当前位置:文档之家› 高中数学复习专题讲座(第14讲)构建数学模型解数列综合题和应用性问题

高中数学复习专题讲座(第14讲)构建数学模型解数列综合题和应用性问题

高中数学复习专题讲座(第14讲)构建数学模型解数列综合题和应用性问题
高中数学复习专题讲座(第14讲)构建数学模型解数列综合题和应用性问题

题目高中数学复习专题讲座构建数学模型解数列综合题和应用性问题 高考要求

纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,减薄率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题 这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度

重难点归纳

1 解答数列综合题和应用性问题既要有坚实的基础知识,又要有良好的思维能力和分析、解决问题的能力;解答应用性问题,应充分运用观察、归纳、猜想的手段,建立出有关等差(比)数列、递推数列模型,再综合其他相关知识来解决问题

2 纵观近几年高考应用题看,解决一个应用题,重点过三关

(1)事理关 需要读懂题意,明确问题的实际背景,即需要一定的阅读能力

(2)文理关 需将实际问题的文字语言转化数学的符号语言,用数学式子表达数学关系

(3)事理关 在构建数学模型的过程中;要求考生对数学知识的检索能力,认定或构建相应的数学模型,完成用实际问题向数学问题的转化 构建出数学模型后,要正确得到问题的解,还需要比较扎实的基础知识和较强的数理能力

典型题例示范讲解

例1从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少

5

1,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业41 (1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式;

(2)至少经过几年,旅游业的总收入才能超过总投入?

命题意图 本题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力,本题有很强的区分度,属于应用题型,正是近几年高考的热点和重点题型

知识依托 本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点

错解分析 (1)问a n 、b n 实际上是两个数列的前n 项和,易与“通项”

混淆;(2)问是既解一元二次不等式又解指数不等式,易出现偏差 技巧与方法 正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧 解 (1)第1年投入为800万元,

第2年投入为800×(1-

5

1)万元,… 第n 年投入为800×(1-51)n -1万元, 所以,n 年内的总投入为

a n =800+800×(1-

51)+…+800×(1-51)n -1 =∑=n k 1800×(1-51)k -1=4000×[1-(5

4)n ] 第1年旅游业收入为400万元, 第2年旅游业收入为400×(1+

41),…, 第n 年旅游业收入400×(1+4

1)n -1万元 所以,n 年内的旅游业总收入为

b n =400+400×(1+

41)+…+400×(1+41)k -1 =∑=n k 1400×(45)k -1=1600×[(4

5)n -1] (2)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0,即1600×[(

45)n -1]-4000×[1-(54)n ]>0, 令x =(5

4)n ,代入上式得 5x 2-7x +2>0 解此不等式,得x <5

2,或x >1(舍去) 即(54)n <5

2,由此得n ≥5 ∴至少经过5年,旅游业的总收入才能超过总投入

例2已知S n =1+3121++…+n

1,(n ∈N *),设f (n )=S 2n +1-S n +1,试确定实数m 的取值范围,使得对于一切大于1的自然数n ,不等式

f (n )>[lo

g m (m -1)]2-20

11[log (m -1)m ]2恒成立 命题意图 本题主要考查应用函数思想解决不等式、数列等问题,需较强的综合分析问题、解决问题的能力 知识依托 本题把函数、不等式恒成立等问题组合在一起,构思巧妙 错解分析 本题学生很容易求f (n )的和,但由于无法求和,故对不等式难以处理 技巧与方法 解决本题的关键是把f (n )(n ∈N *)看作是n 的函数,此时不等式的恒成立就转化为

函数f (n )的最小值大于[log m (m -1)]2-

2011[log (m -1)m ]2 解 ∵S n =1+3121++…n

1 (n ∈N *) 0)421321()421221(4

2232122121321221)()1(1

213121)(112>+-+++-+=+-+++=+-+++=-+++++++=-=∴++n n n n n n n n n n n f n f n n n S S n f n n 又 ∴f (n +1)>f (n )

∴f (n )是关于n 的增函数

∴f (n ) min =f (2)=20

9321221=+++ ∴要使一切大于1的自然数n ,不等式

f (n )>[lo

g m (m -1)]2-

20

11[log (m -1)m ]2恒成立 只要209>[log m (m -1)]2-2011[log (m -1)m ]2成立即可 由?

