当前位置:文档之家› 液晶电光曲线

液晶电光曲线

液晶电光曲线
液晶电光曲线

液晶电光曲线

实验目的 1. 测定液晶样品的电光曲线;

2. 根据电光曲线,求出样品的阀值电压Uth,饱和电压Ur,对比度Dr,陡度β等电光效应的主要参数;

3. 用自配数字存储示波器观测液晶样品的电光响应时间;

实验原理

1.(液晶)

液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性、粘度、形变等机械性质,又有晶体的热、光、电、磁等物理性质。液晶分子在形状、介电常数、折射率及电导率上具有各向异性。因此,液晶具有电光效应,即对液晶施加电场,随着液晶分子取向结构发生变化,它的光学特性也随之变化。液晶显示器的种类有很多,利用液晶的电光效应而实现显示的有扭曲向列相液晶、超扭曲向列相液晶、高扭曲向列相液晶等。扭曲向列相液晶,也称为TN型液晶,是应用范围最广、价格较便宜的液晶显示器。我们常用的电子表、计算器、游戏机等的显示屏大都是TN型液晶。液晶与液体、晶体之间的区别是:液体是各向同性的,分子取向无序;液晶分子取向有序,但位置无序,而晶体二者均有序。就形成液晶方式而言,液晶可分为热致液晶和溶致液晶。热致液晶又可分为近晶相、向列相、和胆甾相。其中向列相液晶是液晶显示器件的主要材料。

2.(液晶电光效应)

液晶分子是在形状、介电常数、折射率及电导率上具有各向异性特性的物质,如果对这样的物质施加电场,随着液晶分子取向结构发生变化,它的光学特性也随之变化,这就是通常说的液晶的电光效应。

液晶的电光效应种类繁多,主要有动态散射型(DS)、扭曲向列相型(T N)、超扭曲向列相型(STN)、有源矩阵液晶显示(TFT)电控双折射(ECB)等。其中应用较广的如TFT型—主要用于液晶电视、笔记本电脑等高档电子产品;STN型主要用于手机屏幕等中档电子产品;TN型主要用于电子表、计算器、仪器仪表、家用电器等中低档产品,是目前应用最普遍的液晶显示器件。

TN型液晶显示器件原理较简单,是STN、TFT等显示方式的基础。本实验所使用的液晶样品即为位TN型。

2.1 TN型液晶盒结构

TN型液晶显示器是一个由上下两片导电玻璃制成的液晶盒,盒内充有液晶,四周密封。液晶盒厚一般为几个微米,其中上下玻璃片内侧镀有显示电极,以使外部电信号通过电极加到液晶上。上下玻璃基板内侧覆盖着一薄层高分子有机物定向层,经定向摩擦处理,可使棒状液晶分子平行于玻璃表面,沿定向处理的方向排列。上下玻璃表面的定向方向是相互垂直的,这样,盒内液晶分子的取向逐渐扭曲,从上玻璃片到下玻璃片扭曲了90°。所以称为扭曲向列型。

液晶盒玻璃片的两个外侧分别贴有偏振片,这两个偏振片的偏光轴互相平行(常黑型)或相互正交(常白型),且于液晶盒表面定向方向相互平行或垂直。【2】

TN型液晶盒结构图

2.2 扭曲向列型电光效应无外电场作用时,由于可见光波长远小于向列相液晶的扭曲螺距,因此当线偏振光垂直玻璃表面入射时,若偏振方向与液晶盒上表面分子取向相同,则线偏振光将随液晶分子轴方向逐渐旋转90度,即出射光仍为线偏振且偏振方向平行于液晶盒下表面分子轴方向射出(见图1(a)不通电部分,图中液晶盒上下表面各附一片偏振片,其偏振方向与液晶盒表面分子取向相同,因此光可通过偏振片射出);若入射线偏振光偏振方向垂直于上表面分子轴方向,出射时,仍为线偏振光且方向也垂直于下表面液晶分子轴;当入射线偏振光与液晶盒上表面分子取向不为平行或垂直情况时,则根据平行分量和垂直分量的相位差,以椭圆、圆或直线等某种偏振光形式射出。对液晶盒施加电压,当电压达到一定数值时,液晶分子长轴开始沿电场方向倾斜,电压继续增加到另一数值时,除附着在液晶盒上下表面的液晶分子外,所有液晶分子长轴都按电场方向进行重新排列(见1图(b)中通电部分),此时TN型液晶盒在无外电场作用时的90度旋光性随之消失。

【3】

若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转90°,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶盒上电压大小的关系见图3;其中纵坐标为透光强度,横坐标为外加电压。最大透光强度的10%所对应的外加电压值称为阈值电压(Uth),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。最大透光强度的90%对应的外加电压值称为饱和电压(Ur),标志了获得最大对比度所需的外加电压数值,Us小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。对比度Dr=Imax/Imin,其中Imax为最大观察(接收)亮度(照度),Imin为最小亮度。陡度β=Ur/Uth即饱和电压与阈值压之比。

U/V 2.3 TN-LCD结构及显示原理 TN型液晶显示器件结构如下图,液晶盒上下玻璃片的外侧均贴有偏光片,其中上表面所附偏振片的偏振方向总是与上表面分子取向相同。自然光入射后,经过偏振片形成与上表面分子取向相同的线偏振光,入射液晶盒后,偏振方向随液晶分子长轴旋转90°,以平行于下表面分子取向的线偏振光射出液晶盒。若下表面所附偏振片偏振方向与下表面分子取向垂直(即与上表面平行),则为黑底白字的常黑型,不通电时,光不能透过显示器(为黑态),通电时,90°旋光性消失,光可通过显示器(为白态);若偏振片与下表面分子取向相同,则为白底黑字的常白型,如下图所示结构。TN-L CD可用于显示数字、简单字符及图案等,有选择的在各段电极上施加电压,就可以显示出不同的图案。

