当前位置:文档之家› The Evolution of Random Graphs—The Giant Component

The Evolution of Random Graphs—The Giant Component

The Evolution of Random Graphs—The Giant Component
The Evolution of Random Graphs—The Giant Component

TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 286, Number 1, November 1984

THE EVOLUTION OF RANDOM GRAPHS

BY

BéLA BOLLOBáS1

ABSTRACT. According to a fundamental result of Erd?s and Rényi, the struc-

ture of a random graph Gm changes suddenly when M ~ n/2: if M = [cnj

and c < k then a.e. random graph of order n and since M is such that its

largest component has O(logn) vertices, but for c > ^ a.e. G m has a giant

component: a component of order (1 — a c + o(l))n where ac < 1. The aim of

this paper is to examine in detail the structure of a random graph G m when

M is close to n/2. Among others it is proved that if M = n/2 + s, s = o(n)

and s > (log nj'^n2/3 then the giant component has (4 + o(l))s vertices.

Furthermore, rather precise estimates are given for the order of the rth largest

component for every fixed r.

1. Introduction. Let n be a natural number and set N = (£) and V = {1,2,... ,n}. A graph process on V is a sequence {Gt)o such that (i) each Gt is a graph on V with í edges, and (ii) G0 C Gi C ? ?? C Gyv- Let § be the set of all N\ graph processes. Turn Q into a probability space by giving all members of it the same probability and write G for random elements of Q. Furthermore, call Gt the state of the process G = {Gt)o at time t. Clearly a (random) graph process is a Markov chain whose states are graphs on V. This Markov chain is a model of the evolution of a random graph (r.g.) with vertex set V.

The evolution of random graphs was first studied by Erd?s and Rényi [5-7]. They investigated the least values of t for which certain properties are likely to appear, i.e. they studied the stage of the evolution of a r.g. at which a given prop-erty first appears. Erd?s and Rényi proved the surprising fact that most properties studied in graph theory appear rather suddenly: there are functions ti(n) < í2(n) rather close to each other such that almost no Gt, has the property and almost every Gtl has the property. (As customary in the theory of random graphs, the term 'almost every' (a.e.) means 'with probability tending to 1 as n —> oo'.) Perhaps the most interesting results of Erd?s and Rényi concern the sudden change in the structure of Gt around t = n/2.

They proved that if t ~ cn for some constant c, 0 < c < 1/2, then a.e. Gt is such that its largest component has O(logn) vertices: if t ~ cn and c > 1/2 then the largest component of a.e. Gt has (1 — q c + o(l))n vertices, where 0 < ac < 1; and if t = [n/2\ then the maximal size of a component of a.e. Gt has order n2'3. (In fact, Erd?s and Rényi [6, 7] asserted the last statement for t ~ n/2 but, as we

Received by the editors December 3, 1982 and, in revised form, August 15, 1983.

1980 M athematics Subject (Classification. Primary 05C99, 05C30; Secondary 60J99, 62P99.

1 R esearch supported by NSF Grant MCS-8104854.

?1984 American Mathematical Society

0002-9947/84 $1.00 + $ 25 per page

257

258BELA BOLLOBAS

shall see, that is not true.) Furthermore,

1 ~ k-k-i

it=i

so ace2c —> 1 as c —? oo.

The aim of this note is to prove considerably more precise results about the structure of Gt, especially when t is close to n/2. Among others, our results will shed light on the curious double jump described above.

Loosely speaking, we shall show that a.e. G is such that for t > n/2 + (logn)1/2n2/3 the graph Gt has a unique component of order at least n2/3 (the giant component of Gt) and all other components have fewer than n2/3/2 vertices. Furthermore, if n01 < s < n"2, where 2/3 < ?i < ?2 < 1, then Gn/2-s and Gn/2+s have remarkably similar structures. A.e. Gn/2-s has all its vertices on components of order at most n2 (log n)/s and so has Gn/2+s, except for its vertices on its giant component.

The giant component of G…/2+s has (4 + o(l))s vertices. Most vertices are on small components which are trees. The distributions of these tree-components of Gn/2-s and Gn/2+s are vei7 similar, except in Gn/2+s there are about 1 — 2s/n2 times as many of them as in Gn/2-s. As an easy corollary of our results, for t ~ cn, c > 1/2, we obtain precise information about the distribution of the order of the rth largest component of Gt for every fixed r.

2. Definitions and basic facts. In addition to graph processes we shall con-sider two other models of random graphs. The space $(n, M) consists of all graphs with M = M(n) edges and with vertex set V = {1,2,...,n}; the elements of ?(n,M) are equiprobable. The model $(n,p) consists of all 2N graphs with ver-tex set V, in which the probability of a graph with m edges is pmqN~m, where q — í — p. Thus ?(n,p) consists of all graphs with vertex set V in which the edges are chosen independently and with the same probability p = p(n), 0 < p < 1. For basic properties of these models see [1, Chapter 7 and 3]; for undefined terminology in graph theory see [2]. As customary, we shall talk of random graphs G m and Gp, meaning that we consider elements of Q(n,M) and Q(n,p). Note that the prob-ability that a r.g. Gm has Q is the same as the probability that a graph process G = {Gt)Q is such that Gt has Q for t = M. Therefore no confusion will arise from the two slightly different meanings of the symbol Gm- We say that almost every G m (or Gp) has a property Q if the probability that G m (or Gp) has Q tends to 1 as n —? oo. If M is close to pN then the models §(n,M) and ${n,p) are virtually interchangeable. In particular, if pqN —? oo, Q is a convex property (that is if F c G C H and F and H have Q then so does G) and a.e. Gp has Q then so does a.e. Gm, provided \M - pn\ = 0(pqN)1^2. These remarks imply that most of our results could be formulated for any of our models; nevertheless, there are advantages in considering all three.

Denote by C{k,d) the number of connected labelled graphs with k vertices and k + d edges. Thus C(k,d) = 0 if d < 2, C(k, -1) is the number of labelled trees of order k, so C{k, -1) = kk~2, and C(k,0) is the number of connected unicyclic graphs. For d > 0 the function C(k,d) is less simple. It was proved by Katz [9]

THE EVOLUTION OF RANDOM GRAPHS259 and Rényi [10] (and it is also a consequence of more general formulae in [8]) that

r=3j=l ^ '

For d > 1 Wright [11-13] proved a number of results about C(k,d). He showed that for d = oik1'3)

(2) C{k,d) = fakd+^d-^2{l + 0(d3/2 /fc)},

where f? depends only on d. In particular, /o = (tt/8)1/2, /i = 5/24 and /2 = 5\/2/128. We shall not need exact estimates in the vein (2), but we shall need a bound on C(k, d) which is valid for all values of d. To be precise, we need the following inequality from [4]: for every K > 0 there is a constant cc, = cq(K) such that

(3) C(k,d)

for every d, — 1 < d < (2) — fc. In fact, we could manage with considerably cruder bounds than (3) but the calculations become more pleasant if fck+f3?'-1)/2 is multiplied by a factor tending to 0 as d —? oo, rather than by one increasing with d. We could also use the fact that C(fc, d) is long concave as a function of d. This was proved by Odlyzko, answering a question of mine, by making use of the proof in [13].

A component of a graph is said to be a (k,d)-component if it has fc vertices and fc +d edges. We denote by X(k,d) the number of (k,d)-components of a random graph. Note that in §{n,p) the expectation of X(k,d) is

(4) Ep(X(k, d)) = (f\ C(k, d)pk+d(l - p)k(n-k)+(i)-k-d

In particular, the expected number of tree-components of Gp is

(5) Ep(X(k,-l)) = ^V-V-1(l-p)fcn~fc2/2~3fc/2+1-

For the sake of convenience we shall omit the integrality signs throughout the paper. It is easily seen that the validity of the arguments will remain unaffected. Furthermore, our inequalities are asserted to hold if n is sufficiently large. Finally, Ci,c2,... denote positive constants.

3. Gaps in the sequences of components. The key result in proving the sud-den emergence of the giant component and in estimating its order rather precisely is that from shortly after time n/2 most graph processes never have a component of order between n2/3/2 and n2/3. The restriction t < 2n/3 in the result below is only for the sake of convenience, it can be easily removed.

THEOREM 1. Let s0 = (f logn)1/2n2/3 and t0 = n/2 + s0. Then a.e. graph process G — (Gt)o° is such that ifto n2/3.

PROOF. Throughout the proof we shall assume that n2/3/2 < fc < n2/3. De-note by Et(k) the expected number of components of order fc in Gt: Et(k) =

260 BéLA BOLLOBáS

J2{Et(X{k,d)):

-1 < d < (*) - fc}- In order to prove our theorem it suffices to

show that 2n/3 n*'3

?2 £

Et(k) = 0(i).

t=t0 fc=n2/3/2For d > (j) - fc w e have X(k, d) = 0 and for fc + d < t and -1 < d < (k) - fc t he expected number of (fc, d )-components of Gt is

(6) WMt-^IMJ/^J/^).

Indeed, having chosen the k + d edges of a (fc, d )-component, the remaining t — k — d edges have to be chosen from a set of (n^k) edges. Set

lOfc £d=-l

E't(k) = J2 Et{X{k + d)) and E't'(k) = Et{k) = E't{k).We shall estimate separately the sums of the ?£{(fc)'s and E't'(k)'s. In the first case we shall make use of (3), but in the second case it will suffice to bound C(k,d)by the total number of graphs with fc labelled vertices and k + d edges. In both cases the initial difficulty is that (6) is considerably more unpleasant than (4) with p = t/N.

