当前位置:文档之家› 智能车电磁组比赛技术报告

智能车电磁组比赛技术报告

第七届“飞思卡尔”杯

全国大学生智能汽车竞赛电磁组技术报告

学校:河南理工大学

队伍名称:志成队

参赛队员:杨宗保黄号凯毛学宇

指导教师:张新良

摘要

本文介绍了基于MC9S12XS128控制器的直立小车的设计方案。目的是仿照两轮自平衡电动车的行进模式,让车模以两个后轮驱动进行直立行走。

I

目录

第一章绪论 (7)

第二章原理分析 (10)

2.1直立行走任务分解 (10)

2.2车模平衡控制 (10)

2.2车模角度和角速度测量 (15)

2.3 车模速度控制 (22)

2.4 车模方向控制 (27)

2.5车模直立行走控制算法总图 (29)

第三章电路设计 (31)

3.1 整体电路框图 (31)

3.2 XS128介绍与单片机最小系统 (32)

3.3 倾角传感器电路 (37)

3.4 电机驱动电路 (39)

3.5 速度传感器电路 (40)

3.6 电磁线检测电路 (41)

3.7 电源模块 (43)

第四章、机械设计 (43)

4.1 车模简化改装 (43)

4.2 传感器安装 (46)

第五章程序设计 (49)

5.1 相关模块初始化 (49)

II

5.2 软件功能与框架 (54)

5.3 主要算法及其实现 (56)

5.3.1 算法框图与控制函数关系 (56)

5.4 参数整定 (62)

5.4.1角度参数整定 (62)

5.4.2速度参数整定 (63)

5.4.3补偿时间常数整定 (63)

III

图表索引

图1- 1 电磁组规定的C车车模 (7)

图1- 2 电磁组车模运行状态 (7)

图1- 3 车模控制任务 (8)

图1- 4 车模制作调试流程图 (9)

图 2- 1保持木棒直立的反馈控制 (11)

图 2- 2通过车轮运动保持车模平衡 (11)

图 2- 3车模简化成倒立的单摆 (12)

图 2- 4普通单摆受力分析 (12)

图 2- 5在车轮上的参照系中车模受力分析 (13)

图 2- 6 电机在不同电压下的速度变化线 (15)

图 2- 7 加速度传感器原理 (16)

图 2- 8 MMA7260三轴加速度传感器 (16)

图 2- 9 车模运动引起加速度信号波动 (17)

图 2- 10 车模运动引起加速度 Z轴信号变化 (18)

图 2- 11 角速度传感器及参考放大电路 (19)

图 2- 12 角速度积分得到角度 (19)

图 2- 13 角速度积分漂移现象 (20)

图 2- 14 通过重力加速度来矫正陀螺仪的角度漂移 (20)

图 2- 15 角度控制框图 (21)

图 2- 16电机速度检测 (22)

图 2- 17车模倾角给定 (23)

图 2- 18 车模倾角控制分析 (24)

图 2- 19车模运动速度控制简化模型 (25)

IV

图 2- 20 车模角度和速度控制框图 (26)

图 2- 21改进后的速度和角度控制方案 (27)

图 2- 22检测道路中心电磁线方式 (28)

图 2- 23车模方向控制算法 (29)

图 2- 24 车模运动控制总框图 (30)

图 3- 1直立车模控制电路整体框图 (32)

表格1 XS128端口说明 (32)

图 3- 2 XS128LQFP封装引脚图 (34)

图 3- 3最小系统板(112针脚) (35)

图 3- 4系统板与下载器BDM的连接图 (36)

图 3- 5 V3.0系统板112原理图 (37)

图 3- 6 陀螺仪加速度计模块 (38)

图 3- 7 陀螺仪加速度计二合一模块实物图 (38)

图 3- 8 电机驱动模块实物图 (39)

图 3- 9 电机驱动原理图 (40)

图 3- 10速度传感器电路 (41)

图 3- 11 LM386引脚图 (42)

图 3- 12 LM386典型应用电路 (42)

图 3- 13 传感器电路图 (43)

图 3- 14 电源模块原理图 (43)

图 4- 1 完整的 C型车模底盘 (44)

图 4- 2 简化后的 C型车模底盘 (44)

图 4- 3 使用热熔胶固定电机支架与车模底盘 (45)

图 4- 4 去掉后轮之后的车模底盘 (46)

V

图 4- 5使用复合胶水固定光电编码盘 (47)

图 4- 6固定好的光电码盘和光电检测管 (47)

图 4- 7电磁传感器支架 (48)

图 4- 8 陀螺仪加速度计安装示意图 (49)

图 5- 1 主程序框架 (55)

图 5- 2中断服务程序 (55)

图 5- 3 算法框图中与控制相关的软件函数 (56)

图 5- 4 控制函数调用与参数传递关系 (57)

VI

7

第一章 绪论

本次全国大学生智能汽车竞赛电磁组要求采用飞思卡尔半导体公司的 8 位、16 位处理器(单核)作为唯一的微控制器,采用C 型车模。C 型车模如图1- 1所示:

图1- 1 电磁组规定的C 车车模

车模通过感应由赛道中心导线产生的交变磁场,进行路径检测,不允许使用传感器获取道路的光学信息进行路径检测。

智能汽车竞赛组委会将电磁组比赛规定为车模直立行走,如图1- 2

所示。

图1- 2 电磁组车模运行状态

电磁直立车模需要实现车模的平衡控制、速度控制、方向控制。

车模制作分为方案确定、车模制作、车模调试三个阶段,如图1- 4所示。

8

9

图1- 4 车模制作调试流程图

第二章原理分析

2.1直立行走任务分解

车模在直立的状态下以两个轮子着地沿着赛道进行比赛,维持车模直立、运行的动力都来自于车模的两个后车轮。后轮转动由两个直流电机驱动。从控制角度来看,车模作为一个控制对象,它的控制输入量是两个电机的转动速度。车模运动控制任务可以分解成以下三个基本控制任务。

(1)控制车模平衡:通过控制两个电机正反转保持车模直立平衡;

(2)控制车模速度:通过调节车模的倾角来实现车模速度控制,实际上最后还是通过控制电机的转速来实现车轮速度的控制。

(3)控制车模方向:通过控制两个电机之间的转动差速实现车模转向控制。

车模直立和方向控制任务都是直接通过控制车模两个后轮驱动电机完成的。假设车模电机可以虚拟地拆解成两个不同功能的驱动电机,它们同轴相连,分别控制车模的直立平衡、左右方向。在实际控制中,是将控制车模直立和方向的控制信号叠加在一起加载电机上,只要电机处于线性状态就可以同时完成上面两个任务。

车模的速度是通过调节车模倾角来完成的。车模不同的倾角会引起车模的加减速,从而达到对于速度的控制。

三个分解后的任务各自独立进行控制。由于最终都是对同一个控制对象(车模的电机)进行控制,所以它们之间存在着耦合。分析中,在分析其中之一时假设其它控制对象都已经达到稳定。比如在速度控制时,需要车模已经能够保持直立控制;在方向控制的时候,需要车模能够保持平衡和速度恒定;同样,在车模平衡控制时,也需要速度和方向控制也已经达到平稳。这三个任务中保持车模平衡是关键。由于车模同时受到三种控制的影响,从车模平衡控制的角度来看,其它两个控制就成为它的干扰。因此对车模速度、方向的控制应该尽量保持平滑,以减少对于平衡控制的干扰。以速度调节为例,需要通过改变车模平衡控制中车模倾角设定值,从而改变车模实际倾斜角度。为了避免影响车模平衡控制,这个车模倾角的改变需要非常缓慢的进行。

