当前位置:文档之家› 基于正弦函数模型的算法的实现

基于正弦函数模型的算法的实现

基于正弦函数模型的算法的实现
基于正弦函数模型的算法的实现

逻辑函数的化简方法

一、公式法化简:是利用逻辑代数的基本公式,对函数进行消项、消 因子。常用方法有: ①并项法利用公式AB+AB’=A 将两个与项合并为一个,消去其 中的一个变量。 ②吸收法利用公式A+AB=A 吸收多余的与项。 ③消因子法利用公式A+A’B=A+B 消去与项多余的因子 ④消项法利用公式AB+A’C=AB+A’C+BC 进行配项,以消去更多 的与项。 ⑤配项法利用公式A+A=A,A+A’=1配项,简化表达式。 二、卡诺图化简法 逻辑函数的卡诺图表示法 将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上相邻排列,得到的图形叫做n变量最小项的卡诺图。 逻辑相邻项:仅有一个变量不同其余变量均相同的两个最小项,称为逻辑相邻项。 1.表示最小项的卡诺图 将逻辑变量分成两组,分别在两个方向用循环码形式排列出各组变量的所有取值组合,构成一个有2n个方格的图形,每一个方格对应变量的一个取值组合。具有逻辑相邻性的最小项在位置上也相邻地排列。

用卡诺图表示逻辑函数: 方法一:1、把已知逻辑函数式化为最小项之和形式。 2、将函数式中包含的最小项在卡诺图对应的方格中填 1,其余方格中填 0。 方法二:根据函数式直接填卡诺图。 用卡诺图化简逻辑函数: 化简依据:逻辑相邻性的最小项可以合并,并消去因子。 化简规则:能够合并在一起的最小项是2n个。 如何最简:圈数越少越简;圈内的最小项越多越简。 注意:卡诺图中所有的 1 都必须圈到,不能合并的 1 单独画圈。说明,一逻辑函数的化简结果可能不唯一。 合并最小项的原则: 1)任何两个相邻最小项,可以合并为一项,并消去一个变量。2)任何4个相邻的最小项,可以合并为一项,并消去2个变量。3)任何8个相邻最小项,可以合并为一项,并消去3个变量。 卡诺图化简法的步骤: 画出函数的卡诺图; 画圈(先圈孤立1格;再圈只有一个方向的最小项(1格)组合);画圈的原则:合并个数为2n;圈尽可能大(乘积项中含因子数最少);圈尽可能少(乘积项个数最少);每个圈中至少有一个最小

计算方法 课内实验 插值法与函数逼近

《计算方法》课内实验报告 学生姓名:张学阳1009300132 及学号: 学院: 理学院 班级: 数学101 课程名称:计算方法 实验题目:插值法与函数逼近 指导教师 宋云飞讲师 姓名及职称: 朱秀丽讲师 尚宝欣讲师 2012年10月15日

目录 一、实验题目.......................................................... 错误!未定义书签。 二、实验目的.......................................................... 错误!未定义书签。 三、实验内容.......................................................... 错误!未定义书签。 四、实现结果.......................................................... 错误!未定义书签。 五、实验体会或遇到问题 (6)

插值法与函数逼近 二、实验目的 1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解插值法及函数逼近方法的理论基础。 3.进一步掌握给定数据后应用插值法及函数逼近方法进行数据处理并给出图示结果的实际操作过程。 三、实验内容 1.已知函数在下列各点的值为 试用4次牛顿插值多项式)(4x P 及三次样条函数)(x S (自然边界条件)对数据进行插值。给出求解过程,并用图给出 (){},10,1,0),()(,08.02.0,,4 ===+=i x S y x P y i x y x i i i i i 及。 2.下列数据点的插值 可以得到平方根函数的近似。 (1)用这9个点作8次多项式插值)(8x L 。 (2)用三次样条(第一类边界条件)插值给出)(x S 。 给出求解过程,在区间[0,64]上作图,从得到的结果看,在区间[0,64]上哪种插值结果更精确?在区间[0,1]上两种插值哪个更精确? 3.由实验给出数据表 试求3次、4次多项式的曲线拟合,再根据数据曲线形状,求一个另外函数的拟合曲线。给出求解过程,用图表示实验数据曲线及三种拟合曲线。

正弦函数余弦函数的图像(附答案)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象? 答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线.