(i) Suppose \n2>3 < fc < n2/3, t0 < t < 2n/3 and -1 < d < lOfc. Then

(7)

( W \;(N\ {t)k+d{n~2^-k-d

yt-k-d)'\tj

(N)t k+d ' (k + d)2\(n2k)t-k-d

s?(?r-{JHrt-ís^

(fcn - fc2/2)2

2A"2

, k+d ( 1_1.2

*C3 {h)k+d exp {-^sr^*+2

- ^r- -2kH/n2}( t \k+d f kn-k2/2 )

^C3U) eXP{-A^}-The last inequality holds since for fixed values of n, fc and d the minimum of (fc 4- d)2/2t + 2k2t/n2 is attained at t = (fc + d)n/2fc and the minimum is exactly 2(fc + d)fc/n.

THE EVOLUTION OF RANDOM GRAPHS 261

Relations (3), (6) and (7) imply that

lOfc / . N fc+d

Setting s = t - n/2 and e = 2a/n (so that t/N is well approximated by (1 + e)/n and e < ~) we find that

{fc2 £2 e3 fc2 efc21

-— +k + ek-—k+—k-k+--efc + -— >

2n 2 3 2n 2n J

< cenfc-^expí-^íl - e)fc| = c6nfc-5/2exp i~s2 (l - *\ fc/n2 j. Consequently

? 4(fc) < c7n-2/3exp{-iS2 (l - ??) …-V3J =nJ/3/2 ^ V n / J

2 -2 n a

fc=n3/3/2

and so

n/6 r,2/3

£ £ f;i(fc)

.=aofc=…V3/2 I ? \ n J )

< ci0n2/3(logn)-3/2exp |-| (^ logn) J

-o(l).

(ii) Suppose ±n2/3 < fc

( (V) W"W n V^'^w'^w

t-k-dj' \tj - \t-k-d) '\tj- \NJ -\n)

and

Therefore by (6)

?***(?)'(Ar

er o'^-

This implies that £"(fc) = o(n-3) and so

2n/3 n2/3

? £ £?(*)= oí?'1).

t=t0 fc=n2/3/2

262 BELA BOLLOBAS

Let us call a component small if it has fewer than n2//3/2 vertices and large if it has more than n2//3 vertices. Theorem 1 states that a.e. graph process is such that for to < t < 2n/3 every component of Gt is either small or large. This will enable us to prove that a.e. graph process such that shortly after time n/2 it has a unique large component (a 'giant' component), and all other components are small. In the sequel we shall need a fairly good upper bound for the variance of the number of small components.

THEOREM 2. Suppose A C N x {NU {0,-1}}, -1 < e = e(n) < n/4 and p= (l + e)/n. Set

Xt = £{fclX(fc,d): (fc,d) G A}, m = Ep(Xl)

and k = max{fc: (fc,d) e A}. If -I < e < -(1 -I- e)2/n then

o2(Xi)

PROOF. By relation (4)

Ep(Xt) = Yl fcl(^G(fc,d)pfc+d(l-P)fc("-fc)+^)-^.

(fc,d)€A ^ '

Also, if (fci,di) and (fc2,d2) are distinct elements of A then

n\ (n — k\

£p(X(fci,d1)(fc2,d2))=(fc )( fc2 MG(fci,di)G(fc2,d2)

(8) .pfci+fcs+di+djQ _p\(k?+k2)(n-kl-k2) + (kl?k2)-k1-k2-dí-d2

= Ep(x(ki,di))Ep(x(k2,d2))/")fc;+t2 (i-p)"fclfca-

(?)fcl(")fc2

Similarly, for (fc, d) € A,

^2^ ^ p /vit jh a xr tvtt, jh* (n)2* n _ ^-*a

(9) Ep(X(k, d)2) < £p(X(fc, d)) + £p(X(fc, d))a,_\/"v (1 - PY

(?)k(?)*

Relations (8) and (9) give

u+^Uki

ep(x2) < Ep(Xi) + > k\k2E(X(k1,di))E(x(k2,d2))

(10)

?/w+?' (l-p)-fclfca: (fc1,di),(fc2,d2)€A

(n)fc.(n)fc2 J Since 1 — y< (1 - x)eI-y whenever 0 < x < y < 1, we find that

(n)

< exp ^ ^ (-j > = exp{-fc!fc2/n}.

THE EVOLUTION OF RANDOM GRAPHS 263 Furthermore,

, 1 + e / 1 + e (1 + e)2)

1 _ p = i-> exp {-— - i-s-i- \ ,

n I n n J

so by (11)

Wfc.+fc? (1 i-fc.fc, < í fclfc2 | (! + £)fcifca ! (l + g)2Mfrl

(?)fci(?)fc2 I n n n2 J

ffcifc2 / (1 + £)2\1 , C/I , ,

= expj -i-i í£ + --'—) > = l + <5(fci,fc2).

Now if £ + (1 + £)2/n < 0 then ?(fci, f c2) < 0 and so by (10)

o-2(Xt) < Ep(X2t) = p2l.

Finally, if -(1 + e)2/n < e and fc2(£ +(1 + e)2/n) < n then

? fci,fc2 < —— l£+-ZT-)-

n \ n /

Therefore (10) gives

cr2(Xt) < E(X2t) + (| + 2(1nh2£)2) ^i^^^W*??*))*^*!?**))!

(fci,di),(fc2,d2)GA} /2£ 2(l + £)2\ 2

Armed with Theorem 2, we can locate the maximal order of a component of Gp having fewer than n2^3 vertices, provided p is too close to the critical value 1/n. As for p > 1/n this will turn out to be the order of the second largest component, we denote it by S(GP):

S(GP) = max{fc: fc =0 or fc < n2'3 and Gp has a component of order fc}.

Theorem 3. Let -\ < e = e(n) <\,p = (\ + e)/n and define

g£{k) =logn - - logfc + fc(log(l + £)-£) + 21og(l/£).

Let fco =fcn(n) and fc2 =fc2(n) < n2^3 be such that

?e(ko) —? oo and ge{k2) -? -co.

Then a.e. Gp is such that S(GP) < fc2 and i/n|£|3(logn)~2 —> oo then a.e. Gp is such that fc0

PROOF, (i) As in the proof of Theorem 1, for fc

£ Ep(X(k,d))

d>-l

264 BéLA BOLLOBáS

Hence the expected number of components of Gp with order between fc2 and n2^3 is at most

…2/3

c, £i?p(X(fc,-l))

k=k?

n2/3 , , fcn-fc2/2

< c2n £ fc~5/2 exP{fc -fc2/2n}(l + £)fc I 1 - — )

k=k3 \ n '

?2/3

< c3n ]T fc_5/2exp{fc(log(l +e) - £)}

k=k2

< c^nk^ exp{fc2(log(l + £) - £)}£~2

= c4exp{i/£(fc2)}.

By our choice of fc2 w e have g£(fc2) —> — oo so almost no Gp has a component whose order is between fc2 a nd n2!3.

(ii) In the proof of the second inequality we may and shall assume that n|£|3(logn)~2 —> oo and fco —? oo. Set ke =■- [8(logn)£_2J, A = {(fc,-1): fco < fc < fc£} and let Xr, be as in Theorem 2. Then g€(ke) —* —oo and

k k

p0 = E(X0) = ? E(Tk) ~ JL ? ^5/2 exp{fc(log(l + e) - £)}?

fc = fco fc = fco

Clearly fc£ > fco +£2 so by the choice of fco w e have po —* oo. Furthermore, we may suppose that p0 does not grow too fast, say po = o(n|£|3(logn)~2). Then

po,ek2/n = O(/x0£(logn)2£"4n_1) = o(l).

Theorem 2 implies that

cr2(X0) zp\/n < p0 + 3£/igfc2/n = /?0(1 + o(l)),

so by Chebyshev's inequality P(X > 0) —? 1. D

Let us state some explicit bounds for S(GP) implied by Theorem 3.

COROLLARY 4. Let p = (1 + e)/n.

(i)IfO<£<\ is fixed then a.e. Gp satisfies S(GP) < 3(logn)£-2,

(ii) If n '° < £ — o((logn)_1) ond w(n) —? oo then

\S(GP) - (2 logn + 6 log£ - 5 loglogn)£-2| < u(n)e~2

for a.e. Gp.

PROOF, (i) All we have to check is that g£(3(logn)£-2) —? -oo.

(ii) Straightforward calculations show that

fc0 =(2 logn + 6 log£ - 5 loglogn - uj(n))e~2

THE EVOLUTION OF RANDOM GRAPHS265 and

k2 — (2 log n -I- 6 log £ - 5 log log n + u>(n))e~2

satisfy the conditions in Theorem 3. G

The corollary above enables us to prove an analog of Theorem 1 for t > |n.

THEOREM 5. A.e. graph process G = {Gt)o is such that for t > 5n/8 the graph Gt has no small component of order at least 100 logn.

PROOF. By Corollary 4 a.e. graph process is such that for some t satisfying 3n/5 < t < 5n/8 the graph Gt has no small component whose order is at least 75 logn. Since the union of two components of order at most a = [100 logn] has order at most 2a < n2/3, the assertion of the theorem will follow if we show that a.e. graph process is such that for t > 3n/5 the graph Gt has no component whose order is at least a and at most 2a. Furthermore, since for t > 2n logn a.e. Gt is connected, it suffices to prove this for t < 2n logn.

Let |n < í < 2n logn and set c = 2t/n. Then the expected number of compo-nents of Gt having order at least a and at most 2a is

Sc.gM^l)'-'^)'-'

2a

fc=a

^n^V^ce1-)",

fc=a

where Co,ci and c2 are absolute constants. Since for c = 1.2 we have c — 1 — l oge > 0.0176, the last expression is at most

canOogn)-3/^"1-7 = o{n~1'2). D

4. The emergence of the giant component. Given a graph process G —(Gt)o°, denote by wt the number of components of Gt and let

ft

V=[jUt(Gt)

t=i

be the partition of V into vertex sets of its components. Note that for every t either Gt and Gt+i define the same partition of V or else wt+i = wt — 1 and the partition defined by Gt is a refinement of the partition defined by Gt+i- Hence if G is such that for t > t0 the graph Gt does not have a component whose order is between n2!3 ?2 and n2/3 then for tr?