下面分别讨论车模任务分解的三个控制的实现方式。

2.2车模平衡控制

如果让一个直木棒在手指尖上保持直立。需要两个条件:一个是托着木棒的手掌可以移动;另一个是眼睛可以观察到木棒的倾斜角度和倾斜趋势(角速度)。通过手掌移动抵消木棒的倾斜角度和趋势,从而保持木棒的直立。这两个条件缺一不可,实际上就是控制中的负反馈机制,如图2- 1所示。

10

11

图 2- 1保持木棒直立的反馈控制 车模平衡控制也是通过负反馈来实现的,与上面保持木棒直立比较则相对简单。因为车模有两个轮子着地,车体只会在轮子滚动的方向上发生倾斜。控制轮子转动,抵消在一个维度上倾斜的趋势便可以保持车体平衡了。如图 2- 2

所示。

图 2- 2通过车轮运动保持车模平衡

通过对比单摆模型来说明保持车模平衡的控制规律。直立着的车模可以看成放臵在可以左右移动平台上的倒立着的单摆。如图 2- 3所示。

12

图 2- 3车模简化成倒立的单摆

对普通的单摆受力分析如图 2- 4

所示。

图 2- 4普通单摆受力分析

其回复力(物体离开垂直的平衡位臵后受到重力与悬线的作用合力)其大小为 F = - mg sin θ ≈ - mg θ,在偏移角度很小的情况下,回复力与偏移的角度之间大小成正比,方向相反。在空气中运动的单摆,由于受到空气的阻尼力,单摆最终会停止在垂直平衡位臵。空气的阻尼力与单摆运动速度成正比,方向相反。阻尼力越大,单摆越会尽快在垂直位臵稳定下来。单摆能够稳定在垂直位臵的条件有两个: (1) 受到与位移(角度)相反的恢复力; (2) 受

13

到与运动速度(角速度)相反的阻尼力。如果没有阻尼力,单摆会在垂直位臵左右摆动。阻尼力会使得单摆最终停止在垂直位臵。阻尼力过小(欠阻尼)会使得单摆在平衡位臵附件来回震荡。阻尼力过大(过阻尼)会使得单摆到达平衡位臵时间加长。因而存在一个临界阻尼系数,使得单摆稳定在平衡位臵的时间最短。

然而倒立摆在垂直位臵受到外部扰动的情况下,无法保持稳定,分析倒立摆的受力,如图 2- 5

所示。

图 2- 5在车轮上的参照系中车模受力分析

倒立摆之所以不能象单摆一样可以稳定在垂直位臵,就是因为在它偏离平衡位臵的时候,所受到的回复力与位移方向相同,而不是相反!因此,倒立摆便会加速偏离垂直位臵,直到倒下。要通过控制使得倒立摆能够像单摆一样,稳定在垂直位臵只能通过增加额外的受力,使得恢复力与位移方向相反才行。控制倒立摆底部车轮,使得它作加速运动。这样站在小车上(非惯性系,以车轮作为坐标原点)分析倒立摆受力,它就会受到额外的惯性力,该力与车轮的加速度方向相反,大小成正比。这样倒立摆所受到的回复力为:

F = mgsin θ-macos θ≈mg θ–mk 1θ (2-1) 式中,由于θ 很小,所以进行了线性化。假设负反馈控制是车轮加速度 a 与偏角θ成正比,比例为 k1 。如果比例 k1 > g ,( g 是重力加速度)那么回复力的方向便于位移方向相反了。此外,为了使得倒立摆能够尽快地在垂直位臵稳定下来,还需要增加阻尼力。增加的阻尼力与偏角的速度成正比,方向相反。式(2-1)可变为

F = mg θ ? mk 1?mk 2θ'

(2-2)

按照上面的控制方法,可把倒立摆模型变为单摆模型,能够稳定在垂直位臵。因此,可得控制车轮加速度的控制算法

14

a = k 1θ + k 2θ' (2-3) 式中,θ 为车模倾角;θ' 为角速度;k1、k2 均为比例系数;两项相加后作为车轮加速度 的控制量。只要保证在 k1 > g 、k2 > 0 条件下,可以使得车模像单摆一样维持在直立状态。

其中有两个控制参数 k1 , k2 ,k1 决定了车模是否能够稳定到垂直平衡位臵,它必须大于重力加速度;k2 决定了车模回到垂直位臵的阻尼系数,选取合适的阻尼系数可以保证车模尽快稳定在垂直位臵。

控制车模直立稳定的条件如下:

(1)能够精确测量车模倾角θ的大小和角速度θ'的大小;

(2)控制车轮的加速度。

第一个条件,即测量车模倾角和倾角速度θ、θ',参见下一小节“车模角度测量”。

如何确定控制参数 k1、k2 参见“调试篇”中的参数调节。下面先讨论第二个条件的实现,即车轮的加速度控制。

车模运行速度和加速度是通过控制车轮速度实现的,车轮通过车模两个后轮电机经由减速齿轮箱驱动,因此通过控制电机转速可以实现对车轮的运动控制。

电机的运动控制有三个作用:

(1)通过电机加速度控制实现车模平衡稳定。其中控制规律由上一节给出;

(2)通过电机速度控制,实现车模恒速运行和静止。通过速度控制,可以提高车模稳定性。在将来的比赛中,如果规则增加了静止要求,或者需要通过桥梁等障碍物时,速度控制将会发挥作用。

(3)通过电机差速控制,可以实现车模方向控制。差速的控制方法参见后面“车模方向控制”。电机运动控制是通过改变施加在其上的驱动电压大小实现的。对于电机的电磁模型、动力学模型以及车模的动力学模型进行分析和简化,可以将电机转速与施加在其上的电压之间的关系简化成如下的一阶惯性环节模型。施加在电机上一个阶跃电压 Eu(t) ,电机的速度变化曲线为

ω(t)=Ek m (1-e 1t T )

(2-4) 式中,E 为电压;ω(t)为单位阶跃函数;T1为惯性环节时间常数;km 为电机转速常数。对应不同的电压,电机的速度变化曲线如图 2- 6所示。

15

图 2- 6 电机在不同电压下的速度变化线

由图 2- 6可以看出,电机运动明显分为两个阶段:第一个阶段是加速阶段;第二个阶段为恒速阶段。其中,在加速阶段,电机带动车模后轮进行加速运动,加速度近似和施加在电机上的电压成正比,加速阶段的时间长度取决于时间常数T1 。该常数由电机转动惯量、减速齿轮箱减速比、车模的转动惯量决定,一般在十几到几百个毫秒。在恒速阶段,电机带动车模后轮进行恒速运行,运行速度与施加在电机上的电压成正比。

调整车模角度的控制周期很短,时间一般是几个毫秒,远小于时间常数T1 。此时电机基本上运行在加速阶段。由(2-3)计算所得到的加速度控制量 a 再乘以一个比例系数,即为施加在电机上的控制电压,这样便可以控制车模保持直立状态。

电机的加速度实际上是由通过电机的电流所产生的电磁力矩决定。考虑到电机电流的控制需要更高的速度,所以简化电机的控制方案。

2.2车模角度和角速度测量

上述车模直立控制算法通过测量车模的倾角和倾角速度控制车轮的加速度来消除车模的倾角。因此,车模倾角以及倾角速度的测量成为控制车模直立的关键。测量车模倾角和倾角速度可以通过安装在车模上的加速度传感器和陀螺仪实现。

(1)加速度传感器

加速度传感器可以测量由地球引力作用或者物体运动所产生的加速度。竞赛规则规定如果车模使用加速度传感器必须使用飞思卡尔公司产生的加速度传感器。该系列的传感器采用了半导体表面微机械加工和集成电路技术,传感器体积小,重量轻。它的基本原理如图 2- 7所示。

