当前位置:文档之家› 大学物理A期末复习

大学物理A期末复习

大学物理A期末复习
大学物理A期末复习

2016大学物理(64学时)期末复习

复习一、刚体部分

内容提要

转动惯量:离散系统,∑=2i i r m J

连续系统,?=dm r J 2

平行轴定理:2md J J C += 刚体定轴转动的角动量:ωJ L = 刚体定轴转动的转动定律:dt

dL J M =

=α 刚体定轴转动的角动量定理:021

L L Mdt t t -=? 力矩的功:?=θMd W 力矩的功率:ωM dt

dW

P == 转动动能:22

1

ωJ E k =

刚体定轴转动的动能定理:2

22

1210

ωωθθθJ J Md -=

?

一、选择题

1.( )两个匀质圆盘A 、B 的密度分别为A ρ和B ρ,且B A ρρ>,质量和厚度相同.两圆盘的旋转轴均通过盘心并垂直于盘面,则它们的转动惯量的关系是: A 、B A J J < B 、B A J J = C 、B A J J > D 、不能判断

2.( )一力矩M 作用于飞轮上,飞轮的角加速度为1β,如撤去这一力矩,飞轮的角加速度为2β-,则该飞轮的转动惯量为:

A 、

1

βM

B 、

2

βM

D 、2

1ββ-M

3. ( )A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着, B 球用

橡皮筋拴着,把它们拉到水平位置,放手后两小球到达竖直位置时,绳子与橡皮筋长度相等,则此时两球的线速度

A 、

B A V V > B 、B A V V <

C 、B A V V =

D 、无法判断 4.( )用一条皮带将两个轮子A 和B 连接起来,轮与皮带 间无相对滑动, B 轮的半径是A 轮半径的3倍.如果两轮具有

相同的角动量,则A 与B 两轮转动惯量的比值为: A 、3:1 B 、9:1 C 、1:3 D 、1:9

5.( )某滑冰者转动的角速度原为0ω,转动惯量为0J ,当他收拢双臂后,转动惯量减少了41.这时他转动的角速度为: B 、410ω C 、4

30ω D 、45

6.银河系有一可视为球体的天体,由于引力凝聚,体积不断收缩。设它经过一万年体积收缩了%1,而质量保持不变.则它的自转周期将: A 、增大 B 、不变 C 、减小 D 、不能判断

7.( )一子弹水平射入一木棒后一同上摆.在上摆的过程中,以子弹和木棒为系统,则总角动量、总动量及总机械能是否守恒结论是:

A 、三量均不守恒

B 、三量均守恒

C 、只有总机械能守恒

D 、只有总动量不守恒

8.( )长为L 的均匀细杆OM 绕水平O 轴在竖直面内自由转动,今使细杆从水平位置开始自由下摆,在细杆摆动到铅直位置的过程中,其角速度ω,角加速度β如何变化

A 、ω增大,β减小

B 、ω减小,β减小

C 、ω增大,β增大

D 、ω减小,β增大 9( )人造地球卫星绕地球作椭圆运动,地球在椭圆的一个焦点上,卫星的动量P ,角动量L 及卫星与地球所组成的系统的机械能

E 是否守恒

A 、P 不守恒,L 不守恒,E 不守恒

B 、P 守恒,L 不守恒,E 不守恒

C 、P 不守恒,L 守恒,E 守恒

D 、P 守恒,L 守恒,

E 守恒 E 、P 不守恒,L 守恒,E 不守恒

10. ( )如图2所示,A 和B 为两个相同绕着轻绳的

图1

定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F , 而且Mg F =,设A 、B 两滑轮的角加速度分别为A β和B β, 不计滑轮轴的摩擦,则有

A 、

B A ββ= B 、B A ββ>

C 、B A ββ<

D 、开始B A ββ=,以后B A ββ< 二、解答题

1. 飞轮的质量m =60kg ,半径R =0.25m ,绕其水平中心轴O 转动,转速为900 r/min .现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速.已知闸杆的尺寸如题图所示,闸瓦与飞轮之间的摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算.试求:

(1)设F =100 N ,问可使飞轮在多长时间内停止转动在这段时间里飞轮转了几转 (2)如果在2s 内飞轮转速减少一半,需加多大的力F

解: (1)先作闸杆和飞轮的受力分析图(如图(b)).图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力.

题图(a )

题图(b)

杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有

F l l l N l N l l F 1

2

11210

)(+=

'='-+ 对飞轮,按转动定律有I R F r /-=β,式中负号表示β与角速度ω方向相反. ∵ N F r μ= N N '= ∴ F l l l N F r 1

2

1+='=μ

μ 又∵ ,2

12mR I = ∴ F mRl l l I R F r 1

21)

(2+-=-=μβ ① 以N 100=F 等代入上式,得

2s rad 3

40

10050.025.060)75.050.0(40.02-?-=???+??-=

β

由此可算出自施加制动闸开始到飞轮停止转动的时间为

s 06.740

603

29000=???=-

=πβωt 这段时间内飞轮的角位移为

rad

21.53)4

9

(3402149602900212

20ππππβωφ?=??-??=

+=t t 可知在这段时间里,飞轮转了1.53转. (2)10s rad 60

2900-??

ω,要求飞轮转速在2=t s 内减少一半,可知 20

00

s rad 2

1522

-?-

=-

=-=π

ωωωβt

t

用上面式(1)所示的关系,可求出所需的制动力为

1122()

600.250.501520.40(0.500.75)2177mRl F l l N βμπ

=-+???=

??+?=

2.一长为l 2,质量为m 3的细棒的两端粘有质量分别为m 2和m 4的物体(如图4所示),此杆可绕中心O 轴在铅直平面内转动.先使其在水平位置,然后静止释放.求: (1)此刚体的转动惯量;

(2)水平位置时的杆的角加速度; (3)通过铅直位置时杆的角速度. (1)此刚体的转动惯量; 解: 222242)2)(3(12

1

mL mL mL L m J =++=

(2)水平位置时的杆的角加速度; 解:M=J α, M=2mgL-mgL L

g 4=

α (3)通过铅直位置时杆的角速度。

解:机械能守恒:0+0=mgL-2mgL+1/2J ω2

L g 2/=ω

3. 计算题图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为

M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =

50

kg ,2m =200 kg,M =15 kg, r =0.1 m

解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有

a m T g m 222=- ① a m T 11= ②

对滑轮运用转动定律,有

β)2

1

(212Mr r T r T =- ③

图4

又, βr a = ④ 联立以上4个方程,得

221

2s m 6.72

15

20058

.92002-?=+

+?=

+

+=

M m m g m a

题(a)图 题(b)图

4.如图6所示,把细杆OM 由水平位置静止释放,杆摆至铅直位置 时刚好与静止在光滑水平桌面上质量为m 的小球相碰,设杆的质量 与小球的质量相同,碰撞又是弹性的,求碰撞后小球的速度.

