当前位置:文档之家› 自由度机器人认知实验

自由度机器人认知实验

自由度机器人认知实验
自由度机器人认知实验

六自由度串联机器人认知实验

一.实验目的

1. 了解串联机器人的机构组成;

2. 了解机器人机械系统各部分的原理及作用;

3. 认识RBT 机器人的运动特点及控制原理

4. 掌握机器人单轴运动的方法。

5.

二.实验设备和工具

1、 RBT-6T/S03S 教学机器人一台;

2、 RBT-6T/S03S 教学机器人控制系统软件一套;

3、 RBT-6T/S03S 教学机器人控制柜一台;

4、 装有运动控制卡计算机一台;

5、 机器人气动手爪一套。

三.实验原理与方法

1, RBT 教学机器人的性能指标 机器人是一种具有高度灵活性的自动化机器,是一种复杂的机电一体化设备。机器人按技术层次分为:固定程序控制机器人、示教再现机器人和智能机器人等。如图2-1所示,本实验所使用的RBT 机器人为6自由度串联关节式机器人,即机器人各连杆由旋转关节串联连接,各关节轴线相互平行或垂直。连杆的一端装在固定的支座上(底座),另一端处于自由状态,可安装各种工具以实现机器人作业。关节的传

动采用模块化结构,由锥齿轮、同步齿型带和谐波减速器等多种传动结构配合实现。机器人各关节采用伺服电机和步进电机混合驱动,并通过Windows

环境下的

图2-1 机器人结构

软件编程和运动控制卡实现对机器人的控制,使机器人能够在工作空间内任意位置精确定位。

RBT机器人技术参数如下:

2,机器人机械系统组成

机器人机械系统主要由以下几大部分组成:原动部件、传动部件、执行部件。基本机械结构连接方式为原动部件→传动部件→执行部件。机器人的传动简图如图2-2所示。

Ⅰ关节传动链主要由伺服电机、减速器构成。

Ⅱ关节传动链主要由伺服电机、减速器构成。

Ⅲ关节传动链主要由步进电机、同步带、减速器构成。

Ⅳ关节传动链主要由步进电机、减速器构成。

Ⅴ关节传动链主要由步进电机、同步带、减速器构成。

Ⅵ关节传动链主要由步进电机、同步带、减速器构成。 在机器人末端还有一个气动夹持器。

下面对在RBT-6T/S03S 六自由度教学机器人中采用的各传动部件的工作原理及特点作以简要介绍: (1)同步齿型带传动

同步齿型带传动是通过带齿与轮齿的啮合传递运动和动力,如图2-2所示。与摩擦型带传动相比,同步带传动兼有带传动、链传动和齿轮传动的一些特点,与一般带传动相比具有以下特点:

1)、传动比准确,同步带传动是啮合传动,工作时无滑动; 2)、传动效率高,可达98%以上,节能效果明显;

3)、不需依靠摩擦传动,预紧张力小,对轴和轴承的作用力小,带轮直径小,所占空间小,重量轻,结构紧凑;

4)、传动平稳,动态特性良好,能吸振,噪音小; 5)、齿型带较薄,允许线速度高,可达50m/s ;

6)、使用广泛,传递功率由几瓦至数千瓦,速比可达10左右;

7

)、使用保养方便,不需要润滑,耐油、耐磨性和抗老化好,还能在高温、

图2-2 机器人传动简图

灰尘、水及腐蚀介质等恶劣环境中工作;

8)、安装要求较高,两带轮轴心线平行度要高,中心距要求严格; 9)、带和带轮的制造工艺复杂、成本高。尽管如此,同步带传动不失为一种十分经济的传动装置,现已广泛用于要求精密定位的各种机械传动中。

(2)谐波齿轮传动

谐波齿轮传动由三个基本构件组成:

1)、谐波发生器(简称波发生器)——是由凸轮(通常为椭圆形)及薄壁轴承组成,随着凸轮转动,薄壁轴承的外环作椭圆形变形运动(弹性范围内);

2)、刚轮——是刚性的内齿轮;

3)、柔轮——是薄壳形元件,具有弹性的外齿轮。

以上三个构件可以任意固定一个,成为减速传动及增速传动;或者发生器、刚轮主动,柔轮从动,成为差动机构(即转动的代数合成)。

谐波传动工作过程如下图2-3所示,当波发生器为主动时,凸轮在柔轮内转动,使长轴附近柔轮及薄壁轴承发生变形(可控的弹性变形),这时柔轮的齿就在变形的过程中进入(啮合)或退出(啮出)刚轮的齿间,在波发生器的长轴处处于完全啮合,而短轴方向的齿就处于完全的脱开状态。

波发生器通常为椭圆形的凸轮,凸轮位于薄壁轴承内。薄壁轴承装在柔轮内,此时柔轮由原来的圆形而变成椭圆形,椭圆长轴

两端的柔轮与之配合的刚轮齿则处于完全啮合状态,即柔轮的外齿与刚轮的内齿

图2-3 同步齿形带传动结构

图2-4 谐波齿轮传动工作过程

沿齿高啮合。这是啮合区,一般有30%左右的齿处在啮合状态;椭圆短轴两端的柔轮齿与刚轮齿处于完全脱开状态,简称脱开;在波发生器长轴和短轴之间的柔轮齿,沿柔轮周长的不同区段内,有的逐渐退出刚轮齿间,处在半脱开状态,称之为啮出;有的逐渐进入刚轮齿间,处在半啮合状态,称之为啮入。

波发生器在柔轮内转动时,迫使柔轮产生连续的弹性变形,此时波发生器的连续转动,就使柔轮齿的啮入—啮合—啮出—脱开这四种状态循环往复不断地改变各自原来的啮合状态。这种现象称之为错齿运动,正是这一错齿运动,使减速器可以将输入的高速转动变为输出的低速转动。

谐波齿轮传动的特点:

1)、传动比大、单级传动比为70~320;

2)、侧隙小。由于其啮合原理不同于一般齿轮传动,侧隙很小,甚至可以实现无侧隙传动;

3)、精度高。同时啮合齿数达到总齿数的20%左右,在相180°的两个对称方向上同时啮合,因此误差被平均化,从而达到高运动精度;

