当前位置:文档之家› 金属切削变形过程的有限元仿真初探

金属切削变形过程的有限元仿真初探

金属切削变形过程的有限元仿真初探
金属切削变形过程的有限元仿真初探

金属切削变形过程的有限元仿真初探

作者:南昌航空大学陈为国姚坤弟来源:航空制造技术

金属切削加工是一种应用广泛的加工方法之一,是利用比工件硬的刀具在工件表面切除金属获得所需形状、尺寸和表面粗糙度要求的一个工艺过程。切削加工的实质是工件材料在刀具的剪切挤压作用下,经过弹性变形、塑性变形最后撕裂,将工件待加工表面上多余的金属层与工件本体分离产生切屑并形成工件上已加工表面的过程。金属的切削变形过程非常复杂,影响因素也较多,金属切削机理的研究一直是国内外学者研究的重点和难点,但限于技术方面的原因,过去的研究主要是基于各种试验而进行的,由于成本技术手段等原因,限制了切削变形过程的研究普及与提高,但是新材料的出现确是层出不穷,如何及时深刻地认识新材料的切削加工性能是迫切需要人们关注的。

近年来,有限元技术在切削变形方面的研究已经开始走向应用。采用有限元技术具有试验成本较低,获得的数据完整多样等特点,而备受业内人士的关注。

切削变形过程的传统分析方法讨论

传统的研究金属切削变形的方法主要是基于各种试验方法而进行,常见的方法有:侧面变形观察法、高速摄影法、快速落刀法、在线瞬态体视摄影法、扫描电镜显微观察法、光弹性和光塑性试验法等多种方法。另外,还有各种测量切削力和切削温度等的方法。

由于金属切削的工作条件十分恶劣,物理过程的跟踪观测非常困难,而且观测设备昂贵、试验周期长、人力物力消耗大、综合成本很高,使得其各种试验方法分析的结果往往不够全面,如侧面变形观察法是通过观察材料侧面人工绘制的细小方格变形来推测金属的变形。高速摄影法虽然能够观察刀实际切削速度下的变形区的变形情况,但成本较高。快速落刀法落刀的速度对切削变形区信息的准确性有一定的影响,且其切削区的标本要做成金相标本进行观察。在线瞬态体视摄影法和扫描电镜显微观察法均有试验设备非常昂贵的缺点。

以上几种试验方法,往往不能测量变形区的应力、应变、刀具表面的正压力,温度及其分布规律等。光弹性和光塑性试验法虽能描述切削区的应力应变等信息,却不能反映材料流动的规律。

以上讨论的方法主要是集中于切削变形,即切削过程中的材料流动规律及其物理定量描述。

事实上,切削变形过程还与切削力和切削温度等有及其密切的联系,将切削变形与切削力和切削热割裂开来分别研究是不可取的,应该作为一个整体进行研究。

传统的切削力的研究结果基本上是通过试验的方法得到经验公式,然后供实际使用。对于某些实际情况,如果偏离试验条件,则有可能存在误差,甚至无法计算。切削力的测量主要有电阻应变片式测力仪和压电式测力仪两种,这些测量装置一般均较为贵重。切削温度的测量主要采用的是自然热电偶和人工热电偶法,前者只是测量切削区的平均温度,但不能准确地反映出温度的分布规律。而人工热电偶是用于测量切削区某一点的温度,但要获得整个切削区域的温度场却还是非常困难的。另外,如辐射温度计法和热敏颜料法等测量方法由于设备成本较高而限制了他的应用。

由上所述可知,传统的基于试验的研究方法有较多的难度,而有限元素法则在某种程度上可以克服以上一些缺点,因此逐渐引起研究者的关注。

切削变形过程的有限元仿真分析

有限元计算机辅助仿真技术对切削加工过程的研究主要集中于2个方面,一是相关仿真软件的开发,其次是基于专用软件进行的切削加工过程的物理仿真。

前者一般由专业人士进行研究,现有的相关软件有Third WaveSystems公司的“Advant Edge”,Scientific Forming Technologies公司的DEFORM软件,另外还有一些通用的软件,如ABAQUS、ANSYS等。后者注重于实际应用的研究,本文主要讨论后者的研究结果。下面通过一个实例进行介绍。