TN型液晶显示器件结构参考图实验仪器 FD-LCE-1 液晶电光效应实验仪实验装置示意图

【4】

第6/10页

如图1所示,液晶电光效应实验仪主要由控制主机部分和导轨部分组成。导轨部分从左到右依次为检偏器及光电探测器(连接在一起)、液晶样品、起偏器、半导体激光器。各部件都与滑块连接,可在导轨上移动。主机部分包括方波发生器、方波有效值电压表、光功率计。技术指标: 1.半导体激光器:3V DC 电源;输出650nm红光 2.方波电压: 0-10V左右(有效值)连续可调;频率500Hz左右 3.光功率计:量程有0-200uW和0-2mW两档 4.光具座:长50.0cm 实验步骤 1.光学导轨上依次为:半导体激光器-起偏器-液晶盒-检偏器(带光电探测器)。打开半导体激光器,调节各元件高度,使激光依次穿过起偏器、液晶盒、检偏器,打在光电探测器的通光孔上。 2.接通主机电源,拔下电压表输出导线,将光功率计调零,选用0-2mW档。用话筒线连接光功率计盒光电转换盒,此时光功率计显示的数值为透过检偏器的光强大小,旋转

起偏器至,使其偏振方向与液晶片表面分子取向平行(或垂直)。旋转检偏器,观察,可旋转半导体激光器,

使最大透射光强大于

光功率计数值变化,若最大值小于

。最后旋转检偏器至透射光强值达到最小。 3.连接电压表输出导线,将电压表调至零点,用红黑导线连接主机和液晶盒,从0开

第7/10页始逐渐增大电压,观察光功率计读数变化,电压调至最大值后归零。 4.从0开始逐渐增加电压,0-2.5V每隔0.2V或0.3V记一次电压及透射光强值,2.5V 后每隔0.1V左右记一次数据,6.5V后再每隔0.2V或0.3V 记一次数据,在关键点附近多测几组数据 5. [选做]自配数字存储示波器,可测试液晶样品的电光响应曲线,求得样品的响应时间。注意事项 1、拆装时只压液晶盒边缘,切忌挤压液晶盒中部;保持液晶盒表面清洁,不能有划痕; 应防止液晶盒受潮,防止受阳光直射。 2、

驱动电压不能为直流。 3、切勿直视激光器。实验室据记录与处理 1.数据记录 U/V

0.00 1.00 1.90 2.61 3.05 3.34 4.17 5.15 5.99

I/uw

9.9 9.9 10.1 10.2 192.1 204.0 310.3 395.0 425.0

U/V

0.24 1.20 2.01 2.71 3.07 3.41 4.29 5.36 6.18

I/uw

10.0 9.9 10.1 10.2 193.3 208.0 320.0 402.0 426.1

U/V

0.40 1.41 2.24 2.82 3.09 3.49 4.58 5.48 6.25

I/uw

9.9 10.0 10.2 10.3 194.6 212.0 354.1 412.0 427.0

U/V I/uw

0.62 1.60 2.44 2.91 3.12 3.53 4.70 5.64 6.44 9.9 10.0 10.2 10. 3

U/V I/uw

0.81 1.78 2.52 3.03 3.18 3.96 4.83 5.87 6.63 9.9 10.1 10.2 19

1.1 199.6 270.2 377.0 423.0 429.0

196.2 215.0 363.0 416.0 428.5

2. 数据处理

1. 做电光曲线图

第8/10页电光曲线图

U/v I/uw

2. 求出样品的阈值电压Uth、饱和电压Ur、对比度Dr及陡度β。

Wμ429=Imax

,对应的电压为6.63V,,此时对应的电压为阈值电压Uth,即Uth=2. 97V;,此时对应的电压为饱和电压Ur,即Ur=4.99V。

μ429=

43.3=WμW/9.9

Wμ42.9=Imax?10%

Wμ386.1=Imax?90%

Imax/Imin=对比度:Dr

陡度:β=Ur/Uth=4.99V/2.97V=1.68 应用前景 1.如果两偏振片正交放置,则无电场时呈透明态,而加电场达到阈值电压后呈不透明状态.根据液晶的这种光电效应特性,如果把液晶快门用于焊接面罩,将CdS等光敏电阻组装入液晶快门内,平时是透明态,一旦检出焊接时的电弧光就瞬时给液晶盒施加电压,降低液晶盒的光透射性能,保护眼睛免受焊接电弧光的刺激.另外,根据这个原理可制作液晶窗帘,作为电动窗帘使用. 2.用液晶制成的透镜具有焦距可变、薄、轻、消耗功率少等优点.液晶电光效应种类繁多,根据不同的原理可设计不同种类的光学器件,其应用前景极为广泛.【5】实验结论当电压在2-2.97v,由于电压小于阀值电压,所以透射光强没有明显改变;当电压

第9/10页增加到2.97v时,液晶分子的长轴开始向电场方向倾斜,透射光强开始增强; 2.97-4.99v,透射光强明显增强;当电压在4.99-6.18v时,透射光强持续增强,由于电压大于饱和电压,故增强程度逐渐减小,当电压在6.18-6.63v时,透射光强基本没明显改变。