??≠->-≠>11,011,0m m m m 得m >1且m ≠2 此时设[log m (m -1)]2=t 则t >0

于是?????>->0

2011209t t 解得0<t <1

由此得0<[log m (m -1)]2<1

解得m >2

51+且m ≠2 例3 已知二次函数y =f (x )在x =2

2+t 处取得最小值-42t (t >0),f (1)=0 (1)求y =f (x )的表达式;

(2)若任意实数x 都满足等式f (x )·g (x )+a n x +b n =x n +1[g (x )]为多项式,n ∈N *),试用t 表示a n 和b n ;

(3)设圆C n 的方程为(x -a n )2+(y -b n )2=r n 2,圆C n 与C n +1外切(n =1,2,3,…);{r n }是各项都是正数的等比数列,记S n 为前n 个圆的面积之和,求r n 、S n 解 (1)设f (x )=a (x -2

2+t )2-42

t ,由f (1)=0得a =1 ∴f (x )=x 2-(t +2)x +t +1

(2)将f (x )=(x -1)[x -(t +1)]代入已知得

(x -1)[x -(t +1)]g (x )+a n x +b n =x n +1,

上式对任意的x ∈R 都成立,

取x =1和x =t +1分别代入上式得

??

???+=++=++1)1()1(1n n n n n t b a t b a 且t ≠0, 解得a n =t 1

[(t +1)n +1-1],b n =t

t 1+[1-(t +1]n ) (3)由于圆的方程为(x -a n )2+(y -b n )2=r n 2,

又由(2)知a n +b n =1,故圆C n 的圆心O n 在直线x +y =1上,

又圆C n 与圆C n +1相切,故有r n +r n +1=2|a n +1-a n |=2(t +1)n +1 设{r n }的公比为q ,则

12111)1)n n n n n n r r q t r r q t ++++?+=+??+=+?? ① ②

②÷①得q =n

n r r 1+=t +1,代入①得r n =2)1(21

+++t t n ∴S n =π(r 12+r 22+…+r n 2)=34222

1)2()1(21)1(++π=--πt t t q q r n [(t +1)2n -1] 学生巩固练习 1 已知二次函数y =a (a +1)x 2-(2a +1)x +1,当a =1,2,…,n ,…时,

其抛物线在x 轴上截得的线段长依次为d 1,d 2,…,d n ,…,则lim ∞

→n (d 1+d 2+…+d n )

的值是( ) A 1 B 2 C 3 D 4 2 在直角坐标系中,O 是坐标原点,P 1(x 1,y 1)、P 2(x 2,y 2)是第一象限的两个点,若1,x 1,x 2,4依次成等差数列,而1,y 1,y 2,8依次成等比数列,则△OP 1P 2的面积是_________ 3 从盛满a 升酒精的容器里倒出b 升,然后再用水加满,再倒出b 升,再用水加满;这样倒了n 次,则容器中有纯酒精_________升 4 据2000年3月5日九届人大五次会议《政府工作报告》 “2001年国内生产总值达到95933亿元,比上年增长7 3%,”如果“十·五”期间(2001年~2005年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为_________亿元 5 已知数列{a n }满足条件 a 1=1,a 2=r (r >0),且{a n a n +1}是公比为q (q >0)的等比数列,设b n =a 2n -1+a 2n (n =1,2,…)

(1)求出使不等式a n a n +1+a n +1a n +2>a n +2a n +3(n ∈N *)成立的q 的取值范围;

(2)求b n 和n

n S 1lim ∞→,其中S n =b 1+b 2+…+b n ;

(3)设r =219 2-1,q =21,求数列{n

n b b 212log log +}的最大项和最小项的值 6 某公司全年的利润为b 元,其中一部分作为奖金发给n 位职工,奖金分配方案如下 首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n 排序,第1位职工得奖金n

b 元,然后再将余额除以n 发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金

(1)设a k (1≤k ≤n )为第k 位职工所得奖金金额,试求a 2,a 3,并用k 、n 和b 表示a k (不必证明);

(2)证明a k >a k +1(k =1,2,…,n -1),并解释此不等式关于分配原则的实际意义;

(3)发展基金与n 和b 有关,记为P n (b ),对常数b ,当n 变化时,求lim ∞

→n P n (b ) 7 据有关资料,1995年我国工业废弃垃圾达到7 4×108吨,占地562 4平方公里,若环保部门每年回收或处理1吨旧物资,则相当于处理和减少4吨工业废弃垃圾,并可节约开采各种矿石20吨,设环保部门1996年回收10万吨废旧物资,计划以后每年递增20%的回收量,试问

(1)2001年回收废旧物资多少吨?

(2)从1996年至2001年可节约开采矿石多少吨(精确到万吨)?