各种插值方法比较

空间插值可以有很多种分类方法,插值种类也难以举尽。在网上看到这篇文章,觉得虽然作者没能进行分类,但算法本身介绍地还是不错的。 在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括: Inverse Distance to a Power(反距离加权插值法) Kriging(克里金插值法) Minimum Curvature(最小曲率) Modified Shepard's Method(改进谢别德法) Natural Neighbor(自然邻点插值法) Nearest Neighbor(最近邻点插值法) Polynomial Regression(多元回归法) Radial Basis Function(径向基函数法) Triangulation with Linear Interpolation(线性插值三角网法) Moving Average(移动平均法) Local Polynomial(局部多项式法) 下面简单说明不同算法的特点。 1、距离倒数乘方法 距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法 克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法 最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。 4、多元回归法 多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋

实验四插值法

实验四、插值法 插值法是函数逼近的一种重要方法,它是数值积分、微分方程数值解等数值计算的基础与工具,其中多项式插值是最常用和最基本的方法。拉格朗日插值多项式的优点是表达式简单明确,形式对称,便于记忆,它的缺点是如果想要增加插值节点,公式必须整个改变,这就增加了计算工作量。而牛顿插值多项式对此做了改进,当增加一个节点时只需在原牛顿插值多项式基础上增加一项,此时原有的项无需改变,从而达到节省计算次数、节约存储单元、应用较少节点达到应有精度的目的。 一、实验目的 1、理解插值的基本概念,掌握各种插值方法,包括拉格朗日插值和牛顿插值等,注意其不同特点; 2、通过实验进一步理解并掌握各种插值的基本算法。 二、Matlab命令和程序 命令poly:创建一个向量,其分量为一个多项式的系数,该多项式具有给定的根。 命令polyval:求多项式的值, 命令 conv: 创建一个向量,其分量为一个多项式的系数,该多项式是另外两个多项式的积 polyval(C,2> >> P=poly(2> P=1 -2

Q=poly(3> Q=1 -3 >> conv(P,Q> ans= 1 -5 6 >> polyval(P,2> ans= 1、拉格朗日插值( 基于N+1个点,计算拉格朗日多项式> function [C,L]=lagran(X,Y> %input --X is a vector that contains a list of abscissasb5E2RGbCAP % Y is a vector that contains a list of ordinatesp1EanqFDPw %output--C is a matrix that contains the coefficient of the lagraneDXDiTa9E3d % interplatory polynomial % -- L is a matrix that contains the Lagrange coefficent polynomialsRTCrpUDGiT w=length(X>。 n=w-1。

插值法实验报告

实验二插值法 1、实验目的: 1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。 2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。 2、实验要求: 1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法; 2)编写上机实验程序,作好上机前的准备工作; 3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果); 4)分析和解释计算结果; 5)按照要求书写实验报告; 3、实验内容: 1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。 已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。 2) 求满足插值条件的插值多项式及余项 1) 4、题目:插值法 5、原理: 拉格郎日插值原理: n次拉格朗日插值多项式为:L n (x)=y l (x)+y 1 l 1 (x)+y 2 l 2 (x)+…+y n l n (x)

n=1时,称为线性插值, L 1(x)=y (x-x 1 )/(x -x 1 )+y 1 (x-x )/(x 1 -x )=y +(y 1 -x )(x-x )/(x 1 -x ) n=2时,称为二次插值或抛物线插值, L 2(x)=y (x-x 1 )(x-x 2 )/(x -x 1 )/(x -x 2 )+y 1 (x-x )(x-x 2 )/(x 1 -x )/(x 1 -x 2 )+y 2 (x -x 0)(x-x 1 )/(x 2 -x )/(x 2 -x 1 ) n=i时, Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) 6、设计思想: 拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。 7、对应程序: 1 ) 三次拉格朗日插值多项式求x=0.5635时函数近似值 #include"stdio.h" #define n 5 void main() { int i,j; float x[n],y[n]; float x1; float a=1; float b=1; float lx=0; printf("\n请输入想要求解的X:\n x="); scanf("%f",&x1); printf("请输入所有点的横纵坐标:\n"); for(i=1;i