16

图 2- 7 加速度传感器原理

通过微机械加工技术在硅片上加工形成了一个机械悬臂。它与相邻的电极形成了两个电容。由于加速度使得机械悬臂与两个电极之间的距离发生变化,从而改变了两个电容的参数。通过集成的开关电容放大电路量测电容参数的变化,形成了与加速度成正比的电压输出。MMA7260 是一款三轴低g 半导体加速度计,可以同时输出三个方向上的加速度模拟信号,如图 2- 7

所示。

图 2- 8 MMA7260三轴加速度传感器

通过设臵可以使得 MMA7260 各轴信号最大输出灵敏度为 800mV/g ,这个信号无需要在进行放大,直接可以送到单片机进行 AD 转换。实际上,飞思卡尔公司还有更多系列的低 g 值的加速度传感器,特别是具有数字接口的传感器可以方便单片机接口设计。

只需要测量其中一个方向上的加速度值,就可以计算出车模倾角,比如使用 Z 轴方向上的加速度信号。车模直立时,固定加速度器在 Z 轴水平方向,此时输出信号为零偏电压信号。当车模发生倾斜时,重力加速度 g 便会在 Z 轴

方向形成加速度分量,从而引起该轴输出电压变化。变化的规律为

Δu = kgsinθ≈ kgθ

式中,g 为重力加速度;θ为车模倾角; k 为加速度传感器灵敏度系数系数。当倾角θ比较小的时候,输出电压的变化可以近似与倾角成正比。似乎只需要加速度就可以获得车模的倾角,再对此信号进行微分便可以获得倾角速度。但在实际车模运行过程中,由于车模本身的摆动所产生的加速度会产生很大的干扰信号,它叠加在上述测量信号上使得输出信号无法准确反映车模的倾角,如图2- 9所示。

图 2- 9 车模运动引起加速度信号波动

下图是实际测量安装在车模上 MMA7260 的 Z 轴信号。车模倾角在两个角度位臵过渡,看到除了角度变化信号之外,还存在由于运动引起的电压波动,这个电压波动随着车模运动速度增加会变得很大。

下面简单分析运动所产生的干扰信号。加速度传感器安装在车模上,距离车轴高度为 h 。车模转动具有角加速度θ' ,运动加速度α。那么在加速度传感器Z轴上出现由于车模运动引起的加速度为 hθ'+α,如图2- 1所示。为了减少运动引起的干扰,加速度传感器安装的高度越低越好,但是无法彻底消除车模运动的影响。

17

图 2- 10 车模运动引起加速度 Z轴信号变化

车模运动产生的加速度使得输出电压在实际倾角电压附近波动。这些波动噪声可以通过数据平滑滤波将其滤除。但是平滑滤波一方面会使得信号无法实时反映车模倾角变化,从而减缓对于车模车轮控制。另一方面也会将车模角速度变化信息滤掉。上述两方面的滤波效果使得车模无法保持平衡。因此对于车模直立控制所需要的倾角信息需要通过角速度传感器-陀螺仪获得。

(2)角速度传感器-陀螺仪

陀螺仪可以用来测量物体的旋转角速度。竞赛允许选用村田公司出品的ENC-03 系列的加速度传感器。它利用了旋转坐标系中的物体会受到科里奥利力的原理,在器件中利用压电陶瓷做成振动单元。当旋转器件时会改变振动频率从而反映出物体旋转的角速度。ENC-03 角速度传感器以及相关参考放大电路如图2- 11所示。

18

智能车技术报告(新)

南京工业大学信息学院电子设计大 赛(智能车) 技术报告 学校:南京工业大学 专业:电子信息工程 参赛队员:沈春娟袁乐乐袁冯杰

引言 根据本次比赛规则的要求,结合“飞思卡尔”的一些要求,本队已经完成了智能车系统的设计、制作、安装和调试。该智能车的设计思路是:首先,通过路径识别传感器采集路径信息,经STC12C5A32S2单片机处理输出控制信号,通过电机驱动控制两个直流电机的转速,实现智能车快速寻迹的目的。 利用红外反射式传感器实现小车自动寻迹导航的设计与实现。使用红外反射式传感器感知与地面颜色有较大反差的引导线,从而实现自主式寻迹。利用PWM 技术对直流电机进行速度调节,两轮驱动,运用两个直流电机转速差异进行方向的控制调节。 本文所述智能车寻迹系统采用红外反射式传感器识别路径上的黑线,通过PWM技术对两个直流电机的速度进行控制,由速度差决定转向的角度,使用开环控制结合PD算法对速度进行简单修正实现直流电机的速度控制。该系统以STC公司的生产的单片机STC 12C5A32S2为控制核心,主要由电源模块、核心控制模块、路径识别模块、(车速检测模块)和直流驱动电机控制模块组成。为了使智能车更加快速、平稳、准确地行驶,本系统将路径识别,车速的快速检测与响应,电机和直流驱动电机的正确控制紧密地结合在一起。 技术报告共分为五个部分:第一部分为引言;第二部分是智能车系统设计,介绍智能车总体设计和软、硬件设计及实现方案;第三章是控制算法设计,详述智能车软件实现;第四章是实验验证;第五章是总结。

智能车系统设计 一. 硬件设计 本系统硬件部分由电源模块、主控制器模块、路径识别模块、(车速检测模块)和直流驱动电机控制模块组成,系统硬件结构如图所示。 1. 主控制器模块 本系统中,主控制器模块采用STC 12C5A32S2单片机。STC 公司的单片机STC 12C5A32S2主要特点就是功能高度的集中,并且易于扩展,超强抗干扰,超强抗静电,低功耗。拥有2个16位定时器(兼容普通8051定时器T0/T1),2路PCA 可再实现2个定时器,拥有8通道、10位高速ADC ,速度可达25万次/秒,2路PWM 还可当2路D/A 使用。该单片机的运算能力强,自由度大,软件编程灵活。支持C 语言程序设计、汇编语言程序设计以及C 语言与汇编语言的混合程序设计,在系统可编程,无需编程器,无需仿真器,极大地方便了用户的使用,提高了系统开发效率。我们选择这款单片机主要是因为该单片机集成了两路可编程计数器阵列(PCA)模块,可用于脉宽调制(PWM)输出,来控制车轮的转速。 2. 电源模块 本系统中,为满足智能车各部分正常工作的需要,本系统采用12V 25C 航模电池,通过外围电路的整定,电源被分配给各个模块。 电源模块分为两个部分,为了保证控制核心的稳定性,单独供电,主电路板供电采用7805集成稳压块,该集成电路输出电压稳定,加之直流供电,不需要复杂的滤波系统。缺点发热量大,电能利用率低,所以7805可以满足系统要求。电路如图所示: 主控制器模块 电源模块 路径识别模块 电机驱动模块 车速检测模块

飞思卡尔智能车电磁组信号采集

?пㄖ ???? ??? ? ??? ?? ? ? 1? ? ??? ? 哖 世?? ???? ??? ??? ??? ? ??? ㄎ? ?? ??????仁??20kHz??????⌒ ???仁?VLF? ??⌒???仁仁?? ? 仁 ?仁??⌒????3kHz?30kHz?⌒?? 100km?10km? ?? 3.1?? ??? ? ? ?? ? ? ?а ? ?????? ??? ? ? ? ? ?? ??オ???? ??? ??? ? ? ??? ? ? ???о? ??? ??? ??? ? ? ? ? ?? ? ??? й ?????? ? ? ?? ? ???? ?н ????? ? ? на???? ??? ? ? ?? ? ? ?? а ? ???? ?? ??? ?? ? ??? ? ? ?? ?? ??? ??? ?? ??仁? ??? ?? ???? ??? ?? ?? ????? ?? ? ?? ?????? ↓ ? ?? ?? ↓ ? ?? ?? ??? ???? ? ??? ?? ? ? ?? ? ↓ ?? ?? ? ? ? ? ?? っ ?? ???/& ????? ??? ? ? ??/&? ?? ? ?

