当前位置:文档之家› 热能动力设备与应用专业实践教学条件分析报告

热能动力设备与应用专业实践教学条件分析报告

热能动力设备与应用专业实践教学条件分析报告
热能动力设备与应用专业实践教学条件分析报告

热能动力设备与应用专业实践教学条件分析报告

热能动力设备与应用专业培养面向淄博市及周边地区制冷空调行业企业,能胜任制冷空调装置的安装调试岗位、制冷与空调系统的运行管理、维护岗位、制冷与空调工程的施工组织管理等岗位(群)的高素质技能型专门人才。

在进行充分企业调研的基础上,以热能动力设备与应用专业的主要职业岗位(群)为依据,结合区域行业企业生产特点,基于制冷空调运行、维护、销售等企业,分析典型工作任务,对完成典型工作任务所需的知识、能力和素质进行归纳,确定行动领域;打破原来的课程体系,按照系统运行为主线,结合职业资格标准的相关能力与知识,进行课程内容的解构与重构,系统设计学习领域,完成工作过程系统化课程体系开发和课程内容的重构。针对就业岗位,以典型工作任务为载体,培养学生的职业能力。

一、师资配置条件分析

依据专业教学要求,校内专业教师5人,毕业于冷冻冷藏工程、热能动力设备与应用专业等专业,分别能够完成5门以上主干课程的工作过程式教学。校外兼职教师5人,来自行业制造企业一线技术人员。能够完成制冷空调设备运行与维护的现场指导、毕业设计指导等。

以职业能力核心课程为例,具体数量指标及其具备的相应能力建议如表1:

表1 师资配置与要求

二、校内外生产实训条件基本情况

以50名学生为例配备实训设施,配备模拟仿真软件、中央空调模拟装置及仿真软件等。实体真实设备可配备1、2套,使用仿真软件补充不足。专业学生与实习实训工位数比例建议为1:1,以完成职业素养养成及职业能力的提升。

1.校内实训室(基地)建设,见表2。

表2 校内实训室(基地)综合指标一览表

2.校外实训基地建设

依据人才培养规格需求,构建课程体系,培养学生的核心职业能力,结合生产过程典型工作任务,实施课程教学,系统分析实训基地的功能和需求(见表3)。表3热能动力设备与应用专业校外实训基地情况一览表

三、校内外生产实训条件应用分析

在校内实验实训条件建设方面,以职业岗位能力、专业技能培养为中心,以建设集教学、培训、技能鉴定、生产、技术服务于一体的实训基地为目的来进行规划和实施,实训基地设备体现了当代前沿的技术水平,能够进行生产性实训、仿真实训、创新设计及制作。

自2004年以来,热能动力设备与应用专业生产性实训得到了长足的发展。2007年度实验开出率达90%,其中生产性实训占到30%;2008年度实验开出率达99%,其中生产性实训达到60%;2009年度实验开出率100%,生产性实训达70%;2010年度实验开出率100%,生产性实训达71%;2011年度实验开出率100%,生产性实训达80%。

在校外建立了稳定的校外实习基地,根据专业特点,以“校企双赢、培养人才、贡献社会”为原则,与企业鉴定实习基地协议,成为学生认知实习、专业实习、顶岗实习、教师项目研究、培训的基地。

我们以校企合作为抓手,推进专业建设、师资队伍建设以及实训基地建设,不断增强办学实力。一是与传统教育制度不同,我们在校企合作方面进行了一系列改革与创新:理念上,主张与企业紧密合作,以技能就业为导向,以传授知识、训练技能、提升品德为重点,以技能成才为目标,走技能教育、技能就业、技能成才道路;在教学设计上,主张从技能人才需求信息、专业设置、课程开发、教学计划、教材编写、教案制作、教师结构、教师能力、课堂教学等多个环节都体现校企合作,教学做一体;在就业上,坚持以技能就业为导向,并将之贯彻到每一个教学环节,使学生在学期间的学习都与毕业就业相关。此外,重点抓住校企合作毕业实习环节,把毕业实习与毕业就业联系起来,并落到实处。二是密切了与企业的关系,聘请了企业工程技术人员和管理专家参与课程开发、教学计划制定、指导课程内容更新;借助于企业资源,培养学生实践能力,以“借鸡生蛋”开始向“返蛋孵鸡”方向探索,拓宽学生就业渠道,重点建设的1门核心课程《电工电子技术》已评选为国家级精品课程,《制冷设备检测技术》课程已评为院级精品建设课程。三是人才培养水平提高显著。通过示范校建设,加大了实训设备资金的投入,加强了实践教学环节,强化了教师的动手能力培养,深化了教学手段、教学内容改革,课程体系与教学内容更加符合高职学生形象思维能力强、喜

欢动手操作的学习特点,调动了学生的学习积极性,提高了学生掌握本职业领域的知识和技能及学生的就业竞争力和发展潜力。四是提高了社会服务能力。发挥专业优势,积极参与企业的科研攻关项目和技术改造,开展社会培训和职业技能鉴定,3年时间,开展民企技术人员培训2871人次,争取培训、技术服务资金200余万元,开发的应用技术项目研究成果部分转让,已经转化为生产力,取得了好的经济效益和社会效益。

建立了集教学、培训、技能鉴定、生产、技术服务于一体的“五位一体”实践教学平台。校企合作,建立了以校内生产性教学工厂为主体的集教学、培训、技能鉴定、生产、技术服务于一体的实践教学平台,采取虚拟实训与生产性实训相结合,进行实境设计与实训,开展社会培训、职业技能鉴定和技术服务,组织训练学生参加技能竞赛,以企业运营模式,实行学生实习“准员工”管理,逐步形成以生产性实训为主,以实训促技能提升的良好运行机制。

采取了从学校向企业延伸的管理机制,形成了评价--反馈--调控“三位一体”的教学质量监控体系。成立了校企教学质量督导组,建立了学生顶岗实习期间的校企共管共育机制,实行了企业按企业规章制度对学生进行考核、管理、奖励、处罚及辞退,系安排辅导员和专业教师(教授)协助企业对学生进行教育、管理,做到了实习岗位对口、实习过程可控、实习管理规范。

历经8年建设,热能动力设备与应用专业实践教学条件已经满足专业建设的需求,对课程建设及教学实施构成了有力的支撑,为培养学生的就业竞争力和发展潜力奠定了坚实的基础。随着专业的发展,校企合作的进一步加强,实训内容会进一步深化,相应的训练设备、设施也需要跟上当今技术的发展,校外实训基地仍需要继续建设;校内实训的设备也需要及时更新,及时淘汰落后的老设备,以保证课程教学的新的需求。

