当前位置:文档之家› 钢箱梁桥的有限元分析

钢箱梁桥的有限元分析

钢箱梁桥的有限元分析
钢箱梁桥的有限元分析

钢箱梁桥的有限元分析

1.钢箱梁桥的概述

在大跨度桥梁的设计中,恒载所占的比重远大于活载,随着跨度的增大,这种比例关系也越来越大,极大地影响了跨越能力。因此,从设计的经济角度来说,考虑减轻桥梁结构的自重是很重要的。钢材是一种抗拉、抗压和抗剪强度均很高的匀质材料,并且材料的可焊性好,通过结构的空间立体化,钢桥能够具有很大的跨越能力。

随着高强度材料和焊接技术的发展,以及桥梁设计、计算理论的发展和计算机技术发展,从50年代以来,钢梁桥地建设取得了长足的发展,欧洲相继建造了多座大跨钢桥。从前被认为不可能计算的复杂结构,现在能够通过计算机完成,并且计算结果与实测结果吻合较好。同过去相比,在相同的跨度与宽度的条件下,用钢量可减少15一20 %,工期与工程的造价也都减少很多,因此钢桥在大跨桥梁领域内具有相当强的优势和竞争力。

在构成钢桥的主要构件中,其翼缘和腹板均使用薄板,其厚度与构件的高度和宽度比都比较小,是典型的薄壁构件。它与以平面结构组合为主的桥梁结构分析有一定的区别,它涉及到很多平面结构中不常考虑的扭转问题,所以必须依据薄壁结构理论才能明了其应力和应变状态,其应力及变形应按照薄壁结构的理论进行计算。

由于钢箱梁桥是空间结构,结构在恒载或活载的作用下会发生弯一扭藕合。如果采用传统的计算手段和方法,计算模型要进行必要地简化,为了简化计算,一般的设计规范都要通过构造布置,使实际结构满足简化后的计算理论。实践表明在满足构造要求后,计算的精度能够满足实际地需要。但是这样的计算无法得到结构的一些特定部位的精确解,例如变截面和空间构件交汇的部位等。随着计算机技术和有限元理论的发展和进步,计算机的有限元法己成为现代桥梁的重要计算手段,不但有很高的效率而且可以根据实际的需要进行仿真分析,计算结果经验证与结构的实际结果吻合较好。当前结构的计算机仿真分析已成为一种广为应用的计算手段。

同一座桥梁可以采用不同的施工方法,但是成桥后的最终应力状态会有差异,结构的最终应力状态与安装过程密不可分。例如连续梁可采用满堂支架法和悬臂拼装法,两者成桥后的应力状态却有较大的区别。因此必须针对特定的施工方法,对施工过程中每一个施工阶段的结构应力进行计算,确保各个阶段的应力满足相关规范。

由于在制造和安装等原因,结构的最终状态会与设计状态有一定的差异,各国都通过制订有相关的规范来指导施工和竣工验收的标准。这些标准规是通过长期的实践与试验以及计算分析的基础上得出的,满足这些相关规范的要求一般就可以保证结构的安全性。但是由于实际结构是受力复杂的空间结构,特别是结构的一些局部范围可能在某一工况下处于较高的应力状态,而其他部为却处于相对较低的应力状态,这样不利于充分发挥材料的力学性能。现在可以通过大型通用有限元软件对大桥在使用过程中可能存在的各个工况的受力状态进行仿真分析,确定出结构不利的部位以及富余较大的部位,便于调整设计。

1.1本论文的研究目的

常用的计算机方法是将主梁转换成具有等效截面的梁单元计算,这种方法能够较好的从整体上考虑结构的空间特点,虽然也反映了空间结构的特点,但是它也存在以下明显的不足:

1. 不能准确模拟边界条件。例如支点的约束,梁单元通常只能简化为一点的约束,但是不管什么样的约束实际结构总是以面接触来实现的;

2. 平截面假定;

3. 对构件的一些细部构造不能够真实反映(如变截面问题、畸变、横隔板的作用等);

4. 作为空间结构全桥各组成体系间的互相作用难以准确考虑。

基于以上原因,若想准确详尽地模拟全桥并得到相对精确的计算结果,需要结合桥梁的特点采用合适的单元类型,钢桥仿真通常采用板桥单元或实体单元。本论文将根据有限元法的理论,采用板壳单元,结合一座三跨连续钢箱梁,进行仿真分析。

1.2 钢箱梁桥的结构特点

现代钢桥从截面形态分主要有以下几种形式:板梁桥、精梁桥和箱梁桥。箱梁桥是具有薄壁闭口截面主梁的桥梁的总称。钢箱梁以带有加劲肋的钢板做成四壁,在转角处互相焊接成为整体。和混凝土箱梁不同,钢箱梁的腹板、顶板和底板很薄而且刚度不大,同时焊接强度有限,所以不适宜承受大的局部弯曲。因此必须采取加劲肋措施,一般称之为正交异性板。但是这样连续的钢箱梁主截面只能承受纵向弯曲应力和剪应力,无法抵抗扭转和畸变,因此需要沿顺桥向每隔一定间距沿横向布置整块钢板形成横隔板抵抗扭转和畸变,保持箱梁的轮廓。由于箱梁壁板不厚,加劲材料不论是纵向加劲肋还是横隔板,还是不能均匀分布扭转产生的单位应力,但是钢材是一种容易实现应力重分布的材料,按照以上的布置仍能够作出合理的设计。钢箱梁桥由钢板组合而成,截面组成形式比较灵活,一般根据桥面的宽度和跨度以及活载的大小决定各个板的厚度和构造形式。如单箱单室和单箱多室,多箱单室和多箱多室,具体情况可根据实际情况而定。

世界上第一座箱梁桥是1850年英国建造的Britania铁路桥,跨度142m。但是箱梁桥的真正快速发展却是一个世纪以后,在欧洲架设了若干座现代大跨钢箱梁桥,例如德国1948年重建的三跨连续梁桥Koln一Deutz,跨度为132.12m+184.45m+120.73m。工程领域逐渐认识到钢箱梁桥的优点,并在设计理论得到快速发展。

1.3 箱梁桥的优点

箱梁桥与其他类型的桥梁相比有如下优点:

1.箱梁桥具有较大的抗扭刚度和抗弯刚度,更适用于曲线梁桥。直线桥在偏心活载作用下,其横向的荷载分配是良好的。即在单室箱梁中,两个腹板弯曲应力相差很少,上下翼缘弯曲应力也几乎相等。如图1所示,当单位集中力沿横向移动时,两侧腹板应力几乎没有变化。与此相反,在双主梁桥中,左侧腹板上作用有荷载时,右侧腹板中没有应力;

图 1

2. 箱梁桥的翼缘宽度要比工字形截面板梁桥大的多,因而,薄的翼板也能很好的抵抗

弯曲应力。工字形板梁桥随着跨度的加大,翼缘板要加厚,且需要高强度钢材。一般来讲,箱梁桥与同样跨度的工字形梁桥相比,主梁高度低;

3. 从箱梁结构来看,无论是承受竖向偏心荷载还是水平荷载,都能作为一个空间结构来抵抗外力,能发挥各个杆件的力学性能,没有所谓的零杆;

4. 箱形截面底板与顶板具有较大和相近的面积,能够有效的抵抗正负弯矩,适应具有正负弯矩的结构,如连续梁、拱桥、斜拉桥等,也适应于主要承受负弯矩的悬臂梁、T 形刚构等桥型。为增强钢梁的整体,提高梁体抗失稳的能力,每隔一定间距应设置一横隔板。为传递支座反力,支座所在位置的应予以加强。为保证顶板、腹板和底板的屈曲稳定性,均应设置纵向加劲肋。纵向加劲肋的基本形式有两种:开口式和闭口式。开口式加劲肋易于工厂制造,闭口式加劲肋具有较大的抗扭刚度,屈曲稳定性较开口式加劲肋好;

5. 箱梁的高度低,整个结构纤细,线条平顺、流畅,外形轻巧美观;

6. 能够很好地适应布置管线等要求。

2.箱梁的分析计算

箱梁梁桥是空间受力结构,按照受力情况的不同分为:在一个主平面内受弯的梁叫单向弯曲梁,在两个主平面内受弯曲的叫双向弯曲梁。当外荷载P 作用于剪力中心时,和其他形式的桥梁没有什么区别。在这种荷载状态下,主要产生弯曲正应力和剪应力。由于箱梁是闭口截面,它的剪应力计算是超静定问题,剪应力计算比开口截面复杂些,需要根据薄壁结构理论计算。当外荷载P 作用点偏离剪切中心e 时,可将外荷载等效为通过剪切中心的荷载与绕剪切中心的扭矩(T=Pe )。钢梁桥设计时,梁的正应力、剪应力、局部压应力均不应超过规范规定的强度设计值。如果在梁的某些部位(例如梁的截面改变处、连续梁的支座处等),上述三种应力或其中两种应力都比较大时,需验算折算应力。长期承受反复荷载的梁还必须验算疲劳强度。为保证主梁的安全、经济和适用,钢梁桥的计算一般包括以下内容: 2.1 正应力计算

在梁的强度计算中,假定钢材为理想的弹塑性体,在弯矩作用下,截面的正应力的发展过程可分为三个阶段: (1)弹性阶段 (2)弹塑性阶段 (3)塑性阶段。实际上,在一般梁的截面中还存在剪应力,局部压应力和残余应力等,在复杂应力状态下,梁在形成塑性铰之前就已达到极限承载力。一般常以边缘最大应力达到屈服点作为强度极限状态。