图1所示是一个直角切削的模型,切削速度v=250m/min,切削层厚度ac=0.4mm,工件宽度w=2mm,刀具前角γ0=5°,α0=5°,切削刃钝圆半径rn=0.1mm,刀具- 工件间摩擦系数为0.6,热传导率为40,刀具表面从外到内分别涂覆了10μm 厚的TiN和Al2O3 涂层,刀具本体材料WC硬质合金,工件材料AISI-1045(相当于45# 钢),环境温度取20℃。

金属切削加工过程表现为金属的变形较大,对于这种切削模型的有限元仿真,在有限元网格畸变到一定程度之后,系统必须能够自动重划分网格,图2所示分别为切削前的网格和切削刀步的网格情况。图2(a)是加工前的网格情况,可以看到加工区域较密。图(b)是切削到500步时网格自动重划分的情况。实际上,在仿真过程中,系统会根据网格畸变情况及时自动重划分网格。

切削过程的有限元仿真,其结果较为丰富,包括应力、应变、应变速率、金属流动及流动速

度、刀具表面的法向压力、切削区域的温度场分布,切削力图表、刀具磨损,并且可以像传统的侧面变形观察法一样模拟出金属流动规律。另外,利用这些结果图示,还能测出相关切削变形描述参数,如剪切角φ和切削厚度变形系数ξa等,分析结果可以用云图、等高线图和动画等形式表示,并可以随时重现,动画过程可以单步或连续演示。所有这些可视化的结果、切削变形过程的描述较传统试验法有了极大的提高,下面列举几个仿真至500步时的分析结果供参考。

图3为切削加工过程的变形应变图,在图中不仅可以看到切削变形过程3个变形区的应变情况,而且还可以看到切削加工后表面残留的应变情况。图中第二变形区造成的应变最大,其次是第一变形区产生的应变,第三变形区产生的应变最小。

图4为切削应力图,可以看出在第一变形区的变形应力最大,且变形应力主要发生在刀尖附近及第一变形区。

图5(a)所示为切削变形的应变速率图,应变速率表现为沿第一变形区的剪切应变速率最大,利用这个结果可以分析出剪切角φ ,具体为将该图复制到AutoCAD中,绘出水平线和剪切线就可以测量出剪切角,如图5(b)所示,此例测量的剪切角φ为35°。

当然,利用切削变形的仿真结果,通过测量切屑厚度a ch和工件上的切削厚度a c(前述已知),可以计算出厚度变形系数ξa=a ch /ac =0.64/0.4=1.6。测量结果如图5(c)所示。

图6(a)是切削过程的材料流动速度局部放大图,该图不仅可以看出材料流动的方向,而且还可以利用云图(图6(b))或等高线图(图6(c))等可视化手段观察出各处材料流动的运动速度。

图7(a)为用云图的形式显示的切削温度图,其实质是温度场图。也可以用等高线图表示,如图7(b)所示。如果将切削区域局部放大,可以看的更清楚,如图7(c)所示。从图中可以看出最高温度偏离刀尖,且切屑上的温度高于刀具前刀面的温度。最高温度之所以是这种情况是由于温度的升高不仅与切削变形有关,而且还和切屑与前刀面的摩擦有关。

图8是刀具表面正压力等高线放大图,可以看出从刀尖向前后刀面一定的区域都受到了较大的正压力,前刀面受力区域较多。最大正压力约在0.8MPa以上。

图9所示是切削网格流动模拟图(310步),其模拟的结果非常像传统的侧面变形观察法得到的结果。

图10所示是切削过程中主切削力与切削时间变化图,可以看出刀具切入工件材料的初期切削力增加很快,然后就逐渐趋于稳定。这里还可以直接显示出切削力的大小,可以看出稳定切削后切削力基本维持在750~850N左右。