热能与动力工程测试技术

⒈什么是测量? 答:测量是人类对自然界中客观事物取得数量概念的一种认识过程。 ⒉测量方法有哪几类?直接测量与间接测量的主要区别是什么? 答:测量方法有①直接测量(直读法、差值法、替代法、零值法)②间接测量③组合测量 直接测量与间接测量区别:直接测量的被测量的数值可以直接从测量仪器上读得,而间接测量的被测量的数值不能从测量仪器上读得,而需要通过直接测得与被测量有一定函数关系的量,经过运算得到被测量。 ⒊任何测量仪器都包括哪三个部分?各部分作用是什么? 答:①感受件或传感器,作用:直接与被测对象发生联系(但不一定直接接触),感知被测参数的变化,同时对外界发出相应的信号。 ②中间件或传递件,作用:“传递”、“放大”、“变换”、“运算”。 ③效用件或显示元件,作用:把被测量信号显示出来。 ⒋测量仪器按用途可分为哪几类? 答:按用途可分为范型仪器和实用仪器两类。 ⒌测量仪器有哪些主要性能指标?各项指标的含义是什么? 答:①精确度,表示测量结果与真值一致的程度,它是系统误差与随机误差的综合反应。

②恒定度,仪器多次重复测量时,其指示值的稳定程度。 ③灵敏度,以仪器指针的线位移或角位移与引起这些位移的被测量的变化值之间的比例S来表示 ④灵敏度阻滞,灵敏度阻滞又称为感量,此量是足以引起仪器指针从静止到作极微小移动的被测量的变化值。 ⑤指示滞后时间,从被测参数发生变化到仪器指示出该变化值所需的时间,称为指示滞后时间或称时滞。 ⒍测量误差有哪几类?各类误差的主要特点是什么? 答:①系统误差,特点:按一定规律变化,有确定的因素,可以加以控制和有可能消除。 ②随机误差,特点:单峰性、对称性、有限性、抵偿性,无法在测量过程中加以控制和排除。 ③过失误差,特点:所测结果明显与事实不符,可以避免。 ⒎什么叫随机误差?随机误差一般都服从什么分布规律? 答:随机误差(又称偶然误差)是指测量结果与同一待测量的大量重复测量的平均结果之差。 随机误差一般都服从正态分布规律。 ⒏试述测量中可疑数据判别方法以及如何合理选用? 答:①判别方法有莱依特准则、格拉布斯准则、t检验准则、狄克逊准则、肖维涅准则。 ②选用原则:1)从理论上讲,当测量次数n趋近∞(或n足够大)时,采用莱依特准则更为合适;若次数较少时,则采用格拉

热分析动力学

热分析动力学 一、 基本方程 对于常见的固相反应来说,其反应方程可以表示为 )(C )(B )(A g s s +→ (1) 其反应速度可以用两种不同形式的方程表示: 微分形式 )(d d αα f k t = (2) 和 积分形式 t k G =)(α (3) 式中:α――t 时物质A 已反应的分数; t ――时间; k ――反应速率常数; f (α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。 由于f (α)和G (α)分别为机理函数的微分形式和积分形式,它们之间的关系为: α αααd /)]([d 1 )('1)(G G f = = (4) k 与反应温度T (绝对温度)之间的关系可用著名的Arrhenius 方程表示: )/exp(RT E A k -= (5)

式中:A ――表观指前因子; E ――表观活化能; R ――通用气体常数。 方程(2)~(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关系式: t T T β0 += (6) 即: β/=t d dT 式中:T 0――DSC 曲线偏离基线的始点温度(K ); β――加热速率(K ·min -1)。 于是可以分别得到: 非均相体系在等温与非等温条件下的两个常用动力学方程式: )E/RT)f(A t d d αexp(/-=α (等温) (7) )/exp()(β d d RT E f A T -=αα (非等温) (8) 动力学研究的目的就在于求解出能描述某反应的上述方程中的“动力学三因子” E 、A 和f(α)

对于反应过程的DSC 曲线如图所示。在DSC 分析中,α值等于H t /H 0,这里H t 为物质A ′在某时刻的反应热,相当于DSC 曲线下的部分面积,H 0为反应完成后物质A ′的总放热量,相当于DSC 曲线下的总面积。 二、 微分法 2.1 Achar 、Brindley 和Sharp 法: 对方程 )/exp()(β d d RT E f A T -=αα进行变换得方程: )/exp(d d )(βRT E A T f -=α α (9) 对该两边直接取对数有: RT E A T f - =ln d d )(βln αα (10) 由式(11)可以看出,方程两边成线性关系。 通过试探不同的反应机理函数、不同温度T 时的分解百分数,进行线性回归分析,就可以试解出相应的反应活化能E 、指前因子A 和机理函数f(α). 2.2 Kissinger 法

热能与动力工程是以工程热物理学科为主要理论基础

热能与动力工程是以工程热物理学科为主要理论基础,以内燃机和正在发展中的其它新型动力机械及系统为研究对象,运用工程力学、机械工程学、自动控制、计算机、环境科学、微电子技术等学科的知识和内容,研究如何把燃料的化学能和液体的动能安全、高效、低(或无)污染地转换成动力的基本规律和过程,研究转换过程中的系统和设备的自动控制技术。随着常规能源的日渐短缺,人类环境保护意识的不断增强,节能、高效、降低或消除污染排放物、发展新能源及其它可再生能源成为本学科的重要任务,在能源、交通运输、汽车、船舶、电力、航空宇航工程、农业工程和环境科学等诸多领域获得越来越广泛的应用,在国民经济各部门发挥着越来越重要的作用。这方面人才在加强学生基础理论和综合素质教育的同时,加强计算机及自动控制技术的应用,强化专业实践教学,注重全能训练,全面提高自己的实践动手能力和科学研究潜力. 我国能源动力类专业形成于20世纪50年代。以交通大学为例,1952年院系调整时,当时设在机械系中的动力组就单独成立了动力机械系。由于受当时苏联教育体制的影响,在该学科的发展过程中,专业面曾一度越分越细。50年代初期只有锅炉、气轮机、内燃机等专业,以后又先后办起制冷专业与风机专业,制冷专业又细分出压缩机,制冷及低温专业。在50年代末又创办了核能专业,在60~70年代有些学校先后设立了工程热物理专业。这样能源动力学科中的专业就先后包括有锅炉、涡轮机、电厂热能、风机、压缩机、制冷、低温、内燃机、工程热物理,水力机械以及核能工程等11个专业,形成了明显的以产品带教学的基本格局。热能与动力工程专业中包含的水利水电动力工程专业的前身为水电站动力装置专业。该专业形成于20世纪50年代。新中国成立以后,随着国家对水患的治理和经济建设的发展,国家设立了华东水利学院、武汉水利水电学院、华北水利水电学院等一些专门的水利院校,1958年起在这些院校和西安交通大学水利系(西安理工大学水电学院的前身)设立了水电站动力装置专业,以满足国家对水电建设人才的迫切需求。1977年恢复高考招生后,该专业更名为水电站动力设备专业。1984年该专业更名为水利水电动力工程专业,涵盖了原水能动力工程、水电站动力装置、水电站动力设备、水能动力及其自动化、机电排灌工程、水能动力与提水工程等专业,昆明工业学院、成都科技大学等一些院校都设置了该专业。1998年,按照国家教育部颁布的新的专业目录,水利水电动力工程专业并入热能与动力工程专业,新的热能与动力工程专业包含了原来的热力发动机、流体机械及流体工程、热能工程与动力机械、热能工程、制冷与低温技术、能源工程、工程热物理、水利水电动力、工程冷冻冷藏工程等9个专业。客观上说,这种专业划分与当时我国计划经济的体制以及工业发展的实际情况,在一定程度上是相适应的。过窄的专业面,但却培养了专业工作能力较强的学生。因此,在当时对我国经济的发展和工业体系的重建,曾经起到过积极的作用。但随着社会经济向现代化方向的发展和高新科学技术的进步,特别是我国改革开放以后,国外先进科技、管理体系的大量引进,学科的交叉融合不断产生新的经济增长点,当时实际存在的过细过窄的工科专业设置,总体上已不能适应新的形势和发展对人才的需要,必须进行专业调整。因此,在1993年原国家教委进行的专业目录调整中,将能源动力学科的上述前10个专业压缩为4个专业,即热能工程,热力发动机,制冷与低温工程,流体机械与流体工程,核工程与核技术保留。1998年,教育部颁布了新的专业目录,将上述前4个专业进一步合并为热能与动力工程专业,核工程与核技术专业单独设立,而在引导性的专业目录中,则建议将热能工程与核能工程合并。但当时我国大多数学校还是采用了热能工程与核能工程单独设专业的方案。因此,在2000年教育部设立的新一轮教学指导委员中,在能源动力学科教学指导委员会下分设了三个委员会:热能动力工程,核工程与核技术以及热工基础课程教学指导分委员会。能源动力工业是我国国民经济与国防建设的重要基础和支柱型产业,同时也是涉及多个领域高新技术的集成产业,在国家经济建设与社会发展中一直起着极其重要的作用。近年来,随着我国各个方面改革的深化发展,包括市场经济的逐步建立,国有大中型企业机制的转换,加入WTO后面临的挑战,以及能源

