当前位置:文档之家› 平面解析几何-高考复习知识点

平面解析几何-高考复习知识点

平面解析几何-高考复习知识点
平面解析几何-高考复习知识点

平面解析几何 高考复习知识点

一、直线的倾斜角、斜率

1、直线的倾斜角:

(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。当直线l 与x 轴重合或平行时,规定倾斜角为0; (2)倾斜角的范围[)π,0。 2、直线的斜率 (1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =α(α≠90°);倾斜角为90°的直线没有斜率;

(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212

12

1x x x x y y k ≠--=;

(3)直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系? (4)应用:证明三点共线: AB BC k k =。

例题:

例1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;

思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的

范围,通过正切函数的图像,可以求得角的范围? 解析: ∵, ∴

.? 总结升华:

在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范

围时,可利用在和上是增函数分别求解.当时,;

当时,;当时,;当不存在时,.反之,亦成立.

类型二:斜率定义

例2.已知△为正三角形,顶点A 在x轴上,A 在边的右侧,∠的平分线在x 轴上,求边与所在直线的斜率. 思路点拨:

本题关键点是求出边与所在直线的倾斜角,利用斜率的定义求出斜率. 解析:? 如右图,由题意知∠∠30°? ∴直线的倾斜角为180°-30°=15

0°,直线的倾斜角为30°,? ∴150°= 30°=? 总结升华:

在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小

的角,只有这样才能正确的求出倾斜角.

类型三:斜率公式的应用 例3.求经过点

,

直线的斜率并判断倾斜角为锐

角还是钝角.

思路点拨: 已知两点坐标求斜率,直接利用斜率公式即可. 解析:?

经过两点的直线的斜率

,即.? 即当时,为锐角,

时,

为钝角.

例4、过两点,

的直线的倾斜角为,求的值.?

【答案】

由题意得:直线的斜率

故由斜率公式

,? 解得或. 经检验

不适合,舍去. 故

例5.已知三点A(a ,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a 的值.

? 思

路点拨:? 如果过点,的斜率相等,那么A,B ,C三点共线.

解析:?

∵A 、B 、C 三点在一条直线上,? ∴.即

二、直线方程的几种形式

1、点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。

2、斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。

3、两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为

1

21

121x x x x y y y y --=

--,它不包括垂直于坐标轴的直线。 4、截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1=+b

y

a x ,它不包括垂直于坐标轴的直线和过原点的直线。

5、一般式:任何直线均可写成0Ax By C ++=(不同时为0)的形式。

提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?);(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等?直线的斜率为-1或直线过原点;直线两截距互为相反数?直线的斜率为1或直线过原点;直线两截距绝对值相等?直线的斜率为1±或直线过原点。如过点(1,4)A ,且纵横截距的绝对值相等的直线共有条(答:3)

注:设直线方程的一些常用技巧:

(1)知直线纵截距b ,常设其方程为y kx b =+;

(2)知直线横截距0x ,常设其方程为0x my x =+(它不适用于斜率为0的直线); (3)知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;

(4)与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=; (5)与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.

提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。

三、两直线之间的位置关系

1、距离公式 (1)平面上的两点

间的距离

。特

别地,原点O (0,0)与任意一点的P ()的距离

(2)点00(,)P x y 到直线0Ax By C ++=的距离002

2

Ax By C d A B

++=

+;

(3)两平行线1122:0,:0l Ax By C l Ax By C ++=++=间的距离为122

2

C C d A B

-=

+。

2、直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系: (1)平行?12210A B A B -=(斜率)且12210B C B C -≠(在y 轴上截距); (2)相交?12210A B A B -≠;

(3)重合?12210A B A B -=且12210B C B C -=; (4)垂直?12120A A B B += 提醒: (1)

111222A B C A B C =≠、1122A B A B ≠、111222

A B C

A B C ==仅是两直线平行、相交、重合的充分

不必要条件!为什么?