液晶的电光特性

液晶的电光特性 液晶是一种即具有液体的流动性又具有类似于晶体的各向异性的特殊物质(材料),它是在1888年内奥地利植物学家首先发现的。在我们的日常生活中,适当浓度的肥皂水溶液就是一种液晶。目前人们发现、合成的液晶材料已近十万种之多,有使用价值的也有4-5千种。随着液晶在平板显示器等领域的应用和不断发展,以及市场的巨大需求。人们对它的研究也进入了一个空前的状态。本实验希望通过一些基本的观察和研究,对液晶材料的光学性质及物理结构有一个基本了解。并利用现有的物理知识进入初步的分析和解释。 大多数液晶材料都是由有机化合物构成的。这些有机化合物分子多为细长的棒状结构,长度为数nm,粗细约为量级,并按一定规律排列。根据排列的方式不同,液晶一般被分为三大类1)近晶相液晶,结构大致如图1,图1 图2 图3 这种液晶的结构特点是:分子分层排列,每一层内的分子长轴相互平衡。且垂直或倾斜于层面。2、向列相液晶,结构如图2。这种液晶的结构特点是:分子的位置比较杂乱,不再分层排列。但各分子的长轴方向仍大致相同,光学性质上有点像单轴晶体。3、胆甾相液晶,结构大致如图3。分子也是分屏排列,每一层内的分子长轴方向基本相同。并平行于分层面,但相邻的两个层中分子长轴的方向逐渐转过一个角度,总体来看分子长轴方向呈现一

种螺旋结构。 以上的液晶特点大多是在自然条件下的状态特征,当我们对这些液晶施加外界影响时,他们的状态将会发生改变,从而表现出不同的物理光学特性。 下面我们以最常用的向列液晶为例,分析了解它在外界人为作用下的一些特性和特点。 我们在使用液晶的时候往往会将液晶材料夹在两个玻璃基片之间,并对四周进行密封。为了我们的使用目的,将会对基片的内表面进行适当的处理,以便影响液晶分子的排列。这里介绍相关的三个处理步骤。1、涂覆取向膜,在基片表面形成一种膜。2、摩擦取向,用棉花或绒布按一个方向摩擦取向膜。3、涂覆接触剂。经过这三个步骤后,就可以控制紧靠基片的液晶分子,使其平行于基片并按摩擦方向排列。如果我们使上下两个基片的取向成一定角度,则两个基片间的液晶分子就会形成许多层。如图4的情况(取向成90度)。 即每一层内的分子取向基本一致,且平行于层面。相邻层分子的取向逐渐转动一个角度。从而形成一种被称为扭曲向列的排列方式。这种排列方式和天然胆甾相液晶的主要区别是:扭曲向列的扭曲角是人为可控的,且“螺距”与两个基片的间距和扭曲角有关。而天然胆甾相液晶的螺距一般不足1um,不能人为控制。

实验46液晶电光效应

液晶电光效应 【实验简介】 液晶是介于液体与晶体之间的一种物质状态,即具有液体的流动性,又具有晶体各向异性的特性。当光通过液晶时,会产生像晶体那样的偏振面旋转及双折射等效应。液晶分子是含有极性基团的棒状极性分子,在外电场作用下,偶极子会按电场方向取向,使分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶电光效应。 液晶电光效应的应用很广,利用液晶电光效应可以做成各种液晶显示器件、光导液晶光阀、光调制器、光路转换开关等,尤其是利用液晶电光效应制成的液晶显示器件,由于具有驱动压低(一般为几伏),功耗小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势,因此,研究液晶电光效应具有很重要的意义。常用的液晶显示器件类型有:TFT型(有源矩阵液晶显示)、STN型(超扭曲液晶显示)、TN型(扭曲向列相液晶显示),其中TN型液晶显示器件原理比较简单,是TFT型、STN型液晶显示的基础,因此本实验研究TN型液晶材料,希望通过一些基本现象的观察和研究,对液晶有一个基本了解。 【实验目的】 1.了解液晶的结构特点和物理性质。 2.了解液晶电光效应、液晶光开关的工作原理及简单液晶显示器件的显示原理。 3.通过液晶电光特性和时间响应特性曲线的观测,测量液晶的一些性能参数。 【预习思考题】 1.扭曲向列相液晶具有那些物理特性,如何利用其电光效应制成液晶光开关?如何利用液晶光开关进行数字、图形显示? 2.如何在示波器上显示驱动信号波形和时间响应曲线,如何测量响应曲线的上升时间和下降时间? 【实验仪器】 液晶盒及液晶驱动电源、二维可调半导体激光器、偏振片(两个)、光功率计、光电二极管探头、双踪示波器、白屏、光学实验导轨及元件底座、钢板尺 【实验原理】 1.液晶分类

液晶的电光特性实验报告含思考题

西安交通大学实验报告 第1页(共9页)课程:_______近代物理实验_______ 实验日期:年月日 专业班号______组别_______交报告日期:年月日 姓名__Bigger__学号__报告退发:(订正、重做) 同组者__________教师审批签字: 实验名称:液晶的电光特性 一、实验目的 1)了解液晶的特性和基本工作原理; 2)掌握一些特性的常用测试方法; 3)了解液晶的应用和局限。 二、实验仪器 激光器,偏振片,液晶屏,光电转换器,光具座等。 三、实验原理 液晶分子的形状如同火柴一样,为棍状,长度在十几埃,直径为4~6埃, 液晶层厚度一般为5-8微米。排列方式和天然胆甾相液晶的主要区别是:扭曲向 列的扭曲角是人为可控的,且“螺距”与两个基片的间距和扭曲角有关。而天然胆 甾相液晶的螺距一般不足1um,不能人为控制。扭曲向列排列的液晶对入射光会 有一个重要的作用,他会使入射的线偏振光的偏振方向顺着分子的扭曲方向旋转,类似于物质的旋光效应。在一般条件下旋转的角度(扭曲角)等于两基片之间的取 向夹角。 对于介电各向异性的液晶当垂直于螺旋轴的方向对胆甾相液晶施加一电场时,会发现随着电场的增大,螺距也同时增大,当电场达到某一阈值时,螺距趋 于无穷大,胆甾相在电场的作用下转变成了向列相。这也称为退螺旋效应。由于 液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶 分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出 各向异性的特点。如果我们对液晶物质施加电场,就可能改变分子排列的规律。