发电厂热能动力工程问题及其主要性能的应用 解双洲

发电厂热能动力工程问题及其主要性能的应用解双洲 发表时间:2019-04-26T15:54:26.187Z 来源:《基层建设》2019年第3期作者:解双洲 [导读] 摘要:近年来,我国经济增长平稳,人们生活水平日益提升。 沈阳万益安全科技有限公司辽宁沈阳 110015 摘要:近年来,我国经济增长平稳,人们生活水平日益提升。但是,经济增长带来的环境问题和能源问题日益显现,经济发展和环境保护之间的矛盾越发突出。热能与动力工程作为支撑经济发展的基石,其节约能源、提升产出效率成为了行业中最关注的问题。依靠科学技术的发展,我国发电方式从单一向多元化方向发展。现阶段,我国使用的发电方式有火力发电、风力发电和太阳能发电等。但是,受地域和经济条件的限制,主要发电方式仍然是火力发电。火力发电对设备要求较高,并且需要在高温和高压环境中进行。因此,为了保证发电顺利进行和设备的稳定性,工作人员必须解决电厂热能和动力工程之间的矛盾,保证生产资源的最优化,实现高效率、高质量发电。为此,发电厂已经逐渐将热力动能工程应用其中,通过动力装置将热能转化为动能,再经过汽轮发动机组将动能转化为电能,以减少能源的过度消耗,提升资源利用率,保护环境,节约资源。 关键词:发电厂;热能动力工程;主要性能 1热能动力工程的概念 从字面意义上不难看出,所谓热能动力工程是这样一项系统工程,主要研究将怎样把热能通过一定的方式产生动力、动能,然后把产生出来的动力、动能变为电能,用来满足人们生产生活的实际需求。怎样实现热能和动能之间的相互转化是热能动力工程主要研究的方向。这种转化其实都严格遵循着能量守恒定律。这是就为这些问题的进行有效的解决提供了科学的理论和实践依据。热能动力工程,无论从内涵还是从外延上来说,其包含的内容和意义都是十分丰富的,也是非常复杂的。这其中涵盖了很多知识领域,涉及到方方面面的专业知识。在电厂中如果能够将热能动力工程加以合理、有效的运用,不仅使可以电厂的整体工作效率得到最大限度提升,而且能够大大降低可以电厂的运行成本从而减少投入,实现企业经济效益的最大化。同时,热能动力工程的发展方式与当前正在大力倡导的绿色发展、科学发展的理念非常符合,能够为节约能源和保护环境作出巨大的贡献。 2发电厂热能动力工程中存在的主要问题 2.1重热问题 在电厂运行中需要用到很多汽轮机,这样会带来一定的热量损失。为了减少热量损失,通常会使用汽轮机将一部分热能重新吸收利用,以提升汽焓值。重热问题是发电厂在进行内转换时,将前一过程能量应用于下一过程,在存在相同的管道压力时,前一过程中的焓值会在后一过程中出现大幅度下降现象。经查阅资料发现,当前我国电厂的重热系数在4%~8%。重热系数代表着热能的重复使用程度。一般来说,重热系数越高,代表热能损耗量越低。所以,电厂在实际生产中应根据情况适当提高重热系数,以提升能量的重复使用效率。虽然适当的重热现象能够提升平均效力,还有助于电厂的顺利运行,但是过度重热现象依旧会影响发电厂的资源利用率。这主要表现在三个方面。第一,重热问题不仅会使发电厂的能源得不到有效储存,还会降低电能效果和品质;第二,重热问题会导致锅炉燃烧程序不稳定,进而影响蒸汽排放,最终影响发电体系;第三,重热问题也会影响气压稳定性,致使压力发生变化。 2.2节流调节 在发电厂的运行中节流调节应用范围较广,当发电设备发生变化时,系统的能源消耗将会经常增加,这反过来会影响能源公司的经济效率。在实际情况下,节流阀更适合设备相对较低的容量。如果单个设备的最高额定负载达到任何一级水平,那么各级的数量将相应增加。与此同时,机组的数量将减少,而减少供电压力的临界值。只有在机组中超过三级的阶段,节流调节可能通常适用,但如果发电设备不改变,则不同机组的同构的差异是平等的。因此,当发电机器的工作状态改变时,系统可以保持正常和稳定的工作状态。 2.3湿气损失 湿气损失的主要原因是多方面的结合,而不是单方面的原因。主要的原因包括:在扩大蒸汽的过程中,有一些水会影响蒸汽,引起水分的损失。当水的速度比蒸汽的速度低得多的时候,蒸汽的速度很容易受到高速度运动的影响,这导致了湿气的损失,水滴也会影响到喷口的正常流动,导致能量损失,有时会导致其他的设备操作。 3发电厂热能动力工程主要性能的应用分析 3.1科学的应用重热现象 考虑到发电厂的热能源和动力工程状况,所谓的重热现象是在一个多级涡轮装置上的一个多级损失的一小部分,可以在接下来的阶段重新使用,再加热系数与蒸汽涡轮机的理想焓降相比,所有焓降之和都超过了热焓的理想降温和焓降的比值。尽管有很多负面影响,但如果可以合理地使用,它也会促进能源使用效率。首先,加热系统必须保持在合理的范围内。它不需要,越大越好。与此同时,要合理地使用重热现象,降低效率必须是基础,所以它不能将所有耗损全部收回,只能收回部分耗损。 3.2提高节流调节的有效性 在安装机组过程的第一个阶段,节流调节可以完成一个完整的蒸汽循环。当设备的环境变化时,所有级别的温度都会下降。虽然适应性是强大的,但有一个节流的损失导致经济大幅下降。因此,我们必须充分地引用弗莱格尔的原则,准确地计算出每一级的压差值和焓降值,同时控制汽轮机循环的状态,同时确定工作效率和每个组件的服务效率。而如果流量已知,就能够及时的掌握流动部分面积的变化情况。 3.3湿气损失控制的应用分析 湿气造成的能源损耗主要是湿气流动产生的热损失。另外,水蒸汽凝结也会造成热能损失。发电机组在运行过程中会产生热能,随着热传递的进行,温度较低的湿气会将热能传递到其他地方,进而造成热能的损失。因此,加强湿气的控制能在一定程度上降低能耗,保证热能和动力工程在发电厂中的有效运行。结合发电机工作实际,湿气损失的原因为:在湿冷蒸汽受热膨胀的过程中,会有一部分蒸汽发生凝结形成水珠,使蒸汽量减少;水珠的流速远远低于蒸汽流速,进而牵引蒸汽造成部分动能损耗,出现蒸汽过冷状况。湿气损失会使发电机组的动叶进汽边缘产生冲蚀,降低叶片长度,减少叶面实际面积,缩短叶片使用年限,尤其在叶顶背弧处最为严重。为了降低湿气对叶片的损伤,可以采用以下方法:首先应该除湿,可以选用汽水分离加热器,保证低压缸的效率和安全性;其次,可以选用带有吸水缝的喷灌,降低设备湿度;最后,可以降低机械损失(例如:推力轴承与支持轴承的摩擦力、启动调速器等的机械消耗),使用轴流式汽轮机创