4)、零件数少、安装方便。仅有三个基本部件,且输入轴与输出轴为同轴线,因此结构简单,安装方便;

5)、体积小、重量轻。与一般减速器比较,输出力矩相同时,通常其体积可减小2/3,重量可减小1/2;

6)、承载能力大。因同时啮合齿数多,柔轮又采用了高疲劳强度的特殊钢材,从而获得了高的承载能力;

7)、效率高。在齿的啮合部分滑移量极小,摩擦损失少。即使在高速比情况下,还能维持高的效率;

8)、运转平稳。周向速度低,又实现了力的平衡,故噪声低、振动小;

9)、可向密闭空间传递运动。利用其柔性的特点,可向密闭空间传递运动。这一点是其它任何机械传动无法实现的。

(3) 齿轮传动

齿轮传动的特点:

1)、瞬时传动比恒定。非圆齿轮传动的瞬时传动比又能按需要的变化规律设计;

2)、传动比范围大,可用于减速或增速;

3)、速度(指节圆圆周速度)和传动功率的范围大,可用于高速(v>40m/s)、

中速和低速(v<25m/s )的传动;功率可从小于1W 到105Kw ;

4)、传动效率高,一对高精度的渐开线圆柱齿轮,效率可达99%以上; 5)、结构紧凑,适用于近距离传动;

6)、制造成本较高,某些具有特殊齿形或精度很高的齿轮,因需要专用或高精度的机床、刀具和量仪等,故制造工艺复杂,成本高;

7)、精度不高的齿轮,传动时噪声、振动和冲击大,污染环境; 8)、无过载保护作用。 (4)RV 传动

RV 传动是在摆线针轮传动基础上发展起来的一种新型传动,它具有体积小,重量轻,传动比范围大,传动效率高等一系列优点,比单纯的摆线针轮行星传动具有更小的体积和更大的过载能力,且输出轴刚度大,因而在国内外受到广泛重视,在日本机器人的传动机构中,已在很大程度上逐渐取代单纯的摆线针轮行星传动和谐波传动。

RV 传动原理如图2-5所示,它由渐开线圆柱齿轮行星减速机构和摆线针轮行星减速机构二部分组成.渐开线行星齿轮2与曲柄轴

3连成一体, 作为摆线针轮传动部分的输入,如果渐开线中心齿轮1顺时针方向旋转,那么渐开线行星齿轮在公转的同时还有逆时针方向自转, 并通过曲柄轴带动摆线轮做偏心运动,此时,摆线轮在其轴线公转的同时,还将反向自转, 即顺时针转动. 同时还通过曲柄轴推动钢架结构的输出机构顺时针方向转动.

RV 传动作为一种新型传动,从结构上看,其基本特点可概括如下:

1)、如果传动机构置于行星架的支撑主轴承内,那么这种传动的轴向尺寸可大大缩小;

2)、采用二级减速机构,处于低速极的摆线针轮行星传动更加平稳,同时,由于转臂轴承个数增多且内外环相对转速下降,其寿命也可大大提高;

3)、只要设计合理,就可以获得很高的运动精度和很小的回差;

图 2-5 RV 传动简图

4)、RV 传动的输出机构是采用两端支承的尽可能大的钢性圆盘输出结构,比一般摆线减速器的输出架构(悬臂梁结构)具有更大的刚度,且抗冲击性能也有很大提高;

5)、传动比范围大,因为即使摆线轮齿数不变,只改变渐开线齿数,就可以得到很多的速比。其传动比为i=31~171;

6)、传动效率高,其传动效率为η=0.85~0.92。

3,机器人单轴运动

1、 连接好气路,启动气泵到预定压力

2、 启动计算机,运行RBT-6T/S03S 教学机器人软件“RBT6TS3S.exe ”,出现如图2-6所示主界面;

3、 连接好控制柜电源,打开控制柜门,合上断路器,关闭控制柜门;

4、 开启“电源开关”,按下“启动按钮”;

5、 点击主界面“机器人复位”按钮,机器人进行回零运动。观察机器人的运动,六个关节全部运动完成后,系统会提示您机器人复位完成,机器人处于零点位置;

6、 点击“关节运动”按钮, 出现如图2-6所示界面;

图 2-6 系统运行主界面

7、 选择“关节Ⅰ”,关节方向选择“正向”,启动方式选择“加速”,运动方

式选择“位置模式”,运行速度取默认值,目标位置取-120度,点击“启动”按钮,观察机器人第Ⅰ关节运动情况;

8、 选择“关节Ⅰ”,关节方向选择“反向”,启动方式选择“加速”,运动方

式选择“速度模式”,运行速度取默认值,点击“启动”按钮,观察机器人第Ⅰ

关节运动情况,然后点击“立即停止”按钮;

9、 选择“关节Ⅱ”,关节方向选择“正向”,启动方式选择“匀速”,运动方

式选择“位置模式”,运行速度取默认值,目标位置取30度,点击“启动”按钮,观察机器人第Ⅱ关节运动情况;

10、

选择“关节Ⅱ”,关节方向选择“反向”,启动方式选择“匀速”,运

动方式选择“速度模式”,运行速度取默认值,点击“启动”按钮,观察机器人第Ⅱ关节运动情况,然后点击“立即停止”按钮;

11、

选择“关节Ⅲ”,关节方向选择“正向”,启动方式选择“加速”,运

动方式选择“位置模式”,运行速度取默认值,目标位置取30度,点击“启动”按钮,观察机器人第Ⅲ关节运动情况;

12、

选择“关节Ⅲ”,关节方向选择“反向”,启动方式选择“加速”,运

动方式选择“速度模式”,运行速度取默认值,点击“启动”按钮观察机器人第Ⅲ关节运动情况,然后点击“立即停止”按钮;

13、

选择“关节Ⅳ”,关节方向选择“正向”,启动方式选择“匀速”,运

动方式选择“位置模式”,运行速度取默认值,目标位置取60度,点击“启动”按钮,观察机器人第Ⅳ关节运动情况;