从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。这就是液晶的的电光效应。 为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。根据液晶分子的结构特点,假定液晶分子没有固定的电极,但可被外电场极化形成一种感生电极矩。这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。当外电场足够强时,两电极之间的液晶分子将会变成如图1中的排列形式。这时,液晶分子对偏振光的旋光作用将会减弱或消失。通过检偏器,我们可以清晰地观察到偏振态的变化。大多数液晶器件都是这样工作的。 图1液晶分子的扭曲排列变化 若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转90°,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶盒上电压大小的关系见图2;其中纵坐标为透光强度,横坐标为外加电压。最大透光强度的10%所对应的外加电压值称为阈值电压(U th),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。最大透光强度的90%对应的外加电压值称为饱和电压(U r),标志了获得最大对比度所需的外加电压数值,U r小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。对比度D r=I max/I min,其中I max为最大观察(接收)亮度(照度),I min 为最小亮度。陡度β=U r/U th即饱和电压与阈值电压之比。

液晶电光效应综合实验说明书

ZKY-LCDEO-2 液晶电光效应综合实验仪 实验指导及操作说明书 液晶电光效应综合实验仪 液晶是介于液体与晶体之间的一种物质状态。一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。当光通过液晶时,会产生偏振面旋转,双折射等效应。液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液

晶光学性质的改变称为液晶的电光效应。 1888年,奥地利植物学家Reinitzer 在做有机物溶解实验时,在一定的温度范围内观察到液晶。1961年美国RCA 公司的Heimeier 发现了液晶的一系列电光效应,并制成了显示器件。从70年代开始,日本公司将液晶与集成电路技术结合,制成了一系列的液晶显示器件,并至今在这一领域保持领先地位。液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势。 【实验目的】 1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 【实验原理】 1.液晶光开关的工作原理 液晶的种类很多,仅以常用的TN (扭曲向列)型液晶为例,说明其工作原理。 TN 型光开关的结构如图1所示。在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃(1埃 = 10-10米 ),直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电 极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液 晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。如图1左图所示。 理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。 取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。 入射的自然光 偏振片P1 偏振片P2 出射光 扭曲排列的液晶分子具有光波导效应 光波导已被电场拉伸 图1. 液晶光开关的工作原理

液晶光电效应(含思考题答案)

课程: 专业班号:姓名:学号: 同组者: 液晶电光效应实验 一、实验目的 1、了解液晶的特性和基本工作原理; 2、掌握一些特性的常用测试方法; 3、了解液晶的应用和局限。 二、实验原理: 液晶是介于液体与晶体之间的一种物质状态。一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。当光通过液晶时,会产生偏振面旋转,双折射等效应。液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。 列方式和天然胆甾(音同淄)相液晶的主要区别是:扭曲向列的扭曲角是人为可控的,且“螺距”与两个基片的间距和扭曲角有关。而天然胆甾相液晶的螺距一般不足1um,不能人为控制。 扭曲向列排列的液晶对入射光会有一个重要的作用,他会使入射的线偏振光的偏振方向顺着分子的扭曲方向旋转,类似于物质的旋光效应。在一般条件下旋转的角度(扭曲角)等于两基片之间的取向夹角。 由于液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出各向异性的特点。如果我们对液晶物质施加电场,就可能改变分子排列的规律。从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。这就是液晶的的电光效应。 为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。我们将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。当我们在液晶盒的两个电极之间加上一个适当的电压时我们来看一下液晶分子会发生什么变化。根据液晶分子的结构特点。我们假定液晶分子没有固定的电极。但可被外电场极化形成一种感生电极矩。这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。当外电场足够强时,两电极之间的液晶分子将会变成如图2中的排列形式。本实验希望通过一些基本的观察和研究,对液晶材料的光学性质及物理结构有一个基本了解。并利用现有的物理知识进入初步的分析和解释。

液晶电光效应实验报告

液晶电光效应实验报告 【实验目的】 1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 【实验仪器】 液晶电光效应实验仪一台,液晶片一块 【实验原理】 1.液晶光开关的工作原理 液晶的种类很多,仅以常用的TN型液晶为例,说明其工作原理。 TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理,这样,液晶分子在透明电极表面就会

躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。于是原来的扭曲结构被破坏,成了均匀结构。从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。 由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。若P1和P2的透光轴相互平行,则构成常黑模式。 液晶可分为热致液晶与溶致液晶。热致液晶在一定的温度定变化。 2.液晶光开关的电光特性 对于常白模式的液晶,其透射率随外加电压的升高而逐渐降低,在一定电压下达到最低点,此后略有变化。可以根据此电光特性曲线图得出液晶的阈值电压和关断电压。 3.液晶光开关的时间响应特性 加上驱动电压能使液晶的开关状态发生改变,是因为液晶的分子排序发生了改变,这种重新排序需要一定时间,反映在时间响应曲线上,用上升时间τr和下降时间τd描述。给液晶开关加上一个周期性变化的电压,就可以得到液晶的时间响应曲线,上升时间和下降时间。上升时间:透过率由10%升到90%所需时间;下降时间:透过率由90%降到10%所需时间。液晶的响应时间越短,显示动态图像的效果