能源与动力工程测试技术复习资料

1、热电偶测温的原理、基本定律及应用、热电偶测温冷端温度补偿方法 (温差电动势可以忽略不计,在热电偶回路中起主要作用的是接触电动势) 热电偶回路的热电动势只与组成热电偶的材料及两端接点的温度有关;与热电偶的长度、粗细、形状无关。导体材料确定后,热电动势的大小只与热电偶两端的温度有关,而且是T的单值函数,这就是利用热电偶测温的基本原理。 (1) 均质导体定律 如果热电偶回路中的两个热电极材料相同,无论两接点的温度如何,热电动势均为零;反之,如果有热电动势产生,两个热电极的材料则一定是不同的。根据这一定律,可以检验两个热电极材料的成分是否相同(称为同名极检验法),也可以检查热电极材料的均匀性。 (2) 中间导体定律 在热电偶回路中接入第三种导体C,只要第三种导体的两接点温度相同,则回路中总的热电动势不变。 (3) 标准电极定律

如果两种导体分别与第三种导体组成的热电偶所产生的热电动势已知,则由这两种导体组成的热电偶所产生的热电动势也就可知。为分度表的制作提供理论基础 (4) 中间温度定律 热电偶在两接点温度分别为T、T0时的热电动势等于该热电偶在接点温度分别为T、Tn和接点温度分别为Tn、T0时的相应热电动势的代数和。为分度表的应用提供理论基础 由于热电偶产生的电势与两端温度有关,只有将冷端温度保持恒定才能使热电势正确反映热端的被测温度。由于有时很难保证冷端温度在恒定0℃,故常采取一些冷端补偿措施。 1.冷端恒温法 (1) 冰点槽法 (2) 其它恒温器 2.补偿导线法:将冷端延伸到温度恒定的场所 3.计算修正法 4.电桥补偿法

5.显示仪表零位调整法 6.软件处理法 2、霍耳传感器的工作原理、特点 原理:半导体薄片置于磁感应强度为B 的磁场中,磁场方向垂直于薄片,当有电流I 流过薄片时,在垂直 于电流和磁场的方向上将产生电动势EH,这种现象称为霍尔效应。作用在半导体薄片上的磁场强度B越 强,霍尔电势也就越高。霍尔电势用下式表示: 特点: 1、为提高灵敏度, 霍尔元件常制成薄片形状。 2、要求霍尔片材料有较大的电阻率和载流子迁移率。 3、只有半导体材料适于制造霍尔片。 4、霍尔集成电路可分为线性型和开关型两大类。 5、霍尔传感器广泛用于电磁测量、压力、加速度、振动等方面的测量。

对热能与动力工程学科的认识

对热能与动力工程学科的认识 1.专业的培养目标的认识 本专业主要培养能源转换与利用和热力环境保护领域具有扎实的理论基础,较强的实践、适应和创新能力,较高的道德素质和文化素质的高级人才,以满足社会对该能源动力学科领域的科研、设计、教学、工程技术、经营管理等各方面的人才需求。学生应具备宽广的自然科学、人文和社会科学知识,热学、力学、电学、机械、自动控制、系统工程等宽厚理论基础、热能动力工程专业知识和实践能力,掌握计算机应用与自动控制技术方面的知识。毕业生能从事能源与动力工程及相关方面的研究、教学、开发、制造、安装、检修、策划、管理和营销等工作。也可在本专业或其它相关专业继续深造,攻读硕士、博士学位。 2.对我校热能与动力工程设立的三个专业方向听课后的认识 我校本专业共设立三个专业方向,分别是以内燃机方向、制冷与空调方向、以及火力发电的能源方向。 热力发动机主要研究高速旋转动力装置,包括蒸汽轮机、燃气轮机、涡喷与涡扇发动机、压缩机及风机等的设计、制造、运行、故障监测与诊断以及自动控制。为航空、航天、能源、船舶、石油化工、冶金、铁路及轻工等部门培养高级工程技术人才。我校的本专业方向主要是做汽车发动机的,我们国家的汽车工业起步比较晚,在发动机方向比较需要人才,这个专业就是做这方面的钻研。我们在这方面的老师大多都去过国产汽车企业搞过项目。虽然新能源和电动汽车的发展已经起步,但是要多