(3)从1996年至2001年可节约多少平方公里土地? 8 已知点的序列A n (x n ,0),n ∈N ,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,…

(1)写出x n 与x n -1、x n -2之间关系式(n ≥3);

(2)设a n =x n +1-x n ,计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明;

(3)求lim ∞

→n x n

参考答案: 1 解析 当a =n 时y =n (n +1)x 2-(2n +1)x +1

由|x 1-x 2|=a

?,得d n =)1(1+n n , ∴d 1+d 2+…+d n 1111223(1)

n n =+++??+ 1111111122311

n n n =-+-++-=-++ 121()(1)1lim lim 1

n n n d d d n →∞→∞∴+++=-=+ 答案 A 2 解析 由1,x 1,x 2,4依次成等差数列得 2x 1=x 2+1,x 1+x 2=5解得x 1=2,x 2=3 又由1,y 1,y 2,8依次成等比数列,得y 12=y 2,y 1y 2=8,解得y 1=2,y 2=4,

∴P 1(2,2),P 2(3,4) ∴21),2,2(OP ==(3,4) ∴,5||,22,14862121===+=OP OP

12121212cos sin ||||

OPOP POP POP OP OP ∴===∴=

12

121211||||sin 512210

OP P S OP OP POP ?∴==??= 答案 1 3 解析 第一次容器中有纯酒精a -b 即a (1-a

b )升,

第二次有纯酒精a (1-a b )-b a a b a )1(-,即a (1-a

b )2升, 故第n 次有纯酒精a (1-

a b )n 升 答案 a (1-a

b )n 4 解析 从2001年到2005年每年的国内生产总值构成以95933为首项,以7 3%为公比的等比数列,∴a 5=95933(1+7 3%)4≈120000(亿元) 答案 120000 5 解 (1)由题意得rq n -1+rq n >rq n +1

由题设r >0,q >0,故从上式可得 q 2-q -1<0,解得251-<q <251+,因q >0,故0<q <

251+; (2)∵0,212212212221212121≠=++=++=∴==---+++++++q a a q a q a a a a a b b q a a a a a a n

n n n n n n n n n n n n n n n b 1=1+r ≠0,所以{b n }是首项为1+r ,公比为q 的等比数列,从而b n =(1+r )q n -1

当q =1时,S n =n (1+r ), 110;lim lim (1)n n n

S n r →∞→∞==+

(1)(1)01,,1n n r q q S q

+-<<=-当时111;lim lim (1)(1)1n n n n q q S r q r →∞→∞--==+-+ (1)(1)1,,1n n r q q S q +->=-当时 110,lim lim (1)(1)n n n n

q S r q →∞→∞-==+- 1, (01)11lim 0, (1)

n n q q r S q →∞-?<

1(3)(2),(1)n n b r q -=+由有

.2.2011log )1)(1(log log )1(log ])1[(log ])1[(log log log 2222122212-+=-+++=++=-+n q

n r q n r q r q r b b n n n n

n

n n b b C 212log log +=记,从上式可知, 当n -20 2>0,即n ≥21(n ∈N *)时,C n 随n 的增大而减小, 故1<C n ≤C 21=1+8.0112.20211+=-=2 25 ①

当n -20 2<0,即n ≤20(n ∈N *)时,C n 也随n 的增大而减小, 故1>C n ≥C 20=1+2.0112.20201-=-=-4 ②

综合①②两式知,对任意的自然数n 有C 20≤C n ≤C 21,

故{C n }的最大项C 21=2 25,最小项C 20=-4 6 解 (1)第1位职工的奖金a 1=n

b , 第2位职工的奖金a 2=

n 1(1-n

1)b , 第3位职工的奖金a 3=n 1(1-n

1)2b ,…, 第k 位职工的奖金a k =n 1 (1-n

1)k -1b ; (2)a k -a k +1=21n (1-n 1)k -1b >0,此奖金分配方案体现了“按劳分配”或“不吃大锅饭”的原则

(3)设f k (b )表示奖金发给第k 位职工后所剩余数,

则f 1(b )=(1-n 1)b ,f 2(b )=(1-n 1)2b ,…,f k (b )=(1-n

1)k b 得P n (b )=f n (b )=(1-n

1)n b , 故e b b P n n =∞→)(lim

7 解 设a n 表示第n 年的废旧物资回收量,S n 表示前n 年废旧物资回收总量,则数列{a n }是以10为首项,1+20%为公比的等比数列

(1)a 6=10(1+20%)5=10×1.25=24.8832≈25(万吨) (2)S 6=2

.016.1101%)201(]1%)201[(1066-?=-+-+=99.2992≈99.3(万吨) ∴从1996年到2000年共节约开采矿石20×99 3≈1986(万吨)