液晶电光效应及其应用资料

液晶光电效应及应用 摘要:文章介绍了液晶的基本原理,着重阐述了液晶光开关的工作原理及其性 质,并根据其性质开展了一系列的实验,如测量液晶光开光的电光特性曲线及响应时间等。 关键词:液晶光开关时间响应视角特性 一、引言 液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性、粘度、形变等机械性质,又有晶体的热、光、电、磁等物理性质。液晶与液体、晶体之间的区别是:液体是各向同性的,分子取向无序;液晶分子取向有序,但位置无序,而晶体二者均有序。液晶分子是在形状、介电常数、折射率及电导率上具有各向异性特性的物质,如果对这样的物质施加电场,随着液晶分子取向结构发生变化,它的光学特性也随之变化,这就是通常说的液晶的电光效应。 二、实验原理 1.液晶光开关的工作原理 液晶作为一种显示器件,其种类很多,下面以常用的TN(扭曲向列)型液晶为例,说明其工作原理。 TN型光开关的结构如图1所示。在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;使电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。如图1所示。

液晶电光曲线

液晶电光曲线 实验目的 1. 测定液晶样品的电光曲线; 2. 根据电光曲线,求出样品的阀值电压Uth,饱和电压Ur,对比度Dr,陡度β等电光效应的主要参数; 3. 用自配数字存储示波器观测液晶样品的电光响应时间; 实验原理 1.(液晶) 液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性、粘度、形变等机械性质,又有晶体的热、光、电、磁等物理性质。液晶分子在形状、介电常数、折射率及电导率上具有各向异性。因此,液晶具有电光效应,即对液晶施加电场,随着液晶分子取向结构发生变化,它的光学特性也随之变化。液晶显示器的种类有很多,利用液晶的电光效应而实现显示的有扭曲向列相液晶、超扭曲向列相液晶、高扭曲向列相液晶等。扭曲向列相液晶,也称为TN型液晶,是应用范围最广、价格较便宜的液晶显示器。我们常用的电子表、计算器、游戏机等的显示屏大都是TN型液晶。液晶与液体、晶体之间的区别是:液体是各向同性的,分子取向无序;液晶分子取向有序,但位置无序,而晶体二者均有序。就形成液晶方式而言,液晶可分为热致液晶和溶致液晶。热致液晶又可分为近晶相、向列相、和胆甾相。其中向列相液晶是液晶显示器件的主要材料。

2.(液晶电光效应) 液晶分子是在形状、介电常数、折射率及电导率上具有各向异性特性的物质,如果对这样的物质施加电场,随着液晶分子取向结构发生变化,它的光学特性也随之变化,这就是通常说的液晶的电光效应。 液晶的电光效应种类繁多,主要有动态散射型(DS)、扭曲向列相型(T N)、超扭曲向列相型(STN)、有源矩阵液晶显示(TFT)电控双折射(ECB)等。其中应用较广的如TFT型—主要用于液晶电视、笔记本电脑等高档电子产品;STN型主要用于手机屏幕等中档电子产品;TN型主要用于电子表、计算器、仪器仪表、家用电器等中低档产品,是目前应用最普遍的液晶显示器件。 TN型液晶显示器件原理较简单,是STN、TFT等显示方式的基础。本实验所使用的液晶样品即为位TN型。 2.1 TN型液晶盒结构 TN型液晶显示器是一个由上下两片导电玻璃制成的液晶盒,盒内充有液晶,四周密封。液晶盒厚一般为几个微米,其中上下玻璃片内侧镀有显示电极,以使外部电信号通过电极加到液晶上。上下玻璃基板内侧覆盖着一薄层高分子有机物定向层,经定向摩擦处理,可使棒状液晶分子平行于玻璃表面,沿定向处理的方向排列。上下玻璃表面的定向方向是相互垂直的,这样,盒内液晶分子的取向逐渐扭曲,从上玻璃片到下玻璃片扭曲了90°。所以称为扭曲向列型。

液晶的电光特性论文

液晶的电光特性 摘要:液晶分子每一层内的分子取向基本一致,相邻层分子的取向逐渐转动一个角度,本 实验通过测量透射激光功率取最大值和最小值时检偏器转过的角度来得出液晶的扭曲角; 测量液晶在通电和不通电情况下透过激光的功率得出对比度;改变驱动电压,使电压从低 到高,记下光功率与电压之间的关系,得出液晶的电光效应曲线;测量衍射激光的主条纹 与次级条纹的距离和液晶合和成像板之间的距离;。了解液晶光开关构成图像矩阵的方 法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般 液晶显示器件的工作原理。 Abstract: the molecular orientation of liquid crystal molecules within each layer, a rotary Angle of molecular orientation of the adjacent layer gradually, this experiment by measuring transmission when laser power is the maximum and minimum deviation detector turned to draw liquid crystal distortion Angle; Measurement of liquid crystal in electricity and without electricity through laser power draw contrast; Change the driving voltage, voltage from low to high, down light power and voltage, the relationship between the draw liquid crystal electro-optic effect curve; Measuring diffraction stripe of Lord of the laser stripe and secondary distance and the distance between the LCD and imaging plate; . Understanding of liquid crystal optical switch structure image matrix, the method of learning and mastering the matrix composed of liquid crystal display text and graphics display mode, so as to understand the general working principle of liquid crystal display device. 关键词:电光效应旋光作用扭曲角对比度偏振态 Keywords: electro-optic the role of optical twist angle contrast polarization state 液晶是介于液体与晶体之间的一种物质状态。液晶既具有液体的流动性,其分子又按一 定规律有序排列,使它呈现晶体的各向异性。当光通过液晶时,会产生偏振面旋转,双折 射等效应。液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外 电场引起的液晶光学性质的改变称为液晶的电光效应 实验目的 1、学习测量液晶扭曲角,对比度c=Tmin/Tmax,动态范围DR=10logc(dB),上升沿时间T1 与下降时间T2 2、通过测量衍射角推算出特定条件下,液晶的结构尺寸 3、观察测量衍射斑的偏振状态 实验原理