L

g

ml J J mgl 33

1,212122

=→==ωω 碰撞前后:(1)L 守恒:mvL J J +='ωω

(2)E 守恒:

2222

1

'2121mv J J +=ωω (1)(2)联立消去 gL

v 3'=

得ω

5. 如题图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度.

图6

题图

解: (1)由转动定律,有

211

()23

mg l ml β=

∴ l

g

23=β

(2)由机械能守恒定律,有

22)3

1

(21sin 2ωθml l mg =

∴ l

g θ

ωsin 3=

6.弹簧、定滑轮和物体的连接如题图所示,弹簧的劲度系数为 N/m ;定滑轮的转动惯量是0.5kg ·m 2,半径为0.30m ,问当6.0 kg 质量的物体落下0.40m 时,它的速率为多大 假设开始时物体静止而弹簧无伸长.

题图

解: 以重物、滑轮、弹簧、地球为一系统,重物下落的过程中,机械能守恒,以最低点为重力势能零点,弹簧原长为弹性势能零点,则有

2222

12121kh I mv mgh ++=

ω 又 R v /=ω

故有 22

2

(2)mgh kh R v mR I

-=+

1

2.0m s -=

=?

静电场内容提要

库仑定律:r e r q q F

2

21041

πε=

电场强度:0

q F

E =

带电体的场强:?

∑==r

i

i e r

dq E E

204πε 静电场的高斯定理:∑??=

?i

S

q

S d E 0

静电场的环路定理:?=?L

l d E 0

电势:?∞?=p

p l d E V

带电体的电势:∑?

==r

dq V V i 04πε

导体静电平衡:电场,○

1导体内场强处处为零;○2导体表面处场强垂直表面 电势,○

1导体是等势体;○2导体表面是等势面 电介质中的高斯定理:∑??=?i S

q S d D

(一般了解)

各向同性电介质:E E D r

εεε==0(一般了解)

电容:U

Q C =

电容器的能量:222

1

2121CU QU C Q W ===

(一般了解)

复习二、静电场

一、选择题

1.( )如图15所示,闭合曲面S 内有一电荷q ,P 为S 面上任 一点,S 面外另有一点电荷q ',设通过S 面的电通量为Φ,P 点 的场强为p E ,则当q '从A 点移到B 点时: A 、Φ改变,p E 不变 B 、Φ、p E 都不变 C 、Φ、p E 都要改变 D 、Φ不变,p E 改变

2. ( )在边长为a 的正立方体中心有一个电量为q 的点电荷,

则通过该立方体任一面的电场强度通量为: A 、

εq

B 、

02εq C 、04εq D 、0

6εq 3.( )当负电荷在电场中沿着电场线方向运动时,其电势能将:

A 、增加

B 、不变

C 、减少

D 、不一定

4.下列几个叙述中哪一个是正确的

A 、电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。

B 、在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。

C 、场强方向可由E =F

/q 定出,其中q 为试验电荷的电量,q 可正可负。

D 、以上说法都不正确。 [ ] 5.关于高斯定理的理解有下面几种说法,其中正确的是 A 、如果高斯面内无电荷,则高斯面上E

处处为零; B 、如果高斯面上E

处处不为零,则该面内必无电荷;

C 、如果高斯面内有净电荷,则通过该面的电通量必不为零;

D 、如果高斯面上E

处处为零,则该面内必无电荷。 [ ] 6.在静电场中,下列说法中哪一个是正确的

A 、带正电荷的导体,其电势一定是正值。

B 、等势面上各点的场强一定相等。

C 、场强为零处,电势也一定为零。

D 、场强相等处,电势梯度矢量一定相等。 二、解答题

1. 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.

解: 如题图示

B

q '

p

q

S

图15

??

?

??

===220)sin 2(π41

sin cos θεθθl q F T mg T e

解得 θπεθtan 4sin 20mg l q =

2.长cm 15=L 直线AB 上,均匀分布着正电荷,电荷线密度C/m 100.59-?=λ. 求导线的延长线上与导线B 端相距cm 5=d 的P 点的场强.

)

/(67544120

.005.020

2

0C N x dx

E x dx

dE ==

=

?πελλπε

3.设电量为Q 均分布在半径为R 的半圆周上,如图16所示,求圆心O 处的电场强度E 解:经过分析,0=y

E

2

020002

022sin 4,sin 41R Q R d R

E Rd dl R

dl

dE x x εππελθθπελθ

θλπεπ=

====

?

4. 如题图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功. 解: 如题图示

图16

0π41ε=

O U 0)(=-R

q

R q 0π41ε=

O U )3(R q

R q -R

q 0π6ε-

= ∴ R

q

q U U q A o C O 00π6)(ε=

-=

5.如图18所示,无限长的均匀带电导线与长为L 的均匀带电导线共面,相互垂直放置,

a 端离无限长直导线距离为R ,电荷线密度均为λ,求它们之间相互作用力的大小和

方向.