梁受弯时,随荷载的增加截面中正应力发展过程分为弹性、弹塑性和塑性三个阶段。对于承受静力荷载或间接承受动力荷载的梁,一般不利用完全塑性的极限弯矩,而只允许截面有一定程度的塑性发展。一般计算按照刚性截面假定的纵向分析方法计算出截面内力,内力包括M 、Q 、T 和B ω等,然后分项计算各种内力引起的应力,最后再考虑界面的畸变的影响。钢箱梁在任意荷载作用下,引起的横截面的应力状态为:

M d ωωσσσσ=++

式中:M σ—— 弯矩引起的截面正应力; ωσ——截面刚性转动时翘曲双力矩B ω引起的正应力;

d ωσ——截面畸变双力矩d B ω引起的正应力。

但是对于直接承受动力荷载的梁,根据《钢结构设计规范》(以下简称《钢规》) 和《公路桥涵钢结构及木结构设计规范》(以下简称《桥规》) 中梁的正应力计算,不允许利用截面塑性,因此采用如下的计算公式:

单向弯曲时

[]M

W

ωσ≤ 双向弯曲时 []y

x x y

M M C W W ωσ+≤

式中: M 、x M 、y M —— 检算截面绕主轴的计算弯矩;

W 、x W 、y W —— 对主轴的抵抗矩,检算受拉翼缘为净截面抵抗矩,检算受

压翼缘为毛截面抵抗矩;

[]ωσ—— 钢材弯曲基本容许应力;

C ——双向弯曲时容许应力增大系数,2

1

10.3

1.15m m C σσ=+≤ 其中 —

1m σ、2m σ为由弯矩产生的较大和较小应力。

2.2 箱梁剪力滞效应

在宽跨比较大的情况下,箱梁在纵向弯曲荷载作用下,即使是在对称荷载作用下,也会出现由于上下翼板的剪切扭转变形,使远离箱肋板处的纵向位移滞后(或超前)于肋板边缘处,因而造成翼板内的弯曲应力呈曲线分布,宽箱梁中剪力滞效应尤为明显。剪力滞效应会导致结构某一部分应力过分集中,造成结构地失稳或局部破坏,是一个不可忽略地重要问题。这时梁的简单弯曲理论已经不适用于宽箱梁的翼板受力分析。剪力滞有正剪力滞与负剪力滞两种类型,影响剪力滞的因素较多,通常包括宽跨比、约束类型以及荷载类型和作用点等因素。分析弯梁桥剪力滞的方法很多,如有限元法、折板法、变分发等。但是想要通过某一公式定量的得到任意一座桥的剪力滞系数,目前还存在较大的难度。从工程设计角度出发,通常仍采用“翼缘有效分布宽度”的方法进行处理,但不能直接采用T 梁翼缘有效分布宽度的计算方法,还必须根据计算截面的位置以及梁桥的类型等确定有效宽度。例如英国规范BS5400中就钢桥考虑剪力滞后而提出的有效宽度的计算方法,它就是考虑了翼板与腹板之间的相互关系以及截面所处位置和桥型来确定。

2.3剪应力计算

《桥规》中的剪应力计算公式如下:

max []r m QS

C I ττδ

=

≤ 式中:Q —— 计算截面沿腹板平面作用的剪力;

S ——计算剪应力处以上毛截面对中性轴的面积矩;

m I ——毛截面惯性矩;

δ—— 腹板厚度;

[]τ—— 钢材抗剪基本容许应力;

r C —— 剪应力分布不均匀容许应力增大系数,

当max / 1.25o ττ≤时,r C =1.0; m a x / 1.25o ττ≥时,r C =1.25

m a x /o ττ在1.25与1.50之间时,r C 按比例计算;

o Q

h τδ

=

,h 、δ 分别为腹板高度和厚度。

2.4 整体稳定

有时钢梁在荷载作用下,虽然截面应力还低于钢材的强度极限值,但其变形会突然偏离原来弯矩平面,发生侧向弯曲和扭转,这种现象称之为梁的弯曲扭转或整体失稳。梁整体失稳的主要原因是侧向刚度和抗扭刚度较小,侧向支承间距较大。通常应保证梁的最大应力不超过引起整体失稳的应力值,或使梁的受压翼缘侧向支承的间距小于某一保证值。钢梁能够保持整体稳定的截面最大弯矩称之为临界弯矩。

《桥规》中给出了在一个主平面内受弯曲时总体稳定计算的公式为:

2[]m

M

W ?σ≤ 式中: M —— 构件中部1/3长度范围内最大计算弯矩; m W —— 毛截面抵抗矩; []σ—— 钢材基本容许应力;

2?—— 构件在一个主平面受弯时容许应力折减系数,当梁为箱形截面时,《桥规》规定:2?= 1;

2.5局部失稳计算

梁的局部稳定是钢桥设计中必不可少的项目。扎制型钢的规格尺寸,都能满足局部稳定的要求,因此不需要进行验算。但是对于全焊接箱梁,从强度和整体稳定性方面考虑,往往采用高而薄的腹板和宽而薄的翼板,在荷载的作用下,梁的腹板和翼板的某些部分可能偏离其正常位置而形成波形曲面,称为梁的局部失稳。梁的局部失稳虽然不至于使梁立即达到极限承载力而破坏,但是会恶化梁的受力性能,因而必须避免。通过限制受压翼缘宽厚比和设置腹板加劲肋的措施来防止局部失稳。在分析局部屈曲时,通常将计算模型简化为两边简支两边自由、三边简支一边自由或四边简支的薄板,求解板在可能引起薄板屈曲的应力作用下的临界屈曲应力,通过不同的宽厚比的选取,最终确定一个临界的宽厚比,使该板满足

[]cr σσ≥。如何通过计算来确定加劲肋的布置,往往比较复杂和费事,钢箱梁的局部稳定

主要采取构造措施,即设置加劲肋来保证,这样可使设计大为简化。加劲肋可分为横向加劲肋、纵向加劲肋、短加劲肋和支承加劲肋等。设置加劲肋的间距主要是根据钢板的宽厚比以及钢板的材质所决定。

2.6刚度计算

要保证桥梁的正常使用,桥梁必须具有足够的刚度。如果梁的刚度较差,虽然强度、稳定性能够满足要求,但也会带来一系列的问题。例如桥梁的挠度过大会使桥面不平直,车辆运行困难,乘客有不舒适感觉。所以要保证在荷载作用下,梁的挠度不得超过规范所规定的限值。《桥规》规定简支或连续板梁桥在静活载作用下的挠度小于等于1/600。

3桥结构整体计算

3.1计算软件与模型

3.1.1计算简图及箱梁截面(图2、3)

图2 全桥结构计算简图(单位:cm)

图3 箱梁截面(单位:cm)

3.1.2计算软件与单元:

采用大型通用空间有限元程序,首先利用梁单元建模计算关心截面指标的影响线,然后利用壳体单元建模,以梁单元计算的影响线为依据进行加载,分析钢箱梁在运营阶段的受力情况。

3.1.3 计算模型:

约束条件:梁单元模型约束条件如图1,壳单元模型的约束条件跟桥梁支座的类型相对应,见图4。

图4 桥梁支座布置(箭头表示支座活动方向)

考虑横坡(2%)影响,取单幅桥按实际尺寸建立空间实体模型,采用壳体单元建模。空间模型见图5;有限元模型见图5。

其中,顶板和底板厚度为14 mm,底板在支座处为避免应力集中应增加局部厚度,支

座处底板厚度为64 mm ,顶板和底板加劲肋厚度为8 mm ,在支座处底加劲肋厚度增加为 24 mm ,支座处横隔板厚度为60 mm ,其他处为16 mm 。支座处腹板厚度为24 mm ,其他腹板板厚为X

Y Z

AREAS TYPE NUM

图5a 空间模型(整体)

X

Y Z

ELEMENTS

图5b 有限元模型(整体)

3.2材料及参数

钢箱梁(横截面见图3)

弹性模量E c =2.06×105MPa ,剪切模量G=0.7923×105MPa ,泊松比γ=0.3,密度ρ=7698㎏/m 3 。

3.3 作用及组合

作用:

恒载:

一期恒载为钢箱梁的重力荷载。

二期恒载为人行道板以及栏杆的重量:顺桥向6.55KN/m,10cm厚沥青混凝土面层

活载:

桥梁设计荷载为公路一级

支座沉降:

中间支座B、C最沉降为5mm,边支座A、D最大沉降为5mm。

组合工况:

先用梁单元计算出各个关心截面指标的影响线,荷载以均布荷载的形式,按照桥梁横向布置加于对应的壳体单元上。

(1)刚度:

工况1:活载作用下(不计冲击力)中跨跨中最大正挠度,荷载立面布置见图7。

工况2:活载作用下(不计冲击力)中跨跨中最大负挠度,荷载立面布置见图8。

图6 中跨跨中挠度影响线

图7 工况1中跨跨中最大正挠度活载立面布置图

图8工况2中跨跨中最大负挠度活载立面布置图

工况3:活载作用下(不计冲击力)边跨跨中最大正挠度,荷载布置见图10。

工况4:活载作用下(不计冲击力)边跨跨中最大负挠度。荷载布置见图11。

图9 边跨跨中挠度影响线

图10工况3边跨跨中最大正挠度活载立面布置图

图11 工况4边跨跨中最大负挠度活载立面布置图

(2)强度:

