当前位置:文档之家› Report on OHS risk control program in Castle Peak Power

Report on OHS risk control program in Castle Peak Power

Report on OHS risk control program in Castle Peak Power
Report on OHS risk control program in Castle Peak Power

Report on OHS risk control program in Castle Peak Power

(CPPS)

Table of Contents

Executive Summary (1)

Overview (2)

1. Blackground (3)

2. Safety and health management (3)

3. Records and records management (5)

3.1 Responsibility (5)

3.2 Control requirements (6)

4. Hazard identification, risk assessment and risk control plan (6)

4.1 Recognition (7)

4.2 identify the control flow (7)

5 Risk Assessment (8)

6. Conclusion (8)

6.1 Steps of risk control (8)

6.2 Risk Control Strategies (9)

6.3 Ways of Risk Control (10)

7. Problems and improvements (10)

Reference (13)

Executive Summary

Based on an example of OHS(Occupational Health and Safety)risk control of the overseas EPC environmental project.For example, It introduced the current OHS and Risk Management practices of the organization ,the ways of OHS issues are communicated and documented , and assess the frequency of hazard identification& risk/safety audits. Finally the characteristic and program of OHS risk control in CPBEC(Castle Peak B Emission Contro1)project were presented.Describing current OHS risk management of domestic environmental protection enterprises in the main problems and improvement measures.

Overview

Occupational Health has a wide reaching application as it relates directly to factors in the workplace that may contribute to the ill health (physical and mental)in the workplace. (MSWW, 2010)

-Some of the issues covered by occupational health include:

-Occupational overuse syndrome

-Lung diseases

-Heat stress

-Hygiene and sanitation

-Infectious diseases

-Poisoning from chemicals

-Industrial deafness

-Vibration and noise

-Psychological

Occupational safety involves protecting people from danger.

This can include protection from:

-Trips, slip and falls

-Falls from heights

-Strains and sprains

-Being hit by falling objects

-Electric shock

-Unguarded machinery

-Unsafe structures

-Unsafe use of vehicles

1. Blackground

Hong Kong Castle Peak Power (CPPS) is the largest power plant in Hong Kong, it is also the largest coal-fired power plant in the world. One of its Controlling shareholders, is the United States Mobil Oil (EXXONMOBIL) company. CPPS total generating capacity of 4,120 MW, by the 4 × 350MW power plant at Castle Peak A (CPA) and the 4 × 680 Castle Peak B Power Plant (CPB) composition. CPPS is located in T ap Shek Kok in Tuen Mun, covers an area of 62 hectares. Unit 4X680MW of emission control engineering in Hong Kong Castle Peak 'B' power plant (CPBEC) ,is the first of a limestone forced oxidation wet FGD overseas EPC projects, FGD system is the Hong Kong Castle Peak 'B' power plant coal-fired boiler renovation project. The project includes FGD process equipment (absorber, limestone preparation and gypsum dewatering process), limestone and gypsum material handling and storage systems, FGD wastewater treatment system and its auxiliary facilities, tanks, piping, electrical, process instrumentation, valves, pipe support and housing, the minimum design life of 15 years. The project consists of construction of Wuhan Kaidi Electric Power Environmental Protection Co., Ltd., Overseas customers of the project occupational health and safety (OHS) of great concern to become a major feature of the project, which engaged in FGD equipment to the domestic export turnkey EPC presented a huge challenge to companies .

2. Safety and health management

CPPS is committed to conducting business in a manner that protects and promotes the safety and health of our employees, those involved with our operations, and the communities where we work. These commitments are documented in our safety, health, and product safety policies and security expectations, which are implemented through

their Operations Integrity Management System(OIMS) framework. T o drive continuous improvement, OIMS is periodically updated. The latest revision, completed in 2009, includes strengthened expectations with respect to leadership, process safety, and assessments of OIMS effectiveness. As countries have varying standards for safety and health, our expectation is that we operate either to our own standards or those of the local country, whichever are most stringent.( SHM,2009)

The OIMS Framework includes 11 Elements. Each Element contains an underlying principle and a set of Expectations. The OIMS Framework also includes the characteristics of, and processes for, evaluating and implementing OI Management Systems. Application of the OIMS Framework is required across all of CPPS, with particular emphasis on design, construction and operations. Management is responsible for ensuring that management systems satisfying the Framework are in place. The scope, priority and pace of management system implementation should be consistent with the risks associated with the business.

