对讲系统。 b、闭路电视监控系统主要设置重要出入口,如公共场所、重要房间、楼梯通道、楼层电梯通道、电梯轿厢、室外主干道及交叉路口等处,电梯轿厢安装电 梯专用监控镜头并加装抗干扰器,户外监控镜头须带有红外夜视功能。所有的 监控镜头全部采用网络彩色摄像机,采用矩阵主机切换至电视墙,录像以全天 实时高清图像质量保存至少30天(具体保存时间可按照当地派出所要求确定)。 c、防盗报警系统主要设置在财务室、档案室等重要房间,并设置手动报警开关或脚挑报警开关,要求闭路电视监控系统同时显示出报警地点画面。 d、重要设备机房、财务室、档案室等重要房间设置门禁系统。 e、电子巡更系统要求采用离线式,设置于重要机房、楼层楼梯口、电梯厅。 f、无线对讲系统要求具有可进行信道改写和信道加密功能,满足内部通讯需要。 g、各系统设备品牌须选用技术成熟,性能稳定可靠的产品。 2、通讯网络系统

文件夹的作用

All Users文件夹: 『Win9x/ME』所有用户文件夹,里面里面包括系统缺省登录时的桌面文件和开始菜单的内容。『Win2000』在Win2000的系统目录中没有这个文件夹,Win2000将用户的信息放在根目录下的Documents and Settings文件夹中,每个用户对应一个目录,包括开始菜单、桌面、收藏夹、我的文档等等。 Application Data文件夹: 『Win9x/ME』应用程序数据任务栏中的快捷方式,输入法的一些文件等等。根据你系统中使用不同的软件,该目录中的内容也有所不同。 『Win2000』在Documents and Settings文件夹中,每个用户都对应一个Application Data 文件夹,同样每个用户由于使用的软件不同,目录内容也相同。 Applog文件夹: 『Win9x/ME』应用程序逻辑文件目录。逻辑文件是用来记录应用软件在运行时,需要调用的文件、使用的地址等信息的文件。要查看这些文件,用记事本打开即可。 Catroot文件夹: 『Win9x』计算机启动测试信息目录,目录中包括的文件大多是关于计算机启动时检测的硬软件信息。 『WinME』该文件夹位于系统目录的system目录中。 『Win2000』该文件夹位于系统目录的system32目录中。 Command文件夹: 『Win9x/ME』DOS命令目录。包括很多DOS下的外部命令,虽说都是些小工具,但真的很好用,特别是对于系统崩溃时。 『Win2000』这些DOS命令位于系统目录的system32目录中。 Config文件夹: 『Win9x/ME/2000』配置文件夹,目录中包括一些MIDI乐器的定义文件。 Cookies文件夹: 『Win9x/ME』Cookies又叫小甜饼,是你在浏览某些网站时,留在你硬盘上的一些资料,包括用户名、用户资料、网址等等。 『Win2000』每个用户都有一个Cookies文件夹,位于Documents and Settings文件夹的每个用户目录中。 Cursors文件夹: 『Win9x/ME/2000』鼠标动画文件夹。目录中包括鼠标在不同状态下的动画文件。 Desktop文件夹: 『Win9x/ME』桌面文件夹。包括桌面上的一些图标。 『Win2000』这个文件夹在系统目录中也存在,同时在Documents and Settings文件夹的每个用户目录中还有“桌面”文件夹。

新视野大学英语1课文翻译

新视野大学英语1课文翻译 1下午好!作为校长,我非常自豪地欢迎你们来到这所大学。你们所取得的成就是你们自己多年努力的结果,也是你们的父母和老师们多年努力的结果。在这所大学里,我们承诺将使你们学有所成。 2在欢迎你们到来的这一刻,我想起自己高中毕业时的情景,还有妈妈为我和爸爸拍的合影。妈妈吩咐我们:“姿势自然点。”“等一等,”爸爸说,“把我递给他闹钟的情景拍下来。”在大学期间,那个闹钟每天早晨叫醒我。至今它还放在我办公室的桌子上。 3让我来告诉你们一些你们未必预料得到的事情。你们将会怀念以前的生活习惯,怀念父母曾经提醒你们要刻苦学习、取得佳绩。你们可能因为高中生活终于结束而喜极而泣,你们的父母也可能因为终于不用再给你们洗衣服而喜极而泣!但是要记住:未来是建立在过去扎实的基础上的。 4对你们而言,接下来的四年将会是无与伦比的一段时光。在这里,你们拥有丰富的资源:有来自全国各地的有趣的学生,有学识渊博又充满爱心的老师,有综合性图书馆,有完备的运动设施,还有针对不同兴趣的学生社团——从文科社团到理科社团、到社区服务等等。你们将自由地探索、学习新科目。你们要学着习惯点灯熬油,学着结交充满魅力的人,学着去追求新的爱好。我想鼓励你们充分利用这一特殊的经历,并用你们的干劲和热情去收获这一机会所带来的丰硕成果。 5有这么多课程可供选择,你可能会不知所措。你不可能选修所有的课程,但是要尽可能体验更多的课程!大学里有很多事情可做可学,每件事情都会为你提供不同视角来审视世界。如果我只能给你们一条选课建议的话,那就是:挑战自己!不要认为你早就了解自己对什么样的领域最感兴趣。选择一些你从未接触过的领域的课程。这样,你不仅会变得更加博学,而且更有可能发现一个你未曾想到的、能成就你未来的爱好。一个绝佳的例子就是时装设计师王薇薇,她最初学的是艺术史。随着时间的推移,王薇薇把艺术史研究和对时装的热爱结合起来,并将其转化为对设计的热情,从而使她成为全球闻名的设计师。 6在大学里,一下子拥有这么多新鲜体验可能不会总是令人愉快的。在你的宿舍楼里,住在你隔壁寝室的同学可能会反复播放同一首歌,令你头痛欲裂!你可能喜欢早起,而你的室友却是个夜猫子!尽管如此,你和你的室友仍然可能成