工况5:中跨跨中最大正弯矩工况:

①一二期恒载;

②活载(考虑最不利情况,车辆荷载向远离人行道一侧偏载):单向四车

道,立面布置见图13,车道横向折减系数为0.67;横桥向上,按照《公

路桥涵设计通用规范》(JTG D60—2004)布置偏载荷载。

③B、C处不均匀沉降5mm。

图12 中跨跨中弯矩影响线

图13 工况5中跨跨中最大弯矩计算荷载立面布置图

工况6:支座处最大负弯矩工况:

①一二期恒载;

②活载(考虑最不利情况,车辆荷载向远离人行道一侧偏载):单向四车

道,立面布置见图15,车道横向折减系数为0.67;横桥向上,按照《公

路桥涵设计通用规范》(JTG D60—2004)布置偏载荷载;

③A处不均匀沉降5mm、C处不均匀沉降5mm。

图14 支座处弯矩影响线

图15 工况6中跨跨中最大弯矩计算荷载立面布置图

工况7:支座处最大剪力工况:

①一二期恒载;

②活载(考虑最不利情况,车辆荷载向远离人行道一侧偏载):单向四车

道,立面布置见图17,车道横向折减系数为0.67;横桥向上,按照《公

路桥涵设计通用规范》(JTG D60—2004)布置偏载荷载;

③A处不均匀沉降5mm、C处不均匀沉降5mm。

图16 支座处剪力影响线

图17 工况7中跨跨中最大弯矩计算荷载立面布置图

3.4计算结果

3.4.1、支座反力

(1)一、二期恒载作用下的支座反力(见表1):

表1 一、二期恒载作用下支座反力表

(2)支座最大反力(见表2):

表2 运营阶段支座最大反力表

(3)支座最小反力(见表3):

表3 运营阶段支座最小反力表

3.4.2、挠度计算

工况1作用下,中跨跨中的竖向位移为-0.023m;工况2作用下,中跨跨中的竖向位移为0.0077m。中跨最大挠度值为0.036+0.006=0.0307m<[L/800]=60/800=0.075m。

工况3作用下,边跨跨中的竖向位移为-0.027m;工况4作用下,边跨跨中的竖向位移为0.015m。边跨最大挠度值为0.015+0.027=0.042m<[L/800]=40/800=0.05m。

各工况挠度值计算结果见图18—图21。

MN

MX

-.023314

-.020414-.017514

-.014613

-.011713

-.008813

-.005913

-.003013

-.112E-03

.002788

NODAL SOLUTION

STEP=1

SUB =1

TIME=1

UY (NOAVG)

RSYS=0

DMX =.023319

SMN =-.023314

SMX =.002788

图18工况1中跨跨中最大正挠度计算结果

ANSYS 10.0 NODAL SOLUTION

STEP=1

SUB =1

TIME=1

UY (NOAVG)

RSYS=0

DMX =.0077

SMN =-.007697

SMX =.002674

图19 工况2中跨跨中最大负挠度计算结果

图20 工况3边跨跨中最大正挠度计算结果

图21工况4边跨跨中最大负挠度计算结果

3.4.3、应力计算结果

工况5:中跨跨中最大正弯矩工况:(1)顶板应力云图:

图22 工况5中跨跨中最大正弯矩工况下顶板顺桥向应力(单位:Pa)

图23 工况5中跨跨中最大正弯矩工况下顶板横桥向应力(单位:Pa)

图24 工况5中跨跨中最大正弯矩工况下顶板等效应力(单位:Pa)

(2)底板应力云图:

图25 工况5中跨跨中最大正弯矩工况下底板顺桥向应力(单位:Pa)

图26 工况5中跨跨中最大正弯矩工况下底板横桥向应力(单位:Pa)

图27工况5中跨跨中最大正弯矩工况下底板等效应力(单位:Pa)

图28 工况5中跨跨中最大正弯矩工况下顶板加劲肋顺桥向应力(单位:Pa)

图29 工况5中跨跨中最大正弯矩工况下顶板加劲肋横桥向应力(单位:Pa)

图30 工况5中跨跨中最大正弯矩工况下顶板加劲肋等效应力(单位:Pa)

图31 工况5中跨跨中最大正弯矩工况下底板加劲肋顺桥向应力(单位:Pa)

图32 工况5中跨跨中最大正弯矩工况下底板加劲肋横桥向应力(单位:Pa)

图33 工况5中跨跨中最大正弯矩工况下底板加劲肋等效应力(单位:Pa)

(5)横隔板应力云图:

图34 工况5中跨跨中最大正弯矩工况下横隔板横桥向应力(单位:Pa)

图35 工况5中跨跨中最大正弯矩工况下横隔板等效应力(单位:Pa)(6)腹板及其加劲肋应力云图:

图36工况5中跨跨中最大正弯矩工况下腹板及其加劲肋顺桥向应力(单位:Pa)

图37 工况5中跨跨中最大正弯矩工况下腹板及其加劲肋横桥向应力(单位:Pa)

图38 工况5中跨跨中最大正弯矩工况下腹板及其加劲肋等效应力(单位:Pa)工况6:支座位置最大负弯矩工况:(1)顶板应力云图:

图39 工况6中跨支座最大负弯矩工况下顶板顺桥向应力(单位:Pa)

高架桥跨铁路钢箱梁顶推施工专业技术

高架桥跨铁路钢箱梁顶推施工技术 【内容提要】哈尔滨进乡街高架桥,由于主桥跨越铁路既有拉滨上下行线、香孙线、孙新线及站线和林机厂专用线。因此,钢箱梁架设采用顶推法。施工时利用钢箱梁的可拼装性,在桥一端的拼装平台将钢箱梁进行逐段拼装,在拼装完成后采用自锁式千斤顶步履式整体滑移顶推法,将整体钢箱梁顶推到位,再起梁,拆除滑道等辅助设施,安装支座,落梁,完成钢箱梁顶推施工。 【关键词】跨铁路桥;钢箱梁;顶推 1.前言 随着我国桥梁建设的发展,大跨度钢箱梁的顶推架设发已成为桥梁建设的一个重要发展方向。我公司承建的哈尔滨进乡街高架桥,由于主桥上跨铁路线,钢箱梁架设采用顶推法进行架设施工。顶推是将钢箱梁在桥跨的一侧沿桥纵轴线方向逐段拼装,钢箱梁下布设滑道和滑移装置,顶推钢箱梁,沿纵向滑移至预定桥跨,然后拆除辅助设施,移正钢梁,落梁就位。本项目钢箱梁顶推施工是我公司首次接触的一种新的行之有效的钢箱梁架设方式。 2.工程概况 本项目为哈尔滨市进乡街高架桥工程,西起三大动力路,东至三环路哈阿立交桥前,工程沿进乡街走向全长4130m。其中,高架桥起K0+800,向西上跨通乡街、拉滨铁路、华北路,终点K3+910,桥梁及引道全长3110m。我公司负责部分为高架桥上跨铁路拉滨下行线、香孙线、孙新线及站线和林机厂专用线,上跨铁路钢箱梁长131.672m。桥跨结构为40.836m+50m+40.836m,分别为27#-28#、28#-29#、29#-30#墩,梁高2m,钢箱梁宽是变截面结构,从25.3m渐变至15.8m;主梁钢结构重1798T。桥面纵坡0.4%—-1.5%。钢箱梁采用全焊钢箱梁四箱结构。我项目所承担的上跨铁路桥工程为全线重点难点工程。

桥梁工程施工监理控制要点

桥梁工程施工监理控制要点 1. 钻桩基础 1.1 钻 1.1.1 复测桩位,确保钻位置的准确。 1.1.2 检查护筒的直径、埋设的深度、中心位置、倾斜度等:护筒径应大于钻头直径,旋转钻机应比钻头大约20cm,冲击钻机应比钻头大约40cm。护筒顶面宜高出施工水位或地下水位2m,在旱地或筑岛时还应高出施工地面0.5m。护筒埋设深度,岸滩上:粘性土应不小于1m,砂类土应不小于2m,当表层土松软时,宜将护筒埋置到较坚硬密实的土层中至少0.5m;水中筑岛上,护筒宜埋入河床面以下1m;护筒顶面中心与设计桩位偏差不得大于5m,倾斜度不得大于1%,监理全部检查。 1.1.3 检查泥浆指标:正循环旋转钻机、冲击钻使用管形钻头钻时,入泥浆比重为1.1~1.3,冲击钻使用实心钻头钻时,泥浆比重,砂粘性土不宜大于1.3,大漂、卵层不宜大于1.4。反循环旋转钻的泥浆比重可为1.05~1.15。粘度一般地层16~22S,松散易坍地层19~28S。新制泥浆含砂率不大于4%,胶体率不小于95%,PH值应大于6.5。监理全部检查。 1.1.4 钻进过程中,抽查钻杆的垂直度,钻桩达到设计深度后,每一个承台的第一根桩要由设计确认地质情况,监理全部检查地质情况。 1.1.5 现场监理工程师对成后的深、径、形进行验收,径、深均不于设计值,型符合设计要求,用测绳测量、检器或成检测仪进行检测。监理全部检查。 1.1.6 位中心允偏差为5cm,垂直度允偏差为1%。 1.1.7 浇筑混凝土前对清的检查,设计无要求时,沉渣厚度柱桩不大于5cm,摩擦桩不大于20cm,用测绳量测,禁采用加深钻厚度法代替清。清后泥浆应达到以下指标:手摸无2~3mm的颗粒。 1.2 钢筋笼 1.2.1 检查钢筋笼的下料,钢筋材质、末端弯钩的形式应符合设计要求,监理全部检查。钢筋下料的允偏差:受力钢筋全长下料误差为±1cm,尺量检查。 1.2.2 监理全部检查钢筋接头外观,焊接接头外观应符合如下规定:帮条长度,双面焊5d,单面焊10d;搭接焊焊接长度,双面焊5d,单面焊10d。焊颖厚度应等于或大于0.3d,并不得小于4mm,焊缝宽度应等于或大于0.7d,并不得小于8mm。