(3)由于从1996年到2001年共减少工业废弃垃圾4×99.3=397.2(万吨),

∴从1996年到2001年共节约

8

4

104.7102.3974.562???≈3 平方公里 8 解 (1)当n ≥3时,x n =2

21--+n n x x ; a a x x x x x x x a a x x x x x x x a a x x a 4

1)21(21)(212,21)(212,)2(2332334212212232121=--=--=-+=-=-=--=-+=-==-= 由此推测a n =(-2

1)n -1a (n ∈N ) 证法一 因为a 1=a >0,且

1111121)(2122----+-=-=-=-+=

-=n n n n n n n n n n n a x x x x x x x x x a (n ≥2) 所以a n =(-2

1)n -1a 证法二 用数学归纳法证明

(ⅰ)当n =1时,a 1=x 2-x 1=a =(-

2

1)0a ,公式成立; (ⅱ)假设当n =k 时,公式成立,即a k =(-21)k -1a 成立 那么当n =k +1时,

a k +1=x k +2-x k +1=

k k k k k k a x x x x x 2

1)(212111-=--=-++++ .)2

1()21(21111公式仍成立a a )(k k -+--=--= 据(ⅰ)(ⅱ)可知,对任意n ∈N ,公式a n =(-21)n -1a 成立 (3)当n ≥3时,有

x n =(x n -x n -1)+(x n -1-x n -2)+…+(x 2-x 1)+x 1=a n -1+a n -2+…+a 1, 由(2)知{a n }是公比为-21的等比数列,所以3

2)2

1(1lim 1=--=∞→a x n n a 课前后备注

高中数学数列测试题附答案与解析

第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a -的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9 二、填空题 11.设f (x )=221 +x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+… +f (5)+f (6)的值为 . 12.已知等比数列{a n }中,

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

高中数学数列练习题

数列经典解题思路 求通项公式 一、观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) K ,1716 4,1093,542,211 (3) K ,52,2 1,32 ,1 解:(1)110-=n n a (2);122++=n n n a n (3);12 +=n a n 二、公式法 例1. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( D ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 例2. 已知等比数列{}n a 的首项11=a , 公比10<

高中数学数列知识点总结(经典)

数列基础知识点和方法归纳 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()() 1112 2 n n a a n n n S na d +-= =+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界 项, 即:当100a d ><,,解不等式组10 0n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由10 0n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{} n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶, 1 += n n a a S S 偶 奇. (7)项数为奇数12-n 的等差数列{} n a ,有

高中数学数列复习题型归纳解题方法整理

数列 典型例题分析 【题型1】 等差数列与等比数列的联系 例1 (2010陕西文16)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数 列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an } 的前n 项和S n . 解:(Ⅰ)由题设知公差d ≠0, 由a 1=1,a 1,a 3,a 9成等比数列得121d +=1812d d ++, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n. (Ⅱ)由(Ⅰ)知2m a =2n ,由等比数列前n 项和 公式得 S m =2+22+23+…+2n =2(12) 12 n --=2n+1-2. 小结与拓展:数列{}n a 是等差数列,则数列}{n a a 是 等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。(a>0且a ≠1).

【题型2】与“前n项和Sn与通项an”、 常用求通项公式的结合 例 2 已知数列{a n}的前三项与数列{b n}的前 三项对应相同,且a1+2a2+22a3+…+2n-1a n= 8n对任意的n∈N*都成立,数列{b n+1-b n}是等 差数列.求数列{a n}与{b n}的通项公式。 解:a1+2a2+22a3+…+2n-1a n=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2a n-1=8(n -1)(n∈N*) ② ①-②得2n-1a n=8,求得a n=24-n, 在①中令n=1,可得a1=8=24-1, ∴a n=24-n(n∈N*).由题意知b1=8,b2=4, b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{b n+1-b n}的公差为-2-(-4)=2,∴b n

人教版高中数学必修5《数列》练习题(有答案)