(2)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线;

3、两直线夹角公式

(1)1l 到2l 的角是指直线1l 绕着交点按逆时针方向转到和直线2l 重合所转的角

θ,θ()π,0∈且θ

2

11

21k k k k +-(121k k ≠-);

(2)1l 与2l 的夹角是指不大于直角的角,(0,

]2

π

θθ∈且θ︱

2

11

21k k k k +-︱(121k k ≠-)。

提醒:解析几何中角的问题常用到角公式或向量知识求解。如已知点M 是直线240x y --=与x 轴的交点,把直线l 绕点M 逆时针方向旋转45°,得到的直线方程是

(答:360x y +-=) 例题:

例1、两条直线m y x m l 352)3(1-=++:

,16)5(42=++y m x l :,求分别满足下列条件的m 的值.

(1) 1l 与2l 相交; (2) 1l 与2l 平行; (3) 1l 与2l 重合; (4) 1l 与2l 垂直; (5) 1l 与2l 夹角为?45.

解:由

m m +=

+5243得0782

=++m m ,解得11-=m ,72-=m . 由16

3543m m -=

+得1-=m . (1)当1-≠m 且7-≠m 时,

2

1

21b b a a ≠,1l 与2l 相交; (2)当7-=m 时,

2

1

2121c c b b a a ≠=.21//l l ; (3)当1-=m 时,

2

1

2121c c b b a a ==,1l 与2l 重合; (4)当02121=+b b a a ,即0)5(24)3(=+?+?+m m ,3

11

-=m 时,21l l ⊥; (5) 231+-

=m k ,m

k +-=54

2.由条件有145tan 11212

=?=+-k k k k . 将1k ,2k 代入上式并化简得029142

=++m m ,527±-=m ;

01522=-+m m ,35或-=m .∴当527±-=m 或-5或3时1l 与2l 夹角为?45.

例2当a 为何值时,直线01)1()2(1=--++y a x a l :与直线02)32()1(2=+++-y a x a l :互相垂直?

解:由题意,直线21l l ⊥.

(1)若01=-a ,即1=a ,此时直线0131=-x l :

,0252=+y l :显然垂直; (2)若032=+a ,即2

3

-=a 时,直线0251=-+y x l :

与直线0452=-x l :不垂直; (3)若01≠-a ,且032≠+a ,则直线1l 、2l 斜率1k 、2k 存在,

a a k -+-

=121,3

21

2+--=a a k .

当21l l ⊥时,121-=?k k ,即1)3

21

()12(-=+--?-+-

a a a a ,∴1-=a . 综上可知,当1=a 或1-=a 时,直线21l l ⊥.

例3已知直线l 经过点)1,3(P ,且被两平行直线011=++y x l :和062=++y x l :截得的线段之长为5,求直线l 的方程.

解法一:若直线l 的斜率不存在,则直线l 的方程为3=x ,此时与1l 、2l 的交点分别为

)4,3('-A 和)9,3('-B ,截得的线段AB 的长594=+-=AB ,符合题意,

若直线l 的斜率存在,则设直线l 的方程为1)3(+-=x k y .

解方程组???=+++-=,01,1)3(y x x k y 得??? ??+--+-114,12

3k k k k A ,

解方程组?

??=+++-=,06,1)3(y x x k y 得??? ??+--+-119,17

3k k k k B .

由5=AB ,得2

2

251191141731

23=??? ??+-++--+??? ??+--+-k k k k k k k k . 解之,得0=k ,即欲求的直线方程为1=y .

综上可知,所求l 的方程为3=x 或1=y . 解法二:由题意,直线1l 、2l 之间的距离为1

2

52

61=

-=

d ,且直线l 被平等直线1l 、2l 所截得的线段AB 的长为5(如上图),设直线l 与直线1l 的夹角为θ,则2

252

25sin ==θ,

故∴?=45θ.

由直线011=++y x l :的倾斜角为135°,知直线l 的倾斜角为0°或90°,又由直线l 过点)1,3(P ,故直线l 的方程为3=x 或1=y .

解法三:设直线l 与1l 、2l 分别相交),(11y x A 、),(22y x B ,则:

0111=++y x ,0622=++y x .

两式相减,得5)()(2121=-+-y y x x . ① 又25)()(221221=-+-y y x x ② 联立①、②,可得??