element 1: management leadership, commitment and accountability

element 2: risk assessment and management

element 3: facilities design and construction

element 4: information/ documentation

element 5: personnel and training

element 6: operations and maintenance

element 7: management of change

element 8: third-party services

element 9: incident investigation and analysis

element 10: community awareness and emergency preparedness

element 11: operations integrity assessment and improvement ‘

3. Records and records management

Establish and maintain "records management procedures", the relevant functional departments should strictly control the health and safety and environmental management record timeliness, accuracy, authenticity and integrity, to confirm the safety and health and environmental actions are consistent with the requirements, system operating effectively .

3.1 Responsibility

3.1.1 Quality Assurance Department is responsible for developing and organizing the implementation of "records management program."

3.1.2 All relevant departments make the department responsible for health and safety of the preparation of environmental management record forms, records, registration, identification, collection, cataloging, archiving, storage, custody and treatment.

3.2 Control requirements

3.2.1 All relevant departments in accordance with the provisions of the relevant program files, make a record immediately after the completion of the work.

3.2.2 Record Applicants should write clearly and be complete, accurate, timely, not free to alter or falsify records.

3.2.3 Environmental Management records need to correct the clerical error, the application of markings to the value of the original record and write accurate records, correct the record to be recognized by the signature.

3.2.4 Safe keeping of records, filing records to determine the scope of the required time to the company's quality assurance department archives. Storage means (including hard copy or electronic media) should be identifiable, easy to access, to avoid damage, deterioration or loss.

3.2.5 The period for record-keeping "records management procedures" provisions.

3.2.6 Records to meet the ISO14001 standard 3.6, OHSAS18001 standards.

4. Hazard identification, risk assessment and risk control plan

CPBEC project's main hazards are: against objects, vehicle damage, mechanical injury, lifting hazards, radiation, electrocution, drowning, scalding, fire, high-altitude fall, collapse, slip (fall), and other damage.(HE, 2009)

4.1 Recognition

From the work content (design, procurement, construction, etc.) and staff may be involved in both the workplace to identify hazards and the corresponding laws, regulations, development of HCP. Hazard identification should take into account factors related to the project, including working environment, layout, traffic routes, building structure, construction process, construction equipment, large equipment, special places, hazardous location, facilities, staff of the psychological and physiological factors , Ergonomics, illegal command / operations, in violation of labor discipline, luck and so on.

Identification methods include: According to relevant laws, regulations and customer requirements for recognition; Design project by the design of systems or equipment used to identify HAZOP and HFE Act; procurement of professional equipment and transportation at the project identification process; construction professionals by projects segment, sub-project, one by one to identify and evaluate; project personnel to identify the place by activity.

4.2 identify the control flow

Identify control processes include: identifying with the project-related laws, regulations and customer requirements; prepare and update the HCP; reasonable under the requirements of HCP evaluation; HCP identification and control of conduct supervision and inspection, suggest improvements.

5 Risk Assessment

List of risk control based on control of planning, approval and implementation. In the list, risk assessment using LEC method, the formula is S = LEC, where £ is the possibility of an accident, E is the frequent exposure to hazardous levels, C for the consequences of the accident. S level of risk by risk-based values. The classification of risk is a rule of thumb to determine their range is not fixed. At different times, according to the specific conditions limit value for continuous improvement. Requirements. s score of 1-500. (T able 1)

T able l OHS risk control program in the criteria for the classification of the scores

6. Conclusion

6.1 Steps of risk control

(1) identify the business activities. Business activities include: staff, setting equipment, work activities, workplace and environment.

2) the preparation of hazard control plan (HCP). Projects should be some activities, products or services, the impact of occupational health risk Basis for identifying the business activities and all sources of danger, considering who would be hurt and how to hurt.

(3) the preparation of risk evaluation and control list (ORCL).

(4) determine the level of risk, if necessary, by level of risk provisions colors are identified in order to facilitate risk control and management.

(5) the preparation and implementation of OHS management plan (OMP).

(6) the implementation of operational control, review plans, and programs have a list effectiveness and continuous improvement.