266BéLA BOLLOBáS

Moreover, if in such a G the graph Gt has a component which contains all large components of Gto then Gt has a unique component of order at least n2/3 and so has Gf for every f > 1. Therefore in order to establish the existence of the giant component, we have to show that the large components of Gt0 are contained in a single component of Gt for some t > to- Furthermore, we have to estimate the number of vertices on the giant component or, equivalently, the number of vertices on the small components. We start with the second task. For the sake of convenience we take £ — p n — 1 = n '.

THEOREM 6. Let 0 < -y < |, £ = n"1, p = (l + e)/n ond w(n) -? 00. For a graph G, denote by Yi(G) the number of vertices on the small (fc, d)-components with d > 1, by Yr,{G) the number of vertices on the small unicyclic components and by V_i(G) the number of vertices on the small tree-components. Then a.e. Gp is such that

Yi < uj(n)n5~<-1, Y0 < u{n)n2~<

and

F_i = n - 2nx^ + 0{u(n)nil+"l)/2 + (logn)n1"2^).

PROOF. Set fc3 =9(logn)n21. Then for fc3

£2fc/2 - fc£3/3 - fc2£/(2n) > £2fc/3 > 3 logn,

so

n2'3 ("2') in2'3

Y, £ E(kX(k,d)) = O i Y, E(kX(k,-l))

k=fc3d=-l \k=k3

= 0\nY k'3/2 exp {-£2fc/2 + fc£3/3 + fc2£/(2n)}

= Oln-2 Y k~3/A =o(n-2).

V k=k3 J

This shows that in our proof we may replace Y? by

Yi= £fcX(M), i = -1,0,1-

fc

(i) Note first that by (3)

\fcn-fc2/2

E(Yi) = O l Y k(nk)C^ l)Pk+1(l -V?

0\n-x £fc3/2exp{-£2fc/2}

k

since for 1 < fc < fc3 w e have

fc£3/3 + fc2£/(2n) =0(l).

THE EVOLUTION OF RANDOM GRAPHS 267

Hence

£(y1) = 0(n-1£-5) = 0(n5'?-1),

implying the first assertion.

(ii) The expectation of Fo is easily estimated:

E(F0)- Y fc£(*(M))

k

fcn-fc2/2+3fc/2

-L^^

exp{-fc£2/2}

U°°exp{"fc

?a

Therefore, by Chebyshev's inequality, F0 < ui(n)n21 for a.e. random graph Gp.

(iii) We shall estimate E(Y-i) rather precisely and then we shall make use of Theorem 2 to conclude that for a.e. Gp the variable Y_i is rather close to its expectation.

Set p' = (1 — £)/n and write E' for the expectation in ${n,p'). We shall exploit the fact that E and E' are rather closely related.

First of all, calculations analogous to those in (i) and (ii) show that

E'{n-Y0-Y-i)=o(n2'>)

and E'{Y0) ~ ±n2^.

Hence E!(Y-i) = n - \n* - o{n2"i).

In order to pass from £"(F_i) to E[Y-i), note that for fc < fc3 w e have

/. . \ fc-l /, z, , \ / \ fcn-fc2/2+3fe/2-l E,x(*,-1,,Wx(t,-i… = (i±|) (!={£$)

= exp {2(fc - 1)£ - (2fcn - fc2)£/n + 0((logn)n-2"')}

= exp { -2e + fc2£/n + 0((logn)n-2^)}

= 1 - 2£ + 0(fc2£/n) + 0((logn)n-2^).

Consequently

(12)£(F_i) - (1 - 2£)E'(Y-i) + OUlognjn1-2^)

= n - 2n1""' + 0{n2-<) + 0({logn)nx-2~<)

+ 0(£^fc1/2exp{-fc£2/2})

= n - 2n^ + 0(n2^ + (logn)n1-2^).

268BéLA BOLLOBáS

Finally, in order to apply Theorem 2 we have to estimate the following expectation:

E ( Y k2X(k,-\) j = O I n Y k~1/2 e xp{-fc£2/2} j- Oin1^).

\k

By Theorem 2 we have

(13) |F_i - £(Y_i)| < w(n)n<1+^/2.

Relations (12) and (13) imply that

Y-i = n - 2n1-'1 + 0(u)(n)n(l+~

as claimed. D

Let us establish now the emergence of the giant component shortly after time n/2.

THEOREM 7. A.e. graph process G = (Gt)o' is such that for every t > t\ = n/2 + (logn)1/2n2/3 the graph Gt has a unique component of order at least n2/3. The other components of Gt have at most n2/3/2 vertices each.

PROOF. As before, we call a component small if it has fewer than n2/,3/2 ver-tices, and large if it has at least n2/3 vertices. By Theorem 1 a.e. graph process G is such that for t > to — n/2 + so every component of Gt is either small or large, where to is as defined in Theorem 1. Let Ci, C2,..., C? be the large components of Gt0 in such a G and suppose in some Gt, t > to, all the Cj's are contained in the same component. Then this component of Gt is the unique large component and for V > t the graph Gf has also a unique large component. Indeed, as t increases from io, a vertex x GV can become a vertex of a large component only if that com-ponent contains a C?, for the union of two small components contains fewer than n2/3 vertices. Consequently our theorem will follow if we show that a.e. G is such that for some t between to and ti all large components of Gto are contained in the same component of Gt. Imitating the proof of Theorem 6, one can show that a.e. G is such that Gto has at least 2ao > (logn)1/2^/3 vertices on its large components. (In fact, the expected number of these vertices is about 4ao.) Therefore one can find disjoint subsets Vi, V2,..., Vm of V(Gto) = V such that

m>(logn)1/2/2, |Vi|>n2/3, ?=l,...,m,

each Vi is contained in some V(Cj) and

m (

\JVi~\JViCj),

t=l j=l

where Ci,..., C? are the large components of Gto.

Set p — n~4/3 and denote by Hp the random graph obtained from Gto by adding to it edges independently and with probability p. Then a.e. Hp has at most to + n2/3 < ?i edges so it suffices to show that (J^i Vj is contained in a single component in a.e. Hp.

THE EVOLUTION OF RANDOM GRAPHS 269 What is the probability that for a given pair {i,j), 1 < i < j < m, some edge of Hp joins Vi to Vj? It is clearly at least

l-(l-p)n"/3 >l-e-x > 1/2.

Hence the probability that in Hp all V?'s are contained in the same component is at least the probability that an element of G(m, 5) is connected. Since m —? 00, this probability tends to 1. (See [5 or 2, p. 140] for considerably stronger results.) This completes our proof. D

Combining Theorems 3, 6 and 7, we obtain rather precise information about the orders of the largest components. Since the property of having at most x vertices on the small tree components is monotone, and so are the properties of having at least y vertices on the large components and at most z vertices on the small components which are trees or unicyclic graphs, using [2, Theorem 8, p. 133] we may pass from the model §(n,p) to the model §(n, M). Denote by LT{G) the rth largest order of a component of a graph G.

THEOREM 8. Let 0 < 7 < |, a = ?nl~~< and t = n/2 + s. Then for every m G N and w(n) —+00 a.e. Gt is such that

Li(G) = 4a + 0{u>{n)n/sx/2 + (logn)a2/n)

and

fco

where fco and fc2 are as in Theorem 3. D

Before extending the range of t in the theorem above, we investigate the distri-bution of the small components of Gp in the case when p is not as close to 1/n as has been required so far.

5. Components of order less than n2//3. First we consider the small com-ponents of Gp with p < 1/n.

THEOREM 9. Let 0 < e = e(n) = o(l) be such that £nn —* c x> for every fixed n > 0 and set p = (1 — £)/n. Given A G R+, choose l\ = l\(n) in such a way that p(n,£,lx) = (2/7r)1/2nZA-5/2((l -e)e')h£-7 - A

and denote by Z = Z(GP) the number of components of Gp having at least l\ vertices. Then the distribution of Z tends to P\, the Poisson distribution with mean A.

PROOF. The assumptions imply easily that l\ —? 00, l\ = o(nn) for every ? > 0 and the expected number of vertices on components containing cycles is bounded. Hence we may assume that Z is the number of tree-components of order at least l\. Since also l\£2 —> 00, a trite calculation shows that

e(z) = y Ewk> -1)) ~ 4= ? fc-5'2?1 - £y)k

?si ^27r f etr,

i;5/2((l - £)Ofc/(l - (1 - £)e£) ~ p(n, £, /A) ~ A.

270BéLA BOLLOBáS

Furthermore, by making use of l\ = o(nn) it is easily shown that for every r € N the rth factorial moment

Er{Z) = E(Z{Z-l)---(Z-r + l))

converges to Ar. Hence Z —> P\, as claimed. D

COROLLARY 10. Let £, p and l\ be as in Theorem 9, and let ui(n) —? oo. Then for every m G N a.e. Gp satisfies

h - w(n)/e < Lm{Gp) < ??< Li(Gp)

PROOF. It is easily seen that for every fixed A we have

lx ~ (logn)/(e-log(l/(l-e))) ~2(logn)/£ and /i-w(n)/e < l\ < li+u(n)/e. Hence the assertion follows from Theorem 9. D

If p = c/n for some constant c < 1 then we need not be able to find numbers l\ = l\{n) ensuring that p(n, 1 —c, l\) —> A. Nevertheless, with some simple changes the results above carry over to this case without any difficulty. In fact, our task is easier since the tree-components we have to consider have only O(logn) vertices. Thus one arrives at the following result of Erd?s and Rényi [6, p. 49].