钢箱梁桥施工方案

钢箱梁桥施工方案 工程名称: 编制单位:制人:编审核人: 人:准批 编制日期:年月日 1

1.总体施工组织布置及规划 1.1工程概况 1.1.1工程简介 该桥梁位于工业大道里程K4+427.235处,为跨越现有铁道及规划铁道而设,桥梁起点位于道路里程K4+394.735处,桥梁终点位于道路里程K4+461.735处,是一跨L=45米钢-混凝土组合梁桥,桥梁总长度67米,总宽度57米,因此,设计将桥梁以中心线分为独立的两幅,桥梁上部结构及下部结构完全分开,按组合梁的布置为依据,上部结构结构组合梁中间断开0.4米,下部结构桥台中间预留2厘米的沉降缝。 1.1.2主要技术标准 (1)设计荷载:城—A级,人群3.5千牛/平方米。 (2)地震烈度:6度,基本地震加速度0.05g;抗震设防烈度:7度。(3)设计基准期:100年。 (4)桥下净空:8.7米。 (5)安全等级:一级。 (6)桥面总宽度:57米。 1.1.3建设项目所在地区特征 1.1.3.1自然特征、地质情况 合浦工业大道跨铁路立交桥主线里程中心桩号为K4+427.235,垂直

跨过合浦-北海铁路。桥位区地处冲、洪积平原的剥蚀残丘部位,现为林地,地形起伏不大,测得钻孔地面高程为28.49~30.15m。 al+bl)Q本次勘察查明,钻探深度内主要分布有第四系中统北海组(2bal)Q(Z含细粒土粗砾砂及湛江组高液限粘土质中砂、低液限粘土质粗砂、1粘土等,未见基岩。现从上往下描述: 2 (1)高液限粘土质中砂③:棕红色,成分主要是石英质中、粗砂及粘性土,湿,可塑状-松散状,无光泽反应,无摇振反应,干强度低,韧性低,下部含粗砂增多,呈厚层状,整个场地均有分布,层厚4.00~10.50m,平均7.22m,与下伏地层岩性界线不明显。 (2)低液限粘土质粗砂④:黄、土黄色,由粘性土及粗砂组成,混少量砾砂及中细砂,稍密状,稍湿,干土强度低,无摇振反应,为中压缩性土。各钻孔均见到;层厚0.80~2.50m,平均1.47m。与下伏地层岩性界线不明显。 (3)粗砾砂⑤:浅灰白、浅黄杂色,湿~饱和,稍~中密状,成分以石英质粗、砾颗粒为主,平均粒径d50=0.85,粒径以0.5~2.0mm 者居多,其次为砾及圆砾约占30%,粘粒约占14%;不均匀系数C=32.9,曲率u系数C=1.66,颗粒级配良好,粗颗粒呈次磨圆状,厚度变化大,为12.40~c19.00m不等,整个场地均有分布,与下伏地层岩性界线明显。该层中局部夹约0.5m厚含细砂粘土透镜体⑤1(灰白黄色、呈条带可塑状),在底有10厘米厚含铁质圆砾层分布。 (4)高液限粘土⑨:上部浅黄红、下部黄白色,主要成分为高岭土,

桥梁工程施工重难点分析

目录 5.1施工难点和关键点分析 (2) 5.2环境保护措施 (3) 5.2.1 文明施工 (3) 5.2.2 环境保护 (3) 5.3安全防范及紧急救援预案 (5) 5.3.1 安全防范 (5) 5.3.2 紧急救援预案 (5) 5.4重点和难点工程的施工方案、方法及其措施 (7) 5.4.1 外露面工程质量控制 (7) 5.4.2、膨胀土施工和消除滑坡灾害 (8) 5.4.3、路基不均匀沉降的防治措施 (9) 5.4.4 桥头跳车的防治措施 (10) 5.4.5 防止通车后,桥梁梁体裂纹的措施 (10)

5.1 施工难点和关键点分析 1.工程重点 工程的重点主要是软基处理、灌注桩施工、桥涵梁板预制、安装或现浇、材料组织进场。 2.工程难点 桥施工、砼外观质量高标准控制、消除滑坡灾害、桥头跳车和梁体裂纹的防治,膨胀土施工、土壤含水量的控制及大体积土方如何在保证质量前提下快速流水作业。 3. 如何保证路基的不均匀沉降,全体技术人员进行针对性攻关,拿出有效的施工方案。针对施工中难点、关键点编制针对性的施工组织设计与施工作业指导书,制订详细的实施方案及技术操作规程,并进行认真的施工技术交底。

5.2 环境保护措施 5.2.1 文明施工 1、建立健全文明施工的组织保证体系,做到有目标、有标准,责任到人,抓落实,目标为部级文明施工达标工地。 2、我局是贯标施工企业,按内部质量保证体系的要求,施工现场材料、设备、成品、半成品按平面布置堆码、标识。临时道路专人保养,做到畅通、平坦、不积水、不扬尘,警示标志醒目、齐全。 3、施工划地,生活区和办公区分设,全封闭管理,醒目处设有工程公告、宣传教育栏,区域内整齐、清洁,彩旗招展,鼓舞励志,实行一证一牌制度,施工人员佩证上岗。 4、对全体施工人员进行刑法教育,自觉遵守法律、法规,设专人协调与周边村落之间的关系,发生纠纷按程序逐级追究解决,杜绝打架斗殴。 5、职工住宿军事化,卫生、整洁;生活垃圾集中收集堆放;厕所建成水冲式,缸体铺面,专人值班打扫;膳食区设有灭蝇灯,工作人员身体健康,定期检查,持证上岗;工地设有茶水桶,住宿处设有沐浴间和保健室。 6、实行“落手清”制度,杜绝随意堆放材料、设备,做到工完料清。施工人员不得在现场随处坐卧、光膀赤脚作业。 7、临时用水、用电等有专项施工方案及管理措施,做到无“长流水”、“常明灯”,电线架设整齐划一,场地整洁卫生。 8、施工作业区设有临时厕所,施工人员要尊重当地村民的生活习惯和节日礼俗,不随便进村扰民及私拿群众物品。 5.2.2 环境保护 1、全体施工人员集中学习环保知识,依工程特点制订切实可行的环保措施,专人负责落实、监督。 2、施工中产生的污水、泥浆、生活污水等按分类消毒处理,沉淀后排放。生活垃圾有专人保洁运至环保要求的地点,化学物品、油料等进行仓储、覆盖,防止随地下水污染附近区域。 3、机械、设备的尾气有消毒、净化设备,有毒、有害物质不得随便焚烧,并不得随便回填,应收集堆放交环卫部门集中处理。 4、土、石方工程按施工方案交底进行,严禁乱挖、乱掘,尽量少损坏已有

(完整)关于建设工程高大模板工程的重点难点分析及监理控制措施

关于建设工程高大模板工程的重点难点 分析及监理控制措施 一、高大模板工程的重点难点分析 1、施工中弹性失稳较难察觉 高支模发生的垮塌亊故很多,钢管脚手架弹性失稳是常见主要原因之一。由于整体支撑系统在施工时,结构梁柱砼未浇灌,支撑系统缺少主体结构在水平方向的受力约束作用。在施工过程中,施工荷载属于活荷载,较大的施工荷载对局部杆件形成的压应力容易造成高支模局部杆件先超越弹性范围失稳。而变形往往是细微的、渐进的,肉眼检查不容易发现,从而连带整体出现弹性失稳。 2、搭设过程随意变动 由于施工荷载大,高支模脚手架支撑方案中主柱、横杆和斜撑一般都比较密,给施工搭设带来困难。加上搭设作业人员未有高度重视。因此,实际搭设中存在局部遗漏支撑杆件、搭设间距和步距偏大、杆件连接(尤其是上中下水平安全杆:扫地杆、中部加强拉杆、封顶杆)不规范、扣件扭矩不符合要求、单扣代双扣、上下托安装不全、未安装底座等随意变动情况。 3、支模搭架材料配件质量要求严格 按照现行规范要求,对于钢管脚手架(3号钢直径Φ48mm壁厚3.5mm,直径Φ51mm壁厚3mm,)、门式脚手架所使用的材料,材质和规格厚度都有明确要求。施工中容易出现采用其他规格厚度材质的情况。有些虽然采用了合格的材料,但材料的新旧不一,混乱使用。有些材料出现明显锈蚀、弯曲、变形、半损坏和完全损坏的状况。 二、监理控制措施 1、专家论证 高支模施工方案编制完成后,施工单位应组织不少于5人的专家组和相关单位,对方案进行专项论证,由专家组出具书面论证意见,施工单位按专家论证意见修改方案,并经总监审批后实施。 2、严格审核专项安全方案