R

L R dx

x

F dx

x Edq dF L R R +=?=?==?+ln 2220200πελλπελλπελ

内容提要

毕奥-萨伐尔定律:2

04r e l Id B d r

?=πμ 磁场高斯定理:??=?S

S d B 0

安培环路定理:?∑=?i I l d B 0μ

载流长直导线的磁场:)cos (cos 4210θθπμ-=

r I

B 无限长直导线的磁场:r

I

B πμ20=

R

a b

图18

载流长直螺线管的磁场:)cos (cos 2

210θθμ-=

nI

B

无限长直螺线管的磁场:nI B 0μ= 洛仑兹力:B q F

?=υ 安培力:B l Id F d

?=

磁介质中的高斯定理:??=?S

S d B 0

磁介质中的环路定理:∑?=?i L

I l d H

(一般了解内容)

各向同性磁介质:H H B r

μμμ==0(一般了解内容)

复习四、稳恒磁场

一、选择题

1.( )两个载有相等电流I 的圆圈,半径均为R , 一个水平放置,另一个竖直放置,如图19所示,则 圆心O 处磁感应强度的大小为: A 、0 B 、

R

I

20μ

、R

I 0μ 2.( )如图20所示,在无限长载流导线附近作一球形 闭合曲面S ,当面S 向长直导线靠近的过程中,穿过S 的 磁通量Φ及面上任一点P 的磁感应强度大小B 的变化为: A 、Φ增大,B 增大 B 、Φ不变,B 不变 C 、Φ增大,B 不变 D 、Φ不变,B 增大

3.( )如图21所示,a 、c 处分别放置无限长直载流导线,

P 为环路L 上任一点,若把a 处的载流导线移到b 处,则: A 、??L l d B 变,P B 变 B 、??L l d B 变,P B

不变 C 、??L l d B 不变

,P B 不变

I

21

I 图

20

图19

4.( ) 如图22所示,两种形状的载流线圈中的电流

强度相同,则1O 、2O 处的磁感应强度大小关系是:

A 、2

1

O O B B < B 、2

1

O O B B >

C 、2

1

O O B B = D 、无法判断

※5.( )如图23所示,半圆形线圈半径为R ,通有电流I ,在磁场B

的作用下从

图示位置转过 30时,它所受磁力矩的大小和方向为: A 、

4

2IB

R π,沿图面竖直向下 B 、

4

2IB

R π,沿图面竖直向上

C 、432IB R π,沿图面竖直向下

D 、4

32IB R π,沿图面竖直向上

6.( )在氢原子中,电子沿着某一圆轨道绕核运动,则:等效圆电流

的磁矩m P 与电子轨道运动的角动量L 大小之比和m P 与L

方向的关系为: A 、e m 2,m P 与L 方向相同B 、e m

2,m P 与L 方向垂直

C 、m e 2,m P 与L 方向相反

D 、m

e 2,m P 与L 方向垂直

7.( )质子与α粒子质量之比为4:1,电量之比为2:1,它们的动能相同,若将它们引进同一均匀磁场,且在垂直于磁场的平面内作圆周运动,则它们回转半径之比为: A 、4:1 B 、1:1 C 、2:1 D 、2:1 8.( )如图24所示,半导体薄片为N 型, 则a 、b 两点的电势差ab U :

A 、大于零

B 、等于零

C 、小于零

D 、无法确定

I

1

O R 2

R I

2

O 1

R 2

R 图22

图24

图23

二、解答题

1.在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题图所示.A ,B 两点与导线在同一平面内.这两点与导线

2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位

置.

题图

解:如题图所示,A B

方向垂直纸面向里

42

01

0102.105

.02)

05.01.0(2-?=?+

-=

πμπμI I B A T

52

01

01033.105

.02)

05.01.0(2-?=?+

+-

=πμπμI I B B T

(2)设0=B

在2L 外侧距离2L 为r 处

02)

1.0(22

0=-

+r

I r I

πμπμ 解得 1.0=r

2. 如图26所示,长直导线中流有电流I ,A 20=I .长直导线与矩形阴影区共面,阴影宽cm 20=a ,高cm 25=l ,阴影区左端距离长直导线cm 10=d .求:通过阴影区的磁通量 解:(1)

图26

)(101.13ln 225.02010467Wb --?=???=π

πφ

3.如图27所示,宽为a 的无限长金属薄板,自下向上均匀地通过电流I .求:在薄板所在平面上距板右侧为d 的P 点的磁感应强度B 的大小. 解:

d

a d a I x dx a I B x

dx a I dB r I B a d d +===

→=?+ln 222)(20000πμπμπμπμ应强度:

载流圆环,圆心处磁感 4. 如题图所示,在长直导线AB 内通以电流1I =20A ,在矩形线圈CDEF 中通有电流

2I =10 A ,AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0cm,b =20.0cm,d =1.0

cm ,求:

(1)导线AB 的磁场对矩形线圈每边所作用的力;

(2)矩形线圈所受合力

解:(1)CD F

方向垂直CD 向左,大小

41

02100.82-?==d

I b

I F CD πμ N 同理FE F

方向垂直FE 向右,大小

51

02100.8)

(2-?=+=a d I b

I F FE πμ N

CF F

方向垂直CF 向上,大小为

?

+-?=+πμ=πμ=a

d d

CF d

a

d I I r r I I F 5210210102.9ln 2d 2 N ED F

方向垂直ED 向下,大小为

5

102.9-?==CF ED F F N

(2)合力ED CF FE CD F F F F F

+++=方向向左,大小为

a

d

p

I

图27

4102.7-?=F N

5. 如题图所示,AB 、CD 为长直导线,C B

为圆心在O 点的一段圆弧形导线,其半径

为R .若通以电流I ,求O 点的磁感应强度.

解:如题图所示,O 点磁场由AB 、C B

、CD 三部分电流产生.其中

AB

产生 01=B

BC

产生R

I

B 1202μ=,方向垂直向里

CD

段产生 )23

1(2)60sin 90(sin 2

4003-πμ=-πμ=??R I R I B ,方向⊥向里 ∴)6

231(203210π

πμ+-=

++=R I B B B B ,方向垂直向里. 6.氢原子处在基态时,它的电子可看作是在半径a =×10-8cm 的轨道上作匀速圆周运动,速率v =×108 cm/s .求电子在轨道中心所产生的磁感应强度和电子磁矩的值. 解:电子在轨道中心产生的磁感应强度

3

004a

a

v e B πμ ?= 如题图,方向垂直向里,大小为

1342

00==

a

ev

B πμ T 电子磁矩m P

在图中也是垂直向里,大小为

242102.92

-?===

eva a T e P m π 2m A ?