大物实验4——液晶的电光特性(二)

液晶的电光特性(二) 实验目的 1、测量液晶扭曲角; 2、对比度的测量; 3、上升沿时间T1 与下降沿时间T2的测量; 4、通过测量衍射角推算出特定条件下,液晶的结构尺寸; 5、观察、测量衍射斑的偏振状态; 实验原理 1、液晶的分类及特点: 大多数液晶材料都是由有机化合物构成的。这些有机化合物分子多为细长的棒状结构,长度为数nm,粗细约为0.1nm量级,并按一定规律排列。 根据排列的方式不同,液晶一般被分为三大类 1)近晶相液晶;这种液晶的结构特点是:分子分层排列,每一层内的分子长轴相互平衡。且垂直或倾斜于层面。 2)向列相液晶;这种液晶的结构特点是:分子的位置比较杂乱,不再

分层排列。但各分子的长轴方向仍大致相同,光学性质上有点像单轴晶体。 3)胆甾相液晶;这种液晶的结构特点是:分子也是分屏排列,每一层内的分子长轴方向基本相同。并平行于分层面,但相邻的两个层中分子长轴的方向逐渐转过一个角度,总体来看分子长轴方向呈现一种螺旋结构。 2、液晶盒: TN型液晶盒结构如图1所示 1.电极 2.液晶 3.7.配向膜 4.6玻璃 5.胶框 图1 TN型液晶盒结构图 在涂覆透明电极的两枚玻璃基板之间,夹有正介电各向异性的向列相液晶薄层,四周用密封材料(一般为环氧树脂)密封。玻璃基板内侧覆盖着一层定向层,通常是一薄层高分子有机物,经定向摩擦处理,可使棒状液晶分子平行于玻璃表面,沿定向处理的方向排列。上下玻璃表面的定向方向是相互垂直的,这样,盒内液晶分子的取向逐渐扭曲,从上玻璃片到

下玻璃片扭曲了90度,所以称为扭曲向列型。 3、液晶对外电场的响应速度: 液晶对变化的外界电场的响应速度是液晶产品的一个十分重要的参数。一般来说液晶的响应速度是比较低的。我们用上升沿时间和下降沿时间来衡液晶对外界驱动信号的响应速度情况。 实验仪器介绍: 主机箱“液晶驱动电源”主要功能为液晶合的工作电压、间歇频率、驱动频率的调节,以及液晶合的工作状态等。各面板元器件作用与功能如下:液晶实验主机前面板 1)表头:3位半数字表头,用于指示液晶合工作电压的大小,可通过驱动电压旋钮进行调节。

液晶电光效应实验实验报告

液晶电光效应实验实验报告 【实验目的】 1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 【实验仪器】 液晶电光效应实验仪一台,液晶片一块 【实验原理】 1.液晶光开关的工作原理 液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。 TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。 理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。 取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。 在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。这时光的偏振面与P2的透光轴平行,因而有光通过。 在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。于是原来的扭曲结构被破坏,成了均匀结构。从P1 透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。 由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。若P1和P2的透光轴相互平行,则构成常黑模式。 液晶可分为热致液晶与溶致液晶。热致液晶在一定的温度范围内呈现液晶的光学各向异性,溶致液晶是溶质溶于溶剂中形成的液晶。目前用于显示器件的都是热致液晶,它的特性随温度的改变而有一定变化。 2.液晶光开关的电光特性

液晶的光学特性分析

液晶的光学特性分析 光的偏振性 光矢量 麦克斯韦在电磁波理论中指出电磁波是横波,由两个相互垂直的振动矢量即电场强度E和磁场强度H来表征,由于人们从光的偏振现象认识到光是横波,而且光速的测量值与电磁波速的理论计算值相符合,所以肯定光是一种电磁波,大量试验表明:在光波中产生感光作用和生理作用的是电场强度E,所以规定E 为光矢量,我们把E的振动称为光振动,光矢量E的方向就是光振动的方向。自然光: 一个原子或分子在某一瞬间发出的光本来是有确定振动方向的光波列,但是通常的光是大量原子的无规率发射,是一个瞬息万变、无序间歇过程,所以各个波列的光矢量可以分布在一切可能的方位,平均来看,光矢量对于光的传播方向成对成均匀分布,没有任何一个方位较其它方位更占优势,这种光就叫自然光。 自然光在反射、散射或通过某些晶体时,其偏振状态会发生变化。例如阳光是自然光,但经天空漫射后是部分偏振的,一些室内的透明塑料盒,如录音带盒,在某些角度上会出现斑澜色彩,就是偏振光干涉的结果。 自然光的分解: 在自然光中,任何取向的光矢量都可分解为两个相互垂直方向上的分量,很显然,自然光可用振幅相等的两个相互垂直方向上的振动来表示。 应当指出,由于自然光中振动的无序性,所以这两个相互垂直的光振动之间没有恒定的位相差,但应注意的是不能将两个相位无关联的光矢量合成为一个稳定的偏振光,显然对应两个相互垂直振动的光强各为自然光光强的一半。 如果采用某种方法能把两个相互垂直的振动之一去掉,那就获得了线偏振光,如果只能去掉两个振动之一的一部分,则称为部分偏振光。

偏振光 线偏振光:如果光矢量在一个固定平面内只沿一个固定的方向振动,这种光称为线偏振光,也叫面偏振光或全偏振光,线偏振光的光矢量方向和传播方向构成的平面称为振动面,线偏振光的振动面是固定不变的。 部分偏振光: 这是介于偏振光和自然光之间的一种偏振光,在垂直于这种光的传播方向的平面内,各方向的振动都有,但它们的振幅不相等。 值得注意的是,这种偏振光的各方向振动的光矢量之间也没有固定的相位关系,与部分偏振光相对应,有时称线偏振光为完全偏振光。 圆偏振光和椭圆偏振光: 这两种光的特点是在垂直于光的传播方向的平面内,光矢量按一定频率旋转(左旋或右旋),如果光矢量端点的轨迹是一个圆,这种光叫圆偏振光;如果光矢

