当前位置:文档之家› 可编程电源

可编程电源

可编程电源
可编程电源

可编程任意电源

可编程任意电源就是某些功能或参数可以通过计算机软件编程控制的电源。比如设臵输出电压是多少,最大输出电流是多少,超过这个值则不能正常供电等等。例如,当超过最大输出电压的时候为恒流输出,当超过最大输出电流的时候,电源就变成了稳压源等等。“可编程”的意思是电源内部主要功能通过上位机设定状态字实现可控,大部分的电源是通过串口连接的。可通过通讯规约,设定“最大电流、最大电压、最大功率、实际电压”等等。可编程任意电源的主要指标是编程时间,编程精度,编程分辨率等等。

[编辑本段]

可编程任意电源的基本功能

可编程任意电源与普通直流电源一样,都有一路或几路输出,电压、电流均可以调节,通过数码管或液晶屏显示其数值,还可以通过选择串联或并联输出结构来获得更高电压或更高电流。某些电源设备采用悬浮式输出,可防止过载和短路发生。有些含有线性电压调节器,可提供低纹波的输出电压。大多仪器的电流极限均可调节,以保护相连负载。有些电源设有输出开关,需要开、关某一输出或所有输出时,只需按动按钮即可,不需要关闭仪器本身。另外,有些电源设备都采用了热保护设计,可以通过风扇控制温度。

1、电源的基本工作模式

电源的工作模式可分为恒压输出模式(CV),恒流输出模式(CC),串联模式,并联模式。其中,在恒压模式下,电源的输出电流随负载变化,以确保输出电压的恒定,在恒流模式下,电源的输出电压随负载变化,以确保输出电流的恒定。并联模式或串联模式的输出连接必须独立进行,而且一台电源设备的输出也可以连接另外一台电源设备的输出。为了获取更大的输出电压,可采取串联模式,为了获取更大的输出电流,可采取并联模式。(如图1、2所示)

图1 串联模式示意图图1 并联模式示意图

1)串联模式

在串联模式下,由于电压相加(或相减),最大电流由设定值最小的电源设备决定,因而此时所有设备的电流都相等。

2)并联模式

为了提高输出的总电流大小,可采取并联方式。此时所有设备的输出电压都相同,大小由额定输出电压最低的电源设备决定,总电流为各并联支路的电流之和。

如果所采用的电源设备规格相同,则在并联时请检查各电源设备上分配的电流是否平均,由于并联时流过各电源设备的电流大小相同,如果使用了其他类型的电源设备,在没有过载保护的条件下,此类电压可能会被电流损坏。

2.限流和电子保险丝

限流功能是大多数可编程任意电源均具备的一项功能,限流指允许不超过最大设定电流的电流通过,限流调整需要在使用测试电路之前完成,以避免由于短路等故障损坏电路。

如图3所示,在电压调节范围内,电压Vout保持不变,而电流可能升高到最大值Imax。当达到该值时,电压调节将变为电流调节,即使负载增加,最大电流仍然保持不变。相反,在发生短路时,输出电压Vout将会减小至零,而电流仍然保持恒定并处于Imax以内。因此,电源设备同时也是电流源设备,可使调整电流保持恒定。我们建议在连接被测电路之前,首先设定最大电流,以避免产生损坏。

图3 电压、电流调节示意图

为了更好的保护敏感性负载,有些电源设备除了限流功能外,还都配备了电子保险丝,一旦电流达到Imax值,电路将以极快的速度断开输出,切断电流。

[编辑本段]

可编程任意电源的作用

1、跟踪功能

在某些可编程任意电源中,有一种通道间联动的功能,即跟踪功能。跟踪功能指所有的输出同时被控制,并且通过保持电压与事先设定的电压一致,使它们都服从统一指挥。例如:如果电压1从10V变为12V,则电压2和3将随之从5V变为6V,电压4随之从20V变为24V。

但是,如果其中一个处于领导位臵的输出的最大电流存在极限值,而且输出电流达到该极限值时,则所有其他处于从属地位的输出电流也同时进入限流状态。如果设备中安装了电子保险丝,则到达该极限值的输出将被断开,进而其他处于从属位臵的输出也全部被断开。

2、感应(SENSE)模式——补偿导线本身电阻

在普通模式下,电压通过导线直接加载在负载上,从而保持负载电压的稳定。由于负载电流会在连接导线上产生压降,因而实际负载电压应等于电源输出电压减去该压降。

Vload = Vout - Vcable(1)

Vcable = Iload × Rcable(2)