?=-=-052121y y x x 或???=-=-50

21

21y y x x

由上可知,直线l 的倾斜角分别为0°或90°. 故所求直线方程为3=x 或1=y .

例4 已知直线082=+-y x l :和两点)0,2(A 、)4,2(--B . (1)在l 上求一点P ,使PB PA +最小; (2)在l 上求一点P ,使PA PB -最大. 解:(1)如图,设A 关于l 的对称点为),('

n m A

则???????=+?-+-=-08222

2,22

n m m n

∴2-=m ,8=n . ∴)8,2('

-A

∴B A '

的的是2-=x ,B A '

与l 的交点是)3,2(-, 故所求的点为)3,2(-P . (2)如下图,

AB 是方程)2()

2(2)

4(0-----=

x y ,

即2-=x y .

代入l 的方程,得直线AB 与l 的交点)10,12(, 故所求的点P 为)10,12(.

四、对称问题——代入法(中心对称和轴对称)

1、 中心对称

(1)点关于点对称点P (00,y x )关于(b a ,)对称的点为(002,2y b x a --); (2)线关于点对称:(转化为点点对称) 在已知直线上任意去两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再有两点式求出直线方程,或者求出一个点,再利用两直线平行(注:线关于点对称的另一条直线和已知直线平行),由点斜式求出直线方程。 特别的,直线关于点P (00,y x )的对称直线为a x x -=02;直线关于点P(00,y x )的对称直

线为b y y -=02

2、 轴对称

(1)点关于直线的对称问题:

(1)点(00,y x )关于x 轴对称的点为(00,y x -); (2)点(00,y x )关于y 轴对称的点为(00,y x -); (3)点(00,y x )关于原点对称的点为(00,y x --); (4)点(00,y x )关于x y =对称的点为(00,x y ); (5)点(00,y x )关于x y -=对称的点为(00,x y --)。

(6)设点P(00,y x )关于直线的对称点

则有由此求

特别的,点P(00,y x )关于直线的对称点为;点P (00,y x )关于直线的对称点为

(2)直线关于直线的对称问题:

它的一般解题步骤是:1. 在所求曲线上选一点),(y x M ;2. 求出这点关于中心或轴

的对称点),(00'

y x M 与),(y x M 之间的关系;3. 利用0),(00=y x f 求出曲线0),(=y x g 。

直线关于直线的对称问题是对称问题中的较难的习题,但它的解法很多,现以一道典型习题为例给出几种常见解法,供大家参考。

例题:试求直线01:1=-+y x l 关于直线033:2=--y x l 对称的直线l 的方程。

解法1:(动点转移法)

在1l 上任取点

))(,(2''l P y x P ?,设点P关于2l 的对称点为),(y x Q ,则 ?????-+=++-=????????-=--=-+-+534359

343103223'

'''

''y x y y x x x x y y y y x x

又点P在1l 上运动,所以01=-+y x ,所以0

153

435934=--++++-y x y x 。即

017=--y x 。所以直线l 的方程是017=--y x 。 解法2:(到角公式法)

解方程组???==??

?

?=--=-+01

03301y x y x y x 所以直线21,l l 的交点为A(1,0) 设所求直线l 的方程为)1(-=x k y ,即0=--k y kx ,由题意知,1l 到2l 与2l 到l 的角相等,

则7131313113=

?+-=?-+k k

k .所以直线l 的方程是017=--y x 。 解法3:(取特殊点法)

解方程组??

?==??

??=--=-+0103301y x y x y x 所以直线21,l l 的交点为A (1,0) 在1l 上取点P (2,1),设点P 关于2l 的对称点的坐标为

),('

'y x Q ,则?????

==????

????-

=--=-+-+575431210321223''''

''y x x y y x 而点A,Q在直线l 上,由两点式可求直线l 的方程是017=--y x 。

解法4:(两点对称法)

对解法3,在1l 上取点P(2,1),设点P 关于2l 的对称点的坐标为)

57

,54(Q ,在1l 上取点M(0,

1),设点P关于2l 的对称点的坐标为

)

51,512(N 而N,Q 在直线l 上,由两点式可求直线l 的方程是017=--y x 。

解法5:(角平分线法)

解方程组???==??