必修5数列 2.等差数列{}n a 中,()46810129111120,3 a a a a a a a ++++=-则的值为 A .14 B .15 C .16 D . 17 3.等差数列{}n a 中,12910S S a =>,,则前项的和最大. 解:0912129=-=S S S S , 10111211111030,00a a a a a a ∴++=∴=∴=>, ,又 4.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为. 解:∵ ,,, ,,1001102030102010S S S S S S S --- 成等差数列,公差为D 其首项为10010=S , 6.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,. ①求出公差d 的范围; ②指出1221S S S ,, , 中哪一个值最大,并说明理由. 解:①)(6)(610312112a a a a S + =+=36(27)0a d =+> ② 12671377666()013000 S a a S a a a S =+>=<∴<>∴, 最大。 1. 已知等差数列{}n a 中,12497116a a a a ,则,===+等于() A .15 B .30 C .31 D .64 794121215a a a a a +=+∴= A 2. 设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-==. 54

3. 已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则. 4. 等差数列{}n a 的前n 项和记为n S ,已知50302010==a a ,. ①求通项n a ;②若n S =242,求n . 解:d n a a n )1(1-+= 1 1 10201930 123050 21019502 n a d a a a a n a d d +==??==∴∴=+??+==??,解方程组 5.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分 钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇?②如果甲乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇? 故第一次相遇是在开始运动后7分钟. 故第二次相遇是在开始运动后15分钟 10.已知数列{}n a 中,,31=a 前n 和1)1)(1(2 1 -++= n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式; ③设数列? ?? ?? ? +11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立? 若存在,求M 的最小值,若不存在,试说明理由. 12122(1)(1)() 2n n n n n n n a n a a a a a ++++∴+=++∴=+∴数列{}n a 为等差数列. ②1)1(311-+==+n n a n na a ,

重点高中数学数列知识点总结

重点高中数学数列知识点总结

————————————————————————————————作者:————————————————————————————————日期:

定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()()11122 n n a a n n n S na d +-==+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组100 n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由1 00n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ nd S S =-奇偶,1 +=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{} n a ,有 )()12(12为中间项n n n a a n S -=-, n a S S =-偶奇, 1-=n n S S 偶奇.

人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

——教学资料参考参考范本——人教版最新高中数学数列专题复习(综合训练篇含答案)Word 版 ______年______月______日 ____________________部门

———综合训练篇 一、选择题: 1. 在等差数列中,,则的值为 ( D ){}n a 120 31581=++a a a 1092a a - A .18 B .20 C .22 D .24 2.等差数列满足:,若等比数列满足则为( B ) A .16 B .32 C .64 D .27{}n a 30,8531==+S a a {} n b ,,4311a b a b ==5b 3.等差数列中,则数列的前9项之和S9等于{} n a 1 a {a ( C )A .66 B .144 C .99 D .297 4.各项都是正数的等比数列的公比q ≠1,且,,成等差数列,则为(A ) A . B . C . D .或{} n a 2a 321a 1 a 5 443a a a a ++2 15-215+2 51-2 1 5+215- 5.设等比数列的前项和为,若则( B ){}n a n n S ,33 6=S S = 69S S A. 2 B. C. D.3738 3

6.已知等差数列的前项的和为,且,,则过点和的直线的一个方向向 量的坐标是 ( B ){}n a n n S 210S =555S =(,) n P n a 2(2,)()n Q n a n N *++∈ A. B. C. D.1(2,)2 1(,2)2--1(,1) 2--(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且、、成等差数列,则 的值为( C ) A . B . C . D .a 1b 1c 1a c c a +15941594±15341534 ± 8. 已知数列的通项则下列表述正确的是 ( A ){} n a ,1323211 ????????-??? ??? ? ? ??=--n n n a A .最大项为最小项为 B .最大项为最小项不存在,1a 3 a ,1a C .最大项不存在,最小项为 D .最大项为最小项为3 a ,1a 4a 9.已知为等差数列,++=105,=99.以表示的前项和,则使得达到最大 值的是(B ){}n a 1a 3a 5a 246a a a ++n S {}n a n n S n A .21 B .20 C .19 D .18 9.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M , 且点M 到l 的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为ai=(i=1,2,…,n),设bn=2(2n+1)·3n -2·an ,且Cn=,Tn=C1+C2+…+Cn ,若

高中数学数列知识点总结

数列基础知识点 《考纲》要求: 1、理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; 2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题; 3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。 数列的概念 1.数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N * 或其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,…,简记为{},其中是数列{}的第 项. 2.数列的通项公式 一个数列{}的 与 之间的函数关系,如果可用一个公式=f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{}中,前n 项和与通项的关系为: =n a ?? ???≥==2 1n n a n 4.求数列的通项公式的其它方法 ⑴ 公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵ 观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式. 例1. 根据下面各数列的前n 项的值,写出数列的一个通项公式. ⑴ - 3 12?,534?,-758?,9716?…; ⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3, 解: ⑴ =(-1) n ) 12)(12(1 2+--n n n ⑵ =)673(2 12+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,--1=1+3(n -2)=3n -5.各式相加得