图2-7 关节运动界面

14、选择“关节Ⅳ”,关节方向选择“反向”,启动方式选择“匀速”,运动方式选择“速度模式”,运行速度取默认值,点击“启动”按钮观察机器人第Ⅳ关节运动情况,然后点击“立即停止”按钮;

15、选择“关节Ⅴ”,关节方向选择“正向”,启动方式选择“加速”,运动方式选择“位置模式”,运行速度取默认值,目标位置取60度,点击“启动”按钮,观察机器人第Ⅴ关节运动情况;

16、选择“关节Ⅴ”,关节方向选择“反向”,启动方式选择“加速”,运动方式选择“速度模式”,运行速度取默认值,点击“启动”按钮观察机器人第Ⅴ关节运动情况,然后点击“减速停止”按钮;

17、选择“关节Ⅵ”,关节方向选择“正向”,启动方式选择“加速”,运动方式选择“位置模式”,运行速度取默认值,目标位置取60度,点击“启动”按钮,观察机器人第Ⅵ关节运动情况;

18、选择“关节Ⅵ”,关节方向选择“反向”,启动方式选择“加速”,运动方式选择“速度模式”,运行速度取默认值,点击“启动”按钮观察机器人第Ⅵ关节运动情况,然后点击“减速停止”按钮;

19、点击“退出”按钮,退出关节运动界面;

20、点击“机器人复位”按钮,使机器人回到零点位置;

21、按下控制柜上的“停止按钮”,关闭“电源开关”;

22、关闭控制柜内的断路器;

23、关闭RBT-6T/S03S教学机器人软件“RBT6TS3S.exe”,关闭计算机。注意事项

1、实验前确保机器人各电缆正确连接;

2、在老师的指导下进行实验;

3、机器人通电后,身体的任何部位不要进入机器人运动可达范围之内;

4、机器人运动不正常时,及时按下控制柜的急停开关(SB3按钮);

5、系统启动顺序是先启动计算机和软件,然后机器人通电,断电时先断开机器人电源,再关闭软件和计算机,否则可能引起机器人误动作,造成人身伤害和设备损坏。

四.实验内容与要求

1.观察机器人机械结构,电气线路硬件情况。绘制机器人结构简图。

2.手动操作机器人,观察关节动作及手部位姿状态。

五.思考题

1,机器人各关节相对运动间的原点位置是如何保证的?

2,机器人工作过程中,手部位姿是如何保证的?

3,当机器人末端沿已知路径运动时,各关节输入量是怎样产生的?

4,机器人各关节的运动范围超限报警是怎样实现的?

六自由度工业机器人设计

六自由度工业机器人 对于工业机器人的设计与大多数机械设计过程相同;首先要知道为什么要设计机器人机器人能实现哪些功能活动空间(有效工作范围)有多大了解基本的要求后,接下来的工作就好作了。 首先是根据基本要求确定机器人的种类,是行走的提升(举升)机械臂、还是三轴的坐标机器人、还是六轴的机器人等。选定了机器人的种类也就确定了控制方式,也就有了在有限的空间内进行设计的指导方向。 接下来的要做的就是设计任务的确定。这是一个相对复杂的过程,在实现这一复杂过程的第一步是将设计要求明确的规定下来;第二步是按照设计要求制作机械传动简图,分析简图,制定动作流程表(图),初步确定传动功率、控制流程和方式;第三步是明确设计内容,设计步骤、攻克点、设计计算书、草图绘制,材料、加工工艺、控制程序、电路图绘制;第四步是综合审核各方面的内容,确认生产。 下面我将以六轴工业机器人作为设计对象来阐明这一设计过程: 在介绍机器人设计之前我先说一下机器人的应用领域。机器人的应用领域可以说是非常广泛的,在自动化生产线上的就有很多例子,如垛码机器人、包装机器人、转线机器人;在焊接方面也有很例子,如汽车生产线上的焊接机器人等等;现在机器人的发展是非常的迅速,机器人的应用也在民用企业的各个行业得以延伸。机器人的设计人才需求也越来越大。 六轴机器人的应用范筹不同,设计形式也各不相同。现在世界上生产机器人的公司也很多,结构各有特色。在中国应用最多的如:ABB、Panasonic、FANUK、莫托曼等国外进口的机器人。 既然机器人的应用那么广泛,在我国却没有知名的生产公司。对于作为中国机械工程技术人员来说是一个值得思考的问题!有关机器人技术方面探讨太少了从业人员还不能成群体虽然在很多地方可以看到机器的论术,可是却没有真正形成普及的东西。 即然是要说设计,那我就从头一点一点的说起。力求讲的通俗简明一些,讲得不对的地方还请各位指正! 六轴机器人是多关节、多自由度的机器人,动作多,变化灵活;是一种柔性技术较高的工业机器人,应用面也最广泛。那么怎样去从头开始的设计它呢工作范围又怎样去确定动作怎样去编排呢位姿怎样去控制呢各部位的关节又是有怎么样的要求呢等等。。。。。。让我们带着众多的疑问慢慢的往下走吧! 首先我们设定:机器人是六轴多自由度的机器人,手爪夹持二氧气体保护焊标准焊枪;完成点焊、连续焊等不同要求的焊接部件,工艺要求、工艺路线变化快的自动生线上。最大伸长量:1700mm;转动270度;底座与地平线水平固定;全电机驱动。 好了,有了这样的基本要求我们就可以做初步的方案的思考了。 首先是全电机驱动的,那么我们在考虑方案的时候就不要去考虑液压和气压的各种结构了,也就是传动机构只能用齿轮齿条、连杆机构等机械机构了。 机器人是用于焊接方面的,那么我们就去考察有人工行为下的各种焊接手法和方法。这里就有一个很复杂的东西在里面,那就是焊接工艺;即然焊艺定不下来,我们就给它区分一下,在常用焊接里有单点点焊、连续断点点焊、连续平缝焊接、填角焊接、立缝焊接、仰焊、环缝焊等等。。。。。。 搞清了各种焊方法,也就明白了要实现这些复杂的动作就要有一套可行的控制方式才行;在机械没有完全设计出来之前可以不做太多的控制方案思考,有一个大概的轮廓概念就行了,待机械结构做完,各方面的驱动功率确定下来之后再做详细的程序。 焊枪是用常用的标准的焊枪,也就是说焊枪是随时可以更换下来的,也就要求我们要做到对焊枪的夹持部分进行快速锁定与松开。