6.2 Risk Control Strategies

Risk control strategy should first consider the elimination of risk (if possible), then consider reducing the risk, and finally consider the specific use of protective equipment and supplies. Risk control strategy in T able 2 (the table was named 1,2,3,4 Hazard risk level are important risk factors.) (HE, 2009)

T able 2 OHS risk control strategy

2 Budgeting the cost of reducing

6.3 Ways of Risk Control

(1) Operational control. All the risks, should be "operational control process order "requirements management.

(2) Using OMP control. For three or more wind insurance, should be developed to control OMP.

(3) The emergency control. The risk for potential emergency situations, should be press "control procedures for emergency preparedness and response" requirements to develop emergency preparedness prepare and respond to control measures required to manage.

(4) Risk control process.

7. Problems and improvements

Since the contract price and the management system, and many other reasons, our OHS risk in environmental management of the project with foreign advanced enterprises. There is a big gap compared, mainly reflected in the following areas: (HE,2009)

(1) OHS risk control staff input and the quality of personnel is not enough. As the market price of gas emissions project seriously low, and countries do not have the number and qualifications on the OHS staff mandatory requirements, the amount of compensation after the casualties occurred relatively low, resulting in the contractor do not want to invest a lot of OHS management. In addition, ask to OHS management staff working language is English, not allowed to use translation, which is the domestic environmental protection enterprises is a huge challenge.

(2) Coverage of OHS risk control is not enough. T o reduce management costs, in the hazard identification and risk control, domestic enterprises of the construction stage to take more, and the design and procurement stage to take less, considering only the employees in the workplace risk involved, do not take into account products, activities and services during hazard.

(3) OHS training inadequate. Although the country will also establish a three-tier training system, but the coverage of training, depth and effectiveness can not meet the requirements.

(4) OHS risk control and management are not standardized. For all types of hazards, overseas customers have developed detailed regulations and documents, and strict enforcement, and domestic management is not in place.

(5) OHS incident reporting and investigation system is imperfect. Construction of environmental protection projects in the country, if not for the accident, the contractor for some few small incidents reported to the owners.

In short, the domestic environmental protection enterprises in overseas EPC projects of environmental protection in the OHS risk control and overseas customers in the management philosophy and management system, there is a gap. T o reduce that gap, we must improve our level of environmental protection projects in the construction

equipment operating efficiency and environmental protection, on the one hand, the state industry department for environmental projects should be managed to develop a detailed standardized OHS management documents, and items at the market price constraints to ensure that the owners put in OHS management. On the other hand, China's environmental protection enterprises should be updated management concept, the establishment of enterprises with international advanced standards of the OHS management system, develop a project for the international environmental OHS management team.

Reference

(2010)Hazard Identification and Risk Assessment control procedures CSCEC/HS-E/B25-01

Procedures for identification and evaluation of environmental factors CSCEC/HS-E/B25-02

He ZhaoZhu (2009) Brief introduction of OHS risk control program in Castle Peak B 4 X 680 MW emission control project

Monitor a Safe Workplace Workbook (2010) BSBOHS401A Monitor a Safe Workplace Notes and Workbook- Occupational Health and Safety

Safety and Health Management(2009) Reviewed at 13 December,2010 https://www.doczj.com/doc/0a1412863.html,/Corporate/community_safety_mgmt.aspx

杭州湾跨海大桥总结报告

杭州湾跨海大桥 调 查 总 结 报 告 调查组:茅以升班第8组 2011年11月11日

杭州湾跨海大桥调查总结报告 尊敬的各位老师、同学们: 你们好!我们小组负责的是杭州湾跨海大桥项目。杭州湾跨海大桥是一座横跨中国杭州湾海域的跨海大桥,它北起浙江嘉兴海盐郑家埭,南至宁波慈溪水路湾,全长36公里,是目前世界上最长的跨海大桥,比连接巴林与沙特的法赫德国王大桥还长11公里,已经成为中国世界纪录协会世界最长的跨海大桥候选世界纪录,成为继美国的庞恰特雷恩湖桥和青岛胶州湾大桥是目前世界上最长的跨海大桥后世界第三长的桥梁。杭州湾跨海大桥于2003年11月14日开工,2007年6月26日贯通,启用日期是2008年5月1日。现在我们向各位老师和工作组作简要汇报: 1.工程概况 1.总体概况 杭州湾跨海大桥全长36公里,其中桥长35.7公里,双向六车道高速公路,设计时速100km。总投资约107亿元,设计使用寿命100年以上。大桥设北、南两个通航孔。北通航孔桥为主跨448m的双塔双索面钢箱梁斜拉桥,通航标准35000吨;南通航孔桥为单塔单索面钢箱梁斜拉桥,通航标准3000吨。大桥两岸连接线工程总长84.4公里,投资52.1亿元。其中北连接线29.1公里,投资额17.8亿元;南岸接线55.3公里,投资额34.3亿元。大桥和两岸连接线总投资约140亿元,实际建设工期43个月。 资金来源:2001年9月成立项目公司,大桥建设投资额为118亿,资本金为38.5亿元。其中,宁波方占90%股份,嘉兴方占10%