?йㄐ ???? ?? ?LC? ?? ? ? ?? ?? ? ?? ??????? ??? ??AD???? 享 ?? 儈?↓? фн?? ?? ???AD? ???? ? ?? ?? 3.3 ?? ?? ???????? ?? 傼 ??н ??? ? ? н ? ?? ?? ?н ? н? ? ? ??? ? ?? ?нっ ???? ?????? ? ф? 儈? ? ?

飞思卡尔智能汽车设计技术报告

第九届“飞思卡尔”杯全国大学生 智能汽车竞赛 技术报告 学校:武汉科技大学队 伍名称:首安二队参赛 队员:韦天 肖杨吴光星带队 教师:章政 0敏

I

关于技术报告和研究论文使用授权的说明 本人完全了解第九届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:

II

目录 第一章引言 (1) 1.1 概述 (1) 1.2 内容分布 (1) 第二章系统总体设计 (2) 2.1 设计概述 (3) 2.2 控制芯片的选择 (3) 2.3 线性 CCD 检测的基本原理 (3) 2.3 系统结极 (5) 第三章机械系统设计 (7) 3.1 底盘加固 (7) 3.2 轮胎处理 (7) 3.3 四轮定位 (8) 3.4 差速器的调整 (12) 3.5 舵机的安装 (13) 3.6 保护杆的安装 (15) 3.7 CCD的安装 (16) 3.8 编码器的安装 (17) 3.9 检测起跑线光电管及加速度计陀螺仪的安装 (18) 第四章硬件系统设计 (19) 4.1 最小系统版 (20) 4.2 电源模块 (21) 4.3 CCD模块 (22) 4.4 驱动桥模块 (23) 4.5 车身姿态检测模块 (24) 4.7 测速模块 (24) 4.8 OLED液晶屏及按键、拨码 (25) 第5章程序设计 (27)

智能车电磁环境制作

第五届全国大学生智能汽车竞赛 20KHz 电源参考设计方案 (竞赛秘书处技术组版本1.0) 第五届全国大学“飞思卡尔杯”智能汽车竞赛新增加了“电磁组”。根据比赛技术要求,电磁组竞赛,需要选手设计的智能车能够检测到道路中心线下电线中20KHz交表电流产生的磁场来导引小车沿着道路行驶。在平时调试和比赛过程中需要能够满足比赛技术要求的20KHz的交流电源驱动赛道中心线下的线圈。本文档给出了电源设计参考方案,参赛队伍可以根据这些参考设计方案自行设计制作所使用电源。 一、 电源技术指标要求: 根据《竞赛比赛细则》附件三关于电磁组赛道说明,20KHz电源技术要求如下: 1、驱动赛道中心线下铺设的0.1-0.3mm直径的漆包线; 2、频率范围:20K±2K; 3、电流范围:50-150mA; 下图是赛道起跑区示意图,在中心线铺设有漆包线。 图1 竞赛跑道起跑区示意图

首先分析赛道铺设铜线的电抗,从而得到电源输出的电压范围。 我们按照普通的练习赛道总长度50,使用直径为0.2mm漆包线。在30摄氏度下,铜线的电阻率大约为 0.0185欧姆平方毫米/米。计算可以得到中心线的电阻大约为29.4欧姆。 按照导线电感量计算机公式: 4 2ln0.75() l L l nH d ?? =×? ?? ?? 。其中l, d的单位 均为cm。可以计算出直径为0.2mm,长度50米的铜线电感量为131微亨。对应20KHz下,感抗约为16.5欧姆。 可以看出,线圈的电感量小于其电阻值。由于导线的电感量与铺设的形状有关系,上述计算所得到的电感量不是准确数值。另外,我们可以在输出时串接电容来抵消电感的感抗。所以估算电源电压输出范围的时候,我们不再特别考虑线圈的电感对于电流的影响。 为了方便设计,我们设计电源输出电压波形为对称方波。由于线圈电感的影响,线圈中的电流为上升、下降沿缓变的方波波形。如下图所示 图2 线圈驱动电压与电流示意图 对于电阻为29.4欧姆的赛道导线,流过100mA的电流,电压峰值应该大于3V。考虑到赛道长度有可能进一步增加、漆包线的直径减少等原因,设计电源输出电压的峰值为6V。在输出电流为150mA的时候,电源输出功率大约为0.9W。 二、 电源组成 电源电路包括振荡电路、功率输出电路、恒流控制电路以及电源等组成。 如下图所示:

基于单片机的智能小车开题报告

毕业设计(论文) 开题报告 设计(论文)题目:基于单片机的智能小车 学院名称:电子与信息工程学院 专业:电子与信息工程 班级:电信092班 姓名:杨介派学号09401180228 指导教师:胡劲松职称教授 定稿日期:2013 年1 月26 日

基于单片机的智能小车 1.课题研究背景和意义 智能化作为现代社会的新产物,是以后的发展方向,他可以按照预先设定的模式在一个特定的环境里自动的运作,无需人为管理,便可以完成预期所要达到的或是更高的目标。它集中地运用了计算机、传感、信息、通信、导航、人工智能及自动控制等技术,是典型的高新技术综合体。智能车辆是目前世界车辆工程领域研究的热点和汽车工业增长的新动向。随着企业生产技术的不断提高以及对自动化技术要求的不断加深,智能车辆已在许多工业部门获得了广泛的应用。无论是从科学发展、理论研究的角度,还是从汽车工业发展以及市场竞争的角度看,对智能车辆的研究都是必要的。而智能小车的研究及相关产品开发也将有利于我国在此领域技术发展与进步。因此,研制一种智能,高效的智能小车控制系统具有重要的实际意义和科学理论价值。 2.国内外研究现状及发展趋势 2.1 国外智能车辆的现状研究 国外智能车辆的研究历史较长,始于上世纪50年代,它的发展历程大致可以分为三个阶段: 第一阶段:20世纪50年代是智能车辆研究的初始阶段。1954年美国Barrett Electronic 公司研究开发出了世界上第一台自主引导车系统,该系统只是一个运行在固定路线上的拖车式运货平台,但它却具有了智能车辆最基本的特征即无人驾驶。 第二阶段:从80年代中后期,世界主要发达国家对智能车辆开展可卓有成就的研究,在欧洲,普罗米修斯项目于1986年开始了在这个领域的探索,在美洲,美国于1995年成立了国家自动高速公路系统联盟,其目标之一就是研究发展智能车辆的可行性,并促进智能车辆技术进入实用化。 第三阶段:从90年代开始,智能车辆进入了深入、系统、大规模的研究阶段。最为突出的是,美国卡内基-梅陇大学机器人研究所一共完成了Navlab系列的自主车的研究,取得了显著的成就。 2.2 国内智能车辆的现状研究 国内的许多高校和科研院所都在进行ITS关键技术、设备的研究,随着ITS研究的兴起,我国已形成了一支ITS技术研究开发的专业技术队伍。交通部已将ITS研究列入“十五”科技发展计划和2010年长期规划。相信经过相关领域的共同努力,我国ITS及智能车辆的技术水平