少时间,更新速度不可估计。所以在不短的一段时间内传统的发动机还是会存在的,军用的发动机、船用的等等大功率的机械设备少不了传统发动机。并且就算是以后新能源时代真的到来了,其人才还是远远不够的,肯定从传统发动机的人才里培养一部分。任何国家跟地区,不会让曾经传统发动机的人才没事可干的。 制冷与空调方向主要研究制冷与低温技术。它广泛应用于能源、航天、航空、汽车、石油化工、食品与药品的生产、医疗设备与空调制冷设备的生产等领域。培养从事制冷与空调领域内的设计制造、科研开发、应用研究、运行管理和经营销售等方面的高等工程技术人才,本专业方向培养的学生适应范围广,其涵盖的范围有制冷方面的设计、开发、空调设计、运行管理等。其中空调方向的学生掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识,也掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。随着科技的发展,未来的空调的应用会越来越广,从环保的角度看,未来的空调主要会向这几个方向发展: 1、变频空调 变频空调器是通过内装的变频器改变频率。从而控制空调器压缩机的转速。使压缩机转速连续变化,实现压缩机能量的无级调节。与一般空调相比.变频空调有着高性能运转、舒适静音、节能环保、能耗低的显著特点,改善

热能与动力机械基础

制冷和空调是相互联系又相互独立的两个领域。制冷是一种冷却过程,除用于食品冷冻加工、化工和机械加工等工业制冷外,其最主要的应用是空调。空调中既有冷却,也包括括供暖、加湿、去湿以及流速、热辐射和空气质量的调节等。 本章将以制冷循环或逆向循为核心,重点阐述制冷与空调系统中的能量转换关系和性能评价等内容。 第一节概述 一、制冷的定义与分类 制冷是指用人工的方法在一定时间和一定空间内将物体冷却,使其温度降低到环境温度以下,保持并利用这个温度。按照所获得的温度,通常将制冷的温度范围划分为以下几个领域:120K以上,普冷;120N0.3K,深冷(又称低温);0.3K以下,极低温。 由于温度范围不同,所采用的降温方式,使用的工质、机器设备以及依据的具体原理有很大差别。工程应用上有多种人工制冷方法,如适用于普通制冷的蒸气压缩式制冷、吸收式制冷、蒸气喷射式制冷,适用于深度制冷(制冷温度为20~160K)的气体膨胀制冷、半导体体制冷、磁制冷等。空气调节系统中所用的人工制冷方法主要是蒸气压缩式、吸收式制冷。 二、制冷研究的内容 制冷研究的内容可以概括为以下四个方面: 1)研究获得低于环境温度的方法、机理以及与此对应的循环,并对循环进行热力学的 分析和计算。 2)研究循环中使用的工质的性质,从而为制冷机提供合适的工作介质。 3)研究气体的液化和分离技术。例如液化氧、氮、氢、氦等气体,将空气或天然气液化、分离,均涉及一系列的制冷技术。 4)研究所需的各种机械和设备,包括它们的工作原理、性能分析、结构设计。 三、制冷技术的应用 制冷技术的应用几乎渗透到各个生产技术、科学研究领域,并在改善人类的生活质量方面发挥了巨大作用。 1.商业及人民生活 食品冷冻冷藏和舒适性空气调节是制冷技术应用最为量大、面广的领域。 商业制冷主要用于各类食品冷加工、冷藏储存和冷藏运输,使之保质保鲜。现代的食品工业,从生产、储运到销售,有一条完整的“冷链”。所使用的制冷装置有:各种食品冷加工装置、大型冷库、冷藏汽车、冷藏船等,直至家庭用的电冰箱。 舒适性空气调节为人们创造适宜的生活和工作环境。如家庭、办公室用的局部空调装置;大型建筑、车站、机场、宾馆、商厦等使用的集中式。空调系统;各种交通工具,如轿