股份。公司资本金中民营企业投资占到50.25%。投资方分别是:宁波市交通投资开发公司45%;杭州宋城集团有限公司17.3%;慈溪建桥投资有限公司12.83%;慈溪天一投资有限公司9.26%;慈溪兴桥投资有限公司7.41%;雅戈尔集团股份有限公司4.5%;余姚市杭州湾大桥投资有限公司3.7%;嘉兴市高速公路建设指挥部投资开发有限公司10%。本项目商请国家开发银行、中国工商银行、中国银行、浦发银行等四家银行贷款70亿元。 建设单位:宁波交通工程建设集团有限公司、浙江省交通工程建设集团有限公司等13家单位。 质监单位::交通部质监总站。 设计单位:参与设计的单位有中铁大桥勘测设计院、交通部第三航务工程勘测设计院和中交公路规划设计院3家单位。 监理单位:厦门市路桥建设监理有限公司、东北林业大学工程监理部等9家单位。 施工单位:中国中铁是杭州湾跨海大桥建设的主力军,下属的中铁二局、中铁四局和中铁大桥局三家单位承担了大部分工程的施工。 2.建筑结构设计概况 大桥的结构为双塔钢筋混凝土斜拉桥,双向6车道,设计时速100公里,设计使用寿命100年,建设期限5年。建成后,宁波杭州湾大桥将成为世界上最长、工程量最大的世界第一跨海大桥。 大桥设南、北两个航道,其中北航道桥为主跨448米的钻石型双塔双索面钢箱梁斜拉桥,通航标准为3.5万吨级轮船;南航道桥为主跨318米的A型单塔双索面钢箱梁斜拉桥,通航标准为3000吨级轮

杭州湾跨海大桥导游词

杭州湾跨海大桥导游词 现在我们登上是世界最长的跨海大桥——杭州湾跨海大桥。 它北起嘉兴市海盐,跨越杭州湾海域,止于宁波市慈溪,全长36公里,超过了美国的切萨皮克海湾桥和巴林道堤桥等世界名桥,而成为目前世界上最长的跨海大桥。 杭州湾大桥于2003年11月14日开工,2007年6月26日全桥贯通,2008年5月1日建成通车。大桥按双向六车道高速公路设计,设计时速100公里/小时,设计使用年限100年,总投资约140亿元,也有人说是118亿,不管它用了亿,反正如果把这些钱铺在桥面上估计还铺不完。 虽然杭州湾跨海大桥全长只有36公里长,但它建成后,将直接缩短宁波至上海、嘉兴、江苏的陆路距离120公里,以后这两岸的交往再不用往杭州绕一圈了。所以有人说,对大桥的命名宁波人和嘉兴人最不服气了,明明是宁波和嘉兴人出钱(杭州湾大桥由宁波、嘉兴两地以9:1的比例出资兴建)却叫杭州湾大桥,听起来却象是杭州的大桥,应该叫“甬嘉大桥”才对啊!上杭州湾大桥有四看:一是看技术;二看前途;三是看桥景;四是看灯光。 一、看技术 它共获得250多项技术创新成果,形成了9大系列自主核心技术,创造了多项世界第一。是一座桥最长、工程量最大、景观优美、科技含量高、施工环境非常复杂的世界级大桥,比如世界第一架、中华梁王、