自由度搬运物料工业机器人的设计设计

毕业设计论文 四自由度搬运物料工业机器人的设计 摘要:在当今大规模制造业中,企业为提高生产效率,保障产品质量,普遍重视生产过程的自动化程度,工业机器人作为自动化生产线上的重要成员,逐渐被企业所认同并采用。工业机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平,目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动强度极大的工作,工作方式一般采取示教再现的方式。 本文将设计一台四自由度的工业机器人,用于给冲压设备运送物料。首先,本文将设计机器人的底座、大臂、小臂和机械手的结构,然后选择合适的传动方式、驱动方式,搭建机器人的结构平台;在此基础上,本文将设计该机器人的控制系统,包括数据采集卡和伺服放大器的选择、反馈方式和反馈元件的选择、端子板电路的设计以及控制软件的设计,重点加强控制软件的可靠性和机器人运行过程的安全性,最终实现的目标包括:关节的伺服控制和制动问题、实时监测机器人的各个关节的运动情况、机器人的示教编程和在线修改程序、设置参考点和回参考点。 关键词:机器人示教编程伺服制动

The Design of an Industrial Robot with Four DOFs for Carrying Material for a Punch Abstract:In the modern large-scale manufacturing industry, enterprises pay more attention on the automation degree of the production process in order to enhance the production efficiency, and guarantee the product quality. As an important part of the automation production line, industrial robots are gradually approved and adopted by enterprises. The technique level and the application degree of industrial robots reflect the national level of the industrial automation to some extent, currently, industrial robots mainly undertake the jobs of welding, spraying, transporting and stowing etc. , which are usually done repeatedly and take high work strength, and most of these robots work in playback way. In this paper I will design an industrial robot with four DOFs, which is used to carry material for a punch. First I will design the structure of the base, the big arm, the small arm and the end manipulator of the robot, then choose proper drive method and transmission method, building the mechanical structure of the robot. On this foundation, I will design the control system of the robot, including choosing DAQ card, servocontrol, feedback method and designing electric circuit of the terminal card and control software. Great attention will be paid on the reliability of the control software and the robot safety during running. The aims to realize finally include: servocontrol and brake of the joint, monitoring the movement of each joint in realtime, playback

六轴运动机器人运动学求解分析_第九讲

六轴联动机械臂运动学及动力学求解分析 V0.9版 随着版本的不断更新,旧版本文档中的一些笔误得到了修正,同时文档内容更丰富,仿真程序更完善。 作者朱森光 Email zsgsoft@https://www.doczj.com/doc/014088927.html, 完成时间 2016-02-28

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者从事的工作是软件开发,工作内容跟机器人无关,但不妨碍研究机器人运动学及动力学,因为机器人运动学及动力学用到的纯粹是数学和计算机编程知识,学过线性代数和计算机编程技术的人都能研究它。利用业余时间翻阅了机器人运动学相关资料后撰写此文,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术文章。本文内容的正确性经过笔者编程仿真验证可以信赖。 2机器建模 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右方向为X轴,屏幕竖直向上方向为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,底部灰色立方体示意机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色长方体示意关节2,它能绕图中的Z1轴旋转;蓝色长方体示意关节3,它能绕图中的Z2轴旋转;绿色长方体示意关节4,它能绕图中的X3轴旋转;深灰色长方体示意关节5,它能绕图中的Z4轴旋转;末端浅灰色机构示意关节6即最终要控制的机械手,机器人代替人的工作就是通过这只手完成的,它能绕图中的X5轴旋转。这儿采用关节这个词可能有点不够精确,先这么意会着理解吧。 3运动学分析 3.1齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为0度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为0度。以上定义中角度正负值定义符合右手法则,所有角度定义值均为本关节坐标系相对前一关节坐标系的相对旋转角度值(一些资料上将O4O5两点重合在一起即O4O5两点的距离x4退化为零,本文定义x4大于零使得讨论时更加不失一般性)。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 =cosθ0 s0 = sinθ0 //c0 R0 =[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0 s1 c1 0 0

六自由度机械手重载搬运机器人本体结构设计(全套CAD图纸)

全套设计通过答辩优秀CAD图纸QQ 36396305 XX学院 毕业设计说明书(论文) 作者: 学号: 学院(系): 专业: 题目: 重载搬运机器人本体结构设计【六自由 度机械手】 2015 年5月

全套设计通过答辩优秀CAD图纸QQ 36396305 毕业设计说明书(论文)中文摘要 机械手是一种典型的机电一体化产品,搬运机械手是机械手研究领域的热点。研究搬运机械手需要结合机械、电子、信息论、人工智能、生物学以及计算机等诸多学科知识,同时其自身的发展也促进了这些学科的发展。 本文对一种使用在搬运机械手的结构进行设计,并完成总装配图和零件图的绘制。要求对机械手模型进行力学分析,估算各关节所需转矩和功率,完成电机和减速器的选型。其次从电机和减速器的连接和固定出发,设计关节结构,并对机构中的重要连接件进行强度校核。 关键词:结构设计,机器臂,关节型机械手,结构分析

毕业设计说明书(论文)外文摘要

目录 1 绪论 (1) 1.1 引言 (2) 1.2 搬运机械手研究概况 (3) 1.2.1 国外研究现状 (3) 1.2.2 国内研究现状 (4) 1.4 搬运机械手的总体结构 (5) 1.5 主要内容 (5) 2 总体方案设计 (6) 2.1 机械手工程概述 (6) 2.2 工业机械手总体设计方案论述 (7) 2.3 机械手机械传动原理 (8) 2.4 机械手总体方案设计 (8) 2.5 本章小结 (10) 3 机械手大臂结构设计 (1) 3.1 大臂部结构设计的基本要求 (1) 3.2 大臂部结构设计 (2) 3.3 大臂电机及减速器选型 (2) 3.4 减速器参数的计算 (3) 3.5承载能力的计算 (7) 3.5.1 柔轮齿面的接触强度的计算 (7) 3.5.2 柔轮疲劳强度的计算 (7) 3.6 轴的计算校核 (8) 3.7 大臂的平衡设计 (11) 3.7.1 弹簧的受力分析 (11) 3.7.2 弹簧的设计计算 (14) 4机械手小臂结构设计 (18) 4.1 腕部设计 (18) 4.2 小臂部结构设计 (31)