内容提要

理想气体状态方程:vRT PV = nkT P =

K mol J R ?=/31.8 K J k /10

38.123

-?=

理想气体压强:23

1υnm P = 理想气体温度:k

T t

32ε=

分子平均平动动能:kT t 2

3

=ε 理想气体内能:vRT i E 2

=

麦克斯韦速率分布函数:2

223

2

)2(4)(υππυυυkT m e kT

m Nd dN f -==

概率:

υυd f N

dN

)(= 最概然速率:M

RT

p 2=υ 平均速率:M

RT

πυ8=

方均根速率:M

RT

32=

υ 气体做功:?=2

1

V V PdV W

热量:T vC Q V ?= 等容过程 T vC Q P ?= 等压过程 热力学第一定律:W E Q +?=

PdV dE dQ +=

热机效率:1

2

1Q Q -

=η 卡诺循环效率:1

2

1T T -

=η 制冷机效率:212

Q Q Q -=

η

卡诺制冷机:2

12

T T T -=

η

热力学第二定律:

克劳修斯表述:不能把热从低温物体传给高温物体,而不引起其他变化。

开尔文表述:不能从单一热源吸热,使其完全转化为有用功而不引起其他变化。 卡诺定理:工作于1T 和2T 两个热源之间的所有可逆热机,其效率相等,与工质无关

工作于1T 和2T 两个热源之间的可逆热机效率高于不可逆热机(一般了解)

熵: 克劳修斯公式 ?

=-B

A A

B T

dQ

S S 可逆过程(一般了解) 玻耳兹曼公式 Ω=ln k S (一般了解)

熵增加原理: 0≥?S 孤立系统(一般了解)

复习五、热力学及统计物理

一、选择题

1.( )两瓶不同种类的理想气体,它们的温度和压强相同,但体积不同.则分子数密度:

A 、相同

B 、不相同

C 、无法确定

2.( )质量相等的氢气和氦气温度相同,则氢分子和氦分子的平均平动动能之比为: A 、1:1 B 、2:1 C 、1:2 D 、3:10

3.( )分子的平均平动动能与温度的关系式kT v m 2

3212=的适用条件为:

A 、处于任何状态的气体

B 、理想气体;

C 、平衡态下的气体

D 、平衡态下的理想气体。

4.( )容器内储有1摩尔双原子理想气体,气体的摩尔质量为mol M ,内能为E ,气体分子的最概然速率为:

、mol M RT 2 C 、mol M E D 、mol

M E

π516

5.( )一定量理想气体保持压强不变,则气体分子的平均碰撞频率 Z 和平均自由程λ与气体的温度T 的关系为:

B 、Z 正比于T ,λ正比于T 1

C 、Z 正比于T ,λ正比于

T

1

D 、Z 正比于T ,λ正比于T 6.( )关于最可几速率P V 的物理意义下列表述正确的是: A 、P V 是最大的速率;

B 、一个分子具有的P V 几率最大;

C 、对相等的速率区间而言,一个分子处在速率P V 区间内的几率最大;

D 、速率为P V 的分子数占总分子数的百分比最大;

7. ( )下列各图所示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线

8.( )理想气体内能从1E 变到2E ,对于等压、等容过程,其温度变化 A 、相同 B 、不相同 C 、无法判断

9.( )已知1摩尔的某种理想气体可视为刚性分子,在等压过程中温度上升K 1,内能增加了J 78.20,则气体对外作功为

A 、J 78.20

B 、J 31.8

C 、J 09.29

D 、J 168.4 10.( )内能增量的计算公式 T R i

M m E m ol ??2

=

的适用范围是

A 、任何系统

B 、等容过程

C 、理想气体从一个平衡态到另一个平衡态的任何过程 11.( )一定量的理想气体,其状态在V -T 图上沿着一条直线 从平衡态a 改变到平衡态b ,如图30所示. A 、这是一个等压过程. B 、这是一个升压过程. C 、这是一个降压过程.

(1

(2

(3

(4

f (v )

f (v )

v

f (v )

v

(B)

(A)

f (v )

(D)

v

(C) v

图30

D 、数据不足,不能判断这是哪种过程

12.( )若理想气体按照2V

a

P =的规律变化,其中a 为常数,则理想气体的热力学过程是

A 、等压过程

B 、等体过程

C 、等温过程

D 、绝热过程

13.( )1摩尔理想气体从同一状态出发,分别经历绝热、等压、等温三种过程,体积从1V 增加到2V ,则内能增加的过程是:

A 、绝热过程

B 、等压过程

C 、等温过程

D 、不能判断 14.( )某循环过程如图31所示,关于系统对外所作 的功A ,下列哪些叙述是正确的. A 、过程cba 中,系统对外作正功 B 、过程adc 中,系统对外作正功 C 、过程adcba 中,系统作功为0

D 、过程adcba 中,系统对外作的净功在数值上不等于闭合曲线所包围的面积 二、解答题

1.一卡诺热机的低温热源温度为7?C ,效率为40%,则高温热源的温度 K ,若

保持高温热源的温度不变,将热机效率提高到50%,则低温热源的温度要降低到

K .

2.如图32中,a 、c 间曲线是mol 1000氢气的等温线,其中压强Pa 10451?=P ,

Pa 102052?=P .在a 点,氢气的体积31m 5.2=V ,试求:

(1) 该等温线的温度;

(2) 氢气在b 点和d 点两状态的温度b T 和d T .