数值分析(计算方法)实验一

《数值分析》 课程实验指导书 实验一 函数插值方法 一、问题提出 对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n == 。试用Lagrange 公式求其插值多项式或分段二次Lagrange 插值多项式。 数据如下: (1) j x 0.4 0.55 0.65 0.80 0.95 1.05 j y 0.41075 0.57815 0.69675 0.90 1.00 1.25382 求五次Lagrange 多项式5L ()x ,和分段三次插值多项式,计算(0.596)f ,(0.99)f 的值。(提示:结果为(0.596)0.625732f ≈, (0.99) 1.05423f ≈ ) (2) j x 1 2 3 4 5 6 7 j y 0.368 0.135 0.050 0.018 0.007 0.002 0.001 试构造Lagrange 多项式6L ()x ,计算的(1.8)f ,(6.15)f 值。(提示:结果为(1.8)0.164762f ≈, (6.15)0.001266f ≈ ) 二、要求 1、 利用Lagrange 插值公式 00,()n n i n k k i i k k i x x L x y x x ==≠??-= ?-??∑∏编写出插值多项式程序; 2、 给出插值多项式或分段三次插值多项式的表达式; 3、 根据节点选取原则,对问题(2)用三点插值或二点插值,其结果如何; 4、 对此插值问题用Newton 插值多项式其结果如何。

四、实验分析: Lagrange 插值多项式的表达式: 1,,2,1,)()()(, )()(1111+=--==∏∑+≠=+=n i x x x x x l x l y x L n i j j j i j i n i i i 。 其中)(x l i 被称为插值基函数,实际上是一个n 次多项式。)(x l i 的这种表示具有较好的对称性。公式具有两大优点:(1)求插值多项式,不需要求解线性方程组,当已知数据点较多时,此公式更能显示出优越性。(2)函数值可以用符号形式表示,数据点未确定的纵坐标可用多项式表示。 Newton 插值多项式如下: 10010,()()[,,]()k n n j k k j j k N x f x f x x x x -==≠=+?-∑∏ 其中: 00,0()()[,,]k i k i i j j j i k f x x x f x x ==≠-=∑∏ Newton 插值多项式的优点是:当每增加一个节点时,只增加一项多项式。 三、实验程序及注释 1、m 程序: function [c,l]=lagran(x,y) % x 为n 个节点的横坐标组成的向量,y 为纵坐标所组成的向量 % c 为所得插值函数的系数所组成的向量 w=length(x); n=w-1; l=zeros(w,w); for k=1:n+1 v=1; for j=1:n+1 if k~=j v=conv(v,poly(x(j)))/(x(k)-x(j)); end end l(k,:)=v; end c=y*l; function fi=Lagran_(x,f,xi) fi=zeros(size(xi)); n=length(f); for i=1:n

逻辑函数的公式化简方法

逻辑函数的化简方法 一、教学时数:30分钟 授课类型:理论课 二、教学目的、要求: 通过介绍、讲解逻辑函数化简方法中的公式法,让学生能够运用 公式法来化简逻辑函数。 三、教学重点:公式法中的并项法、吸收法、消去法、配项消项法 四、教学难点:配项消项法 五、教学方法:采用通过师生互动的方法让学生回答问题,上讲台解答题目的方法,让学生参与进来课堂教学中来。 六、教学内容: (一)回顾常用的公式与两个重要规则:(3分钟) 通过提问让大家回顾上节课的知识,并将重点部分展示出来。为了节省时 间,这部分的内容用PPT 展示。 1、德 摩根定理: 2、 A B A AB =+ 3、 A A B A =+ 4、B A B A A +=+ 5、C A AB BC C A AB +=++ 6、AB B A B A B A +=+ 7、C A B A C A AB +=+ 8、代入规则:在任何逻辑等十种,如果等式两边所有出现某一变量的地方, 都代之以一个函数,则等式仍然成立。 B A B A +=?B A B A ?=+

9、反演规则:对于任意一个函数表达式Y,如果将Y 中所有的“.”换成“+”,“+”换成“.”;“0”换成“1”, “1”换成“0”;原变量换成反变量,反变量换成原变量,那么所得到的表达式就是Y 的反函数Y 。(反演规则很有用,但在这一节我们主要用德 摩根定理) (二)介绍逻辑函数的各种最简式:(3分钟) 将各种类型的逻辑函数最简式在PPT 中展示出来,让学生思考他们是属于哪种最简式。 (最简与非与非式)(最简与或式) C A AB Z C A AB Z =+= (最简与或非式) (最简或非或非式)(最简或与式)C A B A Z C A B A Z C A B A Z +=+++=++=) )(( (三)运用公式法的四种方法来化简逻辑函数(19分钟) 将前三道例题在PPT 中展示出来,请学生上讲台到黑板上解答题目。(4分钟) 由三道例题引出前三种方法,在引出第四种方法(15分钟) 1、并项法:利用公式 A B A AB =+,把两个乘积项合并起来,消去一 个变量。 例题1: B B A AB =+= 2、吸收法:利用公式A AB A =+,吸收掉多余的乘积项。 例题2:E B D A AB Y ++=