多自由度机械手课程设计

机电一体化系统设计课程设计 设计题目: 内装: 1. 设计说明书 2. 装配图 3. 控制电路原理图 4. ……. 专业: 姓名: 学号: 指导教师: 完成日期: 成绩: 福建农林大学机电工程学院

机电一体化系统设计课程设计说明书 设计题目: 学院: 专业年级: 学号: 学生姓名: 指导教师: 年月日

一、机械手的概述 (1) 1.1 机械手的组成和分类 (1) 1.2 应用机械手的意义 (1) 二、总体方案设计 (3) 2.1 设计任务 (3) 2.2 总体方案确定 (3) 2.2.1机械手基本形式的选择 (3) 2.2.2机械手的主要部件及运动 (3) 2.2.3驱动机构的选择 (4) 三、机械系统设计 (5) 3.1机械手手部的设计计算 (5) 3.1.1手部设计基本要求 (5) 3.1.3机械手手抓的设计计算 (5) 3.1.4.机械手手抓夹持精度的分析计算 (8) 3.1.5弹簧的设计计算 (9) 3.2腕部的设计计算 (11) 3.2.1 腕部设计的基本要求 (11) 3.2.3 腕部结构和驱动机构的选择 (12) 3.2.4 腕部的设计计算 (12) 3.3臂部的设计及有关计算 (15) 3.3.1 臂部设计的基本要求 (15) 3.3.2 手臂的典型机构以及结构的选择 (16) 3.3.3 液压缸工作压力和结构的确定 (18) 3.4机身的设计计算 (19) 3.4.1 机身的整体设计 (19) 3.4.2 机身回转机构的设计计算 (20) 3.4.3 机身升降机构的计算 (22) 3.4.4 轴承的选择分析 (25) 四、控制系统硬件电路设计 (26) 4.1可编程序控器的简介 (26) 4.2 PLC的结构,种类和分类 (26) 4.3 FX2n系列三菱PLC特点 (30) 4.4 接近开关传感器 (28) 4.5 I/O接口简介 (29) 4.6 行程开关的介绍 (30) 4.6.1 行程开关的概念 (30) 4.6.2 行程开关的作用及原理 (30) 4.7电路的总体设计 (30) 4.7.1回路的设计 (30) 4.7.2 系统输入/输出分布表 (31) 4.7.3机械手的程序设计 (33) 4.7.4 步进电机的运行控制 (33) 五、参考文献 (34)

六自由度机器人说明书

六自由度机器人说明书 专业:机械制造与自动化 班级: 成员:

目录 一、打开气源 二、机器人的快速操作入门 1、坐标系的选择 2、手动速度调整 3、伺服电源接通 4、接通主电源 5、接通伺服电源 三、伺服电源切断 1、切断伺服电源 2、切断主电源 四、轴操作

一、打开气源 请确认系统进气气源已进行供气,未供气或气压不足将会导致系统无法正常工作,系统运行中如断开气源,可能导致设备损坏,甚至造成人员伤害。 打开下图气泵,将开关拨到“I”,再打开气阀

拨到“开”,即 “Ⅰ” 往上拨,打开气阀

二、机器人的快速操作入门 1、坐标系的选择 在示教模式下,选择机器人运动坐标系:按手持操作示教器上的【坐标系】键,每按一次此键,坐标系按以下顺序变化,通过状态区的显示来确认。 2、手动速度调整 示教模式下,选择机器人运动速度:按手持操作示教器上【高速】键或【低速】键,每按一次,手动速度按以下顺序变化,通过状态区的速度显示来确认。 ?按手动速度【高速】键,每按一次,手动速度按以下顺序变化:微动1%→微动2%→低5%→低10%→中25%→中50%→高75%→高100%。 ?按手动速度【低速】键,每按一次,手动速度按以下顺序变化:高100%→高75%→中50%→中25%→低10%→低5%→微动2%→微动1%。 3、伺服电源接通 打开上电控柜上的主电源开关时,应确认在机器人动作 范围内无任何人员。

忽视此提示可能会发生与机器人的意外接触而造成人身伤害。如有任何问题发生,应立即按动急停键,急停键位于 电控柜前门的右上方。 4、接通主电源 ●把电控柜侧板上的主电源开关扳转到接通(ON) 的位置,此 时主电源接通。 ●按下电控柜面板上的绿色伺服启动按钮。

3个自由度机械手设计

第一章引言 机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。 机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。 1.1 机械手的分类 机械手一般分为三类:第一类是不需要人工操作的通用机械手。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定的操作。它的特点是具备普通机械的性能之外,还具备通用机械、记忆智能的三元机械。第二类是需要人工才做的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是用专用机械手,主要附属于自动机床或自动线上,用以解决机床上下料和工件送。这种机械手在国外称为“Mechanical Hand”,它是为主机服务的,由主机驱动;除少数以外,工作程序一般是固定的,因此是专用的。

工业机器人_三自由度直角坐标工业机器人设计讲解

沈阳工程学院 课程设计 设计题目:三自由度微型直角坐标工业机器人模型设计 系别自控系班级 学生姓名学号 指导教师祝尚臻职称讲师 起止日期:2012年1 月2 日起——至2012 年1 月13 日止 - I -

沈阳工程学院 课程设计任务书 课程设计题目:三自由度直角坐标工业机器人设计 系别自动控制工程系班级 学生姓名 学号 指导教师职称讲师 课程设计进行地点:F430 任务下达时间:2011年12月31日 起止日期:2012 年1 月2日起——至2012 年1 月13日止教研室主任年月日批准 - II -