图31

图32

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

大学物理期末考试试卷

第三军医大学2011-2012学年二学期 课程考试试卷(C 卷) 课程名称:大学物理 考试时间:120分钟 年级:xxx 级 专业: xxx 题目部分,(卷面共有26题,100分,各大题标有题量和总分) 一、选择题(每题2分,共20分,共10小题) 1.下面哪一种说法是正确的 ( ) A 、 运动物体的加速度越大,速度越大 B 、 作直线运动的物体,加速度越来越小,速度也越来越小 C 、 切向加速度为正值时,质点运动加快 D 、 法向加速度越大,质点运动的法向速度变化越快 2.对功的概念有以下几种说法: (1)保守力作正功时,系统内相应的势能增加 (2)质点运动经一闭合路径,保守力对质点作的功为零 (3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零 在上述说法中:( ) A 、(1)、(2)是正确的 B 、(2)、(3)是正确的 C 、只有(2)是正确的 D 、只有(3)是正确的 3.在绕地球正常运转的人造卫星上,有一物体自行脱落,该物体将( ) A 、能击中地球 B 、能落下,但不一定击中 C 、 仍随卫星一起绕地球运动 D 、绕地球运动,但速度越来越慢 4.质量为的质点,其运动方程为t t x 45.42-=,式中x 以米、t 以秒计。在1s 末,该质点受力为多大( ) A 、 0 B 、 C 、 N D 、 5.可供选择的量纲如下:那么,动量矩的量纲为( ) A 、22T ML - B 、12T ML - C 、02T ML D 、1MLT - E 、32T ML -

6.如图所示,某种电荷分布产生均匀电场0E ,一面电荷密度为σ的薄板置于该电场中,且使电场0E 的方向垂直于薄板,设原有的电荷分布不因薄板的引入而收干扰,则薄板的左、右两侧的合电场为 ( ) A 、00,E E B 、0 0002,2εσεσ-+E E C 、002εσ-E , 002εσ+E D 、002εσ+E , 0 02εσ+E E 、E 0 ,0 02εσ+E 7.一质点在平面上作一般曲线运动,其瞬时速度为,瞬时速率为,某一段时间内的平均 速度为,平均速率为,它们之间的关系必定有( ) A 、, B 、, C 、, D 、, 8.一带电体可作为点电荷处理的条件是 ( ) A 、电荷必须呈球形分布 B 、带电体的线度很小 C 、带电体的线度与其它有关长度相比可忽略不计 D 、电量很小 9.一质量为M 、半径为r 的均匀圆环挂在一钉子上,以钉为轴在自身平面内作幅度很小的简谐振动。若测得其振动周期为2π/秒,则r 的值为( ) A 、 32g B 、 162g C 、 2 16g D 、 4g

大学物理期末考试题(上册)10套附答案

n 3 电机学院 200_5_–200_6_学年第_二_学期 《大学物理 》课程期末考试试卷 1 2006.7 开课学院: ,专业: 考试形式:闭卷,所需时间 90 分钟 考生: 学号: 班级 任课教师 一、填充題(共30分,每空格2分) 1.一质点沿x 轴作直线运动,其运动方程为()3262x t t m =-,则质点在运动开始后4s 位移的大小为___________,在该时间所通过的路程为_____________。 2.如图所示,一根细绳的一端固定, 另一端系一小球,绳长0.9L m =,现将小球拉到水平位置OA 后自由释放,小球沿圆弧落至C 点时,30OC OA θ=o 与成,则 小球在C 点时的速率为____________, 切向加速度大小为__________, 法向加速度大小为____________。(210g m s =)。 3.一个质点同时参与两个在同一直线上的简谐振动,其振动的表达式分别为: 215 5.010cos(5t )6x p p -=?m 、211 3.010cos(5t )6 x p p -=?m 。则其合振动的频率 为_____________,振幅为 ,初相为 。 4、如图所示,用白光垂直照射厚度400d nm =的薄膜,为 2 1.40n =, 且12n n n >>3,则反射光中 nm ,

波长的可见光得到加强,透射光中 nm 和___________ nm 可见光得到加强。 5.频率为100Hz ,传播速度为s m 300的平面波,波 长为___________,波线上两点振动的相差为3 π ,则此两点相距 ___m 。 6. 一束自然光从空气中入射到折射率为1.4的液体上,反射光是全偏振光,则此光束射角等于______________,折射角等于______________。 二、选择題(共18分,每小题3分) 1.一质点运动时,0=n a ,t a c =(c 是不为零的常量),此质点作( )。 (A )匀速直线运动;(B )匀速曲线运动; (C ) 匀变速直线运动; (D )不能确定 2.质量为1m kg =的质点,在平面运动、其运动方程为x=3t ,315t y -=(SI 制),则在t=2s 时,所受合外力为( ) (A) 7j ? ; (B) j ?12- ; (C) j ?6- ; (D) j i ? ?+6 3.弹簧振子做简谐振动,当其偏离平衡位置的位移大小为振幅的4 1 时,其动能为振动 总能量的?( ) (A ) 916 (B )1116 (C )1316 (D )1516 4. 在单缝夫琅和费衍射实验中波长为λ的单色光垂直入射到单缝上,对应于衍 射角为300的方向上,若单逢处波面可分成3个半波带,则缝宽度a 等于( ) (A.) λ (B) 1.5λ (C) 2λ (D) 3λ 5. 一质量为M 的平板车以速率v 在水平方向滑行,质量为m 的物体从h 高处直落到车子里,两者合在一起后的运动速率是( ) (A.) M M m v + (B). (C). (D).v

大学物理下册知识点总结(期末)

大学物理下册 学院: 姓名: 班级: 第一部分:气体动理论与热力学基础 一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 中心位置:3(平动自由度)直线方位:2(转动自由度)共5个 3.气体分子的自由度 单原子分子 (如氦、氖分子)3 i=;刚性双原子分子5 i=;刚性多原子分子6 i= 4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 1 2 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为: 2 k i kT ε=

大学物理期末考试试卷(含答案)

《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理物理知识点总结!!!!!!

y 第一章质点运动学主要容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动程 ()r r t =r r 运动程的分量形式() ()x x t y y t =???=?? 位移 是描述质点的位置变化的物理量 △t 时间由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和向的物理量) 平均速度 x y r x y i j i j t t t u u u D D ==+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度向是曲线切线向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

《大学物理(一)》期末考试试题]

