当前位置:文档之家› 波谱分析

波谱分析

波谱分析
波谱分析

光谱在木素结构上的应用

摘要

介绍了木质素的结构以及利用现状,详细综述了木质素结构在研究中主要的分析方法:

紫外光谱、红外光谱、质谱、核磁共振技术等,并指出了木素结构研究今后的发展方向。

关键词:木质素;分析方法;核磁共振技术

The Application of spectrum in the Lignin Structure

ABSTRACT

Introduces the structure of lignin and utilization status, detailedly review of the main analysis method in the study of lignin structure: UV, IR, MS, NMR, and points out the future development direction of the structure of lignin.

Keywords:lignin; analysis method; magnetic resonance imaging

木素是造纸植物纤维原料中三大主要成分之一[1],其含量、化学结构对制浆造纸性能有着重大影响,不同植物的木素其结构有所不同,不同处理方法所得同一植物木素其结构也常有差异。由于木素结构的多样性、复杂性和易变性,使其结构研究成为科学工作者长期探索的课题。

为了了解木素结构特征, 通常采用化学降解的方法[2]。例如,利用碱性硝基苯氧化降解可以测定愈疮木基、紫丁香基和对羟基苯基的比例;用酸解法生成希伯尔酮;高锰酸钾氧化法生成甲基化的苯甲酸。这些方法只能测定非缩聚结构的木素, 不能反映木素结构的全部情况。近年来, 也有一些新方法[3], 如: 硫代酸解结合脱硫化反应( Thioacidolysis/desulfuration) 技术可以测定包括缩聚结构的木素组成;利用芳核交换与高碘酸和硝基苯氧化结合的技术可以分析纸浆中的残余木素等。所有这些方法都需要对木素结构进行破坏, 且费时多。故人们的视线更多的转移到了非破坏性的光谱分析方法。

1 木素的结构

一般认为木素的结构是由醚键连接的甲氧化的苯酚环构成的,用放射性碳元素标记进行的大量研究证实木素有3种苯丙烯醇结构: 对羟基苯丙烯醇( p-hydroxycinnamylalcohol),也叫对香豆醇; 松柏醇( Coniferylalcohol) ; 芥子醇( Sinapylalcohol)。它们是所有木质素的基本前体和构造单元。3 种苯丙烯醇结构之间的连接即构成了木素的结构。

2 木素的分析方法[4]

近几十年来,各种分析技术已被用于木素结构研究中,目前所获得的所有关于木素结构的信息都来源于对木素降解产物或是直接对分离出的木素本身进行的各种分析方法的研究。目前,用于木素结构分析的分析方法主要有紫外光谱、红外光谱、高效液相色谱、质谱、核磁共振技术等,而且更新的分析技术也将进一步应用于木素的结构分析中。

2.1 紫外吸收光谱[5]

木素作为一芳香族化合物(苯基丙烷结构)和它的各种发色基团,对紫外光有强烈吸收,而碳水化合物则几乎没有吸收,所以可以在碳水化合物存在的情况下

选择适当的条件,用紫外光吸收光谱来鉴定木素的结构和性质。

紫外吸收光谱一般在205nm 附近和280nm 附近有吸收峰,230nm 附近处有较弱的吸收。吸收峰比较单而且粗宽,木素的结构单元的类型、所畲的官能团及量决定了吸收峰形状和吸光系数的大小。

木素吸收峰的形状和吸光系数还受到木素中官能团类型( 如酚基、羰基、甲氧基等) 及含量的影响,可采用4种差示光谱对木素中的官能团进行定性和定量分析,其中酚羟基含量可用离子差示光谱(Δεi) 测定; 碳基种类和含量可用还原差示光谱(Δεr) 测定;肉桂醛的含量可用氢化差示光谱(Δεh) 测定; 苯基香豆满结构的含量可用酸解差示光谱(Δεa) 测定。

2.2 红外光谱[4]

红外吸收光谱是物质对红外光的吸收曲线,物质分子中某个基团的振动频率和红外光的频率一致时,分子就吸收红外光的能量,从原来的基态振动能级跃迁到能量较高的振动能级。因此,对于木素及其衍生物,可根据其红外吸收光谱进行定性和定量分析。定性分析主要是应用红外光谱测定分子的键长、键角来推断研究分子的基本结构,根据光谱中吸收峰的位置和形状来推断未知分子的结构;对木素的定性分析是基于在1510、1600cm-1 ( 芳基环振动) 和1470、1460cm-1 ( C-H 变形和芳基环振动)显示了木素最特征的红外光谱,很少有其他光带在该光谱的波数范围内,因此,可据此确定未知样品中是否有木素的存在。定量分析主要是依照吸收峰的强度来测定混合物中各组分的含量。对木素的定量分析是依据木素的芳环特征吸收峰(即波数为1500和1600cm-1处的吸收峰)的强弱来定量,从而根据木素中羟基、羧基、羰基等多种官能基团吸收强度的改变而对其含量进行测定。

2.3 质谱[6]

质谱分析是现代物理、化学以及材料领域内使用的一个极为重要的工具,已有80年历史。早期的质谱仪器主要用于测定原子质量、同位素的相对丰度以及研究电子碰撞过程等物理领域。质谱分析方法是通过对样品离子的质量和强度的测定来进行成分和结构分析的一种方法。质谱基本原理: 被分析的样品首先离子化,然后利用离子在电场或磁场中的运动性质,将离子按质荷比( m/e) 分开并按质荷比大小排列成谱图形式,所以根据质谱图即可确定样品成分、结构和相对

分子质量。应用热裂解—质谱或热裂解-气相色谱-质谱,可分别获得不同高分子结构特征的热裂解产物,从而进一步揭示聚合物的链节以及序列分布。

2.4 核磁共振谱(NMR)[7]

核磁共振的原理,是根据有些原子核有磁性(如1H,13C,19F,31P等等),在外磁场作用可以吸收一定波长的无线电波而发生共振吸收。各种磁性核有不同的条件下共振。由于在分子中所处的化学环境不同,同一种磁性核的共振位置也稍有差异,在不同频率处会有不同强度的吸收,构成共振的吸收谱,可以进行化学结构的分析。此外谱峰的精细裂分又说明邻近核磁的数目与性质,谱峰的面积与共振核的数目成比例,因而可进行定量分析。在制浆造纸研究中,核磁共振波谱可以用于木素结构,木素一碳水化合物复合体(LCC)等研究。

2.4.1 1H一核磁共振法( 1H-NMR)

1H-NMR法测定对象是含H的化合物,因此木素、碳水化合物都可进行1H-NMR 分析。根据不同位置的H具有不同的化学环境而在图谱中不同化学位移出现共振峰而进行定性分析。利用峰面积与H原子数目成比例的特点,从而亦可进行定量计算。

1H-NMR技术具有如下优点:1H核自然丰度为100%,核旋磁比大,共振信号峰强,分析时间短,用样量少,缺点为分辨率低,现在1HNMR谱仅用于分析低分子量的木素产品。