三自由度直角坐标工业机器人设计 1 设计主要内容及要求 1.1 设计目的: 1了解工业机器人技术的基本知识以及单片机、机械设计、传感器等相关技术。 2初步掌握工业机器人的运动学原理、传动机构、驱动系统及控制系统并应用于工业机器人的设计中。3通过学习,掌握工业机器人的驱动机构、控制技术,并使机器人能独立执行一定的任务。 1.2 基本要求 1要求设计一个微型的三自由度的直角坐标工业机器人; 2要求设计机器人的机械机构(示意图),传动机构、控制系统、及必需的内外部传感器的种类和数量布局。 3要有控制系统硬件设计电路。 1.3 发挥部分 自由发挥 2 设计过程及论文的基本要求: 2.1 设计过程的基本要求 (1)基本部分必须完成,发挥部分可任选; (2)符合设计要求的报告一份,其中包括总体设计框图、电路原理图各一份; (3)设计过程的资料保留并随设计报告一起上交;报告的电子档需全班统一存盘上交。 2.2 课程设计论文的基本要求 (1)参照毕业设计论文规范打印,包括附录中的图纸。项目齐全、不许涂改,不少于3000字。图纸为A4,所有插图不允许复印。 (2)装订顺序:封面、任务书、成绩评审意见表、中文摘要、关键词、目录、正文(设计题目、设计任务、设计思路、设计框图、各部分电路及相应的详细的功能分析和重要的参数计算、工作过程分析、元器件清单、主要器件介绍)、小结、参考文献、附录(总体设计框图与电路原理图)。 3 时间进度安排 顺序阶段日期计划完成内容备注 1 2012.1. 2 讲解主要设计内容,布置任务打分 2 2012.1. 3 检查框图及初步原理图完成情况,讲解及纠正错误打分 3 2012.1. 4 检查机械结构设计并指出错误及纠正;打分 4 2012.1. 5 继续机械机构和传动机构设计打分 5 2012.1. 6 进行控制系统设计打分 6 2012.1.9 检查控制系统原理图设计草图打分 7 2012.1.10 完善并确定控制系统打分 8 2012.1.11 指导学生进行驱动机构的选择打分 9 2012.1.12 进行传感器的选择和软件流程设计打分 10 2012.1.13 检查任务完成情况并答辩打分 2011-12-30 - III -

六自由度机器人结构设计

六自由度机器人结构设计、 运动学分析及仿真 学科:机电一体化 姓名:袁杰 指导老师:鹿毅 答辩日期: 2012.6 摘要 近二十年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获 得应用。我国在机器人的研究和应用方面与工业化国家相比还有一定的差距,因此 研究和设计各种用途的机器人特别是工业机器人、推广机器人的应用是有现实意义 的。 典型的工业机器人例如焊接机器人、喷漆机器人、装配机器人等大多是固定在 生产线或加工设备旁边作业的,本论文作者在参考大量文献资料的基础上,结合项 目的要求,设计了一种小型的、固定在AGV 上以实现移动的六自由度串联机器人。 首先,作者针对机器人的设计要求提出了多个方案,对其进行分析比较,选择

其中最优的方案进行了结构设计;同时进行了运动学分析,用D-H 方法建立了坐标变换矩阵,推算了运动方程的正、逆解;用矢量积法推导了速度雅可比矩阵,并计算了包括腕点在内的一些点的位移和速度;然后借助坐标变换矩阵进行工作空间分析,作出了实际工作空间的轴剖面。这些工作为移动式机器人的结构设计、动力学分析和运动控制提供了依据。最后用ADAMS 软件进行了机器人手臂的运动学仿真,并对其结果进行了分析,对在机械设计中使用虚拟样机技术做了尝试,积累了 经验。 第1 章绪论 1.1 我国机器人研究现状 机器人是一种能够进行编程,并在自动控制下执行某种操作或移动 作业任务的机械装置。 机器人技术综合了机械工程、电子工程、计算机技术、自动控制及 人工智能等多种科学的最新研究成果,是机电一体化技术的典型代表,是当代科技发展最活跃的领域。机器人的研究、制造和应用正受到越来越多的国家的重视。近十几年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获得应用。 我国是从 20 世纪80 年代开始涉足机器人领域的研究和应用的。1986年,我国开展了“七五”机器人攻关计划。1987 年,我国的“863”计划将机器人方面的研究列入其中。目前,我国从事机器人的应用开发的主要是高校和有关科研院所。最初我国在机器人技术方面的主要

三自由度圆柱坐标工业机器人

三自由度圆柱坐标型工业机器人设计 学院:机电工程学院 班级: 姓名: 学号:

1.末端执行机构设计 采用内撑连杆杠杆式夹持器,用小型液压缸驱动夹紧,它的结构形式如图。内撑连杆杠杆式夹持器采用四连杆机构传递撑紧力,即当液压缸1工作时,推动推杆2向下运动,使两钳爪3向外撑开,从而带动弹性爪4夹紧工件。该种夹持器多用于内孔薄壁零件的夹持。

2.弹性爪的结构设计: 这种结构是在手爪外侧用螺钉固定弹性片两端。当弹性手工作时,由于夹紧过程具有弹性,就可避免易损零件被抓伤、变形和破损。 3.手臂机构的设计 本设计中手臂由滚珠丝杠驱动实现上下运动,结构简单,装拆方便,还设计有两根导柱导向,以防止手臂在滚珠丝杠上转动,确保手

臂随机座一起转动。它的结构如下图。选用轴向脚架型液压缸,活塞杆末端为外螺纹结构,手臂与末端执行器连同活塞杆一起转动。 4.腰部和基座设计 1——支座,2——步进电机,3——谐波齿轮,4——转动机座5——支承槽钢梁,6——滚珠丝杠,7——导向柱,8——锥环无键联轴器 通过安装在支座上的步进电机和谐波齿轮直接驱动转动壳体转动,从而实现机器人的旋转运动;通过安装在顶部的步进电机和联轴器带动滚珠丝杠转动实现手臂的上下移动。采用双导柱导向,防止手臂在滚珠丝杠上转动,确保手臂随机座一起转动。支撑梁采用槽钢,以减轻重量和节省材料,它的结构如上图。 5.驱动方式的选择