对于施工方案中的专项安全方案,要进行严格审核。包括安全组织机构、内容和针对性、安全措施、应急救援预案等。 3、施工过程旁站监督控制 (1)搭设(及拆除)前,施工单位应作好安全技术交底、质量技术交底工作。 (2)搭设过程中,应检查支撑系统的各个部位是否按照方案施工。重点是立杆间距、水平杆步距、底座、下托、扫地杆、中部加强拉杆、剪刀撑、连墙件、封顶杆、单扣件、双扣件等的安装质量和安装顺序。其中剪刀撑、扫地杆、中部加强拉杆、封顶杆、连墙件(或抛撑)是保证整体安全性的重要构件。 (3)钢管要做防锈处理,不符合要求的材料一律不准使用。 (4)搭设高大模板过程中,应提前对下层传力楼层和其下支撑系统进行复核验算。对不符合要求的下层传力楼层梁板支撑采取加固措施。 4、模板验收 (1)模板系统包括上托(或槽钢、工字钢)、大木枋(或钢管)、小木枋、模板、对拉螺杆、模板支撑、楼面预埋件等。 (2)木枋不得腐朽、变形,禁止采用容易变形的杂木。模板选用质量合格的胶合板,涂刷隔离剂。 (3)模板安装完成后,要检查支撑系统的强度、刚度和稳定性。 (4)检查梁柱墙板的标高轴线位置、有效净空尺寸,梁板起拱度。检查墙柱模板的垂直度和定位措施。检查梁板模板的平整度以及模板拼缝、清渣质量。 (5)检查后浇带、施工缝的隔离措施和钢板止水带的安装质量。 (6)检查不同标号砼节点部位的隔离措施。 (7)没有上托的立杆部位必须最少采用双扣连接。 (8)由于地面以上对拉螺杆没有防水要求,可以采用套管,重复使用。 5、砼浇筑过程监控 (1)砼浇筑过程实行旁站监理。 (2)砼浇灌要采取降低水化热的措施。分层散热,分段分层加荷。振捣要求密实均匀。浇灌过程中,要安排专人调度砼。包括标号、部位、数量不能出错。以及掌握在初凝时间之内保证砼浇灌的分层、分段后的连续性施工。 (3)施工中要计划好防雨防台风的备用材料。浇捣完成后12小时内要进行

钢箱梁桥施工技术方案

钢箱梁桥施工技术方案 1 工程概况 本次设计为南侧上跨下沉广场的两座景观桥,由北向南分别为一号景观桥和二号景观桥。 一号景观桥为20.5+20+19.35m等高变宽钢箱梁桥,主梁高0.9m;桥梁下部结构桥台采用一字式桥台,桥墩采用薄壁墩、扩大基础;墩、台基础均直接置于地下室顶板上。桥面宽度,其中南侧为8.63m,北侧为4.619m,两者间弧线变化,桥面两侧栏杆各0.4m。 二号景观桥位14+14m等高变宽钢箱梁桥,主梁高0.65m;桥梁下部结构桥台采用一字式桥台,桥墩采用薄壁墩、扩大基础;墩、台基础均直接置于地下室顶板上。桥面宽度,其中南侧为8.98m,北侧为5.284m,两者间弧线变化,桥面两侧栏杆各0.4m。

2 钢箱梁桥施工方案 本合同段连续钢箱梁节段,分段在工厂制造,并试拼装全桥后才能正式出厂。 1、材料 (1)钢梁主材采用Q345q钢,应选用国家大型钢厂供料,钢材出厂前,应附有材料质量证明书。进场后,根据设计要求及现行有关标准进行复验。同一炉批、材质、板厚每10个炉(批)号抽验一组试件,进行化学成份和机械性能试验。

(2)涂装材料、焊条、焊丝按有关规定抽样复验,复验合格后,方可使用。 (3)主梁底、腹板及顶板尺寸较大,为减少焊缝、保证质量及节省钢材,拟由厂家制定尺寸供应。 2、放样、号料和切割 (1)放样和下料须根据施工图和工艺要求进行,并预留制作和安装时的焊接收缩余量及切割、刨边和铣平等加工余量。对重要结构尺寸按1:1比例放样。 (2)样板、样杆拟采用0.3~0.5㎜薄钢板制作,其误差须符合规范有关规定。 (3)号料前先检查钢料的牌号、规格、质量,如发现不平直,有油污、锈斑等污物,应矫直清理后再号料。号料外形尺寸控制在±10mm内。 (4)梁板材下料切割须在专用平台上进行,平台与钢板的接触为线状或点状接触。下料时,板材采用20mm或60mm的平板机平板。 (5)主梁板材拟采用多头直线切割机精密切割下料,箱梁底板、腹板应排版下料,并注意对焊缝的错开距离,腹板下料时,须控制好制造预拱度曲线。 (6)主梁板材精密切割下料时,其切割表面质量应符合有关规定,切割面硬度不超过HV350。 3、矫正和弯曲 (1)钢板矫正前,剪切的反口应修平,切割的挂渣应铲净。 (2)钢板厚度小于20mm,采用20mm的平板机矫平;厚钢板采用60mm平板机校平。 (3)对下料后的马刀弯,采用热矫,其温度控制在600℃~800℃,矫正后钢材温度应缓慢冷却,降至室温以前,严禁锤击钢料或用水急冷。 4、边缘加工 (1)下料后主梁材料,均采用大型铣边机加工。零件刨(铣)加工深度不于3mm,加工面的表面粗糙度不低于25微米;顶紧加工面与板面垂直度应不小于0.01t(板厚),且不大于0.3mm。 (2)焊接坡口采用机加工或精密切割,坡口尺寸及允许偏差由焊接工艺确定。 (3)边缘加工的允许偏差均应符合规范有关规定。

桥梁工程施工重点、难点分析及对策

桥梁工程施工重点、难点分析及对策

目录 第一章编制说明 1.1 编制依据 1.2 编制原则 1.3 编制采用的标准和规范规程 1.4 指导思想 第二章工程概况及工程目标 2.1 工程概况 2.2 工程目标 第三章施工部署 3.1 施工准备 3.2 施工总体安排及流水段的划分 第四章主要施工方法 4.1 测量控制方案及技术措施 4.2 钢筋混凝土灌注桩施工方案及技术措施 4.3 承台施工方法及技术措施 4.4 墩身施工方案及技术措施 4.5 桥台盖梁施工方案及技术措施 4.6 预应力混凝土现浇箱梁施工方案及技术措施 4.7 支座安装方案及技术措施 4.8 模板工程施工方案及技术措施 4.9 钢筋工程施工方案及技术措施

4.10 现浇预应力混凝土箱梁施工要点 4.11 混凝土浇注工程施工方案及技术措施 4.12 桥面系施工方案及技术措施 第五章工程施工重点、难点分析及对策 5.1 工程特点 5.2 施工重点、难点分析及对策 5.3 桩基施工的重点、难点及对策 5.4 现浇预应力混凝土连续箱梁施工的重点、难点及对策第六章质量管理体系与措施 6.1 质量目标及质量方针 6.2 质量体系 6.3 影响质量的因素 6.4 施工质量控制措施 6.5 质量保证措施 6.6 质量的薄弱环节及预防措施 6.7 创优计划 第七章工程进度计划与措施 7.1 工程进度计划 7.2 保证工期的组织措施 7.3 冬期施工安排及保证措施 7.4 农忙季节及节假日正常施工保证措施 7.5 雨季施工安排及保证措施 7.6 高温季节施工安排及保证措施

7.7 影响工期的主要问题及解决问题的措施 7.8 当工期出现偏差而应采取的技术组织措施 第八章安全、文明、环保管理体系与措施 8.1 安全施工管理体系及保证措施 8.2 施工中安全工作的薄弱环节及预防措施 8.3 文明施工管理体系及保证措施 8.4 环境保护保证体系及保证措施 第九章组织机构及管理人员、资源配备计划 9.1 组织机构 9.2 管理人员配置计划 9.3 主要施工机械设备配备 9.4 劳动力配备计划 9.5 主要材料计划 第十章冬雨季施工、施工排水措施 10.1 冬季施工的措施 10.2 雨季施工的措施 10.3 施工排水措施 第十一章紧急情况的处理措施、应急预案及风险控制 11.1 紧急情况的处理措施、预案 11.2 风险控制 第十二章施工总平面布置图 12.1 现场布置原则 12.2 现场布置说明

工程进度控制的监理重点、难点分析

工程进度控制的监理重点、难点分析 令狐采学 工程进度控制的目的是保证项目按合同工期竣工,发挥投资效益和社会效益。应当是在确保质量目标、安全目标的原则下控制进度,达到资源配置合理,工程整体最优化。根据招标文件要求,xx工程要求施工总承包单位必须编制合理的施工总进度计划,尤其是各段号之间的大流水作业施工,并严格按照批准的施工总进度计划实施生产,随着工程建设标准的细化、二次设计的完善,追加工程量会是一个不小数目,要在规定的合同工期内完成施工任务必须有行之有效的措施来保证。 xx工程的关键线路为土方开挖、基坑支护、地基处理、主体结构施工、二次结构工程、设备安装和运行调试、精装修。工程进度控制的重点为主体结构施工、装修提前插入和设备安装调试。根据以往工程的经验,本阶段的参建单位多,分项工程交叉施工多,是工程进度控制的关键。 工程进度控制的重点、难点分析:

一、当质量与工程进度发生矛盾时 如:分部分项工程的质量不合格需局部返工,但承包单位或业主把进度提为主要矛盾,工期压力很大的情况下,常常成为进度控制的难点。我公司将坚持“质量第一”的原则,同时针对工期的压力提出加快进度的相应措施,使矛盾妥善解决。 二、由于各专业的相互干扰,安装工程各工序的相互制约造成工序上的打乱仗,影响进度 这在主体结构封顶后的机电安装和装修阶段是经常发生的,也是进度控制的难点之一。为此,监理工程师要树立大局思想,统筹安排各专业的相互配合。通过细致的协调工作,化解矛盾,把相互干扰变成相互协作,把相互制约变成相互促进,这也是监理协调工作的重中之重。 三、设备、材料未能按期到货而拖延工期,这是进度控制经常出现的问题 对此除了按进度计划尽早安排并严格履行招投标计划、材料设备采购计划、资金计划,促使材料设备按时进场外,一旦发生不能按时到货的情况,监理工程师要与承包单位和业主一起共商起动动态调整程序和风险预警计划。安排其他专业或其

钢箱梁施工方案

(5)钢箱梁施工工艺 1)总体思路 A匝道第三联(2*)、第四联(30m+45m),B匝道第二联(30m+50m+)为钢箱梁,采用分节段工厂预制,在桥位现场搭设临时支墩并搭设临时支架,利用汽车吊分段吊装架设就位后进行拼装、焊接、涂装施工。由于A、B匝道跨越地铁、城铁,应采取保护措施,我单位拟在地铁、城铁上浇筑钢筋混凝土道路,道路宽8m、长20m、厚20cm,并铺设 30cm水泥稳定碎石基层,结构总厚度50cm。 2)工程特点及难点 钢箱梁线形控制精度高。钢箱梁为曲线连续梁,在现场拼装时需要同时保证成桥平曲线线形和竖曲线线形,按线形制造精度要求高,控制难度大。 钢箱梁安装在既有线路上跨线施工,施工过程要求各主要道路交通运营不能中断,尽量减少各类扰民的因素,这对现场安装的施工组织提出了更高的要求。 现场场地有限,运输节段来料存放数量有限,要求严格按架梁顺序供梁,并尽量减少梁段的存放时间;存梁场地与安装位置有一定距离,需要水平运输。同时现场道路比较窄,转弯半径小,都是水平运输的制约因素。 现场焊接工作包括节段间的纵缝和环缝,工作量较大,焊接质量要求高。现场的节点均为焊接,将采用手工电弧焊、CO2气体保护和埋弧自动焊等各种焊接方法,焊接位置将有平位焊、立位焊和仰位焊等各种焊接工位,现场焊缝多为熔透焊,要求进行超声波、磁粉及X射线等无损检测。 高空施工危险性大。钢箱梁的架设高度一般不超过8m,存在着诸多的高空作业,如高空吊装、高空拼装焊接、高空调整、高空涂装等,高

空施工的安全保护,是工程施工的重点。 施工防护措施多。在高空施工要设置施工操作平台,在跨线部分上方施工焊接时,在下面既有线路未封闭时,要在高空进行防护,防止火花、小物件坠落等。 3)分段方案 根据现场条件和本工程结构特点,采用工厂内分段预制,运输到现场后,分段吊装架设的方法。工厂分段方案如下: ①A匝道桥第三联 钢箱梁沿桥长方向划分为24个节段,相邻两节段之间的顶板、底板、及腹板环缝处分别错开200mm,呈Z字形布置。顶板、底板及腹板的纵向加劲肋嵌补长度约为400mm。 ②A匝道桥第四联 钢箱梁沿桥长方向划分为24个节段,相邻两节段之间的顶板、底板、及腹板环缝处分别错开200mm,呈Z字形布置。顶板、底板及腹板的纵向加劲肋嵌补长度约为400mm。

钢箱梁施工方案1(完整版)

主要施工方法: 本工程钢箱梁为跨长20.84米的挂孔钢梁,分左右两幅桥跨对称布置,挂孔钢梁设计为单箱三室的钢箱梁,单幅桥桥面宽13米,钢箱梁全长21.60米,梁高1.33米,箱梁的横截面为倒梯形截面,所有材料材质均为Q345qD。钢箱梁顶面为14㎜厚的钢板,其下顺桥向焊有8㎜厚,间隔600㎜的U型闭口肋,穿越横向2400㎜间距的横隔板,外侧为两斜腹板,内侧为两直腹板,厚度均为12㎜,底板也为12㎜厚,在钢箱横隔板外侧焊有约2米长的托架支撑着箱外的悬臂桥面板,钢箱梁两端为变截面结构。支撑在砼梁的牛腿顶面,根据钢梁运输及安装条件的限制,钢梁纵向分为5个节段制作,每个节段长4.2~4.5米,宽13米,重约20t,在工厂制作完成后运至现场进行组装焊接,然后利用辅助支架及导梁用施拉法安装。 一. 钢箱梁的制作:钢箱梁在车间采用倒做法,即把面板铺底倒着整体拼装,成形后再分为五段拆开翻身,具体施工方法如下: 1.审核图纸各零件尺寸,对施工人员及工人进行技术及安全交底。 2.组织原材料及焊接材料及焊接材料的采购、检验、验收。 3.钢箱梁制作: 3.1 主要工艺途径:材料采购及检验→钢板喷沙、涂车间底漆,整理各零件下料尺寸清单→各零部件放样、下料、矫正→制作各部件→按起拱要求搭设总体拼装平台→五段面板按对应位置铺上拼装平台并临时固结起来→铺装U型肋→铺装中间隔板→拼装两直腹板(五段)→铺装两边室横隔板→拼装两斜腹板及斜腹板上的纵肋(五段)→铺装托架及纵肋→拼装头尾变截面弧形端板→铺装底板及纵肋(五段分

别铺装,并临时固结起来)→检测外形尺寸→焊接→拆开、五段梁翻身→焊接→焊缝检测及外观检测→清理喷点、打磨焊缝周边氧化皮及油漆损坏部位→涂刷底漆及中间漆→打磨好现场对接坡口→准备运抵现场对接。 3.2 厂内拼装平台:平台采用型钢制作,平台尺寸为13米×22米,根据钢箱梁分段位置相应分为五个不同标高平面,各平面头尾标高尺寸根据钢梁起拱要求确定。 3.3 下料:考虑桥体焊接量较大,放样时长度、宽度方向各加放千分之一的焊接收缩余量,以保证焊后外形尺寸符合要求。腹板接收起拱线整体放样下料,气割时切割边加放2~3㎜切割余量,气割后清除熔渣和飞溅物,并按要求开好坡口,将坡口位置打磨干净,面板底板每段均应在对接缝焊完后再放样下料。 3.4 矫正:各零部件下料后进行检测,对变形超标的零部件均需进行矫正,矫正可采用冷矫正或加热矫正,采用热矫正时,加热温度不应超过900°,且应自然冷却,矫正后零部件均应满足规范要求。 3.5 焊接 3.5.1 焊条采用J507(E5015)焊条,气体保护焊及埋弧焊采用H08MnA焊丝,埋弧焊焊剂采用401焊剂。 3.5.2 本工程厂内钢板对接采用埋弧焊,各角焊缝采用气体保护焊,现场对接采用手工焊。 3.5.3 坡口形式:厂内钢板对接不开坡口,采用双面埋弧焊可保证焊透,现场对接处面板、底板开V型坡口,腹板开X形坡口,U型肋开单面坡口。

高架桥钢箱梁施工方案(钢叠合梁、波折钢腹梁)

杭州市德胜东路(沪杭高速—文汇路) 改造提升工程 钢叠合梁、波折钢腹梁 初步安装思路 编制: 审核: 批准: 中天建设集团浙江钢构有限公司 二零一二年五月

目录 第一章工程概述 (3) 一. 综合说明 (3) 1.工程概况 (3) 2.现场吊装总体思路 (6) 3.工期总体安排 (6) 二. 工程采用标准与规范 (6) 第二章运输方案 (7) 一. 钢结构的装卸与堆放 (7) 1.钢构件的堆放 (7) 2.钢构件的装卸、运输 (8) 二. 运输路线 (8) 三. 运输作业程序 (9) 第三章吊装方案 (9) 一. 简述 (9) 二. 吊装前准备工作 (10) 三. 架桥机施工主要工艺流程 (11) 四. 架桥机架桥示意 (12) 五. 波折钢腹板的安装 (13) 1.波形钢腹板安装工艺流程 (13) 2.现安装准备 (13) 3.吊装及临时固定 (13) 第四章保证进度、质量、安全文明施工的技术措施 (17) 第五章季节性施工措施 (17) 第六章安全生产及环境职业健康应急预案 (17) 第七章施工总进度计划及施工机械、劳动力配备 (17) 第八章工程竣工验收及服务 (17) 第九章项目组织机构 (17)

第一章工程概述 一. 综合说明 1.工程概况 1. 1工程概述 本工程为杭州市德胜东路改造提升工程2标段。钢结构为三跨钢叠合梁和二联波形钢折梁。钢叠合梁为30米+50米+40米跨,墩号pm065~pm068,地处和睦港,桥宽25米,截面高约1.995米,桥面标高约18.67米;波形钢折梁单联为45米+75米+45米跨,共两联,一联墩号为pm035~pm038、地处九盛路与德胜路路口、一联墩号为pm054~pm057,地处德胜路与航海路路口。波折梁桥宽25米,截面高2.5米~4.5米,桥面标高16.2~20.77米。 钢叠合梁材质为Q345qD,用钢量约1300吨;波折钢腹梁材质为Q345D,用钢量约673吨。 30+50+40米钢叠合梁 45+75+45米波折钢腹梁 45+75+45米波折钢腹梁 平面布置图 无横梁处叠合梁断面图