2.4.2 13C—NMR法

13C-NMR法直接反映C原子所处的化学环境。C的自然丰度只有1.108%( C自然丰度为98.89%, H自然丰度为99.85%)[8],因此测定时灵敏度低,但可用脉冲核磁共振加傅立叶变换法,提高其灵敏度。

13C-NMR法具有以下优点:(1)各种有机物都含C原子;(2)不同C的化学位移值变化范围大,从(0~220)X1026;(3)化学环境稍有不同的13C核,都有不同的化学位移值。

2.4.3 29Si-NMR法

29Si—NMR 主要用于研究能引进Si原子的一OH、一COOH基团及可烯醇化的羰基。用硅醚化试剂使这些基团硅醚化,引进硅原子即可用。29Si—NMR进行测定,因而可用于研究木素、碳水化合物功能基。

2.4.4 31P—NMR法

近年来开始用31P—NMR法测定碳水化合物及木素的功能基如一OH、-COOH、C=O 基、醌基等。31P的自然丰度是1O0%。31P-NMR测定的灵敏度高。

2.4.5 19F-NMR法

19F与31P一样,自然丰度为100%。19F-NMR谱的化学位移范围宽。木素氟衍生物的稳定性好,同时氟原子在芳环上的位置对化学位移非常灵敏,容易得到各种羟基的信号,特别是可以测定羰基的含量,这些都是19F—NMR的优点。

3 结语

由于木素的结构非常复杂,所以单纯地依靠1种方法已不能非常有效地对木素结构作出整体的了解和把握,要使木素作为一种可持续发展的资源加以利用,必须对木素的结构及降解等难题有所突破。这就需要更好的降解技术的出现,可将更新的分析方法的出现进一步应用于木素的结构分析中,或者统筹把握二者的关系,精心设计试验,不仅能定性把握木素降解产物,而且能定量测定其产物,并能分离其产物[9]。因此,今后仍需研究者不断地研究和探索。

参考文献

[1] 石淑兰,何福望.制浆造纸分析与检验[M],北京:中国轻工业出版社,

2003:44-45.

[2] 付时雨,詹怀宇.31P-核磁共振光谱在木素结构分析中的应用[J].中国造

纸学报,1999,14:121-124.

[3] Lapierre C, Brigitte P and Monties B.Thioacidolysis of Spruce

lignin: GC- MS Analysis of the main dimer recovered after Raney nickel desulphurat ion.Holzforschung,1991;45(1): 61-67.

[4] 张应龙,张锐昌,张咏梅,艾明强,黄峰.木素结构分析方法研究进展[J].

安徽农业科学,2011,39(36):22514-22517.

[5] 王丽娟,杨汝男.光谱在木素结构上的应用[J].黑龙江造纸,2004(1):

21-22.

[6] 郑大峰.木质素的结构及其化学改性进展[J].精细化工,2005,

22( 4) :249-251.

[7] 吴香波,谢益民.核磁共振波谱在木素结构分析中的应用研究进展[J].上

海造纸,2008,39(3),34-37.

[8] 顾瑞军.谢益民,曾绍琼等.稻秆木素侧链13C同位素示踪及固体 CNMR

分析[J].高等学校化学学报,2002,23(6):1073-1076.

[9] 张爱萍,刘传富,孙润仓,等.光谱技术在木素结构分析中的应用[J].中

国造纸学报,2007,22( 3) : 97-101.

有机波谱分析知识点

名词解析 发色团(chromophoric groups):分子结构中含有π电子的基团称为发色团,它们能产生π→π*和n→π*跃迁从而你呢个在紫外可见光范围内吸收。 助色团(auxochrome):含有非成键n电子的杂原子饱和基团本身不吸收辐射,但当它们与生色团或饱和烃相连时能使该生色团的吸收峰向长波长移动并增强其强度的基团,如羟基、胺基和卤素等。 红移(red shift):由于化合物结构发生改变,如发生共轭作用引入助色团及溶剂改变等,使吸收峰向长波方向移动。 蓝移(blue shift):化合物结构改变时,或受溶剂的影响使吸收峰向短波方向移动。 增色效应(hyperchromic effect):使吸收强度增加的作用。 减色效应(hypochromic effect):使吸收强度减弱的作用。 吸收带:跃迁类型相同的吸收峰。 指纹区(fingerprint region):红外光谱上的低频区通常称指纹区。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征,反映化合物结构上的细微结构差异。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。但该区中各种官能团的特征频率不具有鲜明的特征性。 共轭效应 (conjugated effect):又称离域效应,是指由于共轭π键的形成而引起分子性质的改变的效应。 诱导效应(Inductive Effects):一些极性共价键,随着取代基电负性不同,电子云密度发生变化,引起键的振动谱带位移,称为诱导效应。 核磁共振:原子核的磁共振现象,只有当把原子核置于外加磁场中并满足一定外在条件时才能产生。 化学位移:将待测氢核共振峰所在位置与某基准物氢核共振峰所在位置进行比较,其相对距离称为化学位移。 弛豫:通过无辐射的释放能量的途径核由高能态向低能态的过程。 分子离子:有机质谱分析中,化合物分子失去一个电子形成的离子。 基峰:质谱图中表现为最高丰度离子的峰。 自旋偶合:是磁性核与邻近磁性核之间的相互作用。是成键电子间接传递的,不影响磁性核的化学位移。 麦氏重排(McLafferty rearrangement):具有不饱和官能团 C=X(X为O、S、N、C 等)及其γ-H原子结构的化合物,γ-H原子可以通过六元环空间排列的过渡态,向缺电子(C=X+ )的部位转移,发生γ-H的断裂,同时伴随 C=X的β键断裂,这种断裂称为麦氏重排。 自旋偶合:是磁性核与邻近磁性核之间的相互作用。是成键电子间接传递的,不影响磁性核的化学位移。 自旋裂分:因自旋偶合而引起的谱线增多现象称为自旋裂分。 1.紫外光谱的应用 (1).主要用于判断结构中的共轭系统、结构骨架(如香豆素、黄酮等) (2).确定未知化合物是否含有与某一已知化合物相同的共轭体系。 (3).可以确定未知结构中的共轭结构单元。 (4).确定构型或构象 (5).测定互变异构现象 2.分析紫外光谱的几个经验规律 (1).在200~800nm区间无吸收峰,结构无共轭双键。 (2).220~250nm,强吸收(εmax在104~2?104之间),有共轭不饱和键(共轭二烯,α,β-不饱和醛、酮)