If 0 < c < 1 is a constant, p = c/n, a — c — 1 — l oge,

fco =- < l og n - - log log n - l0 > G N and l0 = 0(1)

then the number of components of Gp with at least fco v ertices has asymptotically Poisson distribution with mean

1 ?5/

2 in

cy/2^ 1 - e-°

Though the simple method of means is sufficient to prove this assertion, we would like to point out that recently Barbour [1] applied a more sophisticated and powerful method to prove that the number of certain components has asymptotically Poisson distribution.

Let us turn to the case p = (1 + £)/n > 1/n. The proof of Theorem 6 is easily adapted to show that if £ = o(l) then the distribution of the number of components of order less than n2/3 in Gp is almost the same as the distribution in GP' with p' = (l-£)/n. Furthermore, it is easily seen that £ can be rather small for a slightly weaker version of Theorem 6 to remain valid. As in Theorem 8, we state the result for Gt rather than Gp.

THEOREM 11. Lett = n/2 + a, a = o(n), an"2/3(logn)2 -* oo, £ = 2a/n and for A > 0 choose l\ = l\{n) in such a way that

(2/7r)1/2n/;5/2((l - £)e£)^£-2 -? A.

Then for w(n) —? oo and m G N a.e. Gt is such that

Li(Gt) = (4 + o(l))a,

h - w(n)/e < Lm(Gt) < < L2(Gt) < h + w(n)/e,

Li(G) = (l + o(l))/i, t = 2,...,m.

If En11 -> oo for every n > 0 then Z* -i Pa, where Z* = max{m- 1: Lm > l\}. D

THE EVOLUTION OF RANDOM GRAPHS271

6. The small components after time n/2. As t increases, our task of locating the orders of the components of G? becomes easier. Indeed, if c > 1 is a constant and t — cn/2 = o(n) then the expected number of vertices on components containing cycles and having fewer than n2/3 vertices is bounded and so is the expected number of vertices on components whose order is between ci logn and n2//3. Hence if u>(n) —? oo then a.e. Gt is such that with the exception of uj(n) vertices all vertices belong to the giant component or else to trees of order at most ci logn. Now the expectation of the number of vertices on these trees is about C2n and by a slight variant of Theorem 2 the variance is 0(n(logn)2). Therefore we are led to the following result.

THEOREM 12. Let c > 1 be a constant and let t = [cn/2j, w(n) —? oo. Then a.e. Gt is such that, with the exception of at most w(n) vertices, all vertices of Gt belong to the giant component or to components which are trees. Furthermore,

Li(Gt)-n 1-TV(C^

< ?jj(n)nx'2 logn

c^ fc!

fc=i

and if ko = ?{logn- § loglogn-/o} G N, where a = c- 1 -loge and Iq = 0(1), then Z* = max{m— 1: Lm(Gt) > fco} bas asymptotically Poisson distribution with mean

A~——-el°. D

cs/2?l-e~a

In the range of t covered by Theorem 11 the giant component increases about four times as fast as t. Another way of proving Theorem 12 would be to establish this fact first and then use it to deduce the assertion about the size of the giant component. What is the expectation of the increase of Li(Gt) as í changes to t + 1? The probability that the (t + l)st edge will join the giant component to a component of order Lj is about LiLj/Q). Hence the expectation is about

n2/3 / x /. x fc-1 / , , x fcn-fc2/2

n2/3

~(2L1/n2)^-^=fc1/2exp{-£2fc/2}

fc=i v

~(2V/a(Ll/n) ?°° xxl2e~^l2dx

= (^y (Li/n)r Q) {£2/2)-x'2 = 2Li/{£n) = LJs.

From this one can deduce that if t is o(n) but not too small then Li(i) =?i(n/2 + a) ~ Cia. By considering the crude order of Li(Gt) as t ceases to be o(n), one can show easily that the constant ci is 4.

Using Theorem 2, for t > (l + £)n/2 it is easy to obtain fairly precise information about the distribution of the orders of the components of Gt- We shall do a little more than that: we shall prove some results about all graphs G( of a graph process after time (1 + £)n/2. Let us start with a rather crude result.

272BêLA BOLLOBáS

THEOREM 13. Let £ > 0 be fixed and for c0 = c0(n) > I + £ set ci = 3/(co — 1 — l og Co). Then a.e. graph process G = (Gt)o ?S such that for t > con/2 the graph Gt does not contain a component whose order is between ci logn and n2'3.

PROOF. Let co < c < 3 logn and set p = c/n. By inequality (3) the expected number of components of Gp whose order fc satisfies fci = [ci log nj < fc < k2 = [n2/3\ is at most

-oix)t(t)^&-'(i-T'k)

k=ki v '

= o(n)cex~c ' = o(n~2).

Since the property of containing a component of order fc is convex and a.e. graph process becomes connected by time n log n, this implies our assertion. D THEOREM 14. (i) Let c0 > 1 be fixed. Then a.e. G is such that for t > c0n/2 the graph Gt does not contain a (fc, d)-component with d > 1 ond fc < n2?3'.

(ii) For w(n) -?oo a.e. G is such that for t > w(n)n every component of Gt, with the exception of its giant component is a tree.

PROOF. Since for t > n log n a.e. Gt is connected, it suffices to restrict our attention to the range con/2 < t < n logn. Furthermore, by Theorem 11 it suffices to consider components of order at most fci = [ci lognj, where

ci =3/(c0 - 1 - logc0).

Note that the expected number of (fc, d)-components with 4 < fc < fci and d > 1 a graph process contans between times to = [con/2J and ?i = [2n lognj is at most

t=t0k=4 v/d>lv/ N/ N '

On the other hand, it is easily seen (cf. Theorem 9c of [6]) that for to < t < ti = [n lognj and 1 < fc < fci the life-time of a component of order fc in Gt has approximately exponential distribution with mean n/(2fc). In particular, a component of order fc in Gt will be a component of Gt+i,Gt+2,... ,Gt+i with probability at least \, where I = [n/(3fci)J. Consequently the probability that G is such that there is a time t with (0 < t < tx for which Gt has a (fc, d)-component with 4 < fc < fci and d > 1 is at most

0(l)(2//) = 0((logn)/n).

This proves (i). Assertion (ii) is proved analogously. D

Let fc = O(logn), A = {(fc,d): 1 < fc < fc, d = —1 o r 0}, and define the Xt as in Theorem 2. Then for every fixed i there is a constant d, such that for

THE EVOLUTION OF RANDOM GRAPHS 273

n/2

?? - *?<*?> s?1 (:y-2+- (§r (? - s )""~" s *■"-*and, using a slight variant of Theorem 2,

4i a2(Xi) < p2x + —?2+i/n < d,p2l.

m Consequently by Chebyshev's inequality

(14) Pt(\Xi(Gt)-K\>u)<^.

This relation enables us to deduce uniform bounds for the X?. Here we state only a rather simple result about wt = w(Gt), the number of components of Gt.

THEOREM 15. Suppose 0 < £, w(n) —> oo and c(n) = logn-u;(n)

—? oo. Then

a.e. G is such that for every t satisfying n <2t < c(n)n we have (15)

\wt - n?{2t/n)\ < £n?{2t/n),

where i ~ kk-2

PROOF. Let n >0 and set tj = L(l+jn)n/2j, j = 0,1,... ,m = [c(n)/nj. Put fc = [(3 logn)/(n - log(l + n))] and let A and Xi be as above. Then a.e. G is such that for tj < í < tm we have wt = w(Gt) = Xo(Gt) +1. This implies that it suffices to estimate Ao(Gt) instead of w(Gt).

It is easily seen that if n > 0 is sufficiently small then for n/2 < t' < t < c(n)n/2

(16)

\Et,{Xo)-n?(2t/n)\<£-n?2t/n

and (17) \?(2t/n)-?(2t'/n)\<-t?(2t/n).

25d0 . 50d0 _, ■< —=— n eJ '.E2Note that ?(c) > ex~c. Hence by (14) and (16)

Ptj(|X0(GtJ-^(Xo)|>^tj(Xo))<^^

Since X!7Li e3T} — °(l)i a-e- G is such that

(18) \X0(Gtj) - Etj(X0)\ < 6-Et](X0)

for every j = l,...,m. A.e. G is such that u;t+i(G) < wt(G) if t > ii so a.e. G is such that Xo = Xo(Gt) is a monotone decreasing function of t for t > t?. Therefore relations (16), (17) and (18) imply that a.e. G satisfies (15) if ti < t < c(n)n/2.

Finally, if n is sufficiently small then a.e. G is such that \wt - n/2| < £n/5 and \?(2t/n) - §| < e/5 whenever n/2 < t < ij, so (15) holds in this range as well.

274BêLA BOLLOBáS

In Theorem 15 the approximation of Wt becomes more precise as t grows. From inequality (14) one can also obtain approximations to the same degree for every value of t. For example, it is easy to show that if w(n) —? oo then G is such that

fci

MG)-n4t"

k=\k\

2_/2t

\n

I -e-2t/"

for every t > n/2.

References

< u;(n)n2/3

10. ii.

12.

13.A. D. Barbour, Poisson convergence and random gmphs, Math. Proc. Cambridge Philos. Soc.

92 (1982), 349-359.

B. Bollobas, Graph theory—An introductory course, Graduate Texts in Math., Springer-Verlag, New York, Heidelberg and Berlin, 1979.

_, Random graphs, Combinatorics (H. N. V. Temperley, ed.), London Math. Soc. Lecture Notes Series, vol. 52, Cambridge Univ. Press, New York, 1981, pp. 80-102.