?

?=--=-+01

03301y x y x y x 所以直线21,l l 的交点为A (1,0)

设所求直线l 的方程为:设所求直线l 的方程为)1(-=x k y ,即0=--k y kx .由题意知,

2

l 为1,l l 的角平分线,在2l 上取点P(0,-3),则点P到1,l l 的距离相等,由点到直线距离公式,

有:1

71

1|30|2|130|2

-==?+-+=--或k k k k

1-=k 时为直线1l ,故

71

=

k 。所以直线l 的方程是017=--y x

例题:

例1 : 已知点A (-2,3),求关于点P(1,1)的对称点B(00y ,x )。 分析:利用点关于点对称的几何特性,直接应用中点坐标公式求解。

解:设点A (-2,3)关于点P(1,1)的对称点为B (00y ,x ),则由中点坐标公式得???????=+=+-,

12

y 3,12

x 200

解得??

?-==1y ,4x 00所以点A 关于点P (1,1)的对称点为B (4,-1)。

评注:利用中点坐标公式求解完之后,要返回去验证,以确保答案的准确性。

例2 : 求直线04y x 3=--关于点P(2,-1)对称的直线l 的方程。

分析:由已知条件可得出所求直线与已知直线平行,所以可设所求直线方程为0b y x 3=+-。 解:由直线l 与04y x 3=--平行,故设直线l 方程为0b y x 3=+-。

由已知可得,点P 到两条直线距离相等,得

.1

3|b 16|1

3|416|2

2

+++=

+-+

解得10b -=,或4b -=(舍)。则直线l 的方程为.010y x 3=--

评注:充分利用直线关于点对称的特性:对称直线与已知直线平行且点P 到两条直线的距离相等。几何图形特性的灵活运用,可为解题寻找一些简捷途径。此题还可在直线04y x 3=--上取两个特殊点,并分别求其关于点P(2,-1)的对称点,这两个对称点的连线即为所求直线。

例3 :求点A(2,2)关于直线09y 4x 2=+-的对称点坐标。 利用点关于直线对称的性质求解。

解法1(利用中点转移法):设点A(2,2)关于直线09y 4x 2=+-的对称点为A′(00y ,x ),则直线′与已知直线垂直,故可设直线′方程为0c y 2x 4=++,把A(2,2)坐标代入,可求得12c -=。 ∴直线′方程为06y x 2=-+。

由方程组???=-+=+-0

6y x 2,09y 4x 2解得′中点M ???

??3,23。

由中点坐标公式得

32

2

y ,2322x 00=+=+,解得.4y ,1x 00== ∴所求的对称点坐标为(1,4)。

评注:解题时,有时可先通过求中间量,再利用中间量求解结果。

分析:设B(a,b)是A(2,2)关于直线09y 4x 2=+-的对称点,则直线与l 垂直,线段中点在直线09y 4x 2=+-上。 解法2(相关点法):设B(a ,b )是A(2,2)关于直线09y 4x 2=+-的对称点,根据直线与l 垂直,线段中点在直线09y 4x 2=+-上,

则有???

????=++?-+?-=--?,0922b 422a 2,12

a 2

b 21

解得.4b ,1a ==

∴所求对称点的坐标为(1,4)。

评注:①中点在09y 4x 2=+-上;②所求点与已知点的连线与09y 4x 2=+-垂直。

例4 : 求直线02y x :l 1=--关于直线03y x 3:l 2=+-对称的直线l 的方程。

分析:设所求直线l 上任一点为P (y ,x ''),利用“相关点法”求其对称点坐标,并将其对称点坐标代入直线1l 方程进行求解。

解:设所求直线l 上任意一点P (y ,x '')(2l P ?)关于2l 的对称点为Q(11y ,x ),

则???