波谱分析习题库答案

波谱分析复习题库答案 一、名词解释 1、化学位移:将待测氢核共振峰所在位置与某基准氢核共振峰所在位置进行比较,求其相对距离,称之为化学位移。 2、屏蔽效应:核外电子在与外加磁场垂直的平面上绕核旋转同时将产生一个与外加磁场相对抗的第二磁场,对于氢核来讲,等于增加了一个免受外磁场影响的防御措施,这种作用叫做电子的屏蔽效应。 3、相对丰度:首先选择一个强度最大的离子峰,把它的强度作为100%,并把这个峰作为基峰。将其它离子峰的强度与基峰作比较,求出它们的相对强度,称为相对丰度。 4、氮律:分子中含偶数个氮原子,或不含氮原子,则它的分子量就一定是偶数。如分子中含奇数个氮原子,则分子量就一定是奇数。 5、分子离子:分子失去一个电子而生成带正电荷的自由基为分子离子。 6、助色团:含有非成键n电子的杂原子饱和基团,本身在紫外可见光范围内不产生吸收,但当与生色团相连时,可使其吸收峰向长波方向移动,并使吸收强度增加的基团。 7、特征峰:红外光谱中4000-1333cm-1区域为特征谱带区,该区的吸收峰为特征峰。 8、质荷比:质量与电荷的比值为质荷比。 9、磁等同氢核化学环境相同、化学位移相同、对组外氢核表现相同偶合作用强度的氢核。 10、发色团:分子结构中含有π电子的基团称为发色团。 11、磁等同H核:化学环境相同,化学位移相同,且对组外氢核表现出相同耦合作用强度,想互之间虽有自旋耦合却不裂分的氢核。 12、质谱:就是把化合物分子用一定方式裂解后生成的各种离子,按其质量大小排列而成的图谱。 13、i-裂解:正电荷引发的裂解过程,涉及两个电子的转移,从而导致正电荷位置的迁移。 14、α-裂解:自由基引发的裂解过程,由自由基重新组成新键而在α位断裂,正电荷保持在原位。 15、红移吸收峰向长波方向移动 16. 能级跃迁分子由较低的能级状态(基态)跃迁到较高的能级状态(激发态)称为能级跃迁。 17. 摩尔吸光系数浓度为1mol/L,光程为1cm时的吸光度 二、选择题 1、波长为670.7nm的辐射,其频率(MHz)数值为(A) A、4.47×108 B、4.47×107 C、1.49×106 D、1.49×1010 2、紫外光谱的产生是由电子能级跃迁所致,能级差的大小决定了(C) A、吸收峰的强度 B、吸收峰的数目 C、吸收峰的位置 D、吸收峰的形状 3、紫外光谱是带状光谱的原因是由于(C )

波谱分析

一、概述 元素分析:C.H.N.X.S.P ℅含量,经典分析:m.p ,b.p ,折光率 官能团特征反应:生成衍生物 缺点:繁琐,费时,不准确,有干扰 现代有机分析的两大支柱 1.色谱分析:GC, HPLC, TLC 裂解色谱成分分析2.波谱分析:UV,IR,NMR,MS (有机)结构分析 色谱分析:具有高效分离能力可以把复杂有机混合物分离成单一的纯组分。为有机结构分析服务 波谱分析:纯样品进行结构分析 微量化 测量快 结果准确 重复性好 除MS 之外,可回收样品 1.灵敏度:MS >UV >IR >1HNMR >13CNMR MS:微克级 UV: ppb 级 IR :毫克级(可微克级,FTIR )( 1HNMR :0.5mg 13CNMR : 0.5mg )可回收 质谱(MS )—分子量及部分结构信息、红外光谱(IR )—官能团种类、紫外—可见光谱(UV / Vis )—共轭结构、核磁共振谱(NMR )—C-H 骨架及所处化学环境 第二章 紫外-可见吸收光谱 有机化合物的UV 吸收位于200-400nm 之间(近紫外),V 吸收位于400-800nm 之间(可见),真空(远)U V :< 200 n m σ→ σ*跃迁吸收,石英器皿应用范围 :2 0 0 – 3 0 0 n m 、玻璃器皿应用范围 :> 3 0 0 n m 郎伯-比耳(Beer-Lambert)定理 A = l o g I 0 / I = l o g 1 / T = εc L 四种主要跃迁所需能量ΔΕ大小顺序:n →π*<π→π*< n →σ*< σ→σ* π→π* K 带(跃迁允许)ε 10 4~5 n →σ* R 带(跃迁禁阻) ε≯2 0 0 0 溶剂效应 溶剂极性增大,π—π*跃迁向红移,ΔE = h ν=h/λ、n —π*跃迁向蓝移,精细结构消失 有机化合物的电子吸收光谱:饱和烃 仅有σ→σ* 跃迁 吸收光谱 λ<200nm 含杂原子饱和烃 含O 、S 、 N 和卤素等的 饱和烃衍生物则有σ→σ* 及n →σ* 跃迁需能量大。 150~250nm 发(生)色团:能吸收紫外或可见光而跃迁的基团,主要为含有π键的不饱和基团。如-C=C-、-C=O 、-NO 2、—N =N —、乙炔基、腈基等。 增(助)色团: 含杂原子的饱和基团。如-OH 、-OR 、-NH 2、-NHR 、-X 、-SH,本身无增色功能,不能吸收λ>200nm 光,但当它们与发色团相连时, 会发生n-π*共轭,E π→π*降低,使发色团的吸收波长移向长波,吸收强度(ε)增加 不饱和烃:有σ→σ*, π→π* 跃迁 单个双键,λ在远紫外,含两个双键,但不共轭,则与单个双键类似 共轭双键,λ红移,共轭体系越大红移越明显。当双键与杂原子相联则π→π* 红移,吸收增强 当双键上含杂原子又与杂原子相联,则 n →π* 蓝移 醛、酮、羧酸、酯有σ→σ*,n →π*,λmax =270~300nm,ε10~20, R 带,醛酮的特征 n →σ*, λmax ~180nm,ε10~20, π→π* , λmax ~150nm,ε10~20 Woodward-Fieser 经验规律:(π-π* K 带) 5.α,β—不饱和醛、酮 C C C C C O αβγδ δC C C O αββ

波谱分析考试复习总结.doc

波谱分析(spectra analysis) 波谱分析的内涵与外延: 定义:利用特定的仪器,测试化合物的多种特征波谱图,通过分析推断化合物的分子结构。特定的仪器:紫外,红外,核磁,质谱,(X-射线,圆二色谱等) 特征波谱图: 四大谱;X-射线单晶衍射,圆二色谱等 化合物:一般为纯的有机化合物 分子结构:分子中原子的连接顺序、位置;构象,空间结构 仪器分析(定量),波谱分析(定性) 综合性、交叉科学(化学、物理、数学、自动化、计算机) 作用:波谱解析理论原理是物理学,主要应用于化学领域(天然产物化学和中药化学、有机化学、药物化学等),在药物、化工,石油,食品及其它工业部门有着广泛的应用;分析的主要对象是有机化合物。 课程要求:本课将在学生学习有机化学、分析化学、物理化学等课程的基础上,系统讲授紫外光谱(UV)、红外光谱(IR)、核磁共振光谱(NMR)和质谱(MS)这四大光谱的基本原理、特征、规律及图谱解析技术,并且介绍这四大光谱解析技术的综合运用,培养学生掌握解析简单有机化合物波谱图的能力。为学习中药化学有效成分的结构鉴定打下基础。 第一章紫外光谱(ultraviolet spectra,UV) 一、电磁波的基本性质和分类 1、波粒二象性 光的三要素:波长(λ),速度(c),频率(v) 电磁波的波动性 光速c:c=3.0 x 1010 cm/s 波长λ :电磁波相邻波峰间的距离。用nm,μm,cm,m 等表示 频率v:v=c/ λ,用Hz 表示。 电磁波的粒子性 光子具有能量,其能量大小由下式决定: E = hν = hc/λ(式中E为光子的能量,h为普朗克常数,其值为6.624× 10-34j.s ) 电磁波的分类