定海神针、精确架设等等都是值得一提的。 为什么有哪么多世界第一呢?那是杭州湾给的。杭州湾为世界三大强潮海湾之一,与杭州湾并称世界三大强潮湾的还有亚马逊河口、恒河河口。强潮湾的施工条件非常恶劣,一是“风大”,还经常产生卷风;二是“流快”,平均流速是2.39米/秒,实测最大流速5米/秒以上;三是“潮乱”,天下第一潮钱江潮看是好看,可对建桥来说却是很要命的。因此,一年有效施工工作日不足200天。 我已经听到了,下面有人在叫“哇”、“啊”!以后大家会发现,上大桥听到最多的就是这两个字,游客都为杭州湾大桥巨大的工程所惊叹,找不到形容词来形容大桥了。也许大家还记得毛泽东对南京长江大桥的赞叹“一桥飞架南北,天堑变通途”,你看人家那才叫文化、叫水平。而被毛泽赞叹的南京长江大桥的正桥长度其实只有1.6公里,而我们脚下的杭州湾跨海大桥全长36公里,如果他老人家如果在世的话不知会怎么样赞叹,但有一点是可以相信的,伟人肯定不会用“哇”、“啊”来赞叹大桥。 我也不会写诗,但我可以告诉大家一些关于大桥的数据。建桥用了多水泥?240多万立方米;大桥有几个桩呢?各类桩基7500多根;用了多少钢材呢?约60多万吨。单片梁最重的是多少呢?2200吨。 这样介绍大家可能不太专业,下面我引用一下专家们对杭州湾大桥技术的介绍。 世界第一架——杭州湾南岸滩涂长达10公里,车不能开,船不能行,“梁上运架梁”是最好的选择。大桥建设者研发了运梁机等5大设备,

世界第一杭州湾跨海大桥

世界第一杭州湾跨海大桥 世界第一杭州湾跨海大桥 十一期间开车走了一趟杭州湾跨海大桥,真的被大桥的壮丽和工程的伟大所震惊了!难以想象人类居然可以在茫茫的大海上建造出如此大跨度的桥梁,总长度达到了36公里!目前是世界第一长的跨海大桥,也是我们中国的骄傲~ 摘录以下文字和图片来表达我对此工程的敬意吧: 杭州湾跨海大桥是一座横跨中国杭州湾海域的跨海大桥,它北起浙江嘉兴海盐郑家埭,南至宁波慈溪水路湾,全长36公里,是目前世界上最长的跨海大桥,比连接巴林与沙特的法赫德国王大桥还长11公里,已经成为中国世界纪录协会世界最长的跨海大桥候选世界纪录,成为继美国的庞恰特雷恩湖桥后世界第二长的桥梁。 简介 开工时间:2003年11月14日 杭州湾跨海大桥贯通:2007年6月26日启用日期:2008年5月1日载有:双向六车道省份:浙江省跨越:杭州湾地点:嘉兴市海盐和宁波市慈溪设计结构:跨海大桥最长跨距:325米总长度:36公里桥下净空:47米通行费:大型车70元小型车50元设计时速:100公里总投资约:118亿元设计使用年限:100年经纬度:北纬30度27分,东经121度08分 里程编号 杭州湾跨海大桥属于沈(阳)--海(口)高速公 杭州湾跨海大桥路的一部分。该国家高速全长3710公里,由不同省(市)多段高速公路组成。如果从起点一直编到终点,过大的里程桩号反而让司机无法判断在