电磁组智能车恒磁式20KHZ信号源设计导图

现在我们借助电磁组用的20KHZ的信号发生器看看能学到些什么。 信号发生器分三个部分组成,20K信号发生器、功率输出部分(功率输出可以采用多种方式,我们在这里只讨论用分立元件组成的H桥)、恒流源部分。20K信号的发生有多种方式,可以使用单片机也可以使用555还可以使用其他的振荡电路(教材上有详细的介绍)。下面我们主要讨论一下H桥和恒流控制。 这是一个H桥功率输出+恒流电路,现在我们把它拆分成两部分来看。首先是H桥的主体如下图所示。 这是上臂由PNP三极管和下臂由NPN三极管构成的H桥。其原理是在三极管工作在关闭和饱和两种状态的基础下,当控制Q1和Q4导通并且另外两只三极管截至的情况下电流会从负载(RL)的左侧流向右侧(红线方向);同理当Q2和Q3导通Q1和Q4截至的时候电流会从负载的右侧流向左侧(绿线方向)。 让NPN三极管工作在饱和的状态(当开关使)只要使其基极电流足够大就可以了(不可太大会烧坏管子的),当Vbe大于导通电压时集电极和发射极导通。一般NPN三极管当开关使的电路如下图所示。 与NPN三极管不同的是PNP三极管的Vbe为负压时(电流从发射极流向基极)发射极和集电极导通。一般PNP三极管当开关使的电路如下图所示。

通过观察这两个开关电路可以发现NPN三极管开关电路的负载比三极管更靠近电源正极,而PNP三极管开关电路的负载比三极管更靠近地。为什么要这么做呢,如果放反了会怎么样呢,以NPN三极管为例。 我们都知道NPN三极管正常工作时发射极电位是小于基极电位的,所以上图电路中的三极管是工作在放大状态下的。这个电路的好处在于基极电流很小(输入阻抗很大),基极电流近似等于(基极电压-导通电压)/负载电阻/β。在共集放大电路(在学习共集放大电路的时候不妨也顺便看看共基放大电路)和推挽电路中会看到它的身影。这个电路稍微改造一下就变成了一个最简单的(之一吧)恒流源。 流过负载电阻RL的电流近似恒定为(Vref-导通电压)/Rfb。那么这个电路是如何恒流的呢,反馈电阻Rfb(在这里就不叫负载电阻了)是关键。我们都知道在RL在一定范围内变化时(这点很重要,RL如果太大下文就不成立了)三极管的集电极电流=基极电流*β,集电极电流与RL无关,但是β会随着三极管工作产生的热量变化,所以β值的变化是恒流最大的敌人。好在这里有Rfb,当β增大时集电极电流增大即流过Rfb的电流就会增大所以导致三极管发射极电压升高,进而导致基极电流变小使集电极电流稳定下来。这就是所谓的负反馈。可以把这个电路抽象成一个串接在主回路上的可调电阻器。

第五届飞思卡尔智能车大赛华中科技大学电磁组技术报告

第五届飞思卡尔杯全国大学生 智能汽车竞赛 技 术 报 告 学校:华中科技大学 队伍名称:华中科技大学五队 参赛队员:方华启 张江汉 诸金良 带队教师:何顶新 罗惠

关于技术报告和研究论文使用授权的说明 本人完全了解第五届全国大学生“飞思卡尔”杯智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:

目录 第1章引言 (1) 1.1 概述 (1) 1.2 全文安排 (2) 第2章电路设计 (3) 2.1 电路系统框图 (3) 2.2 电源部分 (4) 2.3 电机驱动部分 (5) 2.4 电磁传感器 (6) 第3章机械设计 (8) 3.1 车体结构和主要参数及其调整 (8) 3.2 舵机的固定 (10) 3.3 传感器的固定 (11) 3.4 编码器的固定 (11) 第4章软件设计 (12) 4.1 程序整体框架 (12) 4.2 前台系统 (13) 4.3 后台系统 (13) 4.4 软件详细设计 (14) 第5章调试 (15) 第6章全文总结 (16) 6.1 智能车主要技术参数 (16) 6.2 不足与改进 (16) 6.3 致谢与总结 (17) I

参考文献 (18) 附录A 源代码 (18) II

第1章引言 第1章引言 教育部为了加强大学生实践、创新能力和团队精神的培养,在已举办全国大学生数学建模、电子设计、机械设计、结构设计等4大竞赛的基础上,委托教育部高等学校自动化专业教学指导分委员会主办每年一度的全国大学生智能汽车竞赛(教高司函[2005]201号文)[1]。 为响应教育部的号召,本校积极组队参加第五届“飞思卡尔”杯全国大学生智能汽车竞赛。从2009 年12 月开始着手进行准备,历时近8 个月,经过设计理念的不断进步,制作精度的不断提高,经历 2 代智能车硬件平台及相关算法的改进,最终设计出一套完整的智能车开发、调试平台。作为电磁组的华中科技大学五队采用轻质量机械设计、大前瞻传感器和连续化算法处理的基本技术路线,在前瞻距离、噪声抑制、驱动优化、整车布局等方面加强研究创新,在有限计算能力下获得了较高的赛道信息准确率。使智能车能够满足高速运行下的动力性和稳定性需求,获得了良好的综合性能和赛场表现。 本文将对智能车的总体设计和各部分的详细设计进行一一介绍。 1.1 概述 1.1.1 电路设计 飞思卡尔电磁组智能汽车硬件主要分为主控板,传感器板。本车在主控板上主要特色为电机使用H桥驱动,从性能和扩展性上优于集成驱动器方案。传感器板设计着重考虑提高传感器的前瞻量和信号的抗干扰能力。 1.1.2 机械设计 机械方面,主要是对舵机的安装进行了研究,加长了舵机的连杆,以增加反应速度。另外,主要研究车差速性能的研究以及传感器支架的固定。 1.1.3 控制程序设计 一方面使用免费的μCOS操作系统,这给智能车的整体调试提供了很多方便;另一方面,在大前瞻传感器的基础上设计出合理的舵机、电机控制算法,在满足稳定性要求的基础上提高速度。 1

智能循迹小车___设计报告

智能循迹小车设计 专业:自动化 班级:自动化132 姓名:罗植升莫柏源梁桂宾 指导老师: 2014年4月——2010年6月 摘要:

本课题是基于STC89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 STC89C52单片机为系统控制处理器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 引言

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为机电一体化学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。 为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以立“智能循迹小车”一题作为尝试。 此项设计是在以杨老师提供的小车为基础上,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

飞思卡尔智能车电磁组程序员成长之路(未完待续)

飞思卡尔智能车电磁组程序员成长之路 1.飞思卡尔智能车小车入门 智能汽车电磁组简介: 第五届全国大学“飞思卡尔杯”智能汽车竞赛新增加了“电磁组”。根据比赛技术 要求,电磁组竞赛,需要选手设计的智能车能够检测到道路中心线下电线中20KHz 交 变电流产生的磁场来导引小车沿着道路行驶。在平时调试和比赛过程中需要能够满足比 赛技术要求的 20KHz 的交流电源驱动赛道中心线下的线圈。同时参赛选手需要自行设 计合适的电磁传感器来检测赛道信息完成智能寻迹功能。 智能车制作是一个涵盖电子、电气、机械、控制等多个领域和学科的科技创新活动。简单点来说可以将其分为硬件电路(包括电源、MUC 控制部分、电机驱动、传感器)、机械、算法三方面的设计。电磁组在机械方面可以参照光电组的设计方案,这里不再赘述。本设计指导只讲述20KHZ 电源、电磁传感器设计方案以及部分算法。 智能车对单片机模块需求: 飞思卡尔单片机资源:

智能车涉及到IO模块,中断模块,PWM模块,DMA模块,AD模块等。在车模调试中还有必须的模块。如SCI模块、定时器模块,SPI模块等。其中还涉及到一些算法和数据的存储和搬移。一个好程序框架对智能车的制作过程中会达到事半功倍的效果。但是就智能车这样系统来说,如果完全专门移植一个操作系统或者写一个程序的bootload,感觉有一些本末倒置,如果有成熟的,可以借用的,那样会比较好。 2.电磁传感器的使用 20KHz电源参考设计方案: 电源技术指标要求: 根据官网关于电磁组赛道说明,20KHz 电源技术要求如下: 1.驱动赛道中心线下铺设的 0.1-0.3mm 直径的漆包线; 2.频率围:20K±2K; 3.电流围:50-150mA; 图 2.1 是赛道起跑区示意图,在中心 线铺设有漆包线。 首先分析赛道铺设铜线的电抗,从而得 到电源输出的电压围。我们按照普通的练习 赛道总长度 50m,使用直径 0.2mm 漆包线。在30 摄氏度下,铜线的电阻率大约为 0.0185 欧姆平方毫米/米。计算可以得到中心线的电阻大约为 29.4 欧姆。 按照导线电感量计算机公式: 其中 l, d 的单位均为 cm。可以计算出直径为 0.2mm,长度 50 米的铜线电感量为131 微亨。对应 20KHz 下,感抗约为 16.5 欧姆。

飞思卡尔智能车竞赛光电组技术报告

第九届“飞思卡尔”杯全国大学生智能车竞赛光电组技术报告 学校:中北大学 伍名称:ARES 赛队员:贺彦兴 王志强 雷鸿 队教师:闫晓燕甄国涌

关于技术报告和研究论文使用授权的说明书本人完全了解第八届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:2014-09-15日

摘要 本文介绍了第九届“飞思卡尔杯全国大学生智能车大赛光电组中北大学参赛队伍整个系统核心采用飞思卡尔单片机MC9S12XS128MAA ,利用TSL1401线性CCD 对赛道的行扫描采集信息来引导智能小车的前进方向。机械系统设计包括前轮定位、方向转角调整,重心设计器件布局设计等。硬件系统设计包括线性CCD传感器安装调整,电机驱动电路,电源管理等模块的设计。软件上以经典的PID算法为主,辅以小规Bang-Bang 算法来控制智能车的转向和速度。在智能车系统设计开发过程中使用Altium Designer设计制作pcb电路板,CodeWarriorIDE作为软件开发平台,Nokia5110屏用来显示各实时参数信息并利用蓝牙通信模块和串口模块辅 助调试。关键字:智能车摄像头控制器算法。

目录 1绪论 (1) 1.1 竞赛背景 (1) 1.2国内外智能车辆发展状况 (1) 1.3 智能车大赛简介 (2) 1.4 第九届比赛规则简介 (2) 2智能车系统设计总述 (2) 2.1机械系统概述 (3) 2.2硬件系统概述 (5) 2.3软件系统概述 (6) 3智能车机械系统设计 (7) 3.1智能车的整体结构 (7) 3.2前轮定位 (7) 3.3智能车后轮减速齿轮机构调整 (8) 3.4传感器的安装 (8) 4智能车硬件系统设计 (8) 4.1XS128芯片介绍 (8) 4.2传感器板设计 (8) 4.2.1电磁传感器方案选择 (8) 4.2.2电源管理模 (9) 4.2.3电机驱动模块 (10) 4.2.4编码器 (11) 5智能车软件系统设 (11) 5.1程序概述 (11) 5.2采集传感器信息及处理 (11) 5.3计算赛道信息 (13) 5.4转向控制策略 (17) 5.5速度控制策略 (19) 6总结 (19)

飞思卡尔智能车比赛电磁组路径检测设计方案

飞思卡尔智能车比赛电磁组路径检测设计方案电磁组竞赛车模 路径检测设计参考方案 (竞赛秘书处 2010-1,版本 1.0) 一、前言 第五届全国大学生智能汽车竞赛新增加了电磁组比赛。竞赛车模需要能够通 过自动识别赛道中心线位置处由通有 100mA 交变电流的导线所产生的电磁场进行路径检测。除此之外在赛道的起跑线处还有永磁铁标志起跑线的位置。具体要求请参阅《第五届智能汽车竞赛细则》技术文档。 本文给出了一种简便的交变磁场的检测方案,目的是使得部分初次参加比赛 的队伍能够尽快有一个设计方案,开始制作和调试自己的车模。本方案通过微型车模实际运行,证明了它的可行性。微型车模运行录像参见竞赛网站上视频文件。 二、设计原理 1、导线周围的电磁场 根据麦克斯韦电磁场理论,交变电流会在周围产生交变的电磁场。智能汽车 竞赛使用路径导航的交流电流频率为 20kHz,产生的电磁波属于甚低频(VLF) 电磁波。甚低频频率范围处于工频和低频电磁破中间,为 3kHz,30kHz,波长为 100km,10km。如下图所示: 图 1:电流周围的电磁场示意图

导线周围的电场和磁场,按照一定规律分布。通过检测相应的电磁场的强度 和方向可以反过来获得距离导线的空间位置,这正是我们进行电磁导航的目的。 由于赛道导航电线和小车尺寸 l 远远小于电磁波的波长,,电磁场辐射能量很小(如果天线的长度 l 远小于电磁波长,在施加交变电压后,电磁波辐射功率正比于天线长度的四次方),所以能够感应到电磁波的能量非常小。为此,我们将导线周围变化的磁场近似缓变的磁场,按照检测静态磁场的方法获取导线周围的磁场分布,从而进行位置检测。 由毕奥-萨伐尔定律知:通有稳恒电流 I 长度为 L 的直导线周围会产生磁场,距离导线距离为 r 处 P 点的磁感应强度为: 图 2 sin直线电流的磁场 , d, ,(0 , 4 10, 7 TmA 1 ) B , ,, cos,1 2 ,。 (1) ,1 4 r 由此得: B , cos, 4 r 4 r

飞思卡尔智能车技术报告

第六届“飞思卡尔”杯全国大学生智能汽车邀请赛技术报告 学校: 队伍名称: 参赛队员: 带队教师:

关于技术报告和研究论文使用授权的说明 本人完全了解第六届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期: 摘要 随着现代科技的飞速发展,人们对智能化的要求已越来越高,而智能化在汽车相关产业上的应用最典型的例子就是汽车电子行业,

汽车的电子化程度则被看作是衡量现代汽车水平的重要标志。同时,汽车生产商推出越来越智能的汽车,来满足各种各样的市场需求。本文以第六届全国大学生智能车竞赛为背景,主要介绍了智能车控制系统的机械及硬软件结构和开发流程。 机械硬件方面,采用组委会规定的标准 A 车模,以飞思卡尔半导体公司生产的80管脚16 位单片机MC9S12XS128MAA 为控制核心,其他功能模块进行辅助,包括:摄像头数据采集模块、电源管理模块、电机驱动模块、测速模块以及无线调试模块等,来完成智能车的硬件设计。 软件方面,我们在CodeWarrior IDE 开发环境中进行系统编程,使用增量式PD 算法控制舵机,使用位置式PID 算法控制电机,从而达到控制小车自主行驶的目的。 另外文章对滤波去噪算法,黑线提取算法,起止线识别等也进行了介绍。 关键字:智能车摄像头图像处理简单算法闭环控制无线调试 第一章引言 飞思卡尔公司作为全球最大的汽车电子半导体供应商,一直致力于为汽车电子系统提供全范围应用的单片机、模拟器件和传感器等器件产品和解决方案。飞思卡尔公司在汽车电子的半导体器件市场拥有领先的地位并不断赢得客户的