计算方法-插值方法实验

实验一插值方法 一. 实验目的 (1)熟悉数值插值方法的基本思想,解决某些实际插值问题,加深对数值插值方法 的理解。 (2)熟悉Matlab 编程环境,利用Matlab 实现具体的插值算法,并进行可视化显示。 二. 实验要求 用Matlab 软件实现Lagrange 插值、分段线性插值、三次Hermite 插值、Aitken 逐步插值算法,并用实例在计算机上计算和作图。 三. 实验内容 1. 实验题目 (1 ) 已 知概 率积 分dx e y x x ?-= 2 2 π 的数据表 构造适合该数据表的一次、二次和三次Lagrange 插值公式,输出公式及其图形,并计算x =0.472时的积分值。 答: ①一次插值公式: 输入下面内容就可以得到一次插值结果 >> X=[0.47,0.48];Y=[0.4937452,0.5027498]; >> x=0.472; >> (x-X(2))/(X(1)-X(2))*Y(1)+(x-X(1))/(X(2)-X(1))*Y(2) ans =0.495546120000000 >> ②两次插值公式为: 输入下面内容就可以得到两次插值结果 >> X=[0.46,0.47,0.48];Y=[0.4846555,0.4937452,0.5027498]; >> x=0.472; >>(x-X(2))*(x-X(3))/((X(1)-X(2))*(X(1)-X(3)))*Y(1)+(x-X(1))*(x-X(3))/((X(2)-X(1))*(X(2)-X(3)))*Y(2)+(x-X(2))*(x-X(1))/((X(3)-X(2))*(X(3)-X(1)))*Y(3) i 0 1 2 3 x 0.46 047 0.48 0.49 y 0.4846555 0.4937452 0.5027498 0.5116683

正弦函数余弦函数的图像(附)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?

答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线. 根据诱导公式sin ????x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图). 要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),????π2,0,(π,-1),????3 2π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象. 思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象? 答案

逻辑代数及逻辑函数化简.doc

第 2 章 逻辑代数和逻辑函数化简 基本概念:逻辑代数是有美国数学家 George Boole 在十九世纪提出 , 因此也称 布尔代数 , 是分析和设计数字逻辑电路的数学工具。 也叫开关代数, 是研究只用 0 和 1 构成的数字系统的数学。 基本逻辑运算和复合逻辑运算 基本逻辑运算:“与”、“或”、“非”。 复合逻辑运算:“与非”、“或非”、“与或非”、“异 或”、“同或”等。 A B 基本逻辑运算 ~ 220V F 1. “与”运算①逻辑含义:当决定事件成立的所有条件全部具 备时,事件才会发生。 ②运算电路:开关 A 、B 都闭合,灯 F 才亮。 ③表示逻辑功能的方法: 真值表 A B F 灯 F 的状态代表 开关 A 、B 的状态代 0 0 表输入: 0 1 0 输出: 1 0 0 “ 0”表示亮; “0”表示断开; 1 1 1 表达式: F A B = ? 逻辑符号: A & FA FA F B B B 国家标准 以前的符号 欧美符号 功能说明: 有 0 出 0,全 1 出 1。 在大规模集成电路可编程逻辑器件中的表示符号: A B A B A B & F F F

通过“ ?”接入到此线上的输入信号都是该与门的一个输入端。推广:当有 n 个变量时: F=A 1A 2 A 3 ? ? ? A n “与”运算的几个等式: 0?0=0,0?1=0, 1?1=1 A?0=0(0-1 律), A?1=A (自等律),A?A=A (同一律), A?A?A=A (同一律)。 2. “或”运算①逻辑含义:在决定事件成立的所有条件中,只 要具备一个,事件就会发生。 A ②运算电路: 开关 A 、B 只要闭合一个,灯 F 就亮。 B ~220V F ③表示逻辑功能的方法: 逻辑功能: 有 1 出 1,全 0 出 0。 真值表:(略) 表达式: F=A+B 逻辑符号: A ≥ 1 F A FA F B + B B 国家标准 以前的符号 欧美符号 推广:当有 n 个变量时: F=A 1+A 2+ A 3+? ? ? +A n “或”运算的几个等式: 0+0=0,0+1=1, 1+1=1 A+0=A (自等律) A+1=1( 0-1 律),A+A=A (同一律)。 上次课小结:与、或的功能、表达式等,几个等式。 3.“非”运算 ①逻辑含义:当决定事件的条件具备时, 事件不 发生;当条件不具备时,事件反而发生了。 R ②运算电路:开关 A 闭合,灯 F 不亮。 ~ 220V A F ③表示逻辑功能的方法: 逻辑功能: 入 0 出 1,入 1 出 0。 真值表:(略) 表达式: F= A