波谱分析考题

一、判断题 1. 质谱图中质荷比最大的峰不一定是分子离子峰,但分子离子峰一定是质谱图中质荷比最大的峰。(√) 2. 分子离子峰的强度与化合物的类型有关,一般含有芳环的化合物分子离子峰的强度较大。(√) 3. 分子离子可以是奇电子离子也可以是偶电子离子。(×) 4.当分子离子峰的稳定性较低时,可以通过增加轰击电压,使分离离子峰的强度增强。(×) 5. 双聚焦质谱仪实现了能量和方向的双聚焦,所以分辨率较高。(√) 6. 在目前的各种分析器中,傅立叶变换离子回旋共振质量分析器具有最高的分辨率。(√) 7. 由于产生了多电荷离子,使质荷比下降,所以可以用常规的质谱检测器来分析大分子质量的化合物。(√) 8. 根据“氮律”,由C、H、O、N组成的化合物,N为奇数,分子离子峰为奇数,N为偶数,分子离子峰也为偶数。(√) 9. 当化合物分子中含有C=O基团,而且与这个基团相连的键上有γ-氢原子,该化合物的质谱出现麦氏重排离子峰。(√) 10. 化学电离源属于软电离技术,因此在CI-MS中最强峰通常是准分子离子峰。(√) 11. 由于不能生成带正电荷的卤素离子,所以在质谱仪分析中是无法确定分子结构中是否有卤素元素存在的。(×) 12. 在标准质谱图中,醇类化合物的分子离子峰很小或不出现。(√) 13. 大气压化学电离源(ACPI)适合分析中等极性的化合物,而且产生的碎片离子很少,主要是准分子离子。(√) 14.通过研究亚稳离子峰,可以找到某些离子之间的相互关系。(√) 15.在(EI-MS)中,产生的碎片离子很少,分子离子峰通常是基峰。(×) 16. 含奇数个电子的离子重排断裂后产生的离子不一定含有奇数个电子;而含偶数个电子的离子重排断裂后产生的离子一定含有偶数个电子。(√) 17. 奇电子离子断裂后可以产生的奇电子离子,也可以产生偶电子离子;偶电子离子断裂后只能产生偶电子离子。(√) 18. 简单断裂仅有一个键发生开裂,并脱去一个自由基;而重排断裂同时发生几个键的断裂,通常脱去一个中性分子同时发生重排。(√) 19. 在质谱中,一般来说碳链越长和存在支链有利于分子离子断裂,所以分子离子越强。(×) 20. 在质谱中离子在断裂中若产生H2O、C2H4、CO、CH2=C=O、CO2等中性小分子产物,将有利于这种断裂途径的进行,一般产生比较强的碎片离子峰。(√) 1. 判断分子离子峰的正确方法是(D) A. 增加进样量,分子离子峰强度增加; B.谱图中强度最大的峰; C. 质荷比最大的峰; D. 降低电子轰击电压,分子离子峰强度增加; 2. 某碳氢化合物的质谱图中若(M+1)和M峰的强度比为24:100,预计该化合物中存在碳原子的个数为(C) A. 2; B. 8; C. 22; D. 46 3.在质谱图中,CH2Cl2的M:(M+2):(M+4)的比值约为(C) A. 1:2:1; B. 1:3:1; C. 9:6:1; D. 3:1:3 4.在下列化合物中,分子离子峰的质荷比为奇数的是(B) A. C8H6N4; B. C6H5NO2; C. C9H10O2; D. C9H10O

有机波谱综合谱图解析

综合谱图解析 1.某未知物分子式为C5H12O,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。并解释质谱中m/z 57和31的来源。

2?待鉴定的化合物(I )和(II )它们的分子式均为C 8H 12O 4。它们的质谱、红外 光谱和核磁共振谱见图。也测定了它们的紫外吸收光谱数据:(I )入max 223nm , S 4100; (II )入max 219nm 2300,试确定这两个化合物。 未之物(I )的谱图 127 100-1 - 10 10 曲 凹 M 亠亲) ? 册 -J P 科 J S W

未之物(II)的谱图

3、某未知物的分子式为C 9H 10O 2,紫外光谱数据表明:该物入max 在26 4、262 I? 257、252nm (&maxIOI 、158、147、194、153);红外、核磁数据如图所示,试 0 LOtMio. sopoiggg 翌g 嚴效 却31卿]卿丄电00 uyo iw mo 推断其结构,并说明理 由。 ! \ \ 「 1 CCh 1 I J —' 1 1 _■ ____ __ _ ,B . _ ,- T J.亠」亠亠」亠 | * --------------- U 5>0 4. 0 d/ppm

4.某未知物C ii H i6的UV 、IR 、中NMR 、MS 谱图及13C NMR 数据如下,推导 未知物结构。 序号 S c ( ppm ) 碳原子个数 序号 S c ( ppm ) 碳原子个数 1 143.0 1 6 32.0 1 2 128.5 2 7 31.5 1 3 128.0 2 8 22.5 1 4 125.5 1 9 10.0 1 5 36.0 1 MS(E[] 100 so 30D A/tnn 350 血 >0624*68<)2 4 內 OS n 2 2 98765^43211 0SU 'H bMRfCDCI^

波谱解析试题及答案

波普解析试题 一、名词解释(5*4分=20分) 1.波谱学 2.屏蔽效应 3.电池辐射区域 4.重排反应 5.驰骋过程 二、选择题。( 10*2分=20分) 1.化合物中只有一个羰基,却在1773cm-1和1736cm-1处出现两个吸收峰 这是因为:() A、诱导效应 B、共轭效应 C、费米共振 D、空间位阻 2.一种能作为色散型红外光谱仪的色散元件材料为:() A、玻璃 B、石英 C、红宝石 D、卤化物晶体 3.预测H2S分子的基频峰数为:() A、4 B、3 C、2 D、1 4.若外加磁场的强度H0逐渐加大时,则使原子核自旋能级的低能态跃迁到高能态所需的能量是如何变化的:() A、不变 B、逐渐变大 C、逐渐变小 D、随原核而变 5.下列哪种核不适宜核磁共振测定:() A、12C B、15N C、19F D、31P 6.在丁酮质谱中,质荷比质为29的碎片离子是发生了() A、α-裂解 B、I-裂解 C、重排裂解 D、γ-H迁移 7.在四谱综合解析过程中,确定苯环取代基的位置,最有效的方法是() A、紫外和核磁 B、质谱和红外 C、红外和核磁 D、质谱和核磁 8.下列化合物按1H化学位移值从大到小排列( ) a.CH2=CH2 b.CH CH c.HCHO d. A、a、b、c、d B、a、c、b、d C、c、d、a、b D、d、c、b、a 9.在碱性条件下,苯酚的最大吸波长将发生何种变化? ( ) A.红移 B. 蓝移 C. 不变 D. 不能确定