新形势下电厂锅炉设备在热能动力工程中的应用 孙荣国

新形势下电厂锅炉设备在热能动力工程中的应用孙荣国 发表时间:2019-07-30T15:59:09.417Z 来源:《建筑细部》2018年第27期作者:孙荣国 [导读] 锅炉设备是电厂最重要的设备之一,其设备运行效果,对电厂的正常生产、经营有着重要影响,而且直接关系着电厂的经济效益与社会效益。但在实际运行中,锅炉是最容易出现故障的设备之一。 身份证号码:11022819701013XXXX 摘要:锅炉设备是电厂最重要的设备之一,其设备运行效果,对电厂的正常生产、经营有着重要影响,而且直接关系着电厂的经济效益与社会效益。但在实际运行中,锅炉是最容易出现故障的设备之一。文章主要论述了锅炉设备使用中存在的缺点,并对其在热能动力工程中的应用进行了分析,以便促进电厂锅炉设备的使用和发展。 关键词:新形势;电厂锅炉设备;热能动力工程;缺点;应用 引言 随着社会经济水平提升,电厂也得到了进一步发展,同时对其也提出了更高要求,尤其是对锅炉设备运行情况更加关注,只有对其设备进行充分应用,才能有效提升运行效率。尤其是在科学技术不断发展的今天,我国热能动力工程技术不断发展,将其与锅炉设备的技术有机结合起来,有利于保证锅炉设备稳定运行。 1 电厂锅炉设备在使用中存在的缺点 首先,电厂锅炉设备在使用过程中,由于技术不够先进,存在着一定的局限性,而且其技术是存在设备的能量转换中,所以其能量转换率相对来说是比较低的[1]。在锅炉设备能量转换过程中,主要经历三个转换阶段,首先是由热能转换为电能,然后再由电能转换到机械能,最后再到热能。其转换效率是很低的,在实际操作时,还需要根据实际情况,对其进行合理的调节,满足电厂运行需要。尤其是近年来,人们生活质量与水平不断提升,对电能的要求也越来越高,当前技术很难满足人们的需求,不仅能量转换效率没有得到提升,而且还存在着浪费问题,不利于电厂可持续发展。其次,虽然科学技术不断发展,但在电厂锅炉领域,其技术发展相对而言是比较慢的。很多企业为了促进电厂快速发展,不仅提升了对锅炉设备的技术重视度,而且还投入了大量资金,但从整体行业发展状况而言,其效果并不好。而且现阶段,节能环保理念不断深入人心,人们用电量不断增加,对供电质量要求也更高。因此,对其技术革新是十分急迫的。而且在进行技术创新中,不仅要进一步提升其能量转换率,而且还要尽量减少能源消耗,避免资源浪费现象发生[2]。 2 新形势下电厂锅炉设备在热能动力工程中的应用 2.1 进一步提升能量转换率 新形势下,将锅炉设备应用在热能动力工程中,就必须要对热能动力工程学的相关知识进行了解和分析。在此基础上,才能更清楚的知道锅炉设备发电情况,实际上是通过能量转换进行发电的[3]。为了从根本上提升应用效果,提升设备运行有效性,就需要对其传统技术进行改进和创新,将能量转化率提升作为重点工作内容,进而充分发挥其设备功能与作用,保证热能动力工程顺利开展,促进电厂正常运行。从当前锅炉设备在热能动力工程应用情况来看,还存在很多问题,严重阻碍了能量转换率的提升。因此,在对其相关技术进行改进过程中,需要重点对所出现的问题进行分析和探讨,避免不必要的故障发生。另外,锅炉作为电厂最重要的设备之一,它是由很多零部件构成的,而且每个零部件都发挥着非常重要的作用,为了有效提升热能与机械能的转化效率,还需要从其零部件入手,进一步改善不同零部件的协作关系,保证零部件具有完善的功能。而且还需要实现统一的运转,并结合发电量的实际状况,对各个部分的协作性进行调整和完善。在这一过程中,还要树立整体意识,必须要确保各个零部件是与锅炉设备相符的,这样才能减少故障发生,促进能量转换效率提升[4]。 2.2 完善锅炉内部构造,优化热能技术 电厂锅炉设备在热能动力工程应用中,之所以出现了各种问题,其中有很大一部分原因是其内部构造不合理,不仅影响了整个设备运行的安全性,而且还不利于提升设备运行效率,难以延长设备使用寿命。针对此种局面,必须对锅炉内部结构进行改进和优化,最大限度地提升内部结构设计的科学性、合理性。尤其是在新形势下,电厂锅炉设备也应该与时俱进,与现代社会发展相适应。这就需要根据实际运行状况,并结合各种影响因素,对其内部结构进行调整,保证其质量与性能符合相关标准与要求,进而可在一定程度上延长设备的使用时间。除此之外,优化热能技术也是十分必要的,对设备的运行效率与质量的提升有很大影响。在进行优化过程中,有关工作人员需要明确工程的实际要求与特点,为其优化工作提供一定的依据,这样才能够对所有的技术的具体应用提供可靠的保障,促进设备稳定运行,有利于减少不必要的损失,对电厂的长远发展具有重要意义[5]。 2.3 做好设备维护、保养与故障预防工作 为了促进电厂锅炉设备有效运行,只对其技术进行革新还是远远不够的,在设备长期运行过程中,难免会出现磨损等问题。尤其是在热能动力工程中的应用,出现的故障还是比较多的,给电厂运行与发展带来了不良影响。因此,必须要加强设备维护、保养与故障预防。因此,在电厂发展中,需要对锅炉设备进行定期的检查与维修,一旦发现磨损、老化等现象,必须要进行及时的维修与养护,对于老化的设备要及时更新,以免在使用过程中,出现重大问题,影响电厂正常运转,给其造成经济财产损失,甚至造成人员伤亡[6]。与此同时,还要根据检查结果,对可能出现的故障进行分析,不仅要制定相应的应对方案,还要采取有效措施,做好故障预防工作,有利于降低故障发生的概率。即使发生故障,也可以根据事前制定的解决方案,在第一时间解决问题,可以将损失降低到最小。另外,锅炉设备的运行状况与相关操作人员的综合素质与操作技术水平是息息相关的,为了减少安全事故发生,还需要重点培养司炉工的责任意识与良好的职业道德观,使其能够认真对待这份工作,减少资源浪费现象发生。而且还要使其学习相关操作知识与技术。例如,在实际工作中,需要启动机之后再扬火,然后还需要进行通风工作,这样状态下启动引风机,可以促进锅炉设备内的可燃气体全部排出,大大提升了锅炉运行安全性。相关工作人员需要严格按照相关流程进行操作,可以有效减少故障发生。此外,进行有效的维修与保养,还能够及时发现问题,及时解决,对减少设备停机的次数具有重要作用。 2.4 积极转换思想,推动设备高效运行 影响电厂锅炉设备运行有多方面的因素,因此为了保证运行的高效性,也需要考虑不同方面的因素。虽然锅炉设备改进与热能动力工