????-=-'-'=+'+-'+?,1x x y y ,032y y 2x x 31111解得???????+'+'=-'+'-=.53y 4x 3y ,59y 3x 4x 11

又因为点Q在1l 上运动,则=--2y x 110。

025

3

y 4x 359y 3x 4=-+'+'--'+'-,解得022y x 7=+'+'。即直线l 的方程为022y x 7=++。

评注:直线关于直线对称实质是点关于线的对称。此题还可在直线1l 上任取一点(非两直线交点)并求其关于直线2l 的对称点,则该对称点与两直线交点的连线便是所求对称直线。

五、圆的方程:

1、圆的标准方程:()()2

2

2

x a y b r -+-=。

2、①圆的一般方程:

22220(D E 4F 0)+-x y Dx Ey F ++++=>

特别提醒:只有当22

D E 4F 0+->时,方程2

2

0x y Dx Ey F ++++=才表示圆,圆

心为(,)22D E -

-

的圆。 ②常见圆的方程

圆心在原点:()2

2

2

0x y r

r +=≠;过原点:()()

()22

22220x a y b a b a b -+-=++≠;

圆心在x 轴上:()()2

2

2

0x a y r

r -+=≠;圆心在y 轴上:()

()2

220x y b r r +-=≠;

圆心在x 轴上且过原点:()()2

2

2

0x a y a

a -+=≠;

圆心在y 轴上且过原点:()()2

220x y b b b +-=≠;

与x 轴相切:()()()2220x a y b b b -+-=≠;与y 轴相切:()()()22

20x a y b a a -+-=≠ 与两坐标轴都相切:()()()2

2

2

0x a y b a a b -+-==≠

3、圆的参数方程:

{

cos sin x a r y b r θθ

=+=+(θ为参数),其中圆心为(,)a b ,半径为r 。圆的

参数方程的主要应用是三角换元:2

2

2

cos ,sin x y r x r y r θθ+=→==;22x y t +≤

cos ,sin (0x r y r r θθ→==≤≤。

4、()()1122A ,,,x y B x y 为直径端点的圆方程()()()()12120x x x x y y y y --+--= 例题

例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.

解法一:(待定系数法)设圆的标准方程为2

2

2

)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2

2

2

)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.

∴?????=+-=+-2

22

24)3(16)1(r

a r a 解之得:1-=a ,202=r .

所以所求圆的方程为20)1(2

2=++y x . 解法二:(直接求出圆心坐标和半径)

因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为

13

12

4-=--=

AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .

又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2

2

=

++==AC r .故所求圆的方程为20)1(22=++y x .

又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(2

2

.

∴点P 在圆外.

例2 求半径为4,与圆04242

2=---+y x y x 相切,且和直线0=y 相切的圆的方程.

解:则题意,设所求圆的方程为圆2

2

2

)()(r b y a x C =-+-:

. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242

2

=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .

(1)当)4,(1a C 时,2

2

2

7)14()2(=-+-a ,或2

2

2

1)14()2(=-+-a (无解),故可得

1022±=a .

∴所求圆方程为2224)4()1022(=-+--y x ,或2

224)4()1022(=-++-y x .

(2)当)4,(2-a C 时,2

227)14()2(=--+-a ,或2

221)14()2(=--+-a (无解),故

622±=a .

∴所求圆的方程为2224)4()622(=++--y x ,或2

224)4()622(=+++-y x .

例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.

解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,

又圆心到两直线02=-y x 和02=+y x 的距离相等.

5

25

2y x y x +=

-.∴两直线交角的平分线方程是03=+y x 或03=-y x .

又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C

∵C 到直线02=+y x 的距离等于AC ,

22)53(5

32-+=+t t t t .

化简整理得0562

=+-t t .解得:1=t 或5=t

∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55.

∴所求圆的方程为5)3()1(2

2

=-+-y x 或125)15()5(2

2

=-+-y x .

例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.

解:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .

由题设知:圆截x 轴所得劣弧所对的圆心角为?90,故圆截x 轴所得弦长为r 2. ∴222b r =

又圆截y 轴所得弦长为2. ∴122+=a r .

又∵),(b a P 到直线02=-y x 的距离为

5

2b a d -=

∴2

225b a d -=

ab b a 4422-+=)

(242222b a b a +-+≥1222=-=a b

当且仅当b a =时取“=”号,此时5

5min =

d . 这时有?

??=-=122

2a b b a ∴??