_, The evolution of sparse gmphs, Graph Theory and Combinatorics (B. Bollobas, ed.), Academic Press, London, 1984.

P. Erd?s and A. Rényi, On random g raphs. I, Publ. Math. Debrecen 6 (1959), 290-297.

_, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sei. 5 (1960), 17-61. _, Onthe evolution o f random graphs, Bull. Inst. Internat. Statist. Tokyo 38 (1961), 343-347.

C. W. Ford and G. E. Uhlenbeck, Combinatorial problems in the theory of graphs. Proc. Nat. Acad. Sei. U.S.A. 43 (1957), 163-167.

L. Katz, Probability of maecomposabikty of a random mapping function, Ann. Math. Statist. 26 (1955), 512-517.

A. Rényi, On connected g mphs. I, Publ. Math. Inst. Hungar. Acad. Sei. 4 (1959), 385-387.

E. M. Wright, Asymptotic enumeration of connected graphs, Proc. Roy. Soc. Edinburgh Sect. A

68 (1968/69), 298-308.

_, The number of connected sparsely-edged graphs. II: Smooth graphs and blocks, J. Graph Theo.-y 2 (1978), 299-305.

_, The number of connected sparsely-edged graphs. Ill: Asymptotic results, J. Graph Theory 4 (1980), 393-407.

Department of Mathematics, Louisiana State University, Baton Rouge, louisiana 70803

实验5 JAVA常用类

山西大学计算机与信息技术学院 实验报告 姓名学号专业班级 课程名称 Java实验实验日期成绩指导教师批改日期 实验5 JAVA常用类实验名称 一.实验目的: (1)掌握常用的String,StringBuffer(StringBuilder)类的构造方法的使用;(2)掌握字符串的比较方法,尤其equals方法和==比较的区别; (3)掌握String类常用方法的使用; (4)掌握字符串与字符数组和byte数组之间的转换方法; (5)Date,Math,PrintWriter,Scanner类的常用方法。 二.实验内容 1.二进制数转换为十六进制数(此程序参考例题249页9. 2.13) 程序源代码 import java.util.*; public class BinToHexConversion{ //二进制转化为十六进制的方法 public static String binToHex(String bin){ int temp; //二进制转化为十六进制的位数 if(bin.length()%4==0) temp = bin.length()/4; else temp = bin.length()/4 + 1; char []hex = new char[temp]; //十六进制数的字符形式 int []hexDec = new int[temp];//十六进制数的十进制数形式 int j = 0; for(int i=0;i=0&&dec<10) return (char)('0'+dec-0); else if(dec>=10&&dec<=15) return (char)('A'+dec-10); else return '@'; }

尊重的素材

尊重的素材(为人处世) 思路 人与人之间只有互相尊重才能友好相处 要让别人尊重自己,首先自己得尊重自己 尊重能减少人与人之间的摩擦 尊重需要理解和宽容 尊重也应坚持原则 尊重能促进社会成员之间的沟通 尊重别人的劳动成果 尊重能巩固友谊 尊重会使合作更愉快 和谐的社会需要彼此间的尊重 名言 施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺术,也是仁爱的情操。—刘墉 卑己而尊人是不好的,尊己而卑人也是不好的。———徐特立 知道他自己尊严的人,他就完全不能尊重别人的尊严。———席勒 真正伟大的人是不压制人也不受人压制的。———纪伯伦 草木是靠着上天的雨露滋长的,但是它们也敢仰望穹苍。———莎士比亚 尊重别人,才能让人尊敬。———笛卡尔 谁自尊,谁就会得到尊重。———巴尔扎克 人应尊敬他自己,并应自视能配得上最高尚的东西。———黑格尔 对人不尊敬,首先就是对自己的不尊敬。———惠特曼

每当人们不尊重我们时,我们总被深深激怒。然而在内心深处,没有一个人十分尊重自己。———马克·吐温 忍辱偷生的人,绝不会受人尊重。———高乃依 敬人者,人恒敬之。———《孟子》 人必自敬,然后人敬之;人必自侮,然后人侮之。———扬雄 不知自爱反是自害。———郑善夫 仁者必敬人。———《荀子》 君子贵人而贱己,先人而后己。———《礼记》 尊严是人类灵魂中不可糟蹋的东西。———古斯曼 对一个人的尊重要达到他所希望的程度,那是困难的。———沃夫格纳 经典素材 1元和200元 (尊重劳动成果) 香港大富豪李嘉诚在下车时不慎将一元钱掉入车下,随即屈身去拾,旁边一服务生看到了,上前帮他拾起了一元钱。李嘉诚收起一元钱后,给了服务生200元酬金。 这里面其实包含了钱以外的价值观念。李嘉诚虽然巨富,但生活俭朴,从不挥霍浪费。他深知亿万资产,都是一元一元挣来的。钱币在他眼中已抽象为一种劳动,而劳动已成为他最重要的生存方式,他的所有财富,都是靠每天20小时以上的劳动堆积起来的。200元酬金,实际上是对劳动的尊重和报答,是不能用金钱衡量的。 富兰克林借书解怨 (尊重别人赢得朋友)

三角函数,反三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2 A )= A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB 积化和差 sinasinb = - 21[cos(a+b)-cos(a-b)] cosacosb = 2 1 [cos(a+b)+cos(a-b)]

那一刻我感受到了幸福_初中作文

那一刻我感受到了幸福 本文是关于初中作文的那一刻我感受到了幸福,感谢您的阅读! 每个人民的心中都有一粒幸福的种子,当它拥有了雨水的滋润和阳光的沐浴,它就会绽放出最美丽的姿态。那一刻,我们都能够闻到幸福的芬芳,我们都能够感受到幸福的存在。 在寒假期间,我偶然在授索电视频道,发现(百家讲坛)栏目中大学教授正在解密幸福,顿然引起我的好奇心,我放下了手中的遥控器,静静地坐在电视前,注视着频道上的每一个字,甚至用笔急速记在了笔记本上。我还记得,那位大学教授讲到了一个故事:一位母亲被公司升职到外国工作,这位母亲虽然十分高兴,但却又十分无奈,因为她的儿子马上要面临中考了,她不能撇下儿子迎接中考的挑战,于是她决定拒绝这了份高薪的工作,当有人问她为什么放弃这么好的机会时,她却毫无遗憾地说,纵然我能给予儿子最贵的礼物,优异的生活环境,但我却无当给予他关键时刻的那份呵护与关爱,或许以后的一切会证明我的选择是正确的。听完这样一段故事,我心中有种说不出的感觉,刹那间,我仿拂感觉那身边正在包饺子的妈妈,屋里正在睡觉的爸爸,桌前正在看小说的妹妹给我带来了一种温馨,幸福感觉。正如教授所说的那种解密幸福。就要选择一个明确的目标,确定自已追求的是什么,或许那时我还不能完全诠释幸福。 当幸福悄悄向我走来时,我已慢慢明白,懂得珍惜了。 那一天的那一刻对我来说太重要了,原本以为出差在外的父母早已忘了我的生日,只有妹妹整日算着日子。我在耳边唠叨个不停,没想到当日我失落地回到家中时,以为心中并不在乎生日,可是眼前的一切,让我心中涌现的喜悦,脸上露出的微笑证明我是在乎的。

爸爸唱的英文生日快乐歌虽然不是很动听,但爸爸对我的那份爱我听得很清楚,妈妈为我做的长寿面,我细细的品尝,吃出了爱的味道。妹妹急忙让我许下三个愿望,嘴里不停的唠叨:我知道你的三个愿望是什么?我问:为什么呀!我们是一家人,心连心呀!她高兴的说。 那一刻我才真正解开幸福的密码,感受到了真正的幸福,以前我无法理解幸福,即使身边有够多的幸福也不懂得欣赏,不懂得珍惜,只想拥有更好更贵的,其实幸福比物质更珍贵。 那一刻的幸福就是爱的升华,许多时候能让我们感悟幸福不是名利,物质。而是在血管里涌动着的,漫过心底的爱。 也许每一个人生的那一刻,就是我们幸运的降临在一个温馨的家庭中,而不是降临在孤独的角落里。 家的感觉就是幸福的感觉,幸福一直都存在于我们的身边!

JAVA中常用类的常用方法

JAVA屮常用类的常用方法 一.java?丨ang.Object 类 1、clone()方法 创建丼返M此对象的一个副木。要进行“克隆”的对象所属的类必须实现https://www.doczj.com/doc/09496287.html,ng. Cloneable 接口。 2、equals(Objectobj)方法 0 功能:比较引用类型数据的等价性。 0 等价标准.?引用类型比较引用,基木类型比较值。 0 存在特例.?对File、String、Date及封装类等类型来说,是比较类型及对象的内稃而+ 考虑引用的是否为同一实例。 3、finalize〇方法 当垃圾丨"丨收器确定>(、存在对该对象的更多引用时,由对象的垃圾丨"丨收器调用此方法。 4、hashCode〇方法返 回该对象的哈希码值。 5、notify〇方法 唤醒在此对象监视器上等待的中?个线祝。 6、notifyAII〇方法 唤醒在此对象监视器上等待的所有线程= 7、toString()方法 返W该对象的字符串表示。在进行String与其它类型数据的连接操作时,&动调用tostringo 方法。可以根据耑要重写toStringO方法。 8、wait()方法 在其他线程调用此对象的n〇tify()方法或notifyAIIO方法前,异致当前线程等待。 二、字符串相关类 I String 类 charAt(int index)返回指定索引处的char值。compareTo{String anotherString)按字