热能与动力工程测试技术复习重点

第一至三章一、名词解释 测量:是人类对自然界中客观事物取得数量 观念的一种认识过程。它用特定的工具和方法,通 过试验将被测量与单位同类量相比较,在比较中确 定出两者比值。 稳态参数:数值不随时间而改变或变化很小 的被测量。 瞬变参数:随时间不断改变数值的被测量(非 稳态或称动态参数),如非稳定工况或过渡工况时 内燃机的转速、功率等。 模拟测量:在测量过程中首先将被测物理量 转换成模拟信号,以仪表指针的位置或记录仪描绘 的图形显示测量的结果(不表现为“可数”的形式) 。 数字测量:测量可直接用数字形式表示。通 过模/数(A/D)转换将模拟形式的信号转换成数 字形式。 范型仪器:是准备用以复制和保持测量单位, 或是用来对其他测量仪器进行标定和刻度工作的仪 器。准确度很高,保存和使用要求较高。 实用仪器:是供实际测量使用的仪器,它又 可分为试验室用仪器和工程用仪器。 恒定度:仪器多次重复测量时,其指示值稳定 的程序,称为恒定度。通常以读数的变差来表示 . 灵敏度:它以仪器指针的线位移或角位移与 引起这些位移的被测量的变化值之间的比例S来表 示。 灵敏度阻滞:灵敏度阻滞又称为感量,感量是 足以引起仪器指针从静止到作极微小移动的被测量 的变化值。一般仪器的灵敏度阻滞应不大于仪器允 许误差的一半。 指示滞后时间:从被测参数发生变化到仪器 指示出该变化值所需的时间,又称时滞。 测量值与真值之差称为误差。 因子:在试验中欲考察的因素称为因子。因 子又可分为没有交互作用和有交互作用的因子,前 者是指在试验中相互没有影响的因子,而后者则在 试验中互相有制抑作用。 水平:每个因子在考察范围内分成若干个等 级,将等级称为水平 二、填空题 常用的测量方法有直接测量、间接测量、组 合测量。 测试中,被测量按照其是否随时间变化可以 分类稳态参数和瞬变参数。 有时被测参数的量或它的变化,不表现为“可 数”的形式,这时就不能用普通的测量方法,相应 的就出现了模拟测量和数字测量。 按工作原理,任何测量仪器都包括感受件, 中间件和效用件三个部分。 测量仪器按用途可分:范型仪器和实用仪器 测量仪器的性能指标决定了所得测量结果的 可靠程度,其中主要有:准确度、恒定度、灵敏度、 灵敏度阻滞、指示滞后时间等 在选用时,仪器的读数的变差不应超过仪器 的允许误差。 一般常采用试验方法来标定测量仪器的动态 特性。 仪器标定的内容及方法 前面已从理论上讲述了测量仪器的动态特性,但实 际上由于测量仪器本身的各种因素影响,难以用理 论分析方法正确地确定其动态特性。一般常采用试 验方法来标定测量仪器的动态特性。 其主要内容,一般为仪器的时间常数、无阻尼时仪 器的固有频率、阻尼比等。判断该测量仪器是一阶 还是二阶仪器。 其主要方法,一般有频率响应法、阶跃响应法、随 机信号法。 对一阶仪器,主要确定的动态特性参数为时 间常数τ。 二阶测量系统,标定目的主要是确定动态特 性参数:仪器的无阻尼固有频率ω0 和阻尼比ζ。 按照产生误差因素的出现规律以及它们对于 测量结果的影响程序来区分,可将测量误差分为三 类。系统误差:随机(偶然)误差:过失误差 : 具体的测量过程中,系统误差按其产生的原 因可分为; 仪器误差安装误差环境误差方法误差操作误 差动态误差 但往往也常采用如下方法来消除系统误差1. 交换抵消法2.替代消除法3.预检法 正交表分为标准表和混合型正交表 三、简答题 模拟测量:直观性强、简便、价格低;主要缺点 是测量精度低指示器读数误差大。但模拟信号含有 “仿真”的意思,分辨能力无限。 数字测量:测量精度高,操作方便,后处理方 便,但对硬件要求高,分辨力有限。 仪器的选用:应在满足被测量要求的条件 下,尽量选择量程较小的仪器,一般应使测量值在 满刻度的2/3以上为宜,并根据对被测量绝对误差 的要求选择测量仪器的精度等级。 零阶仪器的特点:不管x随时间如何变化, 仪器输出不受干扰也没有时间滞后,因此零阶仪器 (或传感器)可以认为有完全理想的特性。 时间常数τ是由热电偶的几何参数和热特性 确定,它的大小直接影响到滞后时间,τ越小表示 热惯性小,达到稳态值的时间越短;反之,时间就 越长。为进行可靠的动态测量,应使测量系统的时 间常数尽可能小。 为了提高响应速度而又不产生波动,二阶仪 器常采用=0.6~0.8为最佳。这时幅频特性的平 直段最宽。而且在一定条件下,提高系统的固有频 率,响应速度会变得更快。 第四章 一、名词解释 ◆压电效应:是指某些结晶物质沿它的 某个结晶轴受到力的作用时,其内部有极化现 象出现,在其表面形成电荷集结,其大小和作 用力的大小成正比,这种效应称为正压电效 应。相反,在晶体的某些表面之间施加电场, 在晶体内部也产生极化现象,同时晶体产生变 形,这种现象称为逆压电效应。 ◆压电晶体:具有压电效应的晶体称为 压电晶体 ◆中间温度定律:用两种不同的金属组成 闭合电路,如果两端温度不同,则会产生热电 动势。其大小取决于两种金属的性质和两端的 温度,与金属导线尺寸、导线途中的温度及测 量热电动势在电路中所取位置无关。 ◆均质材料定律 :如用同一种金属组成 闭合电路则不管截面是否变化,也不管在电路 内存在什么样的温度梯度,电路中都不会产生 热电动势。 ◆中间导体定律 :在热电偶插入第三种 金属,只要插入金属的两端温度相同,不会使 热电偶的热电动势发生变化。 ◆标准电极定律:在热电偶插入第三种金 属,插入金属的两端温度不同,发生附加热电 动势后的总热电动势,等于各接点之间所产生 热电动势的代数和。 ◆光电效应:当具有一定能量E的光子 投射到某些物质的表面时,具有辐射能量的微 粒将透过受光的表面层,赋予这些物质的电子 以附加能量,或者改变物质的电阻大小,或者 使其产生电动势,导致与其相连接的闭合回路 中电流的变化,从而实现了光— ◆外光电效应:在光线作用下能使电子逸 出物质表面的称为外光电效应,属于外光电效 应的转换元件有光电管、光电倍增管等。 ◆内光电效应:在光线作用下能使物体电 阻率改变的称为内光电效应。属于内光电效应 的光电转换元件有光敏电阻以及由光敏电阻 制成的光导管等。 ◆阻挡层光效应:在光线作用下能使物体 产生一定方向电动势的称为阻挡层光电效应, 属于阻挡层光电效应的转换元件有光电池和 光敏晶体管等。 ◆用单位辐射通量不同波长的光分别照 射光电管,在光电管上产生大小不同的光电 流。这里,光电流I与光波波长λ的关系曲线 称为光谱特性曲线,又称频谱特性。 ◆霍尔效应: 金属或半导体薄片置于磁 场中,当有电流流过时,在垂直于电流和磁场 的方向上将产生电动势,这种物理现象称为霍 尔效应。 ◆霍尔元件: 基于霍尔效应工作的半导 体器件称为霍尔元件,霍尔元件多采用N型 半导体材料。 ◆传感器是把外界输入的非电信号转换 成电信号的装置。 ◆金属电阻应变片的工作原理是基于金 属导体的应变效应 二、填空题 ◆结构型:依靠传感器结构参数的变化实 现信号转变. ◆能量转换型:直接由被测对象输入能量 使其工作. ◆能量控制型:从外部供给能量并由被测 量控制外部供给能量的变化. ◆常用传感器根据其作用原理的不同,可以分 为两大类。能量型” “参数型” ◆传感器的特性主要包括以下两种。静 态特性.表征传感器静态特性的主要参数有:线 性度、灵敏度、分辨力等。 ◆动态特性.测定动态特性最常用的标准 输入信号有阶跃信号和正弦信号两种。 ◆由于半导体应变片的温度稳定性差,使用时必 须采取温度补偿措施,以消除由温度引起的零漂 或虚假信号。在实际工作中,温度补偿的方法有 桥路补偿和应变片自补偿两类。 ◆常用可变磁阻式传感器的典型结构有:可变导 磁面积型、差动型、单螺管线圈型、双螺管线圈 差动型。 ◆按照电容式传感器的转换原理的不 同,可以分为 ◆极距变化型电容式传感器:变介电常 数型电容传感器:面积变化型电容传感器 ◆按工作原理不同,磁电感应式传感器 可分为恒定磁通式和变磁通式,即动圈式传感 器和磁阻式传感器。 ◆磁电感应式传感器只适用于动态测 量。 ◆磁阻式传感器:又称为变磁通式传感 器或变气隙式传感器,常用来测量旋转物体的