10.芳烃(M=134), 质谱图上于m/e91处显一强峰,试问其可能的结构是:( ) A. B. C. D. 三、问答题(5*5分=25分) 1.红外光谱产生必须具备的两个条件是什么? 2.影响物质红外光谱中峰位的因素有哪些? 3.色散型光谱仪主要有哪些部分组成? 4.核磁共振谱是物质内部什么运动在外部的一种表现形式? 5.紫外光谱在有机化合物结构鉴定中的主要贡献是什么? 四、计算和推断题(9+9+17=35分) 1.某化合物(不含N元素)分子离子区质谱数据为M(72),相对丰度100%; M+1(73),相对丰度3.5%;M+2(74),相对丰度0.5%。 (1)分子中是否含有Br Cl? 。 (2) 分子中是否含有S? 。 (3)试确定其分子式为。 2.分子式为C8H8O的化合物,IR(cm-1):3050,2950,1695,1600,1590,1460,1370,1260,760,690等处有吸收, (1)分子中有没有羟基(—O H)?。 (2)有没有苯环。 (3)其结构为。 3.某未知物的分子式为C3H6O,质谱数据和核磁共振谱如图1、2所示,试推断其结构。 图1 、C3H6O 的质谱

波谱解析习题

第一节:紫外光谱(UV) 一、简答 (p36 1-3) 1.丙酮的羰基有几种类型的价电子。并说明能产生何种电子跃迁各种跃迁可在何区域波长处产生吸收 答:有n 电子和π电子。能够发生n →π*跃迁。从n 轨道向π反键轨道跃迁。能产生R 带。跃迁波长在250—500nm 之内。 2.指出下述各对化合物中,哪一个化合物能吸收波长较长的光线(只考虑π→π* 跃迁) (2) (1) 及 NHR 3 CH CH OCH 3 CH 及CH 3 CH CH 2 答:(1)的后者能发生n →π*跃迁,吸收较长。(2)后者的氮原子能与苯环发生P →π共轭,所以或者吸收较长。 3.与化合物(A )的电子光谱相比,解释化合物(B )与(C )的电子光谱发生变化的原因(在乙醇中)。 (C)(B) (A)入max =420 εmax =18600 入max =438 εmax =22000 入max =475 εmax =320003 N N N NO HC 32(CH )2 N N N NO H C 32(CH )2 2 32(CH )(CH )23N N N NO 答:B 、C 发生了明显的蓝移,主要原因是空间位阻效应。 二、分析比较(书里5-6) 1.指出下列两个化合物在近紫外区中的区别: CH CH 3 2 (A)(B) 答:(A )和(B )中各有两个双键。(A )的两个双键中间隔了一个单键,这两个双键就能发生π→π共轭。而(B )这两个双键中隔了两个单键,则不能产生共轭。所以(A )的紫外波长比较长,(B )则比较短。 2.某酮类化合物,当溶于极性溶剂中(如乙醇中)时,溶剂对n →π* 跃迁及π→π* 跃迁有何影响

波谱图的分析原理,方法和典型实例分析

波谱图的分析原理,方法和典型实例分析 (荆州市神舟纺织有限公司)欧怀林 一·波谱图分析的基本原理与方法: 1.机械波和牵伸波的概念与计算方法: ⑴.机械波在波谱图中,呈现“烟囱”柱形状,在一个或多个频道上出现。当宽度占据二个频道时称为双柱机械波;超过二个频道以上时称为多柱机械波。 ⑵.机械波长计算公式: a.牵伸倍数法:λ=πDxE。λ-产生机械波的回转部件的波长;Dx-产生机械波的回转部件的直径;E-输出罗拉(前罗拉)到产生机械波的回转部件的牵伸倍数。 b.传动比法:λ=πD1i。λ-产生机械波的回转部件的波长;D1-输出罗拉(前罗拉)的直径;i-产生机械波的回转部件到输出罗拉(前罗拉)之间的传动比。 c.速度法:λ=V/n。λ-产生机械波的回转部件的波长;V-出条速度;n-产生机械波的回转部件的转速。 下图为典型的机械波波谱图: 下面几张图例为前道工序产生的机械波,随后道工序牵伸后其波长变化情况: 上图为并条胶辊产生的机械波波谱图。

上图为对应的粗纱波谱图。 上图为对应的细纱波谱图。 ⑶.机械波危害程度的评价:当基本波谱上的峰高超过该峰所在波长处基本波谱高度的50%时,会对织物造成不良影响。对于连续两个或者多个机械波,其波峰必须叠加后来评价。机械波产生的疵点绝大多数呈现为规律性,机械波波峰越高,曲线图上的振幅就越大,疵点在布面体现越明显。 ⑷.牵伸波在波谱图中,跨越三个或三个以上频道,形成像小山形隆起状的波形。 ⑸.牵伸波计算公式:λ=KEL W。E-输出罗拉到产生牵伸波部位的牵伸倍数;L W-纤维的平均长度;K-常数,细纱2.75;粗纱3.5;并条4.0;精梳条4.0;气流纺5.0。 ⑹.牵伸波危害程度的评价:牵伸波波峰越高,曲线图上的振幅就越大,疵点在布面的体现越明显。牵伸波波长不像机械波波长那样基本固定,而在一定范围内波动,故触发多个频道,形成小山包状的波形。典型的牵伸波波谱图如下: 2.波谱仪及各种波形分解的基本原理及特点: 基于经济性的考虑,波谱仪对波谱的识别分析是建立在正弦波的基础上的。而纺纱过程中产生的机械波大多数是不完全遵循正弦规律波动的。遵照“傅里叶”公式,任何一个非正弦波都可以分解为多个正弦波,因此,波谱仪可以对这些非

四大波谱基本概念以及解析综述

四大谱图基本原理及图谱解析 一.质谱 1.基本原理: 用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。 在质谱计的离子源中有机化合物的分子被离子化。丢失一个电子形成带一个正电荷的奇电子离子(M+·)叫分子离子。它还会发生一些化学键的断裂生成各种 碎片离子。带正电荷离子的运动轨迹:经整理可写成: 式中:m/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z表示质荷比;z表示带一个至多个电荷。由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。 质谱的基本公式表明: (1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z ∝r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。这就是磁场的重要作用,即对不同质荷比离子的色散作用。 (2)当加速电压(V)一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z∝H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。 (3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z∝1/V),表明加速电压越高,仪器所能测量的质量范

波谱解析1_4答案

波谱解析试题1 一、名词解释: 1.发色团 2. 化学位移 二、简答题: 1.红外光谱在结构研究中有何用途? 2.偏共振去偶碳谱在结构研究中具有什么样的意义? 三、化合物可能是A或B,它的紫外吸收λmax 为314nm (lgε=4.2),指出这个化合物是属于哪一种结构。 (A)(B) 四、下面为化合物A、B的红外光谱图,可根据哪些振动吸收峰推断化合物A、B中分别存在哪些官能团? A:

B: 五、归属下列化合物碳谱中的碳信号。(15)

六、某化合物的分子式为C14H14S,其氢谱如下图所示,试推断该化合物的结构式,并写出推导过程。(15分) 七、某化合物分子式为C3H7ON, 结合下面给出的图谱,试推断其结构,并写出简单的推导过程。

波谱解析试题1答案 一、名词解释: 1.发色团:从广义上讲, 分子中能吸收紫外光和(或)可见光的结构系统叫做发色团。因常用的紫外光谱仪的测定围是200~40Onm 的近紫外区, 故在紫外分析中,只有π-π* 和(或)n-π* 跃迁才有意义。故从狭义上讲,凡具有π键电子的基团称为发色团 2. 化学位移:不同类型氢核因所处化学环境不同, 共振峰将分别出现在磁场的不同区域。实际工作中多将待测氢核共振峰所在位置( 以磁场强度或相应的共振频率表示) 与某基准物氢核共振峰所在位置进行比较, 求其相对距离, 称之为化学位移。 二、简答题: 1.红外光谱在结构研究中有何用途? (1)鉴定是否为某已知成分 (2)鉴定未知结构的官能团 (3)其他方面的应用:几何构型的区别;立体构象的确定;分子互变异构与同分异构的确定。 2.偏共振去偶碳谱在结构研究中具有什么样的意义? 当照射1H 核用的电磁辐射偏离所有l H 核的共振频率一定距离时, 测得的13C-NMR(OFR) 谱中将不能完全消除直接相连的氢的偶合影响。此时,13C的信号将分别表现为q (CH3), t (CH2),d(CH),s(C)。据此,可以判断谈的类型。 三、 A: 217(基值)+30(共轭双烯)+5×2(环外双键)+5×4(烷基)=277(nm)

波谱分析(完成)

一、名词解释(每小题5分,共30分) 1.化学位移:化学位移是用核磁共振仪可以记录到有关信号,处在不同化学环境中的氢原子因产生共振时吸收电磁波的频率不同,在谱图上出现的位置也不同,各类氢原子的这种差异被称为化学位移。 2.屏蔽效应:由于其他电子对某一电子的排斥作用而抵消了一部分核电荷对该电子的吸引力,从而引起有效核电荷的降低,削弱了核电荷对该电子的吸引,这种作用称为屏蔽作用或屏蔽效应。 3.相对丰度:相对丰度又称同位素丰度比,指气体中轻组分的丰度C与其余组分丰度之和的比值。在生态中相对丰度:群落内物种数目的多少。不同的群落中物种丰度是不同的,从赤道到南北极,群落的物种丰度逐渐减少。 4.氮律:氮律是质谱分析中判断分子离子峰质量数的规律。 5.分子离子:分子失去一个电子所形成的正离子称为分子离子,它的质荷比值即代表了试样分子所对应的分子量数值。 6.助色团:本身在200 nm以上不产生吸收,但其存在能增强生色团的生色能力(改变分子的吸收位置和增加吸收强度)的一类基团。

预知后题如何,请下载!

二、简答题(每小题8分,共40分) 1.色散型光谱仪主要有几部分组成及其作用; 答:由光源、分光系统、检测器三部分组成。光源产生的光分为两路:一路通过样品,一路通过参比溶液。切光器控制使参比光束和样品光束交替进入单色 器。检测器在样品吸收后破坏两束光的平衡下产生信号,该信号被放大后被记录。 2.紫外光谱在有机化合物结构鉴定中的主要贡献; 答:在有机结构鉴定中,紫外光谱在确定有机化合物的共轭体系、生色团和芳香性等方面有独到之处。 3.在质谱中亚稳离子是如何产生的?以及在碎片离子解析过程中的作用是什么? 答:离子m1在离子源主缝至分离器电场边界之间发生裂解,丢失中性碎片,得到新的离子m2。这个m2与在电离室中产生的m2具有相同的质量,但受到同m1一样的加速电压,运动速度与m1相同,在分离器中按m2偏转,因而质谱中记录的位置在m*处,m*是亚稳离子的表观质量,这样就产生了亚稳离子。 由于m*=m2/m1,用m*来确定m1与m2间的关系,是确定开裂途经最直接有效的方法。 4.下列化合物OH 的氢核,何者处于较低场?为什么? 答:(Ⅰ)中—OH 质子处于较低场,因为—HC=O 具有诱导效应。而(Ⅱ)中甲基则具有电子效应。 5.在CH3-CH2-COOH 的氢核磁共振谱图中可观察到其中有四重峰及三重峰各一组.(1)说明这些峰的产生原因;(2)哪一组峰处于较低场为什么? 答:(1)由于α, β 位质子之间的自旋偶合现象,根据 规律, (n+1)规律,CH3-质子核磁共振峰被亚甲基质子裂分为三重 规律 质子核磁共振峰被亚甲基质子裂分为三重 同样,亚甲基质子被邻近的甲基质子裂分为四重峰. 峰,同样,亚甲基质子被邻近的甲基质子裂分为四重峰. 位质子受到羧基的诱导作用比β 质子强。 (2)由于α-位质子受到羧基的诱导作用比β-质子强,所以亚 由于α 位质子受到羧基的诱导作用比 质子强 甲基质子峰在低场出峰(四重峰). 甲基质子峰在低场出峰(四重峰). 三、解析题(共30分) C H OH O C OH H 3 ( I ) ( I I )

波谱解析-解谱步骤

波谱解析 (一)紫外光谱 解析UV应用时顾及吸收带的位置,强度和形状三个方面。从吸收带(K带)位置可估计产生该吸收共轭体系的大小;从吸收带的强度有助于K带,B带和R 带的识别;从吸收带的形状可帮助判断产生紫外吸收的基团,如某些芳香化合物,在峰形上可显示一定程度的精细结构。一般紫外吸收光谱都比较简单,大多数化合物只有一、两个吸收带,因此解析较为容易。可粗略归纳为以下几点: ①如果化合物在220~800nm区间无吸收,表明该化合物是脂肪烃、脂环烃或它们的简单衍生物。 ②如果在220~250nm间显示强吸收(ε近10000或更大),表明有R带吸收,即分子结构存在共轭双烯或α,β—不饱和醛、酮。 ③如果在250~290nm间显示中等强度(ε为200~1000)的吸收带,且常显示不同程度精细结构,表明结构中有苯环或某些杂芳环的存在。 ④如果在290nm附近有弱吸收带(ε<100),则表明分子结构中非共轭羰基。 ⑤如果在300nm上有***度吸收,说明该化合物有较大的共轭体系;若***度吸收具有明显的精细结构,说明为稠环芳、稠环杂芳烃或其衍生物。 (二)红外光谱 1. 解析红外光谱的三要素(位置、强度和峰形) 在解析红外光谱时,要同时注意红外吸收峰的位置,强度和峰形。吸收位置是红外吸收最重要的特点,但在鉴定化合物分子结构时,应将吸收峰的位置辅以吸收峰强度和峰形综合分析。每种有机化合物均显示若干吸收峰,对大量红外图谱中各吸收峰强度相互比较,归纳出各种官能团红外吸收强度的变化范围。只有熟悉各官能团红外吸收的位置和强度处于一定范围时,才能准确推断出官能团的存在2 .确定官能团的方法 对于任何有机化合物的红外光谱,均存在红外吸收的伸缩振动和多种弯曲振动。因此,每一个化合物的官能团的红外光谱图在不同区域显示一组相关吸收峰。只有当几处相关吸收峰得到确认时,才能确定该官能团的存在。例1. 甲基(CH3):2960cm-1和2870cm-1为伸缩振动,1460cm-1和1380cm-1为其弯曲振动。 例2. 亚甲基(CH2):2920cm-1和2850cm-1为其伸缩振动,1470cm-1和720cm-1