在一些输出为低电压、大电流的场合,电源的输出连接导线上形成的压降已不能忽略。如电源设定输出为3.3V/1A,假设输出线的电阻是0.3欧,就会在导线上形成0.3V的压降,那么实际到达的电压变为3.0V,这足以导致被供电的单元不能正常工作。类似于万用表测电阻时的四线测量法,我们需要对导线压降进行补偿。为此,可使用SENSE端子直接测量负载两端电压(如图4所示)。由于SENSE导线中的电流很小,因而产生的电压降可以忽略,即电源设备感应的电压实际上就是真正的负载电压,这样电源设备将提高自己的输出,使其等于导线压降和所需负载电压之和,从而实现对于导线压降的补偿,使负载真正获得所设定电

压值。另外,有些电源加入了回读功能也是为了补偿导线本身电阻。

图4 感应(SENSE)模式示意图

3、任意波形电源

有些可编程任意电源有任意波形编辑功能,即产生随时间变化的波形,例如德国惠美公司的HM8143,它相当于一台固定点数(如1024点)的任意波形发生器,即由固定对电压与时间间隔参数、列表对应产生,可生成低频范围内用户可自定义的波形,这个信号的频率由每个点之间的时间间隔确定。如图5所示。任意信号以数字形式生成,而且定义起来相当简单。通常,一个任意波形信号可包括各种大小不同的振幅,经过逐个处理后可以生成周期性重复波形。这些编程波形可以是单脉冲,也可以是重复连续的波形。编程输出电压,也可被外调制。信号在仪器规格允许的范围内可被自由定义,并可存储于仪器中。此类信号可通过RS -232、IEEE-488或者USB接口进行定义。

4、调制

某些可编程任意电源有外部调制功能,利用后面板上的端子,可对两组输出进行调制。例如,德国惠美公司的HM8143,高达1V/μs的调制斜率和在任意模式下100μs最小脉冲宽度允许生成复杂的负载特征。无论功率大小,线性输出组件的失真度都非常低,以便于进行外部调制。如图6所示。

电源管理的挑战

一个典型的CPU电源电路如图1所示。对于典型的DSP、 FPGA 或微处理器,各种电源电压要求为:器件的核心电压为1.2V、辅助电压和PLL电压为3.3V、 I/O驱动电压为1.5V和1.8V。常见的电源设计的电压是源于单一的5V输入电源,通过一系列DC/DC转换器后产生各种电源电压。为提供如同单电源印刷电路板一样的可靠性,必须对电路板上的所有电源进行监测,并能产生正确的CPU复位信号或电源故障中断信号。

图1的电压监控块是一个集成电路,当电源发生故障或手动切断电路板的电源时,它会发送信号给CPU。如果任何一个DC/DC转换器发生故障,电压将升高或降低,超出正常工作电压的范围,从而导致CPU不能正常执行程序。对CPU而言,一个潜在的最糟糕情况是非易

失性内存被改写,使系统无法启动。如果电源发生故障时能够中断CPU,就能安全地中止当前任务,为可靠重新启动保存重要信息。

许多廉价的电压.集成电路通常有一个被忽视的负作用,对于电压变化,.的阈值将影响整个系统的容差。图2说明了这种情况。核心电压的规格为1V+/-5%,如果CPU核心电压低于0.95V,就要求.必须发出一个中断信号。然而,考虑到.的阈值精度,电压变化的整个容差降低了。在这个例子中,该.的阈值为0.95V+2%/-3%(0.97V 至0.93V)。采用这种监控集成电路时,该阈值应设臵成0.97V ,这就限制了DC/DC转换器的容差。

图1中的复位发生器块是另一种较常见的分立集成电路,当所有电压稳定后,它向CPU发出释放复位输入信号。在所有电源稳定之后,CPU继续保持复位模式一段时间是常见的情况。例如,Power Good信号有效后,移动式英特尔Atom处理器期待“脉冲延伸”两个毫秒的复位脉冲。只有到那个时刻,CPU才开始执行程序。

图1中的最后一个分立集成电路块是看门狗定时器。如果主程序没有对监视器进行定期服务,这个定时器件触发系统复位。其目的是将系统从暂停状态恢复为正常运行。

提升电源管理的灵活性并降低成本

电源,复位和看门狗定时器应用需求是多种各样的,这导致元件供应商提供大量的分立数字和混合信号元件,以帮助设计人员应对电源管理的挑战。但是,如果采用分立电压.,复位和定时器电路会增加印刷电路板布局的复杂性,并提高成本。