《大学物理(一)》综合复习资料 一.选择题 1. 某人骑自行车以速率V 向正西方行驶,遇到由北向南刮的风(设风速大小也为V ),则他感到风是从 (A )东北方向吹来.(B )东南方向吹来.(C )西北方向吹来.(D )西南方向吹来. [ ] 2.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 2 2 +=(其中a 、b 为常量)则该质点作 (A )匀速直线运动.(B )变速直线运动.(C )抛物线运动.(D )一般曲线运动. [ ] 3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 (A )不变.(B )变小.(C )变大.(D )无法判断. 4. 质点系的内力可以改变 (A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总动量. 5.一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 (A )1/2 .(B )1/4.(C )2/1.(D) 3/4.(E )2/3. [ ] 6.一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 1变为 (A )4/1E .(B ) 2/1E .(C )12E .(D )14E . [ ] 7.在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4. (B )λ/2.(C ) 3λ/4 . (D )λ. [ ] 8.一平面简谐波沿x 轴负方向传播.已知x =b 处质点的振动方程为)cos(0φω+=t y ,波速为u ,则波动方程为:

大学物理期末考试试卷(含答案) 2

2008年下学期2007级《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) (2717) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分)(2391) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分)(2594) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分)(2314) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分)(2125) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理下册知识点总结材料(期末)

大学物理下册 学院: : 班级: 第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 第一部分:气体动理论与热力学基础 第二部分:静电场 第三部分:稳恒磁场 第四部分:电磁感应 第五部分:常见简单公式总结与量子物理基础

中心位置:3(平动自由度) 直线方位:2(转动自由度) 共5个 3. 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 4. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 12 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为:2 k i kT ε= 五. 理想气体的能(所有分子热运动动能之和) 1.1mol 理想气体2 i E RT = 5. 一定量理想气体()2i m E RT M νν' == 九、气体分子速率分布律(函数) 速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。即 十、三个统计速率: a. 平均速率 M RT M RT m kT dv v vf N vdN v 60.188)(0 === == ??∞ ∞ ππ b. 方均根速率 M RT M k T v dv v f v N dN v v 73.13)(20 2 2 2 == ? = = ??∞ C. 最概然速率:与分布函数f(v)的极大值相对应的速率称为最概然速率,其物理意义为:在平衡态条件下,理想气体分子速率分布在p v 附近的单位速率区间的分子数占气体总分子数的百分比最大。 M RT M RT m kT v p 41.1220=== 三种速率的比较: 各种速率的统计平均值: 理想气体的麦克斯韦速率分布函数 十一、分子的平均碰撞次数及平均自由程: 一个分子单位时间里受到平均碰撞次数叫平均碰撞次数表示为 Z ,一个分子连续两次碰撞之间经历的平均自由路程叫平均自由程。表示为 λ 平均碰撞次数 Z 的导出: 热力学基础主要容 一、能 分子热运动的动能(平动、转动、振动)和分子间相互作用势能的总和。能是状态的单值函数。 对于理想气体,忽略分子间的作用 ,则 平衡态下气体能: 二、热量 系统与外界(有温差时)传递热运动能量的一种量度。热量是过程量。 )(12T T mc Q -=)(12T T Mc M m -=) (12T T C M m K -= 摩尔热容量:( Ck =Mc ) 1mol 物质温度升高1K 所吸收(或放出)的热量。 Ck 与过程有关。 系统在某一过程吸收(放出)的热量为: )(12T T C M m Q K k -= 系统吸热或放热会使系统的能发生变化。若传热过程“无限缓慢”,或保持系统与外界无穷小温差,可看成准静态传热过程。 准静态过程中功的计算: 元功: 41 .1:60.1:73.1::2=p v v v Z v = λn v d Z 2 2π=p d kT 22πλ= n d Z v 221πλ= = kT mv e v kT m v f 22232 )2(4)(-=ππ?∞ ?=0 )(dv v f v v ? ∞ ?= 22)(dv v f v v ∑∑+i pi i ki E E E =内) (T E E E k =理 =RT i M m E 2 =PdV PSdl l d F dA ==?=

《大学物理学》(袁艳红主编)下册课后习题答案

第9章 静电场 习 题 一 选择题 9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ] (A) 4f (B) 8f (C) 38f (D) 16 f 答案:B 解析:经过碰撞后,球A 、B 带电量为2q ,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为 8 f 。 9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B 解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。因而正确答案(B ) 9-3 如图9-3所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且 OP =OT ,那么[ ] (A) 穿过S 面的电场强度通量改变,O 点的场强大小不变 (B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 习题9-3图

(C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D 解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式2 04q E r πε= ,移动电荷后,由于OP =OT , 即r 没有变化,q 没有变化,因而电场强度大小不变。因而正确答案(D ) 9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ] (A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D 解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。因而通过该立方体任一面的电场强度通量为q /6ε0,答案(D ) 9-5 在静电场中,高斯定理告诉我们[ ] (A) 高斯面内不包围电荷,则面上各点E 的量值处处为零 (B) 高斯面上各点的E 只与面内电荷有关,但与面内电荷分布无关 (C) 穿过高斯面的E 通量,仅与面内电荷有关,而与面内电荷分布无关 (D) 穿过高斯面的E 通量为零,则面上各点的E 必为零 答案:C 解析:高斯定理表明通过闭合曲面的电场强度通量正比于曲面内部电荷量的代数和,与面内电荷分布无关;电场强度E 为矢量,却与空间中所有电荷大小与分布均有关。故答案(C ) 9-6 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

大学物理A期末试卷答案

浙江师范大学《大学物理A(一)》考试卷 (A 卷) (2014——2015学年第一学期) 考试形式: 闭卷 考试时间: 90 分钟 出卷时间:2014年12月29日 使用学生:数学与应用数学、信息与计算科学、科学教育等专业 说明:考生应将全部答案都写在答题纸上,否则作无效处理 真空电容率212120m N C 1085.8---???=ε,真空磁导率2 70A N 104--??=πμ 一. 选择题(每题3分,共30分) 1. 一运动质点在某瞬时位于矢径()y x r ,? 的端点处, 其速度大小为 ( ) (A) t r d d (B) t r d d ? (C) t r d d ? (D) 22d d d d ?? ? ??+??? ??t y t x 答:(D ) 2. 如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1和m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2 的重物的加速度为的大小a ′,则 (A) a ′= a (B) a ′> a (C) a ′< a (D) 不能确定. 答:(B) 3. 质量为20 g 的子弹沿x 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿x 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为 ( ) (A) 9 N·s (B) -9 N·s (C)10 N·s (D) - 10 N·s 答案:(A ) 4. 质量为m ,长为l 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒由静止开始从水平位置自由下落摆动到竖直位置。若棒的质量不变,长度变为l 2,则棒下落相应所需要的时间 ( ) (A) 变长. (B) 变短. (C) 不变. (D) 是否变,不确定. 答案:(A ) 5. 真空中两块互相平行的无限大均匀带电平面。其电荷密度分别为σ+和2σ+,两板之间的距离为d ,两板间的电场强度大小 为 ( ) (A) 0 (B) 023εσ (C) 0εσ (D) 0 2εσ 答案:()D 6. 如图所示,a 、b 、c 是电场中某条电场线上的三个点,设E