典顺序比较两个字符串。compareTolgnoreCase(Stringstr)按字典顺序比较两个字 符串,不考虑人小写。concat(String str)将指定字符串连接到此字符串的结尾。 endsWith(String suffix)测试此字符串是否以指定的〗?缀结束。equals{Object anObject)将此字符串与指定的对象比较。 equalslgnoreCase(String anotherString)将此String 与另一个String 比较,考虑人小'与’。indexOf(int ch)返H指定字符在此字符串屮第一次出现处的索引。 indexOf(String str)返回第一次出现的指定子字符串在此字符串屮的索引, lastlndexOf(intch)返回指定字符在此字符串中最后??次出现处的索引。 length()返|n丨此字符串的长度。 replace(char oldChar, char newChar) 返回一个新的字符串,它是通过用newChar替换此字符串中出现的所有oldChar得到的。 split(String regex)根据给定正则表达式的匹配拆分此字符串。startsWith{String prefix)测试此字符 串是否以指定的前缀开始。substring(int beginlndex) 返回一个新的字符串,它是此字符串的一个子字符串。该子字符串始于指定索引处的字符,一直到此字符串末尾。 substring(int beginlndex, int endlndex) 返回一个新字符串,它是此字符串的一个子字符串。该子字符串从指定的beginlndex 处开始,一直到索引endlndex-1处的字符。 t〇CharArray()将此字符串转换为一个新的字符数组。

反三角函数公式(完整)

反三角函数 分类 反正弦 反余弦 余弦函数x y cos =在]0[π,上的反函数,叫做反余弦函数。记作x cos arc ,表示一个 余弦值为x 的角,该角的范围在]0[π,区间内。定义域]11[, - , 值域]0[π,。 反正切 反余切 余切函数y=cot x 在)0(π,上的反函数,叫做反余切函数。记作x arc cot ,表示一个余切值为x 的角,该角的范围在)0(π,区间内。定义域R ,值域)0(π,。

反正割 反余割 运算公式 余角关系 2 arccos sin arc π = +x x 2 cot tan arc π =+x arc x 2 csc ec a π = +x arc x rcs 负数关系 x x sin arc )sin(arc -=- x x rc arccos )cos(a -=-π x x tan arc )tan(arc -=- x rc x c cot a )(ot arc -=-π

x rc x sec a )(arcsec -=-π x arc x c sec )(sc arc -=- 倒数关系 x arc x csc )1 arcsin(= x arc x sec )1 arccos(= x arc x arc x cot 2cot )1arctan(-==π x x x arc arctan 23arctan )1cot(-=+=ππ x x arc arccos )1 sec(= x x arc arcsin )1 csc(= 三角函数关系

加减法公式 1. ) 10,0()11arcsin(arcsin arcsin ) 10,0()11arcsin(arcsin arcsin ) 10()11arcsin(arcsin arcsin 22222 2 222222>+<<-+---=+>+>>-+--=+≤+≤-+-=+y x y x x y y x y x y x y x x y y x y x y x xy x y y x y x ,,或ππ 2. ) 10,0()11arcsin(arcsin arcsin ) 10,0()11arcsin(arcsin arcsin ) 10()11arcsin(arcsin arcsin 22222 2 222222>+><-----=->+<>----=-≤+≥---=-y x y x x y y x y x y x y x x y y x y x y x xy x y y x y x ,,或ππ 3. ) 0() 11arccos(2arccos arccos ) 0() 11arccos(arccos arccos 2 2 22<+----=+≥+---=+y x x y xy y x y x x y xy y x π 4. ) () 11arccos(arccos arccos ) () 11arccos(arccos arccos 2 2 22y x x y xy y x y x x y xy y x <--+=-≥--+-=- 5. ) 1,0(1arctan arctan arctan ) 1,0(1arctan arctan arctan ) 1(1arctan arctan arctan ><-++-=+>>-++=+<-+=+xy x xy y x y x xy x xy y x y x xy xy y x y x ππ

关于我的幸福作文八篇汇总

关于我的幸福作文八篇汇总 幸福在每个人的心中都不一样。在饥饿者的心中,幸福就是一碗香喷喷的米饭;在果农的心中,幸福就是望着果实慢慢成熟;在旅行者的心中,幸福就是游遍世界上的好山好水。而在我的心中,幸福就是每天快快乐乐,无忧无虑;幸福就是朋友之间互相帮助,互相关心;幸福就是在我生病时,母亲彻夜细心的照顾我。 幸福在世间上的每个角落都可以发现,只是需要你用心去感受而已。 记得有一次,我早上出门走得太匆忙了,忘记带昨天晚上准备好的钢笔。老师说了:“今天有写字课,必须要用钢笔写字,不能用水笔。”我只好到学校向同学借了。当我来到学校向我同桌借时,他却说:“我已经借别人了,你向别人借吧!”我又向后面的同学借,可他们总是找各种借口说:“我只带了一枝。”问了三四个人,都没有借到,而且还碰了一鼻子灰。正当我急的像热锅上的蚂蚁团团转时,她递给了我一枝钢笔,微笑的对我说:“拿去用吧!”我顿时感到自己是多么幸福!在我最困难的时候,当别人都不愿意帮助我的时候,她向我伸出了援手。 幸福也是无时无刻都在身旁。 当我生病的时候,高烧持续不退时,是妈妈在旁边细心

的照顾我,喂我吃药,甚至一夜寸步不离的守在我的床边,直到我苏醒。当我看见妈妈的眼睛布满血丝时,我的眼眶在不知不觉地湿润了。这时我便明白我有一个最疼爱我的妈妈,我是幸福的! 幸福就是如此简单!不过,我们还是要珍惜眼前的幸福,还要给别人带来幸福,留心观察幸福。不要等幸福悄悄溜走了才发现,那就真的是后悔莫及了! 这就是我拥有的幸福,你呢? 悠扬的琴声从房间里飘出来,原来这是我在弹钢琴。优美的旋律加上我很强的音乐表现力让一旁姥爷听得如醉如痴。姥爷说我是幸福的,读了《建设幸福中国》我更加体会到了这一点。 儿时的姥爷很喜欢读书,但当时家里穷,据姥爷讲那时上学可不像现在。有点三天打鱼两天晒网,等地里农活忙了太姥爷就说:“别去念书了,干地里的活吧。”干活时都是牛马拉车,也没机器,效率特别低。还要给牲口拔草,喂草,拾柴火,看书都是抽空看。等农闲时才能背书包去学校,衣服更是老大穿了,打补丁老二再接着穿,只有盼到过年时才有能换上件粗布的新衣服。写字都是用石板,用一次擦一次,那时还没有电灯,爱学习的姥爷在昏暗的煤油灯下经常被灯火不是烧了眉毛就是燎了头发。没有电灯更没有电视,没有电视更没有见过钢琴,只知道钢琴是贵族家用的。

小学生作文《感悟幸福》范文五篇汇总

小学生作文《感悟幸福》范文五篇 小草说,幸福就是大地增添一份绿意;阳光说,幸福就是撒向人间的温暖;甘露说,幸福就是滋润每一个生命。下面是为大家带来的有关幸福650字优秀范文,希望大家喜欢。 感悟幸福650字1 生活就像一部壮丽的交响曲,它是由一篇一篇的乐章组成的,有喜、有怒、有哀、有乐。每一个人都有自己丰富多彩的生活,我也有自己的生活。我原本以为,吃可口的牛排,打电脑游戏,和朋友开心玩乐就是幸福。可是,我错了,幸福并不仅仅如此。 记得有一次,我放学回到家里放下书包就拿起一包饼干来吃。吃着吃着,突然我觉得牙齿痛了起来,而且越来越痛,痛得我连饼干也咬不动了。我放下饼干,连忙去拿了一面镜子来看。原来这又是那一颗虫牙在“作怪”。“哎哟哟,哎哟哟,痛死我了……”我不停地说着。渐渐地,那牙疼得越来越厉害,疼得我坐立不安,直打滚。后来在妈妈的陪伴下去了医院,治好了那颗虫牙。跨出医院大门时,我觉得心情出奇的好,天空格外的蓝,路边的樟树特别的绿,看什么都顺眼,才猛然一悟,幸福是简单而平凡的,身体健康就是一种幸福! 这学期我发现我的英语退步了,我决定要把这门功课学好,于是,我每天回

家做完作业后,都抽出半小时时间复习英语,在课上也听得特别认真,一遇到不懂的题目主动请教老师。经过一段时间的努力,终于,在上次考试的时候,我考了97分。妈妈表扬了我,我心里美滋滋的。我明白了经过自己的努力享受到成功的喜悦,这也是一种幸福。 …… 每个人都无一例外的渴望幸福。不同的人有不同的感受,其实,幸福就是那种能在平凡中寻找欢乐、能在困境中找到自信的一种心境。同学们,幸福其实很简单,就在我们的身边,触手可及。用心去认真地品味吧,它一直未曾离开我们身边! 感悟幸福650字2 有的人认为幸福就是腰缠万贯,有的人认为幸福就是找到意中人,“采菊东篱下,悠然见南山”是陶渊明对邪恶幸福,“从明天起做一个幸福人,喂马、劈柴、周游世界。从明天起,关心蔬菜和粮食,我有一所房子,面朝大海,春暖花开。”这是海子的幸福。一千种人就有一千种对幸福的理解。 我对幸福的理解就是幸福使简单而平凡的,是无处不在的! 我的牙疼得奇怪而顽强不是这颗牙疼就是那颗牙疼;不是吃冷的疼就是吃热

常用反三角函数公式表

反三角函数公式

反三角函数图像与特征 1 :

反三角函数的定义域与主值范围 式中n为任意整数.