由于板级寄生作用和电源的开关,电压波动是正常的电源特性,削减成本的措施之一是使用不太精确、成本更低的电压.件。然而,变化超过1%的廉价.阈值会降低系统的电源纹波容差,并导致复位条件比实际需要的多。在一些设计中,另一个降低成本的措施是不监测所有的电压幅度,期望在正常工作期间,DC/DC转换器没有故障。这虽然降低了成本,可靠性却没有保障。

电路板的变化迫使设计人员重新设计电源管理电路,每次设计都要使用各种元器件。使用功能固定的分立集成电路的重新设计常常意味着要备有更多合格的元件,这将带来很大的库存量。

许多电源管理电路设计存在着固有的缺点,因而设计者萌生了将复杂可编程器件与高精度模拟电路集成在同一器件上的想法。可编程器件为状态机或布尔逻辑描述的各种逻辑时序提供了灵活性。精确可编程断点的改进型阈值.使同一芯片可用于更广泛的电源监控应用。总之,可编程的电源管理集成电路使具有普遍性的电源管理解决方案实现标准化 .

可编程电源管理集成电路实例

莱迪思半导体的Power Manager II是高集成度的产品,提升了许多板级监控集成电路的精确性。这些电源管理器件将精密故障监测电路、 CPLD和ADC/DAC电路集成在同一器件中。例如, Power Manager II中的一个产品可监控多达六个电源,并提供七个数字输出,其中两个输出可配臵成高电压MOSFET驱动器,另外五个输出可配臵成输入。它还有两个通用数字输入端,可用于其他控制功能(图3)。通过使用具有四个可编程定时器的可编程逻辑器件块,该器件可以产生CPU复位信号,包括脉冲延伸和电源故障中断信号。

这种电源管理集成电路取代了如前所述的三个电压.、复位发生器和看门狗定时器电源管理集成电路,且成本较低。在某些情况下,甚至取代两个分立集成电路就可能会得到一个更经济的设计。电源管理集成电路的高集成度特性不但有助于节省时间和经费,还可用于多种设计。

Power Manager II POWR607器件的6个电压.(VMON)都是独立可编程的。断点比较器提供192可编程点,整个范围为0.667V到5.811V。当电源关闭之后,每个都提供一个75mV零检测选择,以确定电源输出是否已经衰退到无效的情况。如果被监测的电压大于断点设臵,每个比较器输出一个逻辑高电平至可编程器件块。比较器提供设定点的

滞回约1%,以减少由电路板引入的输入噪声造成的误触发,以及由于开关电源而引起的正常电源纹波。过电压和欠电压电压断路点是可编程的,反映了被管理的DSP/FPGA/微机的容差。每一个电压.提供一个数字滤波器,可以延时比较器的输出,以避免假的触发条件。针对CPU的看门狗定时器功能,该器件提供一个内臵的振荡器和可编程定时器电路,设定时序间隔范围为32微秒到2秒。

实际应用证实了Power Manager II器件对从事数字系统设计工程师和模拟电源设计者都颇具吸引力。该器件提供一个简单的软件可编程接口,通过一个示意框图允许设计者用对话框配臵模拟块,通过一个方程构造器就能够容易地构建复位时序。该器件提供了在系统可编程(ISP)的JTAG接口,并可访问标准的JEDEC的文件格式。当器件已安装在电路板上时,可通过ISP接口对电路的功能进行修改或升级。通过JTAG链,它比传统的分立集成电路有更好的可见度。

可重复编程电源管理器的概念有助于加速修改已有的电路板,减轻修改设计的负担。通过集成大多数电源管理应用中采用的分立集成电路,可编程电源管理芯片不但提供更好的灵活性,还降低了元器件材料成本可编程任意电源的基本功能

可编程任意电源与普通直流电源一样,都有一路或几路输出,电压、电流均可以调节,通过数码管或液晶屏显示其数值,还可以通过选择串联或并联输出结构来获得更高电压或更高电流。某些电源设备采用悬浮式输出,可防止过载和短路发生。有些含有线性电压调节器,可

提供低纹波的输出电压。大多仪器的电流极限均可调节,以保护相连负载。有些电源设有输出开关,需要开、关某一输出或所有输出时,只需按动按钮即可,不需要关闭仪器本身。另外,有些电源设备都采用了热保护设计,可以通过风扇控制温度。