波谱图的分析原理

. 波谱图的分析原理,方法和典型实例分析 (荆州市神舟纺织有限公司)欧怀林 一·波谱图分析的基本原理与方法: 1.机械波和牵伸波的概念与计算方法: ⑴.机械波在波谱图中,呈现“烟囱”柱形状,在一个或多个频道上出现。当宽度占据二个频道时称为双柱机械波;超过二个频道以上时称为多柱机械波。 ⑵.机械波长计算公式: a.牵伸倍数法:λ=πDxE。λ-产生机械波的回转部件的波长;Dx-产生机械波的回转部件的直径;E-输出罗拉(前罗拉)到产生机械波的回转部件的牵伸倍数。 b.传动比法:λ=πDi。λ-产生机械波的回转部件的波长;D-输出罗拉11(前罗拉)的直径;i-产生机械波的回转部件到输出罗拉(前罗拉)之间的传动比。 c.速度法:λ=V/n。λ-产生机械波的回转部件的波长;V-出条速度;n-产生机械波的回转部件的转速。 下图为典型的机械波波谱图: 下面几张图例为前道工序产生的机械波,随后道工序牵伸后其波长变化情况: 上图为并条胶辊产生的机械波波谱图。 1 / 14 .

上图为对应的粗纱波谱图。 上图为对应的细纱波谱图。 ⑶.机械波危害程度的评价:当基本波谱上的峰高超过该峰所在波长处基本波谱高度的50%时,会对织物造成不良影响。对于连续两个或者多个机械波,其波峰必须叠加后来评价。机械波产生的疵点绝大多数呈现为规律性,机械波波峰越高,曲线图上的振幅就越大,疵点在布面体现越明显。 ⑷.牵伸波在波谱图中,跨越三个或三个以上频道,形成像小山形隆起状的波形。 ⑸.牵伸波计算公式:λ=KEL。E-输出罗拉到产生牵伸波部位的牵伸倍数;W L-纤维的平均长度;K-常数,细纱2.75;粗纱3.5;并条4.0;精梳条4.0;气W 流纺5.0。 ⑹.牵伸波危害程度的评价:牵伸波波峰越高,曲线图上的振幅就越大,疵点在布面的体现越明显。牵伸波波长不像机械波波长那样基本固定,而在一定范围内波动,故触发多个频道,形成小山包状的波形。典型的牵伸波波谱图如下: 2.波谱仪及各种波形分解的基本原理及特点:

波谱分析教学大纲

教学大纲 课程名称现代波谱分析课程负责人刘博静 开课系部化学与化工学院教研室第一基础教研室 二0一五年九月一日

《现代波谱分析》教学大纲 一、课程基本信息 课程编号: 中文名称:现代波谱分析 英文名称:Modern Spectrum Analysis 适用专业:应用化学专业 课程性质:专业方向选修课 总学时:36 (其中理论教学28学时,实验教学8学时) 总学分:2 二、课程简介 《现代波谱分析》是应用本科专业学生在掌握《无机化学》、《分析化学》和仪器分析》等课程知识后开设的一门专业选修课,该课程内容主要包括:有机质谱、核磁共振氢谱、核磁共振碳谱、红外和拉曼光谱、紫外和荧光光谱的基本原理、仪器简介与实验技术、基本规律与影响因素、谱图解析的基本程序与应用,以及谱图的综合解析。通过本课程的学习使学生了解波谱分析法的概念、作用以及各波谱之间的互相联系;掌握各分析法的基本原理和谱图特征;掌握应用四大波谱进行结构解析的基本程序;了解有关的实验技术;培养并提高学生的识谱能力、综合运用所学波谱知识解决有机化合物结构表征问题的能力,为学生后续课程学习、毕业论文(设计)和研发工作奠定良好的理论基础。 三、相关课程的衔接 已修课程:有机化学、仪器分析、分析化学 并修课程:工业分析食品分析 四、教学的目的、要求与方法 (一)教学目的 本课程的教学环节包括课题讲授,学生自学,习题讲解和期末考试,通过以上学习,要求学生掌握和了解四大谱图的基本理论及分析方法,培养并提高学生

的识谱能力、综合运用所学波谱知识解决有机化合物结构表征问题的能力,为学生今后毕业论文和工作奠定良好的理论基础。 (二)教学要求 通过本课程的学习,使学生了解有机化合物结构鉴定的现代波谱分析手段、方法;掌握结构解析的原理、规律和过程;掌握波谱的特征数据和化合物结构的关系以及在有机化合物结构鉴定中的应用;培养学生单独或综合利用波谱学技术解决实际问题的能力。 (三)教学方法 以讲授式为主,其它教学方法为辅。 五、教学内容(实验内容)及学时分配 第一章紫外光谱(4学时) 教学内容: 1、紫外光谱基本原理 2、紫外光谱仪 3、各类化合物紫外吸收光谱 4、紫外光谱的应用 本章重点:紫外光谱在结构解析中的应用 本章难点:紫外吸收与分子结构的关系、影响因素;紫外光谱在结构解析中的应用 第二章红外光谱(6学时) 教学内容: 1、红外光谱的基本原理 2、影响红外吸收频率的因素 3、红外光谱仪及样品制备技术 4、各类化合物的红外特征光谱 5、红外图谱解析 6、拉曼光谱简介 7、红外光谱技术的进期及应用 本章重点:利用红外光谱判断常见简单化合物的官能团及结构。

波谱分析-习题集参考答案-1002

波谱分析-习题集参考答案-1002

第一章紫外光谱 一、单项选择题 1. 比较下列类型电子跃迁的能量大小( A) Aσ→σ* > n→σ* > π→π* > n →π* Bπ→π* > n →π* >σ→σ* > n→σ* Cσ→σ* > n→σ* > > n →π*> π→π* Dπ→π* > n→π* > > n→σ*σ→σ* 2、共轭体系对λmax的影响( A) A共轭多烯的双键数目越多,HOMO与LUMO之间能量差越小,吸收峰红移B共轭多烯的双键数目越多,HOMO与LUMO之间能量差越小,吸收峰蓝移C共轭多烯的双键数目越多,HOMO与LUMO之间能量差越大,吸收峰红移D共轭多烯的双键数目越多,HOMO与LUMO之间能量差越大,吸收峰蓝移 3、溶剂对λmax的影响(B) A溶剂的极性增大,π→π*跃迁所产生的吸收峰紫移 B溶剂的极性增大,n →π*跃迁所产生的吸收峰紫移 C溶剂的极性减小,n →π*跃迁所产生的吸收峰紫移 D溶剂的极性减小,π→π*跃迁所产生的吸收峰红移 4、苯及其衍生物的紫外光谱有:(B) A二个吸收带 B三个吸收带 C一个吸收带 D没有吸收带 5. 苯环引入甲氧基后,使λmax(C) A没有影响 B向短波方向移动