对热能与动力工程专业的认识及规划

对热能与动力工程专业的认识通过上网查询和老师的介绍,认识到热能与动力工程 是研究热能的释放、转换、传递以及合理利用的学科,它广泛应用于能源、动力、空间技术、化工、冶金、建筑、环境保护等各个领域。 一热能与动力工程专业培养目标 热能与动力工程专业的培养目标;主要培养能源转换与利用和热力环境保护领域具有扎实的理论基础,较强的实践、适应和创新能力,较高的道德素质和文化素质的高级人才,以 满足社会对该能源动力学科领域的科研、设计、教学、工程技术、经营管理等各方面的人才需求。学生应具备宽广的自然科学、人文和社会科学知识,流体工程、流体力学、流体机械、动力机械、水利工程等宽厚理论基础、热能动力工程专业知识和实践能力,掌握计算机应用与自动控制技术方面的知识。能从事汽车动力工程、制冷与低温技术、暖通空调,能源与环境工程、电厂热能动力、燃气工程、船舶、流体机械等方面的科研、教学、设计、开发、制造、安装、检修、运行管理和经营销售等方面工作的高级工程技术人才。 二热能与动力工程专业方向; 我校热能与动力工程专业设立了两个方向; 制冷与空调方向和热电方向。 主干学科:动力工程与工程热物理、机械工程、传热学、工程热力学。 主要课程;工程数学、画法几何与机械制图、工程力学、材料力学、机械原理、机械零件、电工与电子学、机械制造基础、机械原理、机械设计、工程热力学、流体力学、传热学、工程经济学,控制工程基础、微机原理与接口技术、单片机原理、测试技术、制造工艺学、优化设计等。 制冷方向专业科目:主要研究制冷与低温技术。主要有制冷与空调测量技术、制冷原理与装置、低温技术、空气调节、制冷压缩机、制冷系统CAD、计算机绘图、泵与风机、制冷空调电气自动控制、冰箱冷库、制冷热动力学、热泵制冷空调故障诊断等有关课程。专业方向培养从事制冷与空调技术和设备设计、科研、开发、制造和管理工作的高级工程技术人才。 本专业方向毕业生可在制冷、低温和空调技术及其相关应用领域的企业和科研院所、高等学校、设计院以及相关政府管理部门从事制冷与空调技术和设备的研究开发、设计制造、运行控制、管理、技术服务和营销等方面的工作。 热电方向专业科目;主要研究大气环境保护理论和技术,主要有电站锅炉原理核电技术、燃气轮机及其联合循环、热力发电厂、循环流化床锅炉、电厂汽轮机原理,发电厂自动化、电机学、发电厂电气设备、继电保护原理等有关课程。 毕业生主要从事热力设备的运行、维护、管理、科研开发以及热力系统的设计等工作,还可以在航天、机械、化工、船舶、核能等行业从事相关工作,也可以在军事部门、核电工业和辐射科学相关的科研设计单位、核电站、高等院校等从事规划、设计、运行、施工、管理、教育和研究开发工作。 三热能与动力工程专业前景: 伴随现实环境的发展,热能与动力工程的重要性正在日渐突出。 目前全世界常规能源的日渐短缺,人类环境保护意识的不断增强,节能、高效、降低或消除污染排放物、发展新能源及其它可再生能源成为本学科的重要任务,在能源、交通运输、汽车、船舶、电力、航空宇航工程、农业工程和环境科学等诸多领域获得越来越广泛的应用,在国民经济各部门发挥着越来越重要的作用。 能源动力及环境是目前世界各国所面临的头等重大的社会问题,我国能源工业面临着经济增长、环境保护和社会发展的重大压力。我国是世界上最大的煤炭生产和消费国,煤炭占商品煤炭、(%,已成为我国大气污染的主要来源。已经探明的常规能源剩余储量76能源消费的.

热能与动力工程简介

热能与动力工程简介

热能与动力工程简介 热能与动力工程培养具备热能工程、传热学、流体力学、动力机械、动力工程等方面基础知识,能在国民经济和部门,从事动力机械(如热力发动机、流体机械、水力机械)的动力工程(如热电厂工程、水电动力工程、制冷及低温工程、空调工程)的设计、制造、运行、管理、实验研究和安装、开发、营销等方面的高级工程技术人才。 目录 业务培养目标 业务培养要求 主干学科 主要课程 主要专业实验 知识结构要求 就业方向 修业年限 开设院校 业务培养目标 业务培养要求 主干学科

主要课程 主要专业实验 知识结构要求 就业方向 修业年限 ?开设院校 展开 编辑本段业务培养目标 考虑学生在宽厚基础上的专业发展,将热能与动力工程专业分成以下四个专业方向:(1)以热能转换与利用系统为主的热能动力工程及控制方向(含能源环境工程、新能源开发和研究方向); (2)以内燃机及其驱动系统为主的热力发动机及汽车工程方向; (3)以电能转换为机械功为主的流体机械与制冷低温工程方向; (4)以机械功转换为电能为主的火力火电和水利水电动力工程方向。

即工程热物理过程及其自动控制、动力机械及其自动化、流体机械及其自动控制、电厂热能工程及其自动化四个二级学科。 编辑本段业务培养要求 本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,受到现代动力工程师的基本训练;具有进行动力机械与热工设备设计、运行、实验研究的基本能力。 毕业生应获得以下几方面的知识和能力: 1.具有较扎实的自然科学基础,较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力; 2.较系统地掌握本专业领域宽广的技术理论基础知识,主要包括工程力学、机械学、工程热物理、流体力学、电工与电子学、控制理论、市场经济及企业管理等基础知识; 3.获得本专业领域的工程实践训练,具有较强的计算机和外语应用能力; 4.具有本专业领域内某个专业方向所必要的专业知识,了解其科学前沿及发展趋势;

《热能与动力机械测试技术》实验指导书DOC

实验一温度传感器动态标定实验 一.实验目的 1.掌握热敏电阻传感器和热电偶传感器动态性能测试方法。 2.了解根据阶跃响应曲线求取传感器动态特性指标的方法。 3.熟悉测温传感器动态标定系统的结构、组成和使用方法。 二.试验装置 1.被校热敏电阻传感器 2.标准热电偶传感器及数字显示仪表 3.被校热电偶传感器 4.补偿导线及冷接点恒温器 5.恒温水槽 6.保温瓶 7.恒温油槽或高温电炉 8.大气温度计 9.标准水银温度计2只 10.数字存储示波器 11.微型计算机(带GP-IB接口) 三.实验原理 传感器动态标定实验的任务是用动态激励信号激励传感器,使传感器产生动态响应,根据动态标定实验的结果求出一个近似的数学模型(如传递函数),来描述传感器的动态特性,并求出它的动态性能指标。 温度源为恒温水槽(或恒温油槽),其温度值由标准水银温度计测出。阶跃温度的幅值大小可以通过调节恒温水槽(或恒温油槽)的温度得到。输出信号的阶跃响应由数字存储示波器记录,记录结果可由示波器观察,同时经RS-232或GP-IB接口进入计算机,由计算机内的软件包计算其动态数学模型与动态性能指标。 测取传感器的阶跃响应是获取传感器动态特性的方法之一。阶跃响应的平稳性、快速性和稳态精度可用如下性能指标描述: 时间常数T——输出上升到稳态值的63%所需要的时间。 响应时间T2——输出达到稳态值的95%或98%所需要的时间。 调节时间T s——在阶跃响应曲线的稳态值附近,取±5%作为误差带,响应曲线达到并不再超出该误差带所用的最小时间。 峰值时间T p——阶跃响应曲线超出其稳态值而达到第一个峰值所需要的时间。 上升时间T r——阶跃响应曲线从稳态值的10%上升到90%所需要的时间(对欠阻尼系统,通常指从0上升到稳态值所需要的时间)。 延迟时间T a——阶跃响应曲线上升到稳态值的50%所需要的时间。

相关主题
文本预览
相关文档 最新文档