由上表知步进电机应用于驱动工业机器人有着许多无可替代的 优点,如控制性能好,可精确定位,体积较小可用于程序复杂和运动轨迹要求严格的小型通用机械手等,所以本设计采用它来实现机器人的旋转和上下移动。选电机为BF反应式步进电机,型号为:90BF001。 由上表知,液压驱动方式反应灵敏,可实现连续轨迹控制,液体压力高,可获得较大的输出力,因此机器人的伸缩运动采用液压驱动方式来实现,从而使机器人容易找准工件。它的型号为Y-HG1-C50/28×100LJ1HL1Q,它的主要技术参数如下表

工业机器人的十一个问答

工业机器人的十一个问答 1、工业机器人定义及特点? 定义:机器人是一个在三维空间具有较多自由度的,并能实现诸多拟人动作和功能的机器:而工业机器人则是在工业生产上应用的机器人。 特点:可编程、拟人化、通用性、机电一体化 2、工业机器人有哪几个子系统组成?各自的作用是什么? 驱动系统:使机器人运行起来的传动装置。 机械结构系统:由机身手臂末端操作器三大件组成的一个多自由度的机械系统。 感受系统:由内部传感器模块和外部传感器模块组成获取内部和外部环境状态的信息。 机器人-环境交互系统:实现工业机器人与外部环境中的设备相互联系和协调的系统 人-机交互系统:是操作人员参与机器人控制与机器人进行联系的装置 控制系统:根据机器人的作业指令程序以及从传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能 3、什么是机器人的自由度?机器人位置操作需要几个自由度?姿态操作需要几个自由度?为什么? 自由度是指机器人所具有的独立坐标轴运动的数目,不应包括手爪(末端操作器)的开合自由度,在三维空间中描述一个物体的位置和姿态需要六个自由度,位置操作需要3个自由度(腰肩肘)姿态操作需要3个自由度(俯仰偏航侧滚)。但是工业机器人的自由度,但是工业机器人的自由度是根据其用途而设计的可能小于6个自由度,也可能大于6个自由度。 4、工业机器人的主要技术参数有哪些? 答:自由度、重复定位精度、工作范围、最大工作速度、承载能力 5、机身和臂部的作用各是什么?在设计时应注意哪些问题? 答:机身是支承臂部的部件,一般实现升降回转和俯仰等运动。

机身设计时需要注意: 1)要有足够的刚度和稳定性 2)运动要灵活,升降运动的导套长度不宜过短,避免发生卡死现象,一般要有导向装置 3)结构布置要合理臂部是支承腕部手部和工件的静动载荷的部件,尤其高速运动时将产生较大的惯性力,引起冲击,影响定位的准确性。 设计臂部时要注意: 1)刚度要求高 2)导向性好 3)重量轻 4)运动要平稳,定位精度要高。 其它传动系统应尽量简短以提高传动精度和效率;各部件布置要合理,操作维护要方便;特殊情况特殊考虑,在高温环境中应考虑热辐射的影响腐蚀性环境中应考虑防腐蚀问题。危险环境应考虑防暴问题 6、手腕上的自由度主要起什么作用?如果要求手部能处于空间任意方向则手腕应具有什么样的自由度? 手腕上的自由度主要是实现手部所期望的姿态。为了使手部能处于空间任意方向,要求腕部能实现对空间三个坐标轴X Y Z的转动。即具有翻转俯仰和偏转三个自由度 7、手部的作用和特点 机器人手部的作用:工业机器人的手部也叫末端操作器是用来握持工件或工具的部件 特点: 1)手部是一个独立的部件 2)手部是工业机器人的末端操作器。不一定与人的手部结构相同。可以具有手指也可以不具有手指:可以有手爪也可以是专用工具

工业机器人的主要技术参数

工业机器人的主要技术参数 工业机器人的种类、用途以及用户要求都不尽相同。但工业机器人的主要技术参数应包括以下几种:自由度、精度、工作范围、最大工作速度和承载能力。 1. 自由度 机器人所具有的独立坐标轴运动的数目,一般不包括手爪(或末端执行器)的开合自由度。在三维空间中表述一个物体的位置和姿态需要6个自由度。但是,工业机器人的自由度是根据其用途而设计的,可能小于6个也可能大于6个自由度。例如,日本日立公司生产的A4020装配机器人有4个自由度,可以在印制电路板上接插电子元器件; PUMA562机器人具有6个自由度(见图1.11~图1.13),可以进行复杂空间曲面的弧焊作业。从运动学的观点看,在完成某一特定作业时具有多余自由度的机器人,叫做冗余自由度机器人,又叫冗余度机器人。例如,PUMA562机器人去执行印制电路板上接插元器件的作业时就是一个冗余度自由机器人。利用冗余的自由度可以增加机器人的灵活性,躲避障碍物和改善动力性能。 人的手臂共有7个自由度,所以工作起来很灵巧,手部可回避障碍物,从不同方向到达目的地。 2.精度 工业机器人精度是指定位精度和重复定位精度。定位精度是指机器人手部实际到达位置与目标位置之间的差异,用反复多次测试的定位结果的代表点与指定位置之间的距离来表示。重复定位精度是指机器人重复定位手部于同一目标位置的能力,以实际位置值的分散程度来表示。实际应用中常以重复测试结果的标准偏差值的3倍来表示,它是衡量一列误差值的密集度。图1.14所示为工业机器人定位精度与重复定位精度图例。 (a)重复定位精度的测定 (:b)合理的定位精度,良好的重复定位精度 (C)良好的定位精度,较差的重复定位精度(d)很差的定位精度,良好的重复定位精度 2. 工作范围 工作范围是指机器人手臂末端或手腕中心所能到达的所有点的集合,也叫做工作区域。因为末端操作器的形状和尺寸是多种多样的,为了真实地反映机器人的特征参数,一般工作范围是指不安装末端操作器的工作区域。工作范围的形状和大小是十分重要的,机器人在执行某作业时可能会因为存在手部不能到达的作业死区而不能完成任务,如图1.15所示。 3.最大工作速度 最大工作速度,有的厂家指工业机器人自由度上最大的稳定速度,有的厂家指手臂大合成速度,通常欧洲技术参数中就有说明。工作速度越高,工作效率就越高。但是,工作速度越高就要花费更多的时间去升速或降速。 4.承载能力 承载能力是指机器人在工作范围内的任何位置上所能承受的最大质量。承载能力不仅决定于负载的质量,而且与机器人运行的速度、加速度的大小和方向