?==11b a 或???-=-=1

1b a 又2222==b r

故所求圆的方程为2)1()1(2

2

=-+-y x 或2)1()1(2

2

=+++y x

六、点、直线与圆的位置关系

1、点与圆的位置关系

已知点()00M ,x y 及圆()()()2

2

2C 0:x-a y b r r +-=>,

(1)点M 在圆C 外()()2

2

2

00CM r x a y b r ?>?-+->;

(2)点M 在圆C 内?()()22

2

00CM r x a y b r

(3)点M 在圆C上()20CM r x a ?=?-()2

2

0y b r +-=。

2、直线与圆的位置关系

(1)直线与圆的位置关系有相交、相切、相离三种情况,分别对应直线与圆有两个公共点、一个公共点、没有公共点。

相交 相切

相离

(两个公共点) (一个公共点) (没有公共点) (2)直线与圆的位置关系的判断方法 ①几何法:

通过圆心到直线的距离与半径的大小比较来判断。

设直线l :0 圆C :()2+()22(r>0) 则圆半径为r

设圆心到直线的距离为d ,则 直线与圆相离 直线与圆相切 直线与圆相交 ②代数法:

通过直线与圆的方程联立的方程组的解的个数来判断

直线方程与圆的方程联立方程组?

??=++++=++00

2

2F Ey Dx y x C By Ax 求解,通过解的个数来判断:

(1)当方程组有2个公共解时(直线与圆有2个交点),直线与圆相交;

(2)当方程组有且只有1个公共解时(直线与圆只有1个交点),直线与圆相切; (3)当方程组没有公共解时(直线与圆没有交点),直线与圆相离;

即:将直线方程代入圆的方程得到一元二次方程,设它的判别式为Δ,圆心C 到直线l 的距离为d,则直线与圆的位置关系满足以下关系:

相切??Δ=0;

相交?d

弦心距d,半径r及半弦2构成直角三角形的三边 ,利用垂径定理和勾股定理:

AB =2

2B A C bB aA d +++=

(其中r 为圆的半径,d 直线到圆心的距离).

② 代数法(解析法)

利用弦长计算公式:设直线y kx b =+与圆相交于()11,A x y ,()22,B x y 两点, 则弦()()

22

1212AB x x y y =

-+-|

|1212x x k -+ (4)

切线:①过圆222x y R +=上点00(,)P x y 圆的切线方程是:200xx yy R +=过圆

222()()x a y b R -+-=上点00(,)P x y 圆的切线方程是:200()()()()x a x a y a y a R --+--=

②从圆外一点引圆的切线一定有两条,可先设切线方程,再根据相切的条件,运

用几何方法(抓住圆心到直线的距离等于半径)来求;过两切点的直线(即“切点弦”)方程的求法:先求出以已知圆的圆心和这点为直径端点的圆,该圆与已知圆的公共弦就是过两切点的直线方程;

③切线长:过圆2

2

0x y Dx Ey F ++++=(222()()x a y b R -+-=)外一点

00(,)P x y 22

0000x y Dx Ey F ++++22200()()x a y b R -+--;

例题:

1.已知圆O:x 2+y 2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积等于.

解析:依题意,过A (1,2)作圆x 2+y 2=5的切线方程为x+2y=5,在x 轴上的截距为5,在y 轴上的截距为,切线与坐标轴围成的三角形面积S =××5=.答案:

2.过原点O 作圆x 2+y2-6x-8y+20=0的两条切线,设切点分别为P、Q ,则线段的长为.

解析:∵圆的标准方程为(x-3)2+(y -4)2=5,可知圆心为(3,4),半径为.如图可知,=5,

∴==2.∴∠==.在△中,·=·,∴==2.∴=2=4.答案:4

3.若直线3x +4y+m=0与圆x 2

+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是.

解析:将圆x2+y 2-2x+4y +4=0化为标准方程,得(x -1)2+(y+2)2=1,圆心为(1,-2),半径为1.

若直线与圆无公共点,即圆心到直线的距离大于半径,

即d ==>1,∴m <0或m >10. 答案:(-∞,0)∪(10,+∞)

4.已知直线x-y +2m =0与圆x 2+y 2=n 2相切,其中m,n ∈N *

,且n -m <5,则满足条件的有序实数对(m ,n )共有个.