智能小车实训报告

智能小车实训报告 摘要: 本课题是基于AT89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 AT89S52 单片机为系统控制处理器; 采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 一、实验目的: 通过设计进一步掌握51单片机的应用,特别是在嵌入式系统中的应用。进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。 二、设计方案 该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片L298N 发出控制命令,控制电机的工作状态以实现对小车姿态的控制。 三.报告内容安排 本技术报告主要分为三个部分。第一部分是对整个系统实现方法的一个概要说明,主要内容是对整个技术原理的概述;第二部分是对硬件电路设计的说明,主要介绍系统传感器的设计及其他硬件电路的设计原理等;第三部分是对系统软件设计部分的说明,主要内容是智

能模型车设计中主要用到的控制理论、算法说明及代码设计介绍等。 技术方案概要说明 本模型车的电路系统包括电源管理模块、单片机模块、传感器模块、电机驱动模块。 工作原理: 利用红外采集模块中的红外发射接收对管检测路面上的轨迹 将轨迹信息送到单片机 单片机采用模糊推理求出转向的角度,然后去控制 行走部分 最终完成智能小车可以按照路面上的轨迹运行。 硬件电路的设计 1、最小系统: 小车采用atmel公司的AT89C52单片机作为控制芯片,图1是其最小系统电路。主要包括:时钟电路、电源电路、复位电路。 其中各个部分的功能如下: 1、时钟电路:给单片机提供一个外接的16MHz的石英晶振。 2、电源电路:给单片机提供5V电源。 3、复位电路:在电压达到正常值时给单片机一个复位信号。

电磁组智能车全国一等奖代码

void main(void) { while(1) { AD_GetValue(); //获得传感器AD值Cal_PostitionA(); //获得? if(SenA!=50) { Delayms(500); break; } Delayms(50); SenA=50; } #include /* common defines and macros */ #include "derivative.h" /* derivative-specific definitions*/ #define SERVO_MIDDLE_V ALUE 1184 舵机中值 #define SERVO_RANGE 180 舵机转动范围 void Set_PWM(uint PWM1,uint PWM2) { PWMDTY1=PWM1; PWMDTY0=PWM2; } void Set_Servo(uchar value) //舵机 { uint i; if(value>100||value<0) value=last_value; 保持上一次状态 last_value=value; if(value<=50) i=SERVO_MIDDLE_V ALUE-(50-value)*18/5; if(value>50) i=SERVO_MIDDLE_V ALUE+(value-50)*18/5; PWMDTY23=i; } void Pwm_Init(void) //PWM初始化 { PWME=0X00; //禁止PWM输出 PWMCTL_CON23=1; //2和3联合成16位PWM,并且2的寄存器为级联后寄存器

飞思卡尔智能车设计报告

飞思卡尔智能车设计报告

目录 1.摘要 (3) 2.关键字 (3) 3.系统整体功能模块 (3) 4.电源模块设计 (4) 5.驱动电路设计 (4) 6.干簧管设计 (5) 7.传感器模块设计 (6) 8.传感器布局 (6) 9.软件设计 (7) 9.1控制算法 (7) 9.2软件系统实现(流程图) (10) 10.总结 (11) 11.参考文献 (12)

1.摘要 “飞思卡尔”杯全国大学生智能汽车竞赛是由教育部高等自动化专业教学指导分委员会主办的一项以智能汽车为研究对象的创意性科技竞赛,是面向全国大学生的一种具有探索性工程实践活动,是教育部倡导的大学生科技竞赛之一。该竞赛以“立足培养,重在参与,鼓励探索,追求卓越”为指导思想,旨在促进高等学校素质教育,培养大学生的综合知识运用能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能,倡导理论联系实际、求真务实的学风和团队协作的人文精神,为优秀人才的脱颖而出创造条件。该竞赛以汽车电子为背景,涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科的科技创意性比赛。 本文介绍了飞思卡尔电磁组智能车系统。本智能车系统是以飞思卡尔32 位单片机K60为核心,用电感检测赛道导线激发的电磁信号, AD 采样获得当前传感器在赛道上的位置信息,通过控制舵机来改变车的转向,用增量式PID进行电机控制,用编码器来检测小车的速度,共同完成智能车的控制。 2.关键字 电磁、k60、AD、PID、电机、舵机 3.系统整体功能模块 系统整体功能结构图

4.电源模块设计 电源是一个系统正常工作的基础,电源模块为系统其他各个模块提供所需要的能源保证,因此电源模块的设计至关重要。模型车系统中接受供电的部分包括:传感器模块、单片机模块、电机驱动模块、伺服电机模块等。设计中,除了需要考虑电压范围和电流容量等基本参数外,还要在电源转换效率、噪声、干扰和电路简单等方面进行优化。可靠的电源方案是整个硬件电路稳定可靠运行的基础。 全部硬件电路的电源由7.2V,2A/h的可充电镍镉电池提供。由于电路中的不同电路模块所需要的工作电流容量各不相同,因此电源模块应该包含多个稳压电路,将充电电池电压转换成各个模块所需要的电压。 电源模块由若干相互独立的稳压电源电路组成。在本系统中,除了电机驱动模块的电源是直接取自电池外,其余各模块的工作电压都需要经电源管理芯片来实现。 由于智能车使用7.2V镍镉电池供电,在小车行进过程中电池电压会有所下降,故使用低压差电源管理芯片LM2940。LM2940是一款低压稳压芯片,能提供5V的固定电压输出。LM2940低压差稳压芯片克服了早期稳压芯片的缺点。与其它的稳压芯片一样,LM2940需要外接一个输出电容来保持输出的稳定性。出于稳定性考虑,需要在稳压输出端和地之间接一个47uF低等效电阻的电容器。 舵机的工作电压是6伏,采用的是LM7806。 K60单片机和5110液晶显示器需要3.3伏供电,采用的是LM1117。 5.驱动电路设计 驱动电路采用英飞凌的BTS7960,通态电阻只有16mΩ,驱动电流可达43A,具有过压、过流、过温保护功能,输入PWM频率可达到25KHz,电源电压5.5V--27.5V。BTS7960是半桥驱动,实际使用中要求电机可以正反转,故使用两片接成全桥驱动。如图下图所示。

智能小车设计报告书

智能小车设计报告 专业:电子信息工程技术 学生姓名:史响林周博超朱雄王昌指导教师:张力 完成日期:2014 年5 月24 日

目录 1 绪论 (3) 2 设计任务 (2) 2.1设计任务 (2) 3 设计方案 (3) 3.1任务分析 (3) 3.2方案框架 (3) 4 系统硬件设计 (4) 4.1核心芯片模块AT89S52 (4) 4.2电机驱动电路设计 (4) 4.3超声波测距设计 (6) 4.4传感器测速的设计 (8) 4.5LCD1602显示模块 (9) 5 系统软件设计 (8) 5.1程序设计流程图 (8) 5.2关键程序设计 (8)

6 心得体会 (13) 附录1 系统原理图 (15) 附录2 系统PCB图 ........................................................... 错误!未定义书签。附录 3 程序清单 (17) 1 论绪 智能作为现代社会的新产物,是以后的发展方向,他可以按照预先设定的模式在一个特定的环境里自动的运作,无需人为管理,便可以完成预期所要达到的或是更高的目标。本设计主要体现多功能小车的智能模式,设计中的理论方案、分析方法及特色与创新点等可以为自动运输机器人、采矿勘探机器人、家用自动清洁机器人等自动半自动机器人的设计与普及有一定的参考意义。同时小车可以作为玩具的发展对象,为中国玩具市场技术含量的缺乏进行一定的弥补,实现经济收益,形成商业价值。超声波作为智能车避障的一种重要手段,