液晶电光特性及其应用实验报告 老董

实验报告 题目: 液晶电光效应特性应用 姓名董芊宇 学院理学院 专业应用物理学 班级2013214103 学号2013212835 班内序号22 2015年9月

一.实验目的 1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 二.实验原理 1.液晶 液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性、粘度、形变等机械性质,又有晶体的热、光、电、磁等物理性质。液晶与液体、晶体之间的区别是:液体是各向同性的,分子取向无序;液晶分子有取向序,但无位置序;晶体则既有取向序又有位置序。 就形成液晶方式而言,液晶可分为热致液晶和溶致液晶。热致液晶又可分为近晶相、向列相和胆甾相。其中向列相液晶是液晶显示器件的主要材料。 2.液晶电光效应 液晶分子是在形状、介电常数、折射率及电导率上具有各向异性特性的物质,如果对这样的物质施加电场(电流),随着液晶分子取向结构发生变化,它的光学特性也随之变化,这就是通常说的液晶的电光效应。 液晶的电光效应种类繁多,主要有动态散射型(DS)、扭曲向列相型(TN)、超扭曲向列相型(STN)、有源矩阵液晶显示(TFT)、电控双折射(ECB)等。其中应用较广的有:TFT 型——主要用于液晶电视、笔记本电脑等高档产品;STN型——主要用于手机屏幕等中档产品; TN型——主要用于电子表、计算器、仪器仪表、家用电器等中低档产品,是目前应用最普遍的液晶显示器件。 TN型液晶显示器件显示原理较简单,是STN、TFT等显示方式的基础。本仪器所使用的液晶样品即为TN型。 3.液晶显示 液晶显示的原理主要是基于光开关,若在加电压前两个偏振片刚好处于消光位置,当电压超过阈值电压时,整个装置将由消光变为通光,同样,也可以先使检偏器处于通光位置,高电压时变为通光。通过电压可以控制液晶是透光还是不透光,比如控制7段数码管上的电压,可以分别显示0~9十个数字,显示方式也有两种:白底黑字和黑底白字。

液晶的电光特性实验报告含思考题

液晶的电光特性实验报 告含思考题 Revised as of 23 November 2020

西安交通大学实验报告 第 1 页(共 9 页) 课程:_______近代物理实验_______ 实验日期:年月日 专业班号______组别_______交报告日期:年月日 姓名__Bigger__学号__报告退发:(订正、重做) 同组者__ ________教师审批签字: 实验名称:液晶的电光特性 一、实验目的 1)了解液晶的特性和基本工作原理; 2)掌握一些特性的常用测试方法; 3)了解液晶的应用和局限。 二、实验仪器 激光器,偏振片,液晶屏,光电转换器,光具座等。 三、实验原理 液晶分子的形状如同火柴一样,为棍状,长度在十几埃,直径为4~6埃, 液晶层厚度一般为5-8微米。排列方式和天然胆甾相液晶的主要区别是:扭曲 向列的扭曲角是人为可控的,且“螺距”与两个基片的间距和扭曲角有关。而天 然胆甾相液晶的螺距一般不足1um,不能人为控制。扭曲向列排列的液晶对入 射光会有一个重要的作用,他会使入射的线偏振光的偏振方向顺着分子的扭曲 方向旋转,类似于物质的旋光效应。在一般条件下旋转的角度(扭曲角)等于两 基片之间的取向夹角。

对于介电各向异性的液晶当垂直于螺旋轴的方向对胆甾相液晶施加一电场时,会发现随着电场的增大,螺距也同时增大,当电场达到某一阈值时,螺距趋于无穷大,胆甾相在电场的作用下转变成了向列相。这也称为退螺旋效应。由于液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出各向异性的特点。如果我们对液晶物质施加电场,就可能改变分子排列的规律。从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。这就是液晶的的电光效应。 为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。根据液晶分子的结构特点,假定液晶分子没有固定的电极,但可被外电场极化形成一种感生电极矩。这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。当外电场足够强时,两电极之间的液晶分子将会变成如图1中的排列形式。这时,液晶分子对偏振光的旋光作用将会减弱或消失。通过检偏器,我们可以清晰地观察到偏振态的变化。大多数液晶器件都是这样工作的。 图1 液晶分子的扭曲排列变化 若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方

液晶的电光特性实验报告含思考题

告 第1 页(共9页)课程:_______近代物理实验_______?实验日期:? 年月日 专业班号______组别_______?交报告日期:?年 月日 姓名__Bigger__学号__报告退发:(订正、重做) 同组者__ ________?教师审批签字: 实验名称:液晶的电光特性 一、实验目的 1)了解液晶的特性和基本工作原理; 2)掌握一些特性的常用测试方法; 3)了解液晶的应用和局限。 二、实验仪器 激光器,偏振片,液晶屏,光电转换器,光具座等。 三、实验原理 液晶分子的形状如同火柴一样,为棍状,长度在十几埃,直径为4~6埃,液晶 层厚度一般为5-8微米。排列方式和天然胆甾相液晶的主要区别是:扭曲向列 的扭曲角是人为可控的,且“螺距”与两个基片的间距和扭曲角有关。而天然胆甾 相液晶的螺距一般不足1um,不能人为控制。扭曲向列排列的液晶对入射光会有 一个重要的作用,他会使入射的线偏振光的偏振方向顺着分子的扭曲方向旋转,类 似于物质的旋光效应。在一般条件下旋转的角度(扭曲角)等于两基片之间的取向 夹角。 对于介电各向异性的液晶当垂直于螺旋轴的方向对胆甾相液晶施加一电场时,会发现随着电场的增大,螺距也同时增大,当电场达到某一阈值时,螺距趋于无 穷大,胆甾相在电场的作用下转变成了向列相。这也称为退螺旋效应。由于液晶分