解析:由题意可得,圆心到直线的距离等于圆的半径,即2m -1=n,所以

2m-1-m <5,因为m ,n ∈N *,所以,错误!,错误!,错误!,故有序实数对(m ,n )共有4个.答案:4个

5.直线++b -a =0与圆x 2+y 2-x-3=0的位置关系是.

解析:直线方程化为a (x-1)+b (y +1)=0,过定点(1,-1),代入圆的方程,左侧小于0,则定点在圆内,所以直线与圆总相交.答案:相交

6.已知向量a =(α,α),b =(β,β),a 与b 的夹角为60°,直线α+α=0与圆(x+β)2

+(y+β)2=的位置关系是.

解析:60°=α·β+α·β=(α-β),

d ==(α-β)|=>=r .答案:相离

7.已知:以点C (t,)(t∈R ,t≠0)为圆心的圆与x 轴交于点O 、A ,与y轴交于点O 、B ,其中O 为原点.

(1)求证:△的面积为定值;

(2)设直线y =-2x +4与圆C 交于点M ,N ,若=,求圆C 的方程.

解:(1)证明:∵圆C 过原点O,∴2=t 2+.设圆C 的方程是(x -t )2+(y-)2=t2+,令

x=0,得y 1=0,y2=;令y =0,得x 1=0,x 2=2t.

∴S △=·=×|×|2=4,即△的面积为定值. (2)∵=,=,∴垂直平分线段.∵=-2,∴ C =, ∴直线的方程是y =x .∴=t ,解得:t =2或t =-2.

当t =2时,圆心C 的坐标为(2,1),=,此时圆心C到直线y =-2x +4的距离d =<,圆C与直线y =-2x +4相交于两点.

当t =-2时,圆心C的坐标为(-2,-1),=,此时圆心C 到直线y =-2x +4的距离d =>,圆C 与直线y =-2x+4不相交,

∴t =-2不符合题意舍去.∴圆C 的方程为(x -2)2+(y -1)2=5.

七、圆与圆的位置关系

(1)两圆位置关系的判定方法

①几何法:

设两圆圆心分别为O1,O 2,半径分别为r 1,r 2,d O O =21。

条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

条公切线相交22121??+<<-r r d r r ; 条公切线内切121??-=r r d ; 无公切线内含??-<<210r r d ;

外离 相切 相交 内切 内含

②代数法:

判断两个圆的位置关系也可以通过联立方程组判断公共解的个数来解决(方法同直线与圆位置关系的代数法)【一般不提倡用此法,太过繁琐】 (2)两圆的公共线

① 定义:当两圆相交时,必有两个交点,那么过这两点交点的弦为圆的公共点。 ② 公共弦所在直线方程 设圆

0:111221=++++F y E x D y x C ① 0:222222=++++F y E x D y x C ②

若两圆相交,则两圆的公共弦所在的直线方程是

用①-②得 0)()()(212121=-+-+-F F y E E x D D ③ 若圆C1与C 2相交,则③式为公共弦所在的直线方程 若圆C 1与C 2外(内)切,则③式外(内)切线的方程 若圆C 1与C2相离(外离或内含),则③式为圆的C 1、C 2相离的直线

例题:

例1.若圆x 2+y2

=4与圆x 2+y 2+2-6=0(a >0)的公共弦的长为2,则a=.

解析:两圆方程作差易知弦所在直线方程为:y =,

如图,由已知=,=2,有==1,∴a=1.

答案:1

例2.过点A(11,2)作圆x 2+y 2+2x -4y -164=0的弦,其中弦长为整数的共有条.

解析:方程化为(x +1)2+(y -2)2=132,圆心为(-1,2),到点A(11,2)的距离为12,最短弦长为10,最长弦长为26,所以所求直线条数为2+2×(25-10)=32(条).答案:32

例3.已知圆C 1:x 2+y 2+2x+2y -8=0与圆C 2:x 2+y 2-2x+10y -24=0相交于A、B 两点,

(1)求公共弦所在的直线方程;

(2)求圆心在直线y=-x 上,且经过A 、B 两点的圆的方程.