高中数学《数列》测试题

11会计5班《数列》数学测试卷2012.4 一、选择题(2'1836'?=) 1.观察数列1,8,27,x ,125,216,… 则x 的值为( ) A .36 B .81 C .64 D .121 2.已知数列12a =,12n n a a +=+,则4a 的值为( ) A .12 B .6 C .10 D .8 3.数列1,3,7,15,… 的通项公式n a 等于( ) A .1 2 n - B .21n - C .2n D .21n + 4.等差数列{n a }中,16a =,418a =,则公差d 为( ) A .4 B .2 C .—3 D .3 5.128是数列2,4,8,16,… 的第( )项 A .8 B .5 C .7 D .6 6.等差数列{n a }中,12a =,327S =,则3a 的值为( ) A .16 B .20 C .11 D .7 7.在等差数列中,第100项是48,公差是 1 3 ,首项是( ) A .5 B .10 C .15 D .20 8.在等差数列{n a }中,1234525a a a a a ++++=,则3a 为( ) A .3 B .4 C .5 D .6 9.已知数列0,0,0,0,… 则它是( ) A .等差数列非等比数列 B .等比数列非等差数列 C .等差数列又等比数列 D .非等差数列也非等比数列 10.在等比数列{n a }中,4520a a ?=,则27a a ?为( ) A .10 B .15 C .20 D .25 班级 姓名 学号 11.等比数列1,2,4,… 的第5项到第11项的和等于( ) A .2030 B .2033 C .2032 D .2031 12.等差数列中,第1项是 —8,第20项是106,则第20项是( ) A .980 B .720 C .360 D .590 13.在等比数列中,12a =,3q =,则4S =( ) A .18 B .80 C .—18 D .—80 14.三个正数成等差数列,其和为9,它们依次加上1,3,13后成为等比数列,则这三个数为( ) A .6,3,0 B .1,3,5 C .5,3,1 D .0,3,6 15.在等比数列中,第5项是 —1,第8项是 — 1 8 ,第13项是( ) A .13 B .1256- C .78- D .1128 - 16.若a ,b , c 成等比数列,则函数2 ()f x ax bx c =++的图像与x 轴的交点个数为( ) A .2 B .0 C .1 D .不确定 17.某农场计划第一年产量为80万斤,以后每年比前一年多种20%,第五年产量约为( ) A .199万斤 B .595万斤 C .144万斤 D .166万斤 18.把若干个苹果放到8个箱子中,每个箱子不能不装,要使每个箱子中所装的苹果个数互不相同,至少需要苹果( ) A .35个 B .36个 C .37个 D .38个 二、填空题(3'824'?=) 19.数列1,32- ,54,78-,916 ,… 的通项公式是 20.数列2,7,14,23,( ),47,… 并写出数列的通项公式

高中数学数列测试题(免费下载)

数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9

高中数学数列复习题

1 已知数列{a n }的前三项与数列{b n }的前三项对应相同,且a 1+2a 2+22a 3+…+2 n -1a n =8n 对任意的n∈N *都成立,数列{b n +1-b n }是等差数列.求数列{a n }与{b n }的通项公 式。 2 在等比数列{a n }中,a n >0 (n ∈N *),公比q ∈(0,1),且a 1a 5 + 2a 3a 5 +a 2a 8=25,a 3与a s 的等比中项为2。(1)求数列{a n }的通项公式;(2)设b n =log 2 a n ,数列{b n }的前n 项和为S n 当1212n S S S n ++???+最大时,求n 的值。 3 (数列{}n a 中,11a =,且点1(, )n n a a +()n *∈N 在函数()2f x x =+的图象上. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在数列}{n a 中,依次抽取第3,4,6,…,122n -+, …项,组成新数列{}n b ,试求数列{}n b 的通项n b 及前n 项和n S . 4 已知数列{}n a 的前n 项和为n S ,11a =,141n n S a +=+,设12n n n b a a +=-.(Ⅰ)证明数列{}n b 是等比数列; (Ⅱ)数列{}n c 满足21log 3 n n c b =+*()n ∈N ,求1223341n n n T c c c c c c c c +=++++L 。 5 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 6 已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 7 已知数列{}n a 满足321=a ,n n a n n a 1 1+=+,求n a 。 8 在数列{}n a 中,11a =,当2n ≥时,有132n n a a -=+,求{}n a 的通项公式。 9 设各项均为正数的数列{}n a 的前n 项和为n S ,对于任意正整数n ,都有等式:n n n S a a 422 =+成立,求{}n a 的通项n a . 解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式。 10 设{}n a 是首项为1的正项数列,且01212=-----n n n n na na a a ,(n ∈N*),求数列 的通项公式an. 11 数列{}n a 中,2 11= a ,前n 项的和n n a n S 2=,求1+n a . 12 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.