linux下各文件夹的结构说明及用途详细介绍解析

linux下各文件夹的结构说明及用途介绍: /bin:二进制可执行命令。 /dev:设备特殊文件。 /etc:系统管理和配置文件。 /etc/rc.d:启动的配置文件和脚本。 /home:用户主目录的基点,比如用户user的主目录就是/home/user,可以用~user 表示。 /lib:标准程序设计库,又叫动态链接共享库,作用类似windows里的.dll文件。 /sbin:系统管理命令,这里存放的是系统管理员使用的管理程序。 /tmp:公用的临时文件存储点。 /root:系统管理员的主目录。 /mnt:系统提供这个目录是让用户临时挂载其他的文件系统。 /lost+found:这个目录平时是空的,系统非正常关机而留下“无家可归”的文件就在这里。 /proc:虚拟的目录,是系统内存的映射。可直接访问这个目录来获取系统信息。 /var:某些大文件的溢出区,比方说各种服务的日志文件。 /usr:最庞大的目录,要用到的应用程序和文件几乎都在这个目录。其中包含: /usr/x11r6:存放x window的目录。 /usr/bin:众多的应用程序。

/usr/sbin:超级用户的一些管理程序。 /usr/doc:linux文档。 /usr/include:linux下开发和编译应用程序所需要的头文件。 /usr/lib:常用的动态链接库和软件包的配置文件。 /usr/man:帮助文档。 /usr/src:源代码,linux内核的源代码就放在/usr/src/linux 里。 /usr/local/bin:本地增加的命令。 /usr/local/lib:本地增加的库根文件系统。 通常情况下,根文件系统所占空间一般应该比较小,因为其中的绝大部分文件都不需要经常改动,而且包括严格的文件和一个小的不经常改变的文件系统不容易损坏。除了可能的一个叫/vmlinuz标准的系统引导映像之外,根目录一般不含任何文件。所有其他文件在根文件系统的子目录中。 1. /bin目录 /bin目录包含了引导启动所需的命令或普通用户可能用的命令(可能在引导启动后。这些命令都是二进制文件的可执行程序(bin是binary的简称,多是系统中重要的系统文件。 2. /sbin目录 /sbin目录类似/bin,也用于存储二进制文件。因为其中的大部分文件多是系统管理员使用的基本的系统程序,所以虽然普通用户必要且允许时可以使用,但一般不给普通用户使用。 3. /etc目录

新视野大学英语2课文翻译

新视野大学英语2课文翻译(Unit1-Unit7) Unit 1 Section A 时间观念强的美国人 Para. 1 美国人认为没有人能停止不前。如果你不求进取,你就会落伍。这种态度造就了一个投身于研究、实验和探索的民族。时间是美国人注意节约的两个要素之一,另一个是劳力。 Para. 2 人们一直说:“只有时间才能支配我们。”人们似乎是把时间当作一个差不多是实实在在的东西来对待的。我们安排时间、节约时间、浪费时间、挤抢时间、消磨时间、缩减时间、对时间的利用作出解释;我们还要因付出时间而收取费用。时间是一种宝贵的资源,许多人都深感人生的短暂。时光一去不复返。我们应当让每一分钟都过得有意义。 Para. 3 外国人对美国的第一印象很可能是:每个人都匆匆忙忙——常常处于压力之下。城里人看上去总是在匆匆地赶往他们要去的地方,在商店里他们焦躁不安地指望店员能马上来为他们服务,或者为了赶快买完东西,用肘来推搡他人。白天吃饭时人们也都匆匆忙忙,这部分地反映出这个国家的生活节奏。工作时间被认为是宝贵的。Para. 3b 在公共用餐场所,人们都等着别人吃完后用餐,以便按时赶回去工作。你还会发现司机开车很鲁莽,人们推搡着在你身边过去。你会怀念微笑、简短的交谈以及与陌生人的随意闲聊。不要觉得这是针对你个人的,这是因为人们非常珍惜时间,而且也不喜欢他人“浪费”时间到不恰当的地步。 Para. 4 许多刚到美国的人会怀念诸如商务拜访等场合开始时的寒暄。他们也会怀念那种一边喝茶或咖啡一边进行的礼节性交流,这也许是他们自己国家的一种习俗。他们也许还会怀念在饭店或咖啡馆里谈生意时的那种轻松悠闲的交谈。一般说来,美国人是不会在如此轻松的环境里通过长时间的闲聊来评价他们的客人的,更不用说会在增进相互间信任的过程中带他们出去吃饭,或带他们去打高尔夫球。既然我们通常是通过工作而不是社交来评估和了解他人,我们就开门见山地谈正事。因此,时间老是在我们心中的耳朵里滴滴答答地响着。 Para. 5 因此,我们千方百计地节约时间。我们发明了一系列节省劳力的装置;我们通过发传真、打电话或发电子邮件与他人迅速地进行交流,而不是通过直接接触。虽然面对面接触令人愉快,但却要花更多的时间, 尤其是在马路上交通拥挤的时候。因此,我们把大多数个人拜访安排在下班以后的时间里或周末的社交聚会上。 Para. 6 就我们而言,电子交流的缺乏人情味与我们手头上事情的重要性之间很少有或完全没有关系。在有些国家, 如果没有目光接触,就做不成大生意,这需要面对面的交谈。在美国,最后协议通常也需要本人签字。然而现在人们越来越多地在电视屏幕上见面,开远程会议不仅能解决本国的问题,而且还能通过卫星解决国际问题。

相关主题
文本预览
相关文档 最新文档