大学物理下期末知识点重点总结(考试专用)

1.相对论 1、力学相对性原理和伽利略坐标变换。(1)牛顿力学的一切规律在伽利略变换下其形式保持不变,亦即力学规律对于一切惯性参考系都是等价的。(2)伽利略坐标换算。 2、狭义相对论的基本原理与时空的相对性。(1)在所有的惯性系中物理定律的表达形式都相同。(2)在所有的惯性系中真空中的光速都具有相同的量值。(3)同时性与所选择的参考系有关。(4)时间膨胀。在某一惯性参考系中同一地点先后发生的两个事件的时间间隔。(5)长度收缩。在不同的惯性系中测量出的同一物体的长度差。 3、当速度足够快时,使用洛伦兹坐标变换和相对论速度变换。但是当运动速度远小于光速时,均使用伽利略变换。 4、光的多普勒效应。 当光源相对于观察者运动时,观察者接受到的频率不等于光源实际发出的频率。 5、狭义相对论揭示出电现象和磁现象并不是互相独立的,即表现为统一的电磁场。 2.气体动理论 一.理想气体状态方程: 112212 PV PV PV C =→=; m PV R T M ' = ; P nkT = 8.31J R k mol = ;231.3810J k k -=?; 2316.02210A N mol -=?;A R N k = 二. 理想气体压强公式 2 3kt p n ε= 分子平均平动动能 1 2kt m ε= 三. 理想气体温度公式 1322kt m kT ε== 四.能均分原理 自由度:确定一个物体在空间位置所需要的独立坐标数目。 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 3. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等, 其值为1kT 4.一个分子的平均动能为:k i kT ε= 五. 理想气体的内能(所有分子热运动动能 之和) 1.1m ol 理想气体i E R T = 一定量理想气体 ()2i m E R T M ν ν' == 3.热力学 一.准静态过程(平衡过程) 系统从一个平衡态到另一个平衡态,中间经历的每一状态都可以近似看成平衡态过程。 二.热力学第一定律 Q E W =?+;dQ dE dW =+ 1.气体2 1 V V W Pdv = ? 2.,,Q E W ?符号规定 3. 2121()V m V m m m dE C dT E E C T T M M ''= -=- 或 V m i C R = 三.热力学第一定律在理想气体的等值过程和绝热过程中的应用 1. 等体过程 210()V m W Q E C T T ν=?? ? =?=-?? 2. 等压过程 212121()()()p m W p V V R T T Q E W C T T νν=-=-?? ? =?+=-?? C 2 ,1 2C p m p m V m V m i C C R R γ+=+=> 热容比= 3.等温过程 212211 0T T E E m V m p Q W R T ln R T ln M V M p -=? ? ''? ===?? 绝热过程 210()V m Q W E C T T ν=?? ? =-?=--?? 绝热方程1P V C γ =, -1 2V T C γ= , 13P T C γγ--= 。 四.循环过程 特点:系统经历一个循环后,0E ?= 系 统 经 历 一 个 循 环 后 Q W =(代数和)(代数和) 正循环(顺时针)-----热机 逆循环(逆时针)-----致冷机 热机效率: 122111 1Q Q Q W Q Q Q η-= ==- 式中:1Q ------在一个循环中,系统从高温热源吸收的热量和; 2Q ------在一个循环中,系统向低温热源放 出的热量和; 12W Q Q =-------在一个循环中,系统对外 做的功(代数和)。 卡诺热机效率: 2 1 1c T η=- 式中: 1T ------高温热源温度;2T ------低温热源温度; 4. 制冷机的制冷系数: 22 12 Q = Q -Q = 定义:Q e W 卡诺制冷机的制冷系数:22 1212 Q T e Q Q T T == -- 五. 热力学第二定律 开尔文表述:从单一热源吸取热量使它完全变为有用功的循环过程是不存在的(热机效 率为100%是不可能的)。 克劳修斯表述:热量不能自动地从低温物体传到高温物体。 两种表述是等价的. 4.机械振动 一. 简谐运动 振动:描述物质运动状态的物理量在某一数值附近作周期性变化。 机械振动:物体在某一位置附近作周期性的往复运动。 简谐运动动力学特征:F kx =- 简谐运动运动学特征:2 a x ω=- 简谐运动方程: cos()x A t w j =+ 简谐 振动物体 的速度 : () sin dx v A t w w j ==-+ 加速度() 2 2cos d x a A t w w j ==-+ 速度的最大值m v A w =, 加速度的最大值2m a A w = 二. 振幅A : A 取决于振动系统的能量。 角(圆)频率 w :22T p w pn ==,取决于振动 系统的性质 对于弹簧振子 w 、对于单摆 ω相位——t w j +,它决定了振动系统的运动 状态(,x v ) 0t =的相位—初相 arc v tg x j w -= 四.简谐振动的能量 以弹簧振子为例: 222221111 k p E E E mv kx m A kA ω=+= +== 五.同方向同频率的谐振动的合成 设 ()111cos x A t ω?=+ ()222cos x A t ω?=+ 12cos()x x x A t ω?=+=+ 合成振动振幅与两分振动振幅关系为: A A 1 122 1122cos cos tg A A ???=+ 合振动的振幅与两个分振动的振幅以及它们之间的相位差有关。 () 20 12k k ?π?==±± 12A A A + )12 ??± 12A A A - 一21可以取任意值 1212 A A A A A -<<+ 5.机械波 一.波动的基本概念 1.机械波:机械振动在弹性介质中的传播。 2. 波线——沿波传播方向的有向线段。 波面——振动相位相同的点所构成的曲面 3.