实验5 插值方法

实验5 插值方法 一、实验目的及意义 [1] 了解插值的基本原理 [2] 了解拉格朗日插值、线性插值、样条插值的基本思想; [3] 了解三种网格节点数据的插值方法的基本思想; [4] 掌握用MATLAB 计算三种一维插值和两种二维插值的方法; [5] 通过范例展现求解实际问题的初步建模过程; 通过自己动手作实验学习如何用插值方法解决实际问题,提高探索和解决问题的能力。通过撰写实验报告,促使自己提炼思想,按逻辑顺序进行整理,并以他人能领会的方式表达自己思想形成的过程和理由。提高写作、文字处理、排版等方面的能力。二、实验内 容 1.编写拉格朗日插值方法的函数M 文件;2.用三种插值方法对已知函数进行插值计算,通过数值和图形输出,比较它们的效果;3.针对实际问题,试建立数学模型,并求解。 三、实验步骤 1.开启软件平台——MATLAB ,开启MATLAB 编辑窗口; 2.根据各种数值解法步骤编写M 文件 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.写出实验报告,并浅谈学习心得体会。 四、实验要求与任务 根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会) 基础实验 1. 一维插值 利用以下一些具体函数,考察分段线性插值、三次样条插值和拉格朗日多项式插值等三种插值方法的差异。 1) 2 11 x +,x ∈[-5,5]; 2)sin x , x ∈[0,2π]; 3)cos 10 x , x ∈[0,2π]. 注意:适当选取节点及插值点的个数;比较时可以采用插值点的函数值与真实函数值的 差异,或采用两个函数之间的某种距离。 2.高维插值 对于二维插值的几种方法:最邻近插值、分片线性插值、双线性插值、三次插值等,利用如下函数进行插值计算,观察其插值效果变化,得出什么结论? 1) ())(sin ),(px t t x f -=ω,参数p =1/2000~1/200;采样步长为:t =4ms~4s ;

正弦函数余弦函数的性质

正弦函数余弦函数的性质 教学目标 1.掌握y=sin x(x∈R),y=cos x(x∈R)的周期性、奇偶性、单调性和最值.(重点) 2.会用正弦函数、余弦函数的性质解决一些简单的三角函数问题.(难点) 3.了解周期函数、周期、最小正周期的含义.(易混点) [基础·初探] 教材整理1函数的周期性 阅读教材P34~P35“例2”以上部分,完成下列问题. 1.函数的周期性 (1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期. (2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 2.两种特殊的周期函数 (1)正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. (2)余弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. 函数y=2cos x+5的最小正周期是________.

解:函数y =2cos x +5的最小正周期为T =2π. 【答案】 2π 教材整理2 正、余弦函数的奇偶性 阅读教材P 37“思考”以下至P 37第14行以上内容,完成下列问题. 1.对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. 2.对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称. 判断函数f (x )=sin ? ?? ?? 2x + 3π2的奇偶性. 解:因为f (x )=sin ? ???? 2x +3π2=-cos 2x . 且f (-x )=-cos(-2x )=-cos 2x =f (x ),所以f (x )为偶函数. 教材整理3 正、余弦函数的图象和性质 阅读教材P 37~P 38“例3”以上内容,完成下列问题.