以上仅列举了几种切削变形研究中较为感兴趣的几种分析结果,可以看出,有限元仿真后置处理的结果较为丰富完整,对深刻认识切削变形有极大的帮助。

结束语

切削加工是一个复杂的切削变形过程,工作条件非常恶劣,传统的研究方法主要基于试验研究,物理过程跟踪观察困难,且试验成本非常高,如要想获得较多的试验数据,需采用较多

的试验方法,做较多的试验,这样才能使得人们对各种材料的切削性能有较深刻的了解。然而,运用有限元分析、借助于计算机技术等可以用较低的成本揭示切削加工过程,且在较短的时间内能获得较为丰富的各种数据,这对实际生产有极大的帮助。

当然,由于有限元技术用于切削加工的实践不长,还有许多技术问题值得探讨。另外,有限元仿真的结果与实际情况还是有一定差异的,分析其原因,笔者认为有2点,一是软件编制时的数学模型忽略了一些次要因素;二是仿真时相关参数的设置与使用软件者的知识水平和实践经验有关,若设置参数偏离较多必然使得仿真结果有一定的差异。因此,目前来说,将有限的试验与较多的有限元仿真相结合,是一种切实可行的研究方法。(end)

金属切削过程中地三个变形区

论文 金属切削过程中的三个变形区 系别 专业年级 学生姓名 学号 指导教师 年月日

金属切削过程中的三个变形区 摘要:金属切削过程是指道具与工件相互作用形成切屑的过程,本文主要叙述了金属切削加工过程中的三个变形区的形成及相互联系,并分析了与这三个变形区有关的反映金属变形程度的相关参数,同时加以总结。 关键词:金属切削,三个变形区,金属变形程度 Abstract: the process of metal cutting refers to tools and the workpiece interact to form a cutting process, this paper mainly describes the process of metal machining three deformation zone was formed and interconnected, and analyzed and the three deformation zone related to reflect the extent of metal distortion of the relevant parameters, at the same time to sum up. Keywords:metal cutting, three deformation zone, extent of metal distortion 引言 金属切削过程是机械制造过程的一个重要组成部分。金属切削过程是指将工件上多余的金属层,通过切削加工被刀具切除而形成切屑并获得几何形状、尺寸精度和表面粗糙度都符合要求的零件的过程。在这一过程中,始终存在着刀具切削工件和工件材料抵抗切削的矛盾,从而产生一系列现象,如切削变形、切削力、切削热与切削温度以及有关刀具的磨损与刀具寿命、卷屑与断屑等。对这些现象进行研究,揭示其在的机理,探索和掌握金属切削过程的基本规律,从而主动地加以有效的控制,对保证加工精度和表面质量,提高切削效率,降低生产成本和劳动强度具有十分重大的意义。总之,金属切削过程的优劣,直接影响机械加工的质量、生产率与生产成本。因此,必须进行深入的研究。 一、切屑形成过程及变形区的划分 1、切削变形金属的切削过程与金属的挤压过程很相似。金属材料受到刀具的作用以后,开始产生弹性变形;虽着刀具继续切入,金属部的应力、应变继续加大,当达到材料的屈服点时,开始产生塑性变形,并使金属晶格产生滑移;刀具再继续前进,应力进而达到材料的断裂强度,便会产生挤裂。 2、变形区的划分大量的实验和理论分析证明,塑性金属切削过程中切屑的形成过程就是切削层金属的变形过程。切削层的金属变形大致划分为三个变形区:第一变形区(剪切滑移)、第二变形区(纤维化)、第三变形区(纤维化与加工硬化)。

金属切削过程分析与控制

金属切削过程分析与控制 1切屑的形成 1、切屑的类型及其分类 由于工件材料不同,切削过程中的变形程度也就不同,因而产生的切屑种类也就多种多样,如下图示。图中从左至右前三者为切削塑性材料的切屑,最后一种为切削脆性材料的切屑。切屑的类型是由应力-应变特性和塑性变形程度决定的。 (1)带状切屑 它的内表面光滑,外表面毛茸。加工塑性金属材料(如碳素钢、合金钢、铜和铝合金),当切削厚度较小、切削速度较高、刀具前角较大时,一般常得到这类切屑。它的切削过程平衡,切削力波动较小,已加工表面粗糙度较小。(2)挤裂切屑 这类切屑与带状切屑不同之处在外表面呈锯齿形,内表面有时有裂纹。这种切屑大多在切削黄铜或切削速度较低、切削厚度较大、刀具前角较小时产生。(3)单元切屑 如果在挤裂切屑的剪切面上,裂纹扩展到整个面上,则整个单元被切离,成