(完整版)高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2 = 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 3 22111=== a S b , ∴ 21 2 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 212)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3n n n a (1)(2)n n =≥,1 2)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ΛΛ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n Λ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n Λ 例5.A 例6. 解:1324321-+++++=n n nx x x x S ΛΛ①()n n n nx x n x x x xS +-++++=-132132ΛΛ② ①-②()n n n nx x x x S x -++++=--1211ΛΛ, 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111∴()() 21111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++=ΛΛ 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+2732354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918=== a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列 ∴ b 1b 3=b 22,∴ b 23=81,∴ b 2=21,∴ 1312178 14 b b b b ? +=????=??,∴ 13218b b =???=??或 12182b b ?=?? ?=? ∴ 13212()24n n n b --== 或 1251 428n n n b --=?= ∵ 1 ()2n a n b =,∴ 12 log n n a b =,∴ a n =2n -3 或 a n =-2n +5 例20. 2392 n n +

(word完整版)高中数学等差数列练习题

一、 过关练习: 1、在等差数列{}n a 中,2,365-==a a ,则1054a a a Λ++= 2、已知数列{}n a 中,() *+∈+==N n a a a n n 3 111,111,则50a = 3、在等差数列{}n a 中,,0,019181=+>a a a 则{}n a 的前n 项和n S 中最大的是 4、设数列{}n a 的通项为()*∈-=N n n a n 72,则1521a a a +++Λ= 二、 典例赏析: 例1、在等差数列{}n a 中,前n 项和记为n S ,已知50,302010==a a (1)求通项n a ;(2)若242=n S ,求n 例2、在等差数列 {}n a 中, (1)941,0S S a =>,求n S 取最大值时,n 的值; (2)1241,15S S a ==,求n S 的最大值。 例3、已知数列{}n a 满足()22,21 2 1≥-==-n a a a a a a n n ,其中a 是不为零的常数,令a a b n n -=1 (1) 求证:数列{}n b 是等差数列 (2)求数列{}n a 的通项公式 三、强化训练: 1、等差数列{}n a 中,40,19552==+S a a ,则1a = 2、等差数列{}n a 的前m 项和为30,前2m 项和为100,则前3m 项和为 3、等差数列{}n a 中,,4,84111073=-=-+a a a a a 记n n a a a S +++=Λ21,则13S 等于 4、已知等差数列{}n a 的前n 项和为n S ,且10,10010010==S S ,则110S = 。 5、在ABC ?中,已知A 、B 、C 成等差数列,求2tan 2tan 32tan 2tan C A C A ++的值 作业 A 组: 1、 在a 和b 两个数之间插入n 个数,使它们与a 、b 组成等差数列,则该数列的公差为 2、 已知方程 ()()02222=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则n m -等于 B 组: 3、 已知一元二次方程()()()02=-+-+-b a c x a c b x c b a 有两个相等的实根, 求证: c b a 1,1,1成等差数列 4、 已知数列 {}n a 的通项公式是254-=n a n ,求数列{}n a 的前n 项和

高中数学专题复习数列训练题

高中数学专题复习数列训练题 1.已知递增的等差数列满足11 =a ,4223-=a a ,则=n a (A )12-=n a n 或n a n 23-= (B) 12-=n a n (C) 12+=n a n (D) n a n 23-= 2。设等比数列{}n a 的公比为q ,前n 项和为n S ,若1+n S 、n S 、2+n S 成等差数列,则q 的值为 (A )1或2- (B) 2- (C)2 (D)1或2 3。首项为正数的数列{}n a 满足)3(4 121+=+n n a a ,*∈N n ,若对一切*∈N n 都有 n n a a >+1,则1a 的取值范围是 (A )),3()1,0(+∞Y (B) ),3()1,(+∞-∞Y (C) )1,0( (D) )3,0( 4。在项数为12+n 的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于 (A )9 (B)10 (C)11 (D)12 5。已知两个等差数列{}n a ,{}n b ,它们的前n 项和为n S 和n T ,若325++=n n T S n n ,则=5 5b a (A )1245 (B) 947 (C) 1247 (D) 21 47 6。已知数列{}n a 的通项公式为)34()1(--=n a n n ,n S 是其前n 项和,则33178S S S -+的值为 (A )48 (B)49 (C)50 (D)47 7。已知数列 {}n a 的前n 项和为n S ,且1-=n n n S S a )2(≥n ,921=a ,则=10a (A )74 (B) 94 (C) 634 (D) 63 5 8。设等差数列 {}n a 的前n 项和为n S ,且65S S <,876S S S >=,则下列结论错误的是 (A )0 (D) 6S 与7S 均为n S 的最大值 9。设数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项和为n T ,满足22n S T n n -=,*∈N n ,则=n a (A )22 3-?n (B) 2231-?-n (C) 2231-?+n (D) 1231+?-n 10。数列{}n a 满足12)1(1-=-++n a a n n n ,则{}n a 的前60项的和为 (A )1820 (B)1830 (C)1846 (D)1849 二.填空题:

(word完整版)高中数学必修五数列测试题

必修五阶段测试二(第二章 数列) 时间:120分钟 满分:150分 一、选择题(本大题共12小题,每小题5分,共60分) 1.(2017·山西朔州期末)在等比数列{a n }中,公比q =-2,且a 3a 7=4a 4,则a 8等于( ) A .16 B .32 C .-16 D .-32 2.已知数列{a n }的通项公式a n =????? 3n +1(n 为奇数),2n -2(n 为偶数),则a 2·a 3等于( ) A .8 B .20 C .28 D .30 3.已知等差数列{a n }和等比数列{b n }满足a 3=b 3,2b 3-b 2b 4=0,则数列{a n }的前5项和S 5为( ) A .5 B .10 C .20 D .40 4.(2017·山西忻州一中期末)在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( ) A .102 B.9658 C.9178 D .108 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ) A .81 B .120 C .168 D .192 6.等差数列{a n }中,a 10<0, a 11>0, 且a 11>|a 10|, S n 是前n 项的和,则( ) A .S 1, S 2, S 3, …, S 10都小于零,S 11,S 12,S 13,…都大于零 B .S 1,S 2,…,S 19都小于零,S 20,S 21,…都大于零 C .S 1,S 2,…,S 5都大于零,S 6,S 7,…都小于零 D .S 1,S 2,…,S 20都大于零,S 21,S 22,…都小于零 7.(2017·桐城八中月考)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R ),且S 25=100,则a 12+a 14等于( ) A .16 B .8 C .4 D .不确定 8.(2017·莆田六中期末)设{a n }(n ∈N *)是等差数列,S n 是其前n 项和,且S 5S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6和S 7均为S n 的最大值 9.设数列{a n }为等差数列,且a 2=-6,a 8=6,S n 是前n 项和,则( ) A .S 4<S 5 B .S 6<S 5 C .S 4=S 5 D .S 6=S 5 10.(2017·西安庆安中学月考)数列{a n }中,a 1=1,a 2=23,且1a n -1+1a n +1=2a n (n ∈N *,n ≥2),则a 6等于( )

(推荐)高中数学数列知识点精华总结

数 列 专 题 ◆ 考点一:求数列的通项公式 1. 由a n 与S n 的关系求通项公式 由S n 与a n 的递推关系求a n 的常用思路有: ①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式; 数列的通项a n 与前n 项和S n 的关系是a n =? ?? ?? S 1,n =1, S n -S n -1,n≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可 并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n . 2.由递推关系式求数列的通项公式 由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解. ◆ 累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; ◆ 累乘法:递推关系形如a n +1 a n =f(n),常用累乘法求通项; ◆ 构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通 项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列; 2)递推关系形如“a n +1=pa n +q n (q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n +1 转为用迭加法求解. 3) ◆ 倒数变形

3.数列函数性质的应用 数列与函数的关系 数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性. 函数思想在数列中的应用 (1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法. (3)数列{a n }的最大(小)项的求法 可以利用不等式组? ?? ?? a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组? ?? ?? a n -1≥a n , a n ≤a n +1,找到 数列的最小项. [例3] 已知数列{a n }.(1)若a n =n 2 -5n +4,①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值. (2)若a n =n 2 +kn +4且对于n ∈N * ,都有a n +1>a n 成立.求实数k 的取值范围. 考点二:等差数列和等比数列 等差数列 等比数列 定义 a n -a n -1=常数(n≥2) a n a n -1=常数(n≥2) 通项公式 a n =a 1+(n -1)d a n =a 1q n -1 (q≠0)

相关主题
文本预览
相关文档 最新文档