某省的行驶里程,也不利于当地公路部门进行管理。因此,按照交通部编制的《国家高速公路网规划》,各省均自行编制本省的里程桩号。地理 沈海高速由北向南,从江苏进入浙江。衔接杭州湾跨海大桥就是嘉兴境内的大桥北岸接线。目前,该工程一期已经建成,目前正在筹备二期工程建设。北接线二期将延伸至江苏,与南通的苏通大桥相接,到2010年可以完工。而江、浙交界处,就是沈海高速浙江段的零公里处。从零公里到大桥北岸起点,就是49公里处,而加上大桥36公里,到宁波上岸,就是85公里了。今后,该里程桩号将一直自然延伸到温州出浙江境为止。杭州湾跨海大桥建成后将缩短宁波至上海间的陆路距离120公里,是国道主干线--同三线跨越杭州湾的便捷通道。 ,设计使用年限100年,大桥按双向六车道高速公路设计,设计时速100公里/h 总投资约140亿元。2003年11月14日开工,经过43个月的工程建设,2007年6月26日全桥贯通,计划于2007年11月30日前完成桥面铺装,大桥已于2008年5月1日晚11时58分正式通车。2008奥运火炬传递中穿越了杭州湾跨海大桥。意义 大桥的建设有利于主动接轨上海,扩大开放,推动长江三角洲地区合作与交流,提高浙江省特别是宁波市和嘉兴市对内对外开放水平,增强综合实力和国际竞争力;有利于完善长江三角洲区域公路网布局及国道主干线,缓解沪、杭、甬高速公路流量的压力;有利于改变宁波市交通末端的状况,从而变成交通枢纽,实施环杭州湾区域发展战略;有利于促进江、浙、沪旅游发展的需要。杭州湾跨海大桥是国道主干线--沈海线跨越杭州湾的便捷通道,是国家高速公路网杭州湾环线(G92)的组成部分。大桥北起嘉兴市海盐郑家埭,跨越宽阔的杭州湾海域后止于宁波市慈溪水路湾,全长35.5km。大桥建成后将缩短宁波至上海间的陆路距离120余公

浅谈杭州湾跨海大桥

浅谈杭州湾跨海大桥 摘要:本文从桥梁工程入手,概述了桥梁工程对地区经济的重要性。具体分析杭州湾跨海大桥的施工、影响、特点等诸多方面。总的来说杭州湾跨海大桥这个项目是比较有建设意义的,它的影响也是可观的。 关键词: 杭州湾跨海大桥;经济圈;工程难点;桥梁施工;技术分析;成就;技术创新 1.杭州湾大桥对两岸经济的影响及建设的必要性 杭州湾特殊的喇叭口地形,在带给大家壮丽的钱江潮的同时,也给了杭州湾两岸甚至整个浙东北地区交通条件的劣势尤其导致了较差的通达性,在一定程度上制约了杭州湾两岸其他地区的经济发展。而浙江是以发展地区特色经济为主的,随着我国经济的高速发展,现有的通行方式已经不能满足人们的需求,因此杭州湾跨海大桥就应运而生。杭州湾位于我国改革开放最具活力、经济最发达的长江三角洲地区。建设杭州湾跨海大桥,对于整个地区的经济、社会发展都具有深远的、重大的战略意义。 1.1 直接促进宁波、嘉兴经济社会的发展,带动周边地区杭州、绍兴、台州、舟山、温州等地的发展,并对全省、乃至长江三角洲南翼地区的整体发展产生积极影响。同时它对于促进沪苏浙整个长江三角洲区域经济整合和一体化发展也具有十分重要的意义。 1.2 有利于发挥以上海为龙头的集聚和辐射作用,进一步提升浙江省的综合竞争力。大桥的建设,将大大缩短浙东南沿海与上海之间的时空距离,使浙江省可在更大范围、更高层次、以更优越的地理优势,融入国际大都市经济圈。 1.3 有利于推进城市化发展战略。大桥建设将进一步密切嘉兴、宁波、绍兴、台州等城市的联系,促进浙江省杭州湾城市连绵带和沿海对外开放扇面的形成,从而将这一区域提升为以上海为龙头的、具有国际竞争力的都市群的最重要组成部分。 1.4 作为我国沿海大通道中的第一座跨海大桥,突破了杭州湾的瓶