为梯形的单元切屑,如图c所示。切削铅或用很低的速度切削钢时可得到这类切屑。 以上三种切屑只有在加工塑性材料时才可能得到。其中,带状切屑的切削过程最平稳,单元切屑的切削力波动最大。在生产中最常见的是带状切屑,有时得到挤裂切屑,单元切屑则很少见。 假如改变挤裂切屑的条件,如进一步减小刀具前角,减低切削速度,或加大切削厚度,就可以得到单元切屑。反之,则可以得到带状切屑。 这说明切屑的形态是可以随切削条件而转化的。掌握了它的变化规律,就可以控制切屑的变形、形态和尺寸,以达到卷屑和断屑的目的。 如果在挤裂切屑的剪切面上,裂纹扩展到整个面上,则整个单元被切离,成为梯形的单元切屑,如图c所示。切削铅或用很低的速度切削钢时可得到这类切屑。 以上三种切屑只有在加工塑性材料时才可能得到。其中,带状切屑的切削过程最平稳,单元切屑的切削力波动最大。在生产中最常见的是带状切屑,有时得到挤裂切屑,单元切屑则很少见。 假如改变挤裂切屑的条件,如进一步减小刀具前角,减低切削速度,或加大切削厚度,就可以得到单元切屑。反之,则可以得到带状切屑。 这说明切屑的形态是可以随切削条件而转化的。掌握了它的变化规律,就可以控制切屑的变形、形态和尺寸,以达到卷屑和断屑的目的。 (4)崩碎切屑 这是属于脆性材料(如铸铁、黄铜等)的切屑。这种切屑的形状是不规则的,加工表面是凸凹不平的。

第三章 金属切削变形过程题解

第三章金属切削变形过程 3.1 必备知识和考试要点 3,1。1 研究金属切削变形过程的意义和方法 1.明确研究金属切削变形过程的意义。 2.了解金属切削变形过程的实验方法。 3.1.2 金属切削层的变形 1.熟悉金属切削过程中变形区的划分。 2.熟悉各变形区内所发生的变形。 3.掌握相对滑移、变形系数、剪切角的概念。 4.掌握相对滑移与变形系数的关系式。 3.1.3 前刀面的挤压与摩擦及其对切屑变形的影响 1.了解切削过程中作用在切屑上的力。 2.明确剪切角φ与前刀面摩擦系数μ的关系。 3.理解内摩擦的概念。 4.熟悉影响前刀面摩擦的主要因素。 3.1.4 积屑瘤的形成及其对切削过程的影响 1.掌握积屑瘤的形成条件。 2.掌握积屑瘤对切削过程影响的要点。 3.掌握积屑瘤的生长高度与切削速度的关系。 4.掌握抑制积屑瘤的方法。 3.1,5 影响切屑变形的变化规律 1.掌握工件材料、刀具几何角度对切屑变形影响的要点。 2,掌握切削速度对剪切角影响的要点。 3.掌握切削用量三要素切眉变形影响的要点。 4.正确分析切削速度对变形系数影响的规律。 3.1.6 其他 1.了解切屑形状的分类方法及产生的条件。 2.了解切屑卷曲和断屑的机理。 3.2 典型范例和答题技巧 [例3.1] 画图表示切削塑性工件材料时,金属变形区是如何划分的?各变形区中的变形情况如何? [分析]1.变形区的划分。根据教科书中的“金属切削过程中的滑移线和流线示 意图”大致画出三个区域。 2.变形区的变形。由于第一变形区区域宽度很窄,故可看成一个面,被称之为剪切滑移面。显然第一变形区的变形,也就是在切削过程中,金属通过剪切滑移面时发生的剪切滑移变形。这一变形决定了切削的进行,使被切削工件的切削层转变成切屑。第二变形区发生在切屑底层,相对于前刀面的位置。通过第一变形区变形后的金属在转变成切屑沿前刀面流出前发生的进一步变形。此时发生的变形是前刀面作用于切屑的摩擦、挤压变形。第三变形区内的变形是受到刀刃的钝圆部分及后刀面的挤压、摩擦变形。在切削层经第一变形区剪切滑移变形后,若是理想切削刃(rε=0)的切削层,则全部转变成切屑。而实际当中rε≠0,即刀尖钝圆的存在,使部分剪切滑移变形后的金属要挤过刀尖钝圆处,而形成已加工表面。同时,没有发生剪切滑移变形的弹性变形金属在经过钝圆处后,恢复其弹性变形,使部分金属靠紧刀尖处的刀具后刀面。当切削进行时,该表层部分金属与后刀面发生摩擦、挤压变形。 [答案] 变形区的划分例图3.1所示。