反三角函数的相互关系 sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x))

If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function ArcCos(x) 函数 功能:返回一个指定数的反余弦值,以弧度表示,返回类型为Double。 语法:ArcCos(x)。 说明:其中,x的取值范围为[-1,1],x的数据类型为Double。 程序代码: Function ArcCos(x As Double) As Double If x >= -1 And x < -0.5 Then ArcCos = Atn(Sqr(1 - x *x) / x) + 4 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcCos = -Atn(x/ Sqr(1 - x * x)) + 2 * Atn(1) If x> 0.5 And x <= 1 Then ArcCos = Atn(Sqr(1 - x*x) / x) End Function

关于以幸福为话题的作文800字记叙文5篇

关于以幸福为话题的作文800字记叙文5篇 ----WORD文档,下载后可编辑修改---- 下面是作者为各位家长学生收集整理的作文(日记、观后感等)范本,欢迎借鉴参考阅读,您的努力学习和创新是为了更美好的未来,欢迎下载! 以幸福为话题的作文800字记叙文1: 那是我生病后的第三天,妈妈从早上五点就起来为我准备早点。她蹑手蹑脚地走着“针步”,下楼煮早点,“啪”的一声,妈妈打开了煤气。在拿肉丝,打鸡蛋的她全然不知我正躲在楼梯口“监视”着她的一举一动。不一会儿,蛋炒好了。 她开始切肉丝,一不小心,妈妈的手指切破皮了,鲜血正一滴一滴地流下来,为了不影响我的睡眠,她把手指放在嘴里吸了一下,坚持把剩下的肉丝切完。 此时的我,心中犹如打翻了五味瓶,眼里的泪像断了线的珍珠般掉了下来,我再也忍不住了,一个劲地冲到妈妈面前,她赶紧把手背了过去,生怕让我知道了什么。 她吃惊地问我:“妈妈太吵了,吵到你了?”“不,不,没有”她见我这么早起来就让我再回去补个觉。我关心地问:“妈,你的手没事吧?”她吱唔着说:“没事,擦破点皮,不碍事!”我仔细地帮她清洗了伤口,贴了一片创可贴。 吃饭时,妈妈一直地往我碗里夹肉,“孩子,病刚好,多吃点!”可是我见她始终都没吃一块肉。我也夹了两块放在她的碗里。“儿子懂事了,你自己快点吃吧!补身体要紧!”我冲她点点头笑了笑,“嗯。” 这就是幸福,一份简简单单的幸福!我祈祷这幸福能伴我成长。 以幸福为话题的作文800字记叙文2: 在我眼中,成长就是记录我们长大过程中一点一滴的小事情的,而幸福就在这点点滴滴中。 在我的成长记忆中,永不磨灭的是2017年11月的一天。妈妈要去云南,妈妈早上四点半要到指定地点集合,这么早,妈妈要两三点就起来,可是最近我咳嗽比较严重,所以天天给我煮萝卜汤喝。 “叮铃铃,叮铃铃”闹钟叫了起来,把我从睡梦中吵醒,一醒来,去找妈妈,

Java常用类库介绍

教学内容 第七讲Java常用类库介绍 7.1 Java类库的结构 类库就是Java API(Application Programming Interface,应用程序接口),是系统提供的已实现的标准类的集合。在程序设计中,合理和充分利用类库提供的类和接口,不仅可以完成字符串处理、绘图、网络应用、数学计算等多方面的工作,而且可以大大提高编程效率,使程序简练、易懂。 Java类库中的类和接口大多封装在特定的包里,每个包具有自己的功能。表7.1列出了Java中一些常用的包及其简要的功能。其中,包名后面带“. *”的表示其中包括一些相关的包。有关类的介绍和使用方法,Java中提供了极其完善的技术文档。我们只需了解技术文档的格式就能方便地查阅文档。 表7.1Java提供的部分常用包 注:在使用Java时,除了https://www.doczj.com/doc/09496287.html,ng外,其他的包都需要import语句引入之后才能使用。 7.2 https://www.doczj.com/doc/09496287.html,ng包中的常用类

https://www.doczj.com/doc/09496287.html,ng是Java语言最广泛使用的包。它所包括的类是其他包的基础,由系统自动引入,程序中不必用import语句就可以使用其中的任何一个类。https://www.doczj.com/doc/09496287.html,ng中所包含的类和接口对所有实际的Java程序都是必要的。下面我们将分别介绍几个常用的类。 7.2.1 String类和StringBuffer类 许多语言中,字符串是语言固有的基本数据类型。但在Java语言中字符串通过String类和StringBuffer类来处理。 1.String类 Java语言中的字符串属于String类。虽然有其它方法表示字符串(如字符数组),但Java使用String 类作为字符串的标准格式。Java编译器把字符串转换成String对象。String对象一旦被创建了,就不能被改变。如果需要进行大量的字符串操作,应该使用StringBuffer类或者字符数组,最终结果可以被转换成String格式。 (1)创建字符串 创建字符串的方法有多种方式,通常我们用String类的构造器来建立字符串。表6.2列出了String 类的构造器及其简要说明。 表7.2 String类构造器概要 【例7.1】使用多种方法创建一个字符串并输出字符串内容。 public class StrOutput { public static void main(Sring[] args) { //将字符串常量作为String对象对待,实际上是将一个String对象赋值给另一个 String s1 = "Hello,java!"; //声明一个字符串,然后为其赋值 String s2; s2 = "Hello,java!";

尊重议论文

谈如何尊重人尊重他人,我们赢得友谊;尊重他人,我们收获真诚;尊重他人,我们自己也 获得尊重;相互尊重,我们的社会才会更加和谐. ——题记 尊重是对他人的肯定,是对对方的友好与宽容。它是友谊的润滑剂,它是和谐的调节器, 它是我们须臾不可脱离的清新空气。“主席敬酒,岂敢岂敢?”“尊老敬贤,应该应该!”共和 国领袖对自己老师虚怀若谷,这是尊重;面对许光平女士,共和国总理大方的叫了一 声“婶婶”,这种和蔼可亲也是尊重。 尊重不仅会让人心情愉悦呼吸平顺,还可以改变陌生或尖锐的关系,廉颇和蔺相如便是 如此。将相和故事千古流芳:廉颇对蔺相如不满,处处使难,但蔺相如心怀大局,对廉颇相 当的尊重,最后也赢得了廉颇的真诚心,两人结为好友,共辅赵王,令强秦拿赵国一点办法 也没有。蔺相如与廉颇的互相尊重,令得将相和的故事千百年令无数后人膜拜。 现在,给大家举几个例子。在美国,一个颇有名望的富商在散步 时,遇到一个瘦弱的摆地摊卖旧书的年轻人,他缩着身子在寒风中啃着发霉的面包。富 商怜悯地将8美元塞到年轻人手中,头也不回地走了。没走多远,富商忽又返回,从地摊上 捡了两本旧书,并说:“对不起,我忘了取书。其实,您和我一样也是商人!”两年后,富商 应邀参加一个慈善募捐会时,一位年轻书商紧握着他的手,感激地说:“我一直以为我这一生 只有摆摊乞讨的命运,直到你亲口对我说,我和你一样都是商人,这才使我树立了自尊和自 信,从而创造了今天的业绩??”不难想像,没有那一 句尊重鼓励的话,这位富商当初即使给年轻人再多钱,年轻人也断不会出现人生的巨变, 这就是尊重的力量啊 可见尊重的量是多吗大。大家是不是觉得一个故事不精彩,不够明确尊重的力量,那再 来看下一个故事吧! 一家国际知名的大企业,在中国进行招聘,招聘的职位是该公司在中国的首席代表。经 过了异常激烈的竞争后,有五名年轻人,从几千名应聘者中脱颖而出。最后的胜出者,将是 这五个人中的一位。最后的考试是一场面试,考官们都 作文话题素材之为人处世篇:尊重 思路 人与人之间只有互相尊重才能友好相处 要让别人尊重自己,首先自己得尊重自己 尊重能减少人与人之间的摩擦 尊重需要理解和宽容 尊重也应坚持原则 尊重能促进社会成员之间的沟通 尊重别人的劳动成果 尊重能巩固友谊 尊重会使合作更愉快 和谐的社会需要彼此间的尊重 名言 施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺 术,也是仁爱的情操。———刘墉 卑己而尊人是不好的,尊己而卑人也是不好的。———徐特立 知道他自己尊严的人,他就完全不能尊重别人的尊严。———席勒 真正伟大的人是不压制人也不受人压制的。———纪伯伦 草木是靠着上天的雨露滋长的,但是它们也敢仰望穹苍。———莎士比亚

最新整理高中关于幸福的议论文800字范文3篇

最新整理高中关于幸福的议论文800字范文3篇 范文一 什么是幸福?当我把一个棒棒糖递给六岁的邻居小妹妹时,她满足的笑容告诉我,这是她的幸福。当我轻轻地走过妹妹的写字台时,我瞥见埋在桌上的妹妹的僵硬的表情。我笑笑,走近,她抬头,水汪汪的眼睛望着我,似乎带着某种渴求。我说:出去玩吧!她笑了,蹦蹦跳跳地跑了出去。我诧异,这么真诚的笑。玩耍是她的幸福。 暑假到了,马上面临实习的哥哥回来了。可没过几天,就不见人影了,好容易盼他回来,暑假也结束了。他说他去了内蒙的好多地方。我关切的问他累吗?他说:累啊!随后又骄傲地说:“可是我学会了许多东西,我相信那对我以后的人生路是有帮助的。”我笑,大声地喊:哥,你是我的榜样。在他看来,他的暑假是充实的,他是幸福的! 夜幕降临,繁星点点。隔着一层帘,我看见常年劳作的父亲坐在那里,默默地吸着一支烟。灯光打在他的脸上,我看不清他的表情,只有那斑白的鬓角依稀可见。父亲真的老了,每天早出晚归来支撑这个家,他一定很累了。眼泪盈满了眼眶,最后还是不争气的流了下来……“咳、、咳、、”一阵剧烈的咳嗽声传来。我擦干眼泪,走到父亲旁边,父亲把那支烟熄灭,慈祥的笑笑,说:爸爸老了,不中用了。我说:没有啊!父女两开怀的笑了,笑声混着一个个烟圈飘向远方……我问父亲:爸,这么多年付出,这么多年劳作,你幸福吗?他坚定地告诉我,幸福!他说:“只要你们开开心心快快乐乐地成长,我做的一切都值得。”他又说:“霞,好好读书,爸爸赚钱供你上大学,我还没老呢,至少还能干XX年,20年……然后是一片寂静,我和父亲看着远方,那里有希望。 年迈的姥姥是家里的大长辈,他常常念叨:平安就是福。那也许是经历了人生的酸甜苦辣后的感悟吧!每逢新春,一大家人在姥姥家围着看电视时,那应该是她的幸福吧! 幸福是什么?它不是你一个人拥有一座豪宅,它是一家人在并不宽敞的屋子里谈笑风生。它不是你一个人有拥山珍海味,它是一家人和和乐乐的吃一些普通