桥梁工程施工重点难点及保证措施

第八节桥梁工程施工的重点和难点及保证措施 8.1桩基工程质量保证措施 1、坍孔的预防和处理 ①在松散粉砂土或流砂土中钻进时,应控制进度速度,选用较大比重、黏度、胶体率的泥浆。或投入黏土掺片,低锺土膏、片挤入孔壁起护壁作用。②雨季施工时,应采取升高护筒,增加水头,或用虹吸管,连通管等到措施保证水头相对稳定。③如发生孔口内坍塌,判明坍塌位置,回填砂和黏土混合物到坍孔处以上1-2m,如坍孔严重时全部回填,待回填物沉积密实后再进行钻进。 2、钻孔偏斜预防和处理 a安装钻机时要使转盘、底坐水平,起重滑轮缘、固定钻杆的卡口和护筒中心三者应在一条竖直线上,并经常检查校正。b由于主动钻杆较长,转动时上部摆动过大。必须在钻架上增设导向架,控制钻杆上的提引水笼头,使其沿导向架向中钻进。c钻杆、接头应逐个检查,及时调正。主动钻杆弯曲,要用千斤顶及时调直。 3、扩孔和缩孔 扩孔是孔壁坍塌而造成的结果,各种钻孔方法均可能发生,若因孔内局部发生坍塌而扩孔,钻孔能达到设计深度则不必处理,只是混凝土灌注量增加。若因扩孔后继续坍塌影响钻进,应按坍孔事故处理。 缩孔原因有两种:一种是钻锥焊补不及时,严重磨耗的钻锥往往钻出较设计桩径稍小的孔。另一种是由于地层中有软塑土,遇水膨胀后使孔径缩小。为防止缩孔,前者应即时修补磨耗的钻头,后者要使用失水率小的优质泥浆护壁快转慢进,并复转二三次;或使用卷扬机吊住钻捶上下、左右反复扫孔以扩大孔径,直到缩孔部位达到设计孔径为止。 8.2、钢筋工程的质量保证措施 1、钢筋采购 必须要有出厂质量保证书,没有出厂质量保证书的钢筋,不能采购,对使用的钢筋,要严格规定取样试验合格后方能使用。 2、钢筋加工 (1)、操作人员必须持证上岗,焊接头要经过试验合格后,才允许正式作业,在一批焊件中,进行随机抽样检查,并以此作为加强对

本工程特点难点及监理工作重点

本工程特点及实施难点: 一、施工工期紧、工序穿插多。 本工程工期要求非常紧,需要在施工中加强计划管理和各种措施以科学组织来实现工期目标。所有单体工程的施工,均从基坑开挖至交工验收,经历包括由业主指定的专业分包工程施工工序在内的所有工序,尤其在后期装饰、安装阶段,本阶段施工的八个单体及后续开工的单体造成现场工序穿插比较多,材料、人员、机械的使用调配不但影响工程的整体质量,而且存在较大的安全隐患,因此合理安排工序和科学组织协调是关键。 我单位监理的烟台金苹果花园项目当时面临同样的情况,在其实施过程中,先制定了每个单体的进度计划,在单体施工进度计划的基础上将整个项目的水电配置、进出道路、办公场地、塔吊安装位置及安装时间等纳入到总计划安排中,制定了整个项目的施工网络进度计划。在网络进度计划中明确控制节点,在进度计划的基础上根据消耗量定额制定了材料供应计划和人员、机械使用计划,而后明确资金使用计划。计划制定完成后采取了组织措施、技术措施、合同措施、经济措施和信息管理等一系列措施。特别是奖罚措施坚定不移的实施确保了总体计划的实现。 在前期充分调研制动进度计划后,其实现的关键一是参建各方给予重视,出现偏差时能够及时积极协调,主动调整人、材、机的使用量和工作时间,二是资金必须按照合同约定确保到位。 二、物资供应及专业分包协调工作量大。 小区住宅建设过程中势必存在材料、设备采供既有由甲方采供的材料、设备,又有由施工单位自行采供的其它材料、设备。多项专业分项工程即有建设方指定专业分包施工,又有施工单位的专业班组,期间需要大量的协调工作。 在以往的项目上,材料、设备的采供不管是建设方采供还是施工方采供均有施工总承包单位现场代管,其它单位根据情况向总承包单位缴纳一定的配合协调费用。作为项目建设的参建各方均明确主要责任体、次要责任体,主要责任体必须确保材料设备的质量、供应的数量和及时性,次要责任体有提前提出计划、到期提醒的责任,对于一些易损材料要考虑余量。

城市桥梁工程钢箱梁施工方案

××××路(XX路—××立交)整治工程 钢箱梁施工方案 第一节工程概况 该工程位于×××(XX路--××立交)的××河段。钢箱梁主桥宽××米,长××米,高约2米,钢箱梁主体结构重量约1200吨,钢箱梁防撞护栏重量约吨,经设计同意,我们拟定横向分三块,纵向分五段来制作安装,共分十五块钢箱梁,其中最重一块钢箱梁重量为吨。 施工内容:钢板预处理、钢结构制作、检测、运输、吊装、安装、涂装等。 本工程施工过程中必须做好与土建的施工协调与配合、临近构筑物的保护。 可能出现的施工图修改引起的工程量增减以及根据业主设计明确指令需在工程范围外增加的工程量。 本工程必须按照设计院编制的施工文件及国家相关规范精心组织、精心施工,质量标准为优良。 本工程具体开工日期以业主工程师签发的开工令为准,计划从XX年月日~XX 年月日完成,计划工期天。 一、主体结构形式和技术参数 本桥为XX路以北至××立交以南段(桩号XX9+××~XX10+××),工程范围内含长××3m的高架桥及一对宽××m的平行匝道。高架桥主线标准宽度为××m,上跨××路、车站北段延伸线、××路等路口及XX河地面河道。高架桥梁工程总面积××6m2,其中主线桥面积××m2,匝道××0m2。 主线标准段上部结构XX箱梁联采用钢箱梁,跨越XX河,上部结构采用30+50+30m 等高度连续钢箱梁,箱梁断面为单箱三室,梁高2.0m,顶板宽度为24.8m,底板宽度为19.3m,顶底板均沿道路中心线设2.0%的横坡。顶板厚度在距离中墩中心线5m范围内为16mm,其余位置均为14mm,底板厚度在距离中墩中心线6m范围内为20mm,其余位置均为12mm。腹板厚度均为12mm,横隔板间距3m,横隔板厚度为10mm。端横梁、中横梁厚度均为20mm。顶、底板均设置U型加劲肋,顶板U型加劲肋高度为280mm,厚度为8mm,底板U型加劲肋高度为260mm,厚度为6mm。边跨端部做成牛腿,增大边跨支座横向间距,防止钢箱梁端部上翘,牛腿在道路中心线处高度为 1.05m,边墩钢箱梁支座间距为12m,梁底支座用垫块调平。

某高架桥改造工程钢箱梁力学性能.

某高架桥改造工程钢箱梁力学性能 箱梁由于良好的抗弯、抗扭性能和较大跨越能力而被广泛应用于交通建设中。钢箱梁与混凝土箱梁相比,有减少上部结构自重、获得更大的桥下净空、缩短施工工期等优点,故常被用于城市跨线桥梁、对施工周期有特殊要求的桥梁和大跨度桥梁等。某市BRT高架桥大量运用了连续钢箱梁,本文以该市(40+55+40)m的连续钢箱梁桥为例,对钢箱梁的受力状态作了较为系统的研究, 主要取得了如下成果:1.运用大型通用有限元计算软件Ansys,建立了全桥的空间模型。计算了八种荷载工况下钢箱梁的受力状态,各主要板件最大拉压应力位置,和局部应力集中程度。2.计算了极端偏载下的钢箱梁受力状态和支座反力,结果表明该结构具有足够的抗倾覆能力。 3.研究了主梁上翼缘的剪力滞问题,给 出了剪力滞分布规律。4.研究了项板倒T型加劲肋对剪力滞的影响,得出结论:单个加劲肋板厚在2?3mm寸即可达到改善剪力滞的效果。5.分析了桥面铺装钢纤维混凝土对正交异性钢桥面板剪力滞的影响,得到了一些有价值的结论。本文的研究成果为某市某高架桥工程提供了理论依据,也可为其他钢箱梁桥的设计和研究提供参考。同主题文章叵 [1]. 钱寅泉,倪元增?箱梁剪力滞计算的翘曲函数法’[J].铁道学报? 1990.(02) [2]. 肖敏,李新平.连续曲线箱梁剪力滞效应分析’[J]. 中外公路. 2004.(04) [3]. 贺伟.电气化铁路钢箱梁拖拉跨越法施工’[J]. 桥梁建设.2005.(S1) [4]. 于传君,孙玉武.连续弯箱梁桥剪力滞效应分析’[J].东北公路. 2002.(01) ⑸. 张士铎,谢琪.箱型梁剪力滞系数及对规范条文的建议’[J]. 重庆交通学院学报.1986.(03) ⑹. 程海根,强士中.钢-混凝土组合简支箱梁剪力滞效应分析’[J]. 西南交通大学学报.2002.(04) [7]. 曹国辉,方志,周先雁,祝明桥,邓洁.影响薄壁箱梁剪力滞系数的几何 参数分析’[J].中外公路.2003.(01) [8].