杭州湾跨海大桥工程思维剖析

杭州湾跨海大桥工程思维剖析 工程思维是价值定向的思维,工程思维的目的是满足社会生活需要,创造更大的价值(包括各种社会价值和生态价值在内的广义价值,而非侠义的经济价值)。工程思维是与具体的“个别对象”联系在一起的”。所以,工程思维方式就成为了以“个别性”“独特性”为思维灵魂的一种思维方式。同时工程思维必然是与思维对象的具体时间或具体时段联系在一起的思维,即具有“当时当地性”特征的。 杭州湾跨海大桥工程全长36 km,其中大桥长35.7 km,是世界上第二长、工程规模最巨大的一座桥梁,大桥南北两航道采用斜拉桥。根据本桥规模巨大、水文条件复杂、气象多变、工程地质条件差、海洋腐蚀环境等特定建设条件的需要,杭州湾跨海大桥工程总体设计采用了多项新技术、新工艺、新材料、新设备和新理论,实现了多项桥梁设计技术创新和设计理念创新. 我国2008年5月1号通车的杭州湾跨海大桥,大桥工程全长36公里,海上段长度达32公里。全桥总计混凝土245万立方,各类钢材82万吨,钢管桩5513根,钻孔桩3550根,承台1272个,墩身1428个,工程规模浩大。是世界上最长、工程规模最巨大的一座桥梁,其中北航道布孔为70m+160m+448m+160m+70m=908m,钻石形双塔双索刚面箱梁斜拉桥;南航道布孔为100m+160m+318m=578m,A形独塔双索面钢箱梁斜拉桥。水区引桥采用70m跨径整孔预制吊装的连续箱梁结构,滩涂区引桥采用50m跨径整孔预制吊装的连续箱梁结构。据初步核定,大桥共需要钢材76.7万吨,水泥129.1万吨,石油沥青1.16万吨,木材1.91万立方米,混凝土240万立方米,各类桩基7000余根,为国内特大型桥梁之最。南滩涂50米*16米箱梁采用整孔预制,大型平板车梁上运梁的工艺,开创了国内外重型梁运架的新纪录。 大桥在设计中首次引入了景观设计的概念。景观设计师们借助西湖苏堤“长桥卧波”的美学理念,兼顾杭州湾水文环境特点,结合行车时司机和乘客的心理因素,确定了大桥总体布置原则。整座大桥平面为S形曲线,总体上看线形优美、生动活泼。从侧面看,在南北航道的通航孔桥处各呈一拱形,具有了起伏跌宕的立面形状。 科技含量之高首先体现在施工工艺上。我们坚持尊重科学,依靠专家,广泛开展技术咨询和交流活动。根据专家意见提出了施工决定设计,采取

杭州湾大桥设计说明解读

说明 1. 设计范围 本册图纸为杭州湾跨海大桥施工图第二卷《北航道桥》第一册《总体设计》,内容主要包括:地质剖面、平面、桥型总体布置、主要构件一般构造、施工流程及主要工程材料数量。交通工程、安全设施、桥梁景观、桥涵标及桥面系未包括在本册内。 2. 设计依据 ?《杭州湾大桥工程设计第一合同段合同书》(合同编号:HT-SJ-2001-01)。 ?杭州湾大桥初步设计文件及其补充文件。 ?交通部交公路发[2003]313号文对杭州湾跨海大桥初步设计的批复。 ?杭州湾大桥工程指挥部甬嘉桥指[2003]42号文。 ?杭州湾跨海大桥有关专题研究成果。 3. 设计规范 3.1 设计遵守的主要规范 ?《公路工程技术标准》(JTJ 001-1997)。 ?《公路工程抗震设计规范》(JTJ 004—1989 )。 ?《公路桥涵设计通用规范》(JTJ 021—1989)。 ?《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023—1985)。 ?《公路桥涵地基与基础设计规范》(JTJ 024—1985)。 ?《公路桥涵钢结构及木结构设计规范》(JTJ 025—1986)。 ?《公路工程结构可靠度设计统一标准》(GB/T 50283—1999)。 ?《公路桥涵施工技术规范》(JTJ 041—2000)。 ?《公路工程地质勘察规范》(JTJ 064—1998)。 ?《公路工程水文勘测设计规范》(JTG 030—2002)。 3.2 设计参考的主要规范 ?《海港水文规范》(JTJ 213—98)。 ?《海港工程混凝土结构防腐蚀技术规范》(JTJ 275—2000)。 ?《桥梁用结构钢》( GB/T 714—2000 )。 ?《低合金结构钢》(GB 1591—94)。 ?《港口工程混凝土设计规范》(JTJ 267—98)。 ?《港口工程桩基工程规范》(JTJ 254—98)。 ?《水运工程混凝土施工规范》(JTJ 268—96)。 ?《水运工程混凝土质量控制标准》(JTJ 269—96)。 ?《公路桥梁抗风设计指南》。 ?日本本州四国联络桥《抗风设计基准及说明》(1976年参照标准)。 ⑴《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2003 报批稿)。 ⑵《公路工程技术标准》(JTG B01-2003)。 4. 主要技术标准 根据交通部交公路发[2003]313号文对杭州湾跨海大桥的批复意见,主要技术指标如下:

相关主题
文本预览
相关文档 最新文档