第三节-金属切削过程物理现象

第三节金属切削过程物理现象 教学目标:要求学生掌握金属切削过程的基本规律、切削过程中影响加工质量的因素,了解提高加工质量的途径 教学重点:切削过程的基本规律、切削力、切削热、刀具的磨损、刀具的使用寿命 教学难点:切削过程的基本规律、积屑瘤 研究金属切削过程意义 在金属切削过程中,工件材料在刀具的作用下发生弹、塑变形,从而产生: (1)产生切削变形形成切屑。存在卷屑与断屑等问题。 (2)产生切削力。存在工艺系统变形等问题。 (3)产生切削热并使切削区域温度升高,存在加工精度和表面质量等问题 (4)刀具的磨损及其他现象。 研究金属切削过程的目的: 掌握金属切削过程的基本规律, (1)对影响切削过程的各种因数加以有效的控制,保证加工精度和表面质量,提高切削加工效率,降低生产成本和劳动强度 (2)寻找切削加工中存在的问题及解决途径 2 切屑形成过程概述: 金属切削过程的实质:金属材料在刀具的挤压下产生剪切滑移变形 金属切削过程理论的建立基础:实验: (1)侧面方格变形观察法 (2)用快速落刀法获得切屑根部。 通过对这两个实验的观察和分析,切削过程中的切削变形大致可分为三个区域: 1、第一变形区 2、第二变形区 3、第三变形区(插图) 1.第一变形区: 部位:从OA面到OM的AOM区域。 OA:始滑移面; OM:终滑移面 注:OA面、OM面实际上是许多等应力曲面中的两个。 变形过程: 在OA面的前方晶粒首先发生弹性变形,在OA面处晶粒沿OA方向开始发生剪切滑移,到OM面处晶粒的剪切滑移基本完成。故这部分区域也称为剪切滑移变形区。 注:由于始滑移面OA与终滑移面OM之间的距离很小(约0.02~0.2mm),故可用剪切面OM表示。剪切面与切削速度Vc方向之间的夹角称剪切角,用φ来表示。 特点:第一变形区的变形量最大,占总变形量的85%以上,故也称为基本变形区。 2.第二变形区: 部位:切屑与刀具前刀面接触的极薄一层金属内。 原因:第一变形区产生的切屑存在弹性变形,在排出时切屑给刀具的前刀面产生一个正压力,且切削时存在高温,在刀/屑界面之间存在强烈的挤压和摩擦,使切屑底部靠近前刀面处的金属纤维化,其方向基本上和前刀面相平行。 根据变形的特征,这部分也叫做前刀面挤压、摩擦变形区 *、第二变形区的大小,对第一变形区有影响用 第二变形区大剪切角φ小,切削变形大 4.第三变形区: (1)部位:已加工表面上极薄的一层金属层 (2)原因:刀刃有钝圆有一点o:o点上面的金属,进入第一变形区形成切屑; o点下面的金属,被刀刃压入工件表面基体形成已加工表面。该层金属与刀具后刀面接触、产生弹性、塑性变形。塑性变形使晶粒纤维化。

相关主题
文本预览
相关文档 最新文档