桥梁工程监理要点

,一、开工申请报告、开工准备及批复 1.开工申请报告 大、中桥或其他大型构造物开工前,承包人应在合同规范定期内,向总监(驻地监)递交书面开工申请报告。报告详列申请开工桥梁名称、位置(所在桩号)、结构型式,以及各项准备工作情况。 2.开工准备 除检查开工准备外,尚应注意下述方面: (1)总监(驻地监)和桥梁项目工程师,应详细了解该桥设计图纸、地质资料、设计构思,结合对当地气候、水文、交通、经济、建材供应等因素的考察,了解桥型、桥长、桥位设计的合理性,进而根据该桥施工的技术关键,确定监理工作的方法和要点。 (2)实施性施工组织设计的审核,应掌握该桥起止工期和全线工程的适应情况,主要分项工程,如水下工程、预制厂工程与当时气候、水文、经济、建材供应适应情况,重点考察关键工序的机具、设备和工艺的适应情况,比如连续箱梁施工中,支架、模板设计、支架的预堆载方案,卸架时支点高程部均匀情况控制等工艺要求及控制办法。 应该考虑保证内在质量因素和外观质量因素的措施,比如混凝土工程施工中模板要求使用脱模机等。 总之,应结合进场人员、机具、材料和主要工艺安排,审查施工组织设计的合理性。 (3)施工测量、放样 ○1应在开工前检查承包人以下测量内容,并审核测量报告: a)进场人员及仪器配置情况,仪器精度及使用状态; b)桥位桩、基线桩以及基础桩位测量、放样工作; c)护桩分布及精度; d)高程控制桩布设和精度。 ○2监理复核测量内容及方法 监理工程师应复核设计图纸上全桥控制桩的关系,以及全桥平面和高程尺寸的关系。 a)桥梁工程测量和放样工作的检查和复核,应有测量工程师和桥梁工程是研究和协调进行,但责任监理为测量工程师; b)测量工程师安排监理测量组人员,检查承包人测量、放样工作;测量工程师和桥梁工程师审核承包人测量报告后,决定监理复核测量内容; c)现场测量、放样过程中或资料审核里,如确定存在精度和其他问题,应有承包测量人员解释,必要时指令复测部分或全部桩位,如确系设计问题,应会同设计单位研究解决; d)测量工程师批复测量承包人测量放杨报告,并把b)、c)项执行结果和批复意见报告总监(驻地监),以作为开工申请报告依据。 ③绘制全桥测量综合示意图 图上详列:桥位桩、基线桩、基础桩及护桩的编号,坐标、距离、方位角,曲线资料、水准点资料等。综合示意图图上列出导线点表,桥位及分部桩位坐标表,导线距离及夹角资料表,桥位及分部桩位放样资料表,路线曲线资料表,水准点表等。 制作全桥测量资料综合示意图的目的是,除了测量方面人员外,有关监理人员对全桥测量资料有一个整体性了解,同时也方便查找有关基本测量资料。实际工作中也可以将该图分解成几个互相配合的图表。 (4)工地试验室的建立及材料检查 工地试验室应按要求检查。桥梁工程施工中现场材料应注意如下方面: ①水泥:出厂方提供的产品合格证书及有关实验报告外,承包人应依据技术规范要求进 行强度、凝结结果时间、安定性等项试验,并提供报告。监理试验室应复核试验项目。

针对本工程的特点难点重点采取的监理措施

十、本工程难点、重点分析 1、场地综合利用及环境保护监理对策 该项目规模很大,且为整个小区建设工程,各单体工程的先后施工顺序,土方的开挖顺序、土方的调配、周边道路、管网、通信的保护,因此在建设过程中场地综合利用及周边环境的保护尤为重要,为此采用如下对策: 1、彻底查清周边的地下管线类型及互相的位置关系,自来水、通信网络等总控制开关的位置,一旦发生不测,应有应急预案。 2、加强与交管、市政、自来水公司、供电部门等相关部门的协调,安排好作业时段,确保各种工程运输畅通且不影响主干道的交通。 3、严格审核施工单位编制的平面布置方案,使各施工设施与建筑物之间的临时通道布置合理,施工机械、材料堆放、排水、临时供电系统、临时设施布置既有利于前期施工,又有利于室外工程的开展,切忌室外工程开工时,有些设施产生不必要的重复迁移。 4、在桩基施工时,应合理布置桩机数量、类型、各桩机施工走向、压桩顺序。 5、在土方开挖时,应合理安排土方开挖的顺序、走向,碴土车进出场地的路线、时间等。 6、合理划分施工区域,使施工区、生活区划分合理,互不干扰。 7、对于靠近本工程的道路、高压线(如存在)应设置防护棚,确保人生安全。

8、注意场外环境保护,项目施工现场内外应隔离。 2、土方工程进度控制的监理对策 按照现在的施工技术和水平,通过对各阶段的进度进行分解后发现,在工程的土方开挖等阶段,工期的控制十分重要,一旦控制不好不仅会影响到本工程的总进度,甚至会给本工程的安全生产带来隐患。 土方工程的进度控制:土方工程的进度控制除了采用我们进度控制中采用的一些方法外,在本工程中应着重注意: ⑴土方开挖的顺序,土方开挖机械数量和大小的安排。 ⑵土方开挖和支撑施工中的衔接。 ⑶由于本工程所处地区人员流量较大,应合理安排土方外运的时间、路线和运输车辆的数量。 3、混凝土裂缝的监理对策 本工程建筑面积大,达十几万平方米、混凝土的使用量较大,因此,混凝土施工质量是本工程质量控制的重点之一。砼工程的质量将直接影响整个建筑工程质量,我公司根据本工程特点编制了详细的防治砼裂缝的监理措施如下: 1、混凝土结构裂缝的危害性 混凝土工程的裂缝问题相当普遍,这为正常使用和建筑物的耐久性带来了相当大的麻烦:第一,降低了结构的耐久性、整体性、甚至承载能力。裂缝的普遍存在使得水分侵入结构内部,造成钢筋腐蚀。裂缝较宽时,将引起内力重分布;第二,影响正常使用,往往因裂缝

钢箱梁桥面板施工方案

北京南站外部路网工程4#标段 钢箱梁桥面板施工方案 编制: 审核: 审批: 北京城乡建设集团有限责任公司 2008年3月 一、编制依据 1.1施工图纸 序号图纸名称出图日期 1北京南站外部路网工程-桥梁工程(施工 2007.10 图) 2北京南站外部路网工程-桥梁工程(施工

图设计)2007.8 1.2主要规范、标准 序号类别规范、标准名称编 号 1国家木结构设计规范GB50005-2003 2国家混凝土结构工程施工验收规范GB50204-2002 3国家钢结构设计规范GBJ 17-88 4国家建筑结构荷载规范GB50009-2001 5国家组合钢模板技术规范GB50214-2001 5建设部建筑机械使用安全技术规程JGJ 33-2001 6建设部建筑施工扣件式钢管脚手架安全 技术规程 JGJ130-2001 7建设部建筑施工现场高处作业安全技术 规程 JGJ80-91 8交通部公路桥涵施工技术规范JTJ041-2000 9北京市北京市城市桥梁工程施工技术规 程 DBJ01-46-2001 10北京市北京市市政工程施工安全操作规 程 DBJ01-56-2001 1.3主要参考书籍 序号名 称出版社出版日期1简明施工计算手册中国建筑工业出版社1989年12月2路桥施工计算手册人民交通出版社2003年7月

3建筑施工手册中国建筑工业出版社2003年9月 4建筑施工计算手册中国建筑工业出版社2005年6月 1.4其它 国家、北京市有关法规、规定以及我项目部对施工现场的踏勘资料。 二、工程概况 2.1工程概况 北京南站位于宣武区、崇文区及丰台区交界处,南二环、南三环、马家堡东路、马家堡西路之间,凉水河北侧,项目所处位置十分重要。根据铁道部规划,北京南站由原来的辅助客运站调整为主要客运站,车站主体建筑由铁道部负责,外部道路市政交通设施由北京市负责。 为加快工程施工进度、便于施工组织,公联公司将南站外部路网工程划分为九个标段,我公司所承担的为第四标段,标段范围是高架桥南侧立交及南三环立交,主要工程内容包括:桥梁工程、地下车库通道工程、道路工程及雨、污水管工程。 桥梁工程内容为:高架桥南侧立交,即高架2立交,由高架桥2出口、入口桥、h3辅路跨凉水河桥和h4辅路跨凉水河桥组成。道路中线位于半径为60~125米的圆曲线上,桥梁结构为预制预应力简支梁、现浇混凝土连续箱梁和钢箱叠合梁。高架2出口桥2C1~2C4三跨为现浇混凝土连续箱梁,高架2入口桥2R6~2R10四跨为钢箱叠合梁,其余部分为预制预应力简支T梁。下部结构中墩采用双柱D120cm或独柱D150cm,高架桥边墩为重力式桥台,h3辅路跨凉水河桥和h4辅路跨凉水河桥边墩采用

相关主题
文本预览
相关文档 最新文档