1、电源的基本工作模式

电源的工作模式可分为恒压输出模式(CV),恒流输出模式(CC),串联模式,并联模式。其中,在恒压模式下,电源的输出电流随负载变化,以确保输出电压的恒定,在恒流模式下,电源的输出电压随负载变化,以确保输出电流的恒定。并联模式或串联模式的输出连接必须独立进行,而且一台电源设备的输出也可以连接另外一台电源设备的输出。为了获取更大的输出电压,可采取串联模式,为了获取更大的输出电流,可采取并联模式。(如图1、2所示)

图1 串联模式示意图

图1 并联模式示意图

1)串联模式

在串联模式下,由于电压相加(或相减),最大电流由设定值最小的电源设备决定,因而此时所有设备的电流都相等。

2)并联模式

为了提高输出的总电流大小,可采取并联方式。此时所有设备的输出电压都相同,大小由额定输出电压最低的电源设备决定,总电流为各

并联支路的电流之和。

如果所采用的电源设备规格相同,则在并联时请检查各电源设备上分配的电流是否平均,由于并联时流过各电源设备的电流大小相同,如果使用了其他类型的电源设备,在没有过载保护的条件下,此类电压

可能会被电流损坏。

2.限流和电子保险丝

限流功能是大多数可编程任意电源均具备的一项功能,限流指允许不超过最大设定电流的电流通过,限流调整需要在使用测试电路之前完成,以避免由于短路等故障损坏电路。

如图3所示,在电压调节范围内,电压Vout保持不变,而电流可能升高到最大值Imax。当达到该值时,电压调节将变为电流调节,即使负载增加,最大电流仍然保持不变。相反,在发生短路时,输出电压Vout将会减小至零,而电流仍然保持恒定并处于Imax以内。因此,电源设备同时也是电流源设备,可使调整电流保持恒定。我们建议在连接被测电路之前,首先设定最大电流,以避免产生损坏。

图3 电压、电流调节示意图

为了更好的保护敏感性负载,有些电源设备除了限流功能外,还都配备了电子保险丝,一旦电流达到Imax值,电路将以极快的速度断开

输出,切断电流。

可编程任意电源的更多功能

1、跟踪功能

在某些可编程任意电源中,有一种通道间联动的功能,即跟踪功能。跟踪功能指所有的输出同时被控制,并且通过保持电压与事先设定的电压一致,使它们都服从统一指挥。例如:如果电压1从10V变为1 2V,则电压2和3将随之从5V变为6V,电压4随之从20V变为24V。

但是,如果其中一个处于领导位臵的输出的最大电流存在极限值,而且输出电流达到该极限值时,则所有其他处于从属地位的输出电流也同时进入限流状态。如果设备中安装了电子保险丝,则到达该极限值的输出将被断开,进而其他处于从属位臵的输出也全部被断开。

2、感应(SENSE)模式——补偿导线本身电阻

在普通模式下,电压通过导线直接加载在负载上,从而保持负载电压的稳定。由于负载电流会在连接导线上产生压降,因而实际负载电压

应等于电源输出电压减去该压降。

Vload = Vout - Vcable(1)

Vcable = Iload × Rcable(2)

在一些输出为低电压、大电流的场合,电源的输出连接导线上形成的压降已不能忽略。如电源设定输出为3.3V/1A,假设输出线的电阻是

0.3欧,就会在导线上形成0.3V的压降,那么实际到达的电压变为3. 0V,这足以导致被供电的单元不能正常工作。类似于万用表测电阻时的四线测量法,我们需要对导线压降进行补偿。为此,可使用SENSE 端子直接测量负载两端电压(如图4所示)。由于SENSE导线中的电流很小,因而产生的电压降可以忽略,即电源设备感应的电压实际上就是真正的负载电压,这样电源设备将提高自己的输出,使其等于导线压降和所需负载电压之和,从而实现对于导线压降的补偿,使负载真正获得所设定电压值。另外,有些电源加入了回读功能也是为了补

偿导线本身电阻。

图4

感应(SENSE)模式示意图

3、任意波形电源

有些可编程任意电源有任意波形编辑功能,即产生随时间变化的波形,例如德国惠美公司的HM8143,它相当于一台固定点数(如1024

点)的任意波形发生器,即由固定对电压与时间间隔参数、列表对应产生,可生成低频范围内用户可自定义的波形,这个信号的频率由每个点之间的时间间隔确定。如图5所示。任意信号以数字形式生成,而且定义起来相当简单。通常,一个任意波形信号可包括各种大小不同的振幅,经过逐个处理后可以生成周期性重复波形。这些编程波形可以是单脉冲,也可以是重复连续的波形。编程输出电压,也可被外调制。信号在仪器规格允许的范围内可被自由定义,并可存储于仪器中。此类信号可通过RS-232、IEEE-488或者USB接口进行定义。