子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出各向异性的特点。如果我们对液晶物质施加电场,就可能改变分子排列的规律。从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。这就是液晶的的电光效应。 为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。根据液晶分子的结构特点,假定液晶分子没有固定的电极,但可被外电场极化形成一种感生电极矩。这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。当外电场足够强时,两电极之间的液晶分子将会变成如图1中的排列形式。这时,液晶分子对偏振光的旋光作用将会减弱或消失。通过检偏器,我们可以清晰地观察到偏振态的变化。大多数液晶器件都是这样工作的。 图1液晶分子的扭曲排列变化 若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转90°,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶盒上电压大小的关系见图2;其中纵坐标为透光强度,横坐标为外加电压。最大透光强度的10%所对应的外加电压值称为阈值电压(Uth),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。最大透光强度的90%对应的外加电压值称为饱和电压(Ur),标志了获得最大对 小则易获得良好的显示效果,且降低显示功耗,对比度所需的外加电压数值,U r 显示寿命有利。对比度D r =I max/Imin,其中Imax为最大观察(接收)亮度(照度),I min为最小亮度。陡度β= U r/ U th即饱和电压与阈值电压之比。

液晶光电效应

液晶光电效应(含思考题答案) 课程: ______________ 专业班号: ____________ 姓名:__________ 学号:___________ 同组者: __________________ 液晶电光效应实验 一、实验目的 1、了解液晶的特性和基本工作原理; 2、掌握一些特性的常用测试方法; 3、了解液晶的应用和局限。 二、实验原理: 液晶是介于液体与晶体之间的一种物质状态。一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它

呈现晶体的各向异性。当光通过液晶时,会产生偏振面旋转,双折射等效应。液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃,直径为4?6埃,液晶层厚度一般为5-8 微米。 列方式和天然胆甾(音同淄)相液晶的主要区别是:扭曲向列的扭曲角是人为可控的,且“螺距”与两个基片的间距和扭曲角有关。而天然胆甾相液晶的螺距一般不足ium不能人为控制。 扭曲向列排列的液晶对入射光会有一个重要的作用,他会使入射的线偏振光的偏振方向顺着分子的扭曲方向旋转,类似于物质的旋光效应。在一般条件下旋转的角度(扭曲角)等于两基片之间的取向夹角。 由于液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出各向异性的特点。如果我们对液晶物质施加电场,就可能改变分子排列的规律。从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。这就是液晶的的电光效应。 为了对液晶施加电场,我们在两个玻璃基片的

内侧镀了一层透明电极。我们将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。当我们在液晶盒的两个电极之间加上一个适当的电压时我们来看一下液晶分子会发生什么变化。根据液晶分子的结构特点。我们假定液晶分子没有固定的电极。但可被外电场极化形成一种感生电极矩。这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。当外电场足够强时,两电极之间的液晶分子将会变成如图2中的排列形式。本实验希望通过一些基本的观察和研究,对液晶材料的光学性质及物理结构有一个基本了解。并利用现有的物理知识进入初步的分析和解释。 图 图2

胆甾相液晶的光学性质

一、胆甾相液晶的光学性质 胆甾相液晶同其他液晶态物质一样,既有液体的流动性、形变性、粘性,又具有晶体光学各向异性,是一种优良的非线性光学材料。较一般液晶不同的是它具有螺旋的状的分子取向的排列结构,因此,它除了具有普通液晶具有的光学性质外还具有它本身特有的光学特性。 (1)选择性反射 有些胆甾相液晶在白光的照射下,会呈现美丽的色彩。这是它选择反射某些波长的光的结果。实验表明,这种反射遵守晶体衍射的布拉格(Bragg)公式。 一级反射光的波长为: λ=2nPsinφ 其中:λ为反射波的波长,P为胆甾相液晶的螺距,n为平均折射率,φ为 入射波与液晶表面的夹角。 (2)旋光效应 在液晶盒中充入向列相液晶,把两玻璃片绕于他们相互垂直的轴相对扭转90°角度,这样向列相液晶的内部就发生了扭曲,于是形成一个具有扭曲排列的向列相液晶的液晶盒。这样的液晶盒前后放置起偏振片和检偏振片,并使其偏振方向平行。在不加电场时,一束白光射入,液晶盒使入射光的偏振光轴顺从液晶分子的扭曲而旋转了90°。因而光进入检偏振片时,由于偏振光轴相互垂直,光不能通过检偏片,液晶盒不透明,外视场呈暗态,增加外电压,超过某一电压值时,外视场呈亮态,由此就可以得到黑底白像若起偏片与检偏片的偏振方向互相垂直,可得到白底黑像。 (3)圆二色性 圆二色性指材料选择性吸收或反射光束中两个旋向相反的圆偏振光分量中的一个。如果一束入射光照射在液晶盒上,位于反射带内与盒中液晶旋向相同的圆偏振光几乎都被反射出去,而旋向相反的圆偏振光几乎都透射过去,这是一个非常罕见的性质,荷兰菲利浦实验室的两位科学家1998年在Nature上撰文说,利用凝胶态液晶(liquid-crystal gels)的圆二色性,可以实现镜面状态和透明状态之间的切换。 二、胆甾相液晶的电光效应

相关主题
文本预览
相关文档 最新文档