计算方法--插值法与拟合实验

实验三 插值法与拟合实验 一、实验目的 1. 通过本实验学会利用程序画出插值函数,并和原图形相比较 2. 通过本实验学会拟合函数图形的画法,并会求平方误差 二、实验题目 1. 插值效果的比较 实验题目:区间[]5,5-10等分,对下列函数分别计算插值节点k x 的值,进行不同类型的插值,作出插值函数的图形并与)(x f y =的图形进行比较: 2 11)(x x f +=; x x f arctan )(=; 4 41)(x x x f += (1) 做拉格朗日插值; (2) 做三次样条插值. 2. 拟合多项式实验 实验题目:给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数),(i i y x 和拟合函数的图形. 三、实验原理 本实验应用了拉格朗日插值程序、三次样条插值程序、多项式拟合程序等实验原理. 四、实验内容 1(1) figure x=-5:0.2:5; y=1./(1+x.^2); plot(x,y,'r'); hold on %拉格朗日插值 x1=-5:1:5; y1=1./(1+x1.^2); xx=-4.5:0.5:4.5; yy=malagr(x1,y1,xx); plot(xx,yy,'+') %三次样条插值 dy0=1./(1+25); dyn=1./(1+25);

m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok') 1(2) x=-5:0.2:5; y=atan(x); plot(x,y,'r'); hold on %拉格朗日插值 x1=-5:1:5; y1=atan(x1); xx=-4.5:0.5:4.5; yy=malagr(x1,y1,xx); plot(xx,yy,'+') %三次样条插值 dy0=1./(1+25); dyn=1./(1+25); m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok') 1(3) x=-5:0.2:5; y=x.^2./(1+x.^4); plot(x,y,'r'); hold on %拉格朗日插值 x1=-5:1:5; y1=x1.^2./(1+x1.^4); xx=-4.5:0.5:4.5; yy=malagr(x1,y1,xx); plot(xx,yy,'+') %三次样条插值 dy0=1./(1+25); dyn=1./(1+25); m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok') 2. x=[-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5]'; y=[-4.45 -0.45 0.55 0.05 -0.44 0.54 4.55]'; plot(x,y,'or'); hold on %三次多项式拟合 p1=mafit(x,y,3);

正弦函数和余弦函数的图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值;

数字电路逻辑设计--逻辑函数及其化简练习题

《数字电路逻辑设计》练习题 ---------- 逻辑函数及其化简 一. 用公式证明下列各等式。 1.()= D = +BC+BCD = +D= AB AC B C D AB AC D AB AC B CD AB AC AB AC +++=+++++++原式左边右边 2. A +BC (1+D)++BC =++BC=++BC =BC+BC=+BC=A C A B C D A BC A C A B A C A B A C B A A ?+?+??=+?????原式左边()右边 3. BCD BCD ACD+ABC +A BCD +BC +BCD BC +BD =BCD+A BCD BCD+BCD +ABC +BC +ACD =BCD+A BCD+BD+BC +ACD =BCD+ACD+BCD+BD+BC =BCD+ACD+BD+DC+BC =BCD+BD+DC+BC =C D+B + B D+C =BC+BD+BC= D D BC D D D D D D ++???=+?+???????原式左边()()右边 4. AB B+D CD+BC+A BD+A+CD=1=AB B+D CD BC+A BD A+C+D =AB+ B+D+CD)(B+C C D =(B+C +C D =BC+BD+CD+C+D=1=????????原式左边()++(B+D))+ 右边 二. 写出下列各逻辑函数的最小项表达式及其对偶式、 反演式 的最小项表达式 1. F=ABCD+ACD+BD =m m(0,1,2,3,5,7,8,9,10,13) F*=m(2,5,6,7,8,10,12,13,14,15) ∑=∑∑(4,6,11,12,14,15)F 2. F=AB+AB+BC =m m(0,1,6) F*=m(1,6,7) ∑=∑∑(2,3,4,5,7)F 3. F=AB+C BD+A D =m m(023******* ) F*=m(34511121315) B C +?++∑=∑∑(1,5,6,7,8,9,13,14,15) F ,,,,,,,,,,,, 三. 用公式法化简下列各式 1. F=ABC+A CD+AC =A(BC+C)+A CD=AC AB A CD =C(AD)AB=AC+CD+AB A ??++?++ 2. F=AC D+BC+BD+AB+AC+B C =AC D+BC+BD+AB+AC+BC+B C =AC D+BC+AC+B =AD+C+B ????? 3. F=(A+B)(A+B+C)(A+C)(B+C+D)F*= AB+ABC+AC+BCD = AB+AC+BCD=AB+AC F=(F*)*=(A+B)(A+C)=AC+AB ∴Q 4. F=AB+A B BC+B C AB+A B BC+B C AB+A B BC+B C A B C A A F C AB BC C AB B C C ???=?+?=?+?+=++?+=+?+ 5. F=AC+B ()()()()C B AC AC F A C B C ABC ABC AB A C BC C ABC ABC AB C A B C AC BC ++=++++=+?++++=+=+=+ 四. 用图解法化简下列各函数。 1. F=ABC+A CD+AC ?