以其避障实现方便,计算简单,易于做到实时控制,测量精度也能达到实用的要求,在未来汽车智能化进程中必将得到广泛应用。我国作为一个世界大国,在高科技领域也必须占据一席之地,未来汽车的智能化是汽车产业发展必然的,在这种情况下研究超声波在智能车避障上的应用具有深远意义,这将对我国未来智能汽车的研究在世界高科技领域占据领先地位具有重要作用。本智能小车系统最诱人的前景就是可用于未来的智能汽车上了,当驾驶员因疏忽或打瞌睡时这样的智能汽车的设计就能体现出它的作用。如果汽车偏离车道或距障碍物小于安全距离时,汽车就会发出警报,提醒驾驶员注意,如果驾驶员没有及时作出反应,汽车就会自动减速或停靠于路边。这样的小车还可以用于月球探测等的无人探月车,帮助我们传达月球上更多的信息,让我们更加的了解月球,为将来登月做好充分准备。这样的小车在科学考察探测车上也有广阔的应用前景,在科学考察中,有很多危险且人们无法涉足的地方,这时,智能科学考察车就能够派上用场,在它上面装上摄像机,代替人们进行许多无法进行的工作。 设计采用对比选择,模块独立,综合处理的研究方法。采用AT89S52单片机模块作为小车的检测和控制核心;通过翻阅大量的相关文献资料,分析整理出有关信息,在此基础上列出不同的解决方案,结合实际情况对比方案优劣选出最优方案进行设计。本次试验利用单片机模块上的按键来控制小车的速度,方向,及在车体上面装有超声波测距模块利用LCD1602显示屏来显示测出来具体距离。本设计结构简单,较容易实现,但具有高度的智能化、人性化,一定程度体现了智能。 通过调试检测各模块,得到正确的信号输出,实现其应有的功能。最后将各个调试成功的模块结合到小车的车体上,结合程序,通过单片机的控制,将各模

飞思卡尔智能车光电组技术报告

第十届全国大学生“飞思卡尔”杯华 北赛 智能汽车竞赛 技术报告 目录 目录 (11) 第一章方案设计 (11) 1.1系统总体方案的选定 (11) 1.2系统总体方案的设计 (11) 1.3 小结 (22) 第二章智能汽车机械结构调整与优化 (33) 2.1智能汽车车体机械建模 (33) 2.2 智能汽车传感器的安装 (44) 2.2.1速度传感器的安装 (44) 1 / 26

2.2.2 线形CCD的安装 (55) 2.2.3车模倾角传感器 (55) 2.3重心高度调整 (55) 2.3.1 电路板的安装 (66) 2.3.2 电池安放 (66) 2.4 其他机械结构的调整 (66) 2.5 小结 (66) 第三章智能汽车硬件电路设计 (77) 3.1主控板设计 (77) 3.1.1电源管理模块 (77) 3.1.2 电机驱动模块 (88) 3.1.3 接口模块 (99) 3.2智能汽车传感器 (1010) 3.2.1 线性CCD传感器 (1010) 3.2.2 陀螺仪 (1010) 3.2.3 加速度传感器 ............................ 错误!未定义书签。错误!未定义书签。 3.2.3 编码器 (1111) 3.3 键盘,数码管....................................... 错误!未定义书签。错误!未定义书签。 3.4液晶屏 (1212) 3.5 小结 (1212) 第四章智能汽车控制软件设计 (1313) 4.1线性CCD传感器路径精确识别技术 (1313) 4.1.1新型传感器路径识别状态分析 (1414)

飞思卡尔 电磁组

第十届“飞思卡尔”杯全国大学生 智能汽车竞赛 技术报告 学校:常熟理工学院 队伍名称:物电电磁二队 参赛队员:梅亚军、沈锦杰、黄志鹏、张峰 带队老师:徐健、顾涵

关于技术报告和研究论文使用授权的说明 本人完全了解第十届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:

摘要 本文介绍了常熟理工学院物电电磁二队电磁车的成果。智能车的硬件平台采用带MK60DN256Vll10处理器,软件平台为IAR Embedded Workbench开发环境,车模采用大赛组委会统一提供的两辆B型车模。 文中介绍了智能车机械结构调整,传感器电路设计,舵机、电机控制算法以及起跑线的检测等。车模以MK60DN256Vll10单片机为控制核心,以安装在车体前的工字电感作为循迹传感器,采用干簧管检测起跑线,以欧姆龙编码器检测速度信息。车模系统的简单工作原理是MK60DN256Vll10单片机通过AD口采集电感检测的拟量,并通过算法处理,然后返回值用于舵机控制,根据编码器返回值进行电机的闭环控制。通过串口,借用蓝牙等工具进行舵机PD参数,电机PID的调节,以及整定传感器参数的整合处理,再通过数字红外进行两车之间联系,保持车距。 关键字:机械结构、电磁寻线、舵机PD控制、电机PID控制

目录 第一章总体方案设计------------------------------------------------------------------------------------------- 6 第二章智能车机械结构调整与优化 ------------------------------------------------------------------------ 9 2.1 主销内倾 ---------------------------------------------------------------------------------------------- 9 2.2 主销后倾 -------------------------------------------------------------------------------------------- 10 2.3 外倾角 ------------------------------------------------------------------------------------------------ 11 2.4车轮安装示意图如下:---------------------------------------------- 12 2.5 舵机的安装----------------------------------------------------------------------------------------- 12 2.6 舵机安装示意图如下: ------------------------------------------------------------------------- 13 2.7 小结 --------------------------------------------------------------------------------------------------- 13 第三章电路设计说明 --------------------------------------------------------------------------------------- 14 3.1 电源模块--------------------------------------------------------------------------------------------- 14 3.2 传感器模块------------------------------------------------------------------------------------------ 15 3.3 电机模块--------------------------------------------------------------------------------------------- 15 3.4 舵机模块--------------------------------------------------------------------------------------------- 16 3.5 最小系统板设计 ----------------------------------------------------------------------------------- 16 3.6 系统主板设计 -------------------------------------------------------------------------------------- 17 3.7 小结 --------------------------------------------------------------------------------------------------- 18 第四章智能车控制软件设计说明 ------------------------------------------------------------------------- 19 4.1 软件设计总体框架 -------------------------------------------------------------------------------- 19 4.2 电机PID控制 -------------------------------------------------------------------------------------- 20 4.3 舵机的控制----------------------------------------------------------------------------------------- 24 4.4 传感器数据的处理 -------------------------------------------------------------------------------- 24 4.5 小结 --------------------------------------------------------------------------------------------------- 24 第五章开发工具、制作、安装、调试过程说明 ------------------------------------------------------ 25 5.1 软件编译环境 -------------------------------------------------------------------------------------- 25 5.2 显示模块 -------------------------------------------------------------------------------------------- 25 5.3 蓝牙调试模块-------------------------------------------------------------------------------------- 26 5.4 上位机调试----------------------------------------------------------------------------------------- 26 5.5 本章小结 -------------------------------------------------------------------------------------------- 27 模型车的主要技术参数说明 --------------------------------------------------------------------------------- 28 结论 ---------------------------------------------------------------------------------------------------------------- 29 参考文献 ---------------------------------------------------------------------------------------------------------- 31 附录A:程序源代码 ------------------------------------------------------------------------------------------ 32

相关主题
文本预览
相关文档 最新文档