JAVA中常用类的常用方法

JAVA中常用类的常用方法 一、类 1、clone()方法 创建并返回此对象的一个副本。要进行“克隆”的对象所属的类必须实现. Cloneable接口。 2、equals(Object obj)方法 功能:比较引用类型数据的等价性。 等价标准:引用类型比较引用,基本类型比较值。 存在特例:对File、String、Date及封装类等类型来说,是比较类型及对象的内容而不考虑引用的是否为同一实例。 3、finalize()方法 当垃圾回收器确定不存在对该对象的更多引用时,由对象的垃圾回收器调用此方法。 4、hashCode()方法返回该对象的哈希码值。 5、notify()方法唤醒在此对象监视器上等待的单个线程。 6、notifyAll()方法唤醒在此对象监视器上等待的所有线程。 7、toString()方法 返回该对象的字符串表示。在进行String与其它类型数据的连接操作时,自动调用toString()方法。可以根据需要重写toString()方法。 8、wait()方法 在其他线程调用此对象的 notify() 方法或 notifyAll() 方法前,导致当前线程等待。

二、字符串相关类 l String类 charAt(int index) 返回指定索引处的 char 值。 compareTo(String anotherString) 按字典顺序比较两个字符串。compareToIgnoreCase(String str) 按字典顺序比较两个字符串,不考虑大小写。concat(String str) 将指定字符串连接到此字符串的结尾。 endsWith(String suffix) 测试此字符串是否以指定的后缀结束。 equals(Object anObject) 将此字符串与指定的对象比较。 equalsIgnoreCase(String anotherString) 将此 String 与另一个 String 比较,不考虑大小写。 indexOf(int ch) 返回指定字符在此字符串中第一次出现处的索引。 indexOf(String str) 返回第一次出现的指定子字符串在此字符串中的索引。lastIndexOf(int ch) 返回指定字符在此字符串中最后一次出现处的索引。length() 返回此字符串的长度。 replace(char oldChar, char newChar) 返回一个新的字符串,它是通过用 newChar 替换此字符串中出现的所有 oldChar 得到的。 split(String regex) 根据给定正则表达式的匹配拆分此字符串。 startsWith(String prefix) 测试此字符串是否以指定的前缀开始。 substring(int beginIndex) 返回一个新的字符串,它是此字符串的一个子字符串。该子字符串始于指定索引处的字符,一直到此字符串末尾。

感受幸福作文(15篇)

感受幸福作文(15篇) 感受幸福作文第1篇: 幸福是什么?这是许多同学要问的问题。 很小的时候,我就明白钱能够买来一大盒巧克力;钱能够买来玩具汽车;钱能够买许多的美丽的洋娃娃;钱能够买来一个大楼…… 我以为有钱就是幸福。 倡我错了,钱虽然能够买来一屋子巧克力,但买了甜蜜,钱虽然能买到房子,可是却买来家庭幸福;钱虽然能买来药,可是却买来健康,钱虽然能买来闹钟,可是买来时间……那时,我又明白了有钱必须幸福。 以前,我总是为了一条连衣裙而朝思暮想,盼望有一天能够穿上裙子,去放风筝。那时候,我以为拥有就是幸福。 最终有一天,妈妈给我买了这条连衣裙,我高兴的一宿都没有睡觉。可是几天的新鲜劲没有了,穿上裙子后,我并没有什么改变,依然是一个黄毛丫头。于是把它扔到箱子里。几个月后,我又把它翻出来,可是已经小了,穿下了。我又明白了,虽然裙子很美,但都是暂时的,完美的时光总是转瞬消失。 “幸福是什么?”我依然没有感受到。 几年后,我在街上看到了一对耄耋老人,他们虽然履蹒跚,可是互相搀扶,有时抬头看看天上的云卷云舒,有时望望西天如血的残阳,她们脸上洋溢着的是满足和幸福。 噢,我明白幸福就是真情。虽然他们很穷,可是他们很

相爱。他们彼此珍惜,从感叹世界对他们的公平。往往有的有钱人,他们虽然很有钱,可是他们并幸福,因为他们的心总是被金钱和权势所占据了,根本享受了这天伦之乐。 幸福其实很简单,就是和爸爸、妈妈吃一顿饭,和他在一齐聊聊天。 感受幸福作文第2篇: 夜,悄悄地打开了黑暗,散布着一如既往的宁静,天上的繁星披上了闪装,正对着我的眼,似乎害怕我听到它们之间的悄悄话。 知何时,甘寂寞的虫儿起劲地奏起了动听的乐曲,清凉的微风夹杂着泥土的芳香悄悄地将白天的烦闷与喧嚣赶跑。夜,显得更加宁静而诗意了。 静静的,左思,右想,就这样静静地坐在楼顶上,感受着夜馈赠我的美妙。就连天上偶尔飘过的云朵,也像是怕惊动了夜的宁静,如绒毛在平静水面滑过般,显得那么轻柔而迷人。 今夜独处在空旷的夜空下,感受着夜带给我的美妙,幸福惬意溢满于心。原先自我一向以来苦苦追寻的幸福其实就在自我的身边。 以往,有人努力打拼,渴望生活富裕来获得幸福,可一辈子的艰辛拼搏使自我逐渐沦为金钱的奴隶,苦苦追寻的幸福也越寻越远,最终留给自我的是岁月无情地染白的头发。其实,幸福并非是追寻能得到的,幸福是一种感受,仅有用心感受身边的一切,你就能发现,幸福无处在,譬如,管贫

尊重他人的写作素材

尊重他人的写作素材 导读:——学生最需要礼貌 著名数学家陈景润回厦门大学参加 60 周年校庆,向欢迎的人们说的第一句话是:“我非常高兴回到母校,我常常怀念老师。”被人誉为“懂得人的价值”的著名经济学家、厦门大学老校长王亚南,曾经给予陈景润无微不至的关心和帮助。陈景润重返母校,首先拜访这位老校长。校庆的第三天,陈景润又出现在向“哥德巴赫猜想”进军的启蒙老师李文清教授家中,陈景润非常尊重和感激他。他还把最新发表的数学论文敬送李教授审阅,并在论文扉页上工工整整写了以下的字:“非常感谢老师的长期指导和培养——您的学生陈景润。”陈景润还拜访了方德植教授,方教授望着成就斐然而有礼貌的学生,心里暖暖的。 ——最需要尊重的人是老师 周恩来少年时在沈阳东关模范学校读书期间 , 受到进步教师高盘之的较大影响。他常用的笔名“翔宇”就是高先生为他取的。周恩来参加革命后不忘师恩 , 曾在延安答外国记者问时说:“少年时代我在沈阳读书 , 得山东高盘之先生教诲与鼓励 , 对我是个很大的 促进。” 停奏抗议的反思 ——没有礼仪就没有尊重 孔祥东是著名的钢琴演奏家。 1998 年 6 月 6 日晚,他在汕头

举办个人钢琴独奏音乐会。演出之前,节目主持人再三强调,场内观众不要随意走动,关掉 BP 机、手提电话。然而,演出的过程中,这种令人遗憾的场面却屡屡发生:场内观众随意走动, BP 机、手提电话响声不绝,致使孔祥东情绪大受干扰。这种情况,在演奏舒曼作品时更甚。孔祥东只好停止演奏,静等剧场安静。然而,观众还误以为孔祥东是在渴望掌声,便报以雷鸣般的掌声。这件事,令孔祥东啼笑皆非。演出结束后,孔祥东说:有个 BP 机至少响了 8 次,观众在第一排来回走动,所以他只得以停奏抗议。 “礼遇”的动力 ——尊重可以让人奋发 日本的东芝公司是一家著名的大型企业,创业已经有 90 多年的历史,拥有员工 8 万多人。不过,东芝公司也曾一度陷入困境,土光敏夫就是在这个时候出任董事长的。他决心振兴企业,而秘密武器之一就是“礼遇”部属。身为偌大一个公司的董事长,他毫无架子,经常不带秘书,一个人步行到工厂车间与工人聊天,听取他们的意见。更妙的是,他常常提着酒瓶去慰劳职工,与他们共饮。对此,员工们开始都感到很吃惊,不知所措。渐渐地,员工们都愿意和他亲近,他赢得了公司上下的好评。他们认为,土光董事长和蔼可亲,有人情味,我们更应该努力,竭力效忠。因此,土光上任不久,公司的效益就大力提高,两年内就把亏损严重、日暮途穷的公司重新支撑起来,使东芝成为日本最优秀的公司之一。可见,礼,不仅是调节领导层之间关

大学高数