逻辑函数的公式化简方法

逻辑函数的公式化简方 法 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

1.2逻辑函数的化简方法 一、教学时数:30分钟授课类型:理论课 二、教学目的、要求: 通过介绍、讲解逻辑函数化简方法中的公式法,让学生能够运用公式法来化简逻辑函数。 三、教学重点:公式法中的并项法、吸收法、消去法、配项消项法 四、教学难点:配项消项法 五、教学方法:采用通过师生互动的方法让学生回答问题,上讲台解答题目的方法,让学生参与进来课堂教学中来。 六、教学内容: (一)回顾常用的公式与两个重要规则:(3分钟) 通过提问让大家回顾上节课的知识,并将重点部分展示出来。为了节省时间,这部分的内容用PPT 展示。 1、德摩根定理: 2、A B A AB =+ 3、 A A B A =+ 4、B A B A A +=+ 5、C A AB BC C A AB +=++ 6、AB B A B A B A +=+ 7、C A B A C A AB +=+ 8、代入规则:在任何逻辑等十种,如果等式两边所有出现某一变量的地方,都代之以一个函数,则等式仍然成立。 9、反演规则:对于任意一个函数表达式Y,如果将Y 中所有的“.”换成“+”, “+”换成“.”;“0”换成“1”,“1”换成“0”;原变量换成反变量,反变量换成B A B A +=?B A B A ?=+

原变量,那么所得到的表达式就是Y 的反函数Y 。(反演规则很有用,但在这一节我们主要用德摩根定理) (二)介绍逻辑函数的各种最简式:(3分钟) 将各种类型的逻辑函数最简式在PPT 中展示出来,让学生思考他们是属于哪种最简式。 (三)运用公式法的四种方法来化简逻辑函数(19分钟) 将前三道例题在PPT 中展示出来,请学生上讲台到黑板上解答题目。(4分钟) 由三道例题引出前三种方法,在引出第四种方法(15分钟) 1、并项法:利用公式A B A AB =+,把两个乘积项合并起来,消去一个变量。 例题1:B A C AB ABC Y ++= 2、吸收法:利用公式A AB A =+,吸收掉多余的乘积项。 例题2:E B D A AB Y ++= 3、消去法:利用公式 B A B A A +=+,消去乘积项中多余的因子。 例题3:BD A C AB Y ++= 4、配项消项法:利用公式C A AB BC C A AB +=++,在函数与或表达式中加上多余的项——冗余项,以消去更多的乘积项,从而获得最简与或式。(常称之为冗余定理) 例题4:C B C A C B C A Y +++=(加上乘积项B A ) (四)重点、难点巩固:(4分钟) 加强练习:DEF E B ACEF BD C A AB D A AD Y +++++++= (五)布置作业:(1分钟) 通过布置习题,让学生在课后通过习题巩固知识。 课本习题:题1.9(9)、(10) 黑板板书:

实验四 Lagrange函数插值方法(新)

实验四 Lagrange函数插值方法 一、问题提出 对于给定的一元函数的n+1个节点值 。试用Lagrange公式求其插值多项式或分段二次Lagrange 插值多项式。 数据如下: 试构造Lagrange多项式L,计算和的值。 二、要求 1、利用Lagrange插值公式 编写出插值多项式程序; 2、给出插值多项式或分段三次插值多项式的表达式; 3、根据节点选取原则,对问题(2)用三点插值或二点插值,其结果如何; 4、对此插值问题用Newton插值多项式其结果如何。 三、目的和意义 1、学会常用的插值方法,求函数的近似表达式,以解决其它实际问题; 2、明确插值多项式和分段插值多项式各自的优缺点; 3、熟悉插值方法的程序编制; 4、如果绘出插值函数的曲线,观察其光滑性。 四、实验源代码 #include #define N 7 float x[] = {1,2,3,4,5,6,7}; float y[] = {0.368,0.135,0.050,0.018,0.007,0.002,0.001}; float p(float xx)

{ int i,k; _______________ for( i=0; i

相关主题
文本预览
相关文档 最新文档