解:(1)?x-2y +4=0.

(2)由(1)得x=2y -4,代入x2+y 2+2x +2y -8=0中得:y 2-2y=0. ∴错误!或错误!,即A (-4,0),B (0,2),

又圆心在直线y =-x上,设圆心为M(x ,-x ),则=,解得M(-3,3),∴⊙M :(x+3)2+(y -3)2=10.

例4 已知圆C 1:x 2 + y 2 – 2 + 4y + m2

– 5 = 0,圆C 2:x 2 + y 2 + 2x – 2 + m 2 – 3 = 0,m 为何值时,(1)圆C1与圆C 2相外切; (2)圆C1与圆C 2内含.

【解析】对于圆C 1,圆C2的方程,经配方后

C 1:(x – m )2 + (y + 2)2 = 9,C 2:(x + 1)2 + (y – m )2 = 4.

(1)如果C 1与C 2外切,22(1)(2)32m m +++=+,

所以m 2 + 3m – 10 = 0,解得m = 2或–5. (2)如果C1与C 2

32-,

所以m 2 + 3m + 2<0,得–2<m <–1. 所以当m = –5或m = 2时,C 1与C 2外切; 当–2<m <–1时,C 1与C 2内含.

例5求过直线x + y + 4 = 0与圆x 2

+ y 2 + 4x – 2y – 4 = 0的交点且与y = x 相切的圆的方程.

【解析】设所求的圆的方程为x 2 + y 2 + 4x – 2y – 4 + λ(x + y + 4) = 0.

联立方程组22

424(4)0

y x

x y x y x y λ=??

++--+++=?

得:2(1)2(1)0x x λλ+++-=. 因为圆与y = x 相切,所以?=0. 即2(1)8(1)0,λλλ++-=则=3

故所求圆的方程为x 2

+ y 2 + 7x + y + 8 = 0.

例6 求过两圆x 2 + y 2 + 6x – 4 = 0求x 2 + y 2 + 6y – 28 = 0的交点,且圆心在直线x – y – 4 = 0上的圆的方程.

【解析】依题意所求的圆的圆心,在已知圆的圆心的连心线上,又两已知圆的圆心分别为(–3,0)和(0,–3).

则连心线的方程是x + y + 3 = 0.

由3040x y x y ++=??--=? 解得12

72

x y ?=????=-??.

所以所求圆的圆心坐标是1

7(,)22

-.

设所求圆的方程是x 2

+ y 2

– x + 7y + m = 0

由三个圆有同一条公共弦得m = –32.

故所求方程是x 2 + y 2 – x + 7y – 32 = 0.

例7.已知圆C 的方程为x 2+y 2

=1,直线l 1过定点A (3,0),且与圆C 相切.

(1)求直线l 1的方程;

(2)设圆C 与x 轴交于P 、Q 两点,M 是圆C上异于P 、Q的任意一点,过点A 且与x 轴垂直的直线为l2,直线交直线l 2于点P ′,直线交直线l 2于点Q ′.求证:以P ′Q ′为直径的圆C ′总过定点,并求出定点坐标.

解:(1)∵直线l1过点A (3,0),且与圆C :x 2+y2=1相切,设直线l 1的方程为y=k (x -3),即-y -3k=0,

则圆心O(0,0)到直线l 1的距离为d ==1,解得k =±, ∴直线l 1的方程为y =±(x -3).

(2)对于圆C :x 2+y 2=1,令y =0,则x =±1,即P(-1,0),Q (1,0).又直线l 2过点A 且与x 轴垂直,∴直线l2方程为x =3.

设M (s ,t ),则直线的方程为y =(x +1).

解方程组错误!得P′(3,错误!).同理可得Q′(3,错误!).

∴以P′Q′为直径的圆C′的方程为

(x-3)(x-3)+(y-)(y-)=0,又s2+t2=1,

∴整理得(x2+y2-6x+1)+y=0,

若圆C′经过定点,只需令y=0,从而有x2-6x+1=0,解得x=3±2,∴圆C′总经过定点,定点坐标为(3±2,0).

相关主题
文本预览
相关文档 最新文档