波的周期T :与质点的振动周期相同。 波长λ:振动的相位在一个周期内传播的距离。 波速u:振动相位传播的速度。波速与介质的性质有关 二. 简谐波 沿ox 轴正方向传播的平面简谐波的波动方 程 质点的振动速度 ] )(sin[?ωω+--=??=u x t A t y v 质点的振动加速度 2cos[()]v x a A t t u ωω??= =--+? 这是沿ox 轴负方向传播的平面简谐波的波 动 方 程 。 c o s [ ()]c o s [2()] x t x y A t A u T ω?π ? = -+=-+ cos 2()t x y A T π?λ?? =++???? 三.波的干涉 两列波 频率相同,振动方向相同,相位相同或相位差恒定,相遇区域内出现有的地方振动始终加强,有的地方振动始终减弱叫做波的干涉现象。 两列相干波加强和减弱的条件: (1) ()π π ???k r r 221 212±=---=?) ,2,1,0(???=k 时, 2 1A A A += (振幅最大,即振动加强) ()()π λ π???1221212+±=---=?k r r ) ,2,1,0(???=k 时, 2 1A A A -= (振幅最小,即振动减弱) (2)若12??=(波源初相相同)时,取 21r r δ=-称为波程差。 212r r k δλ =-=±) ,2,1,0(???=k 时, 2 1A A A +=(振动加强) () 1212λ δ+±=-=k r r ) ,2,1,0(???=k 时, 2 1A A A -=(振动减弱); 其他情况合振幅的数值在最大值12 A A +和最小值 12A A -之间。 6.光学 杨氏双缝干涉(分波阵面法干涉) 1、 x d d d r ===-=θθδtan sin r 12波程差 2、明纹位置: λ k D x d ± =),2,1,0k ( = 3、暗纹位置: 2 ) 12(λd D k x +±=),2,1,0( =k 4、相邻明(暗)纹间距 λd D x = ? 4、若用白光照射,则除了中央明纹(k=0级)是白色之外,其余明纹为彩色。 二、分振幅法干涉 1、薄膜干涉(若两束反射光中有一束发生半波损失,则光程差δ在原来的基础上再加上 2 λ ;若两束光都有半波损失或都没有,则无 需加上λ )以下结果发生在入射光垂直入射时 ?? ???=+==+ -=)(),2,1,0(12) (),2,1(2 sin 222122暗纹)(明纹 k k k k i n n d λλλ δ 2、劈尖干涉(出现的是平行直条纹) 1)明、暗条纹的条件: ?? ? ??=+==+=) (),2,1,0(2)12() (),2,1(2 2暗纹明纹 k k k k nd λλλδ 2)相邻明纹对应劈尖膜的厚度差为n 2e 1λ=-=??+k k k d d d )(图中为 3)相邻明(暗)纹间距为θλθ λn n L 2sin 2≈ = 3、牛顿环(同心环形条纹,明暗环条件同劈尖干涉) 1)明环和暗环的半径: ) () ,2,1,0()(),2,1(2)12(暗环明环 == =-=k n kR r k n R k r λ λ ③相邻明环、暗环所对应的膜厚度差为 n 21λ= -=?+k k k d d d 。 三、迈克尔逊干涉仪 1)可移动反射镜移动距离d 与通过某一参考点条纹数目N 的关系为 2 λ N d = 2)在某一光路中插入一折射率n,厚d 的透明介质薄片时,移动条纹数N 与n 、d 的关系为 21n λN d =-)( 五、夫琅禾费衍射 1、明纹条件:????? =+±==),2,1(2)12(sin 0 k k a λ??(中央明纹) 2、暗纹条件: ),2,1(sin =±=k k a λ? 3、中央明纹宽度(为1±级暗纹间距离): a 2sin 2tan 20f f f l λ??≈ == 其它暗纹宽度: 2 sin sin tan tan 111o k k k k k k l a f f f f f x x l == -=-=-=+++????? 4、半波带数: 明纹(又叫极大)为(2k+1);暗纹(又叫极小)为(2k )。 六、衍射光栅 1、光栅常数d=a(透光宽度)+b (不透光宽度)=单位长度内刻痕(夹缝)数的倒数 2、光栅方程 ) ,2,1,0(sin ) =±=+k k b a λ?( 明纹(满足光栅方程的明纹称为主极大明纹) k=0、1、2、3 称为0级、1级、2级、 3级 明纹 3、缺级 条 件 ??? ????±±±==+±±±==+±±±==++=????±=±=+主极大消失 、、如果、、如果、、如果( 1284449633364222k sin sin )k k a b a k k a b a k k a b a k b a k a k b a λ?λ?七、光的偏振 1、马吕斯定律α2 cos I =I ( α为入射偏振 光的振动方向与偏振片的偏振化方向间的夹角) 2、布儒斯特定律1 20an n n i t = , 0i 称为布儒斯特 角或起偏角。 当入射角为布儒斯特角时,反射光为垂直于入射面的线偏振光,并且该线偏振光与折射光线垂直。 7.量子力学 光电效应 光电效应方程W m h m += 2 1 νγ(式中γ表示光子 的频率,W 表示逸出功) 02 U 1e m m =ν(0U 表示遏止电压) h γ=W ( 0γ表示入射光最低频率/红限频率) 说明了光具有粒子性。 光的波粒二象性 能量: γεh = 动量:22c h m mc γ ε= = 光子动量: λγh c h mc p == = 二、康普顿效应 1、散射公式 2sin 22sin 22200θλθλλλc c m h == -=? 2、说明了光具有粒子性。 四、实物粒子的波粒二象性 1、德布罗意波 h = λ 测不准关系 2 ≥ ???x P x (一定的数值) 2、波函数 1)归一化波函数 x n a x n π ψsin 2)(= ( a x <<0) 概率密度为2 )(x n ψ? =a n dx x 0 2 1 )(ψ 粒子能 量 ) 321(2 2 、、== n h n E n 2)标准化条件 单值性,有限性,连续性

相关主题
文本预览
相关文档 最新文档