C向长波方向移动 D引起精细结构的变化 6、以下化合物可以通过紫外光谱鉴别的是:(C) OCH3与 与与与 A B C D 二、简答题 1)发色团 答:分子中能吸收紫外光或可见光的结构 2)助色团 本身不能吸收紫外光或可见光,但是与发色团相连时,可以使发色团的吸收峰向长波答:方向移动,吸收强度增加。 3)红移 答:向长波方向移动 4)蓝移 答:向短波方向移动 5)举例说明苯环取代基对λmax的影响 答:烷基(甲基、乙基)对λmax影响较小,约5-10nm;带有孤对电子基团(烷氧基、烷氨基)为助色基,使λmax红移;与苯环共轭的不饱和基团,如CH=CH,C=O 等,由于共轭产生新的分子轨道,使λmax显著红移。

波谱分析 试题及答案

波谱分析试题及答案 <波谱分析>答案 一、简要回答下列可题(每小题8分,共48分) 1、从防风草分离得一化合物,其紫外光谱在乙醇中λ=241nm。根据文献及其它光max 谱测定可能为松香酸(A)或左旋海松酸(B)。试问从防风草分离的该化合物为何物, A=217+20+5=242nm (4分) B=217+20+5+36=278nm (4分) 从防风草分离的该化合物为何物位A。 2、如何用紫外光谱法、红外光谱法、核磁共振法区别有机化合物(如1,2—二苯基乙 烯)的顺、反几何异构体, 紫外光谱法:反式紫外吸收波长大于顺式的紫外吸收波长(2分) -1-1红外光谱法:反式γ970cm 顺式γ690cm(3分) =CH =CH 33核磁共振法:反式J =12—18Hz 顺式J =6—12Hz(3分) 3、如何用红外光谱法区别下列化合物,它们的红外吸收有何异同, CHNHCHOHCHCOOH2222(1) -1 -1 -1υ 3400,3490cm, υ 3500—3200cm,υ 1725cm(4分) NHOHCO CH3CH3 CHCHC33CH(2) CH3CH3 -1 -1-1-1-1 δ1380cm单峰, δ1385cm,1370cm, δ1390cm,1365cm(4分) CHCHCH 4、比较化合物中用箭头标记的氢核,何者氢核的共振峰位于低场,为什么,

(1)后者氢核的共振峰位于低场,因为两个苯环的磁各向异性。(4分) (2)后者氢核的共振峰位于低场,因为双键的磁各向异性。(4分) 5、某化合物经MC检测出分子离子峰的m/z为67。试问,从分子离子峰的质荷比,你可获得哪些结构信息,分子式可能为CHO、CH、还是CHN, 435745 可获得的结构信息有:该化合物的分子量为67;含奇数个氮(4分) 分子式可能CHN (4分) 45 6、在甲基异丁基酮(M=100)的质谱中,有m/z85、58、5 7、43、15和M-15等主要 碎片离子,试写出开裂过程。 +O+O O+(1)(2)CHCHC33CHCHCHCCCHCHCHCH32332m/z43 m/z15m/z100CHCH33 (4)(3)m/z85OH OC CHCHCHCHCHCCH32233 M-1m/z58 第一步裂解过程(2分),第二步裂解过程(2分),第三步裂解过程(2分),第四步裂解过程(2分) 二、已知化合物分子式为CHO,IR光谱图如下,试推断化合物结构。(10分) 882 不饱和度=5 含有苯环(1分) -1-1 不饱苯环:>3000cm 不饱和C-H的伸缩振动;泛频区单取代峰型;1600,1500 cm -1和C-C(苯环骨架)的伸缩振动;770,690 cm 不饱和C-H面外弯曲振动;单取代峰位。

波谱图分析

分析纱条波谱时应注意的几个问题 李友仁 (教授级高级工程师,国家级专家) 1. 波谱图统计上的可信性 为保证测试结果统计上可信,被测波长必须达到25个,否则要延长测试时间以增加试样长度。 例如,当取测试速度400米/分、测试时间一分钟,试样长度为400米,则波谱图上在以内冒出的“烟囱”或“小山”统计上是可信的。当将测试时间延长到五分钟,试样长度达2000m,则在以内是可信的。波谱图中的可信区用黑白相间的竖条状线表示,而部分未加黑条的区域则可信度降低,不可信的频道在波谱图上不予显示。随着试样长度增加,波谱图上出现的可供分析的频道(台阶)数目也自动增多。 再须注意的是,不宜以一张波谱图上出现异常现象即急于分析,而应重复试验3~4次当波谱图上出现同样现象才认为是可信的。 2. “姆指准则” 纱线中出现周期或近周期性不匀,反映在波谱图上“烟囱”或“小山”凸出的高度将不同程度地对织物外观造成不良影响。可根据“姆指准则”进行判断,即当P>则可预料其对织物外观的影响将会是严重的,见“姆指准则”示意图。 “姆指准则”示意图 从图中看出,不是关注“烟囱”或“小山”凸出的绝对高度,而是与相应的正常波谱图幅度 做相对比较。也就是说,将周期性不匀和与之相应的随机不匀分量进行比较。须注意的是,如“烟囱”占据2~3个频道则应累加后取总高度P值比较。 3. 波长的计算值与实测值两者只需“基本相符”,允许差异可在±15%以内。 这是因为纺纱设备在实际牵伸过程中存在滑移使牵伸倍数较设定值为小,也即实测波长偏小;而纺纱过程中的意外牵伸又会使实测波长偏大。 特别强调的是,分析计算只是手段不是目的,测试分析必须与实际结合,最终结论只能是在分析的基础上经现场排故证实后才予确认。 4. 为保证有效地进行纺纱质量控制,防止坏锭“漏网”,日常测试宜进行规律性取样,即对纺纱设备的每一加工部位(每锭、每眼)在规定时间内至少巡回检测一次。 要科学地设计取样计划,确定每台设备整体检测一遍的周期,起码要保重点,如重点品种、重点设备、重点工序。 5. 分析故障时要理清思路 注意区分个性、共性;静态、动态;负荷轻、负荷重;稳定出现还是时有时无;以及谐波分布等因素赋予故障表现出的不同特点。勿被表面现象所困惑,既然事出有因就一定能查得实据。 例如,是一台车的个别锭(眼),还是整台车共性问题?同一台车的前排锭子还是后排锭子问题?由此可区分故障发生的不同部位,寻找与其相关的部件。又因故障都是在动态运转

相关主题
文本预览
相关文档 最新文档