3个自由度机械手

优秀设计 引言 机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。 机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。

1.1 机械手的分类 机械手一般分为三类:第一类是不需要人工操作的通用机械手。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定的操作。它的特点是具备普通机械的性能之外,还具备通用机械、记忆智能的三元机械。第二类是需要人工才做的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是用专用机械手,主要附属于自动机床或自动线上,用以解决机床上下料和工件送。这种机械手在国外称为“Mechanical Hand”,它是为主机服务的,由主机驱动;除少数以外,工作程序一般是固定的,因此是专用的。 在国外,目前主要是搞第一类通用机械手,国外称为机器人。本课题所做的机械手是属于第三类机械手。 1、简史 机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。它的结构是:机体上安装一个回转长臂,顶部装有电磁块的工件抓放机构,控制系统是示教形的。 1962年,美国联合控制公司在上述方案的基础上又试制成一台数控示教再现型机械手。商名为Unimate(即万能自动)。运动系统仿照坦克炮塔,臂可以回转、俯仰、伸缩、用液压驱动;控制系统用磁鼓作为存储装置。不少球坐标通用机械手就是在这个基础上发展起来的。同年该公司和普鲁曼公司合并成立万能自动公司,专门生产工业机械手。 1962年美国机械制造公司也实验成功一种叫Vewrsatran机械手。该机械手的中央立柱可以回转、升降采用液压驱动控制系统也是示教再现型。虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。 1978年美国Unimate公司和斯坦福大学,麻省理工学院联合研制一种Unimate-Vicarm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差小于±1毫米。联邦德国机械制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业。 联邦德国KnKa公司还生产一种点焊机械手,采用关节式结构和程序控制。 日本是工业机械手发展最快、应用最多的国家。自1969年从美国引进两种机械手后大力从事机械手的研究。 前苏联自六十年代开始发展应用机械手,至1977年底,其中一半是国产,一半是进口。

全转动副三自由度并联机器人设计说明书资料

河北工业大学城市学院 毕业论文 作者:周** 学号:***** 系(专业):机械系 专业:机械设计与制造及其自动化 题目:全转动副三自由度并联机器人 指导者:李** 教授 (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 2015 年6月11 日

目录 1 绪论 ........................................................................................................................ - 4 - 1.1 引言 .............................................................................................................. - 4 - 1.2 此次课题研究背景和意义 ........................................................................ - 4 - 1.3 串并联机器人的国内外研究现状、使用范围及发展趋势 ...................... - 5 - 1. 4 本次毕业设计主要完成工作 ..................................................................... - 6 - 1.4.1 基本内容 ............................................................................................ - 6 - 1.4.2 课题研究拟采用的手段和工作路线 ................................................ - 6 - 2 总体方案的设计 .................................................................................................... - 7 - 2.1 总体布局的设计 ....................................................................................... - 7 - 3 由基本参数选定标准件的型号 .......................................................................... - 10 - 3.1 减速机的选择 .......................................................................................... - 10 - 3.2 选择伺服电机并对其检验 ...................................................................... - 12 - 3.3 轴承的选择及校核 .................................................................................... - 15 - 3.4 联轴器的选择 .......................................................................................... - 17 - 4.1 支链尺寸的确定 ........................................................................................ - 19 - 4.2 对主动轴尺寸的确定及校核 .................................................................... - 20 - 4.3 对支链上转动副的设计 ............................................................................ - 22 - 4.4 支链末端设计 ............................................................................................ - 25 - 5 机构的整体布局设计及机架设计 ...................................................................... - 2 6 - 结论 ...................................................................................................................... - 29 - 参考文献 .................................................................................................................... - 31 - 致谢 ............................................................................................................................ - 32 -

7自由度工业机器人机械结构毕业设计

摘要 7 自由度工业机器人以工作范围大、动作灵活、结构紧凑、能抓取靠近机座的物体等特点备受设计者和使用者的青睐。由于有一个冗余自由度,很容易在确保最佳焊接姿势的同时,避免工件以及夹具对机器人工作臂的干扰。 本论文首先根据机器人持重3kg、工作范围1434mm、本体重量150kg,确立机器人为S腰部回转、L小臂摆动、E大臂回转、U臂部俯仰、R腕部扭转、B 腕部俯仰、T腕部回转的7自由度关节型弧焊机器人的总体结构;分析机器人的各个关节在转动惯量、角速度、加速度等技术指标下的工作状况,确定7个关节都采用交流电机驱动、机器人手臂专用减速器传动,同时B、T腕部关节还用到同步带传动。通过计算各关节所需电机的功率和转矩、减速器的减速比、同步带的要求并选型;用UG NX6.0画出机器人的各关节三维仿真模型,并装配成型。 本课题研究具有广泛的实际意义和应用前景。设计的7自由度工业机器人为后续的机器人动力学分析和运动控制提供了参考依据,并可以做进一步的研发。 关键词:7自由度,工业机器人,机械结构

Abstract 7 dof industrial robots with large scope of work, flexible, compact structure, can grab the object near the base are famous among so much designers and users. Because there is a redundant freedom, it is easy to ensure the best welding position at the same time, avoid workpiece and fixture work on the robot arm interference. In this thesis, according to the robot puts up 3kg, the scope of work is 1434mm, body weight is 150kg,establish 7 dof joint structure of arc-welding robot including S waist, L arm swing, E arm rotation, U pitching arm, R wrist turn, B wrist pitch, T wrist rotation. Analysis of the various robot joints in moment of inertia, angular velocity, acceleration and other technical indicators of the work under the conditions identified seven joints driven by AC motor, the robot arm dedicated reducer drive, while B, T wrist joint is also used in synchronous belt drive. Required by calculating the joint motor power and torque, reduction ratio reducer, belt requirements and selection; robot with UG NX6.0 draw three-dimensional simulation model of each joint, and assembly molding. This research has extensive practical significance and application prospect. 7 dof industrial robots designed for the follow-up dynamics analysis and motion control and provide a reference, and can do further research and development. Key words: 7 dof, industrial robot, mechanical structure

相关主题
文本预览
相关文档 最新文档