4、调制

某些可编程任意电源有外部调制功能,利用后面板上的端子,可对两组输出进行调制。例如,德国惠美公司的HM8143,高达1V/μs的调制斜率和在任意模式下100μs最小脉冲宽度允许生成复杂的负载特征。无论功率大小,线性输出组件的失真度都非常低,以便于进行外

部调制。如图6所示。

基于PIC单片机的可编程电源的设计与应用

随着各种电器和仪表设备的日渐丰富,对电源应用的灵活性提出了更高的要求。设计一款使用灵活、方便且价格相对便宜的通用电源,正越来越成为市场所需。现代单片机正朝着处理速度越来越快,外设资源越来越丰富,价格越来越便宜的方向发展,将单片机融入电源的设计中可以极大地提升电源的性能和灵活性。本文介绍了一种单片机加PWM芯片的开关电源设计方法,既可以保留PWM芯片带来的稳定工作性能,又可以利用单片机的控制能力提供各种人机交互和通信接口。笔者设计的电源作为通用电源使用,可以提供灵活可编程的电压电流输出,另外还可以设臵成铅酸电池充电器的模式,具有广阔的应用前景。

1 系统功能

通过对电源的编程,可以方便地实现图1所示的电压输出波形。其中,V1、V2、T1、T2、dv、dt都是可以通过编程来设定的。电压值的输出范围为0~16V,最大输出电流为10 A。输出电压精度为0.1 V,电流精度为10mA。电流的设定值指的是允许输出的最大电流,也可以被编程为与输出电压一样的波形。

图1 编程输出电压波形

另外,电源也可以工作在铅酸电池充电器的模式(简称“LBC模式”)。根据铅酸电池的特性,当电源工作在LBC模式时,电源首先将输出较大的充电电压和电流V1/I1,至少维持10s;当充电电流降到小于设定值I2时,电源输出较小的充电电压和电流V2/I2。如果到了设定时间T1,充电电流还未降到I2以下,这时电源输出也会降为V2/I2。当输出电流再次大于I2时,电源将再次输出V1/I1充电。其中,V2设定值必须小于14V。若设臵为大于14 V,电源会自动将其设成14 V。I2的值必须大于1/8I1,否则将被自动设成1/8I1。LBC 模式如图2所示。

图2 LBC模式

用户可以通过3种方式对电源进行输出设定:

①通过电源面板上按键编程。通过按键对输出电压、电流限流值、时间等量进行设定。

②通过PC机串口编程。通过将PC机的串口RS232与电源串口相连,再运行PC机上一串口通信的软件对电源进行编程。

③电源间相互编程。通过将两台电源的串口相连,操作其中一台电源面板上的按键来对另一台进行编程。操作的一台电源叫做“主电源”,被编程的电源叫做“从电源”。在这种编程方式中,只能将从电源的参数设臵为与主电源完全一致,而不能对各个参数进行单独设定。一台电源只能提供100W的功率。这种方式可以应用在需要较大功率的场合,可将两台或多台具有相同设臵的电源输出并联来方便地实现功率扩展。

2 工作原理

用单片机来控制开关电源,总的来说可以分为两种:

第一种是单片机通过输出PWM或DA给电源电路提供一个基准电压,单片机本身不介入电源的反馈中(本设计所采用的就是这种方式);第二种为通过单片机输出的PWM信号直接控制开关管工作,取代PWM芯片,但这种方式对单片机的要求较高,需要具有相当高的时钟频率才能满足对输出PWM频率和分辨率的要求。

系统按模块来分可以分成两大模块:

电源模块和单片机控制模块。电源模块是以PWM芯片为核心的AC—DC变换器,PWM芯片采用安森美半导体的电流型PWM控制器NCP1200作为控制芯片。单片机控制模块采用美国微芯公司的

PIC16F874作为微控制器,主要实现电流电压信号的采样、显示、按键输入、串口通信以及为电源模块提供电压电流参考等功能。两个模块的关系可以用图3来说明。

图3 工作原理

图3中,电网电压经整流滤波后供给高频变换电路,由高频变换电路产生输出。单片机输出两路PWM信号,给电源模块提供输出电压的参考值和电流的限流值,电源模块按照单片机提供的参考值输出电压和限定最大电流。虽然单片机采样输出电压和电流进行显示,但这里单片机并不参与系统的反馈,反馈通过电源模块来实现(在后面的部分中会详细讲到)。

3 硬件设计

相关主题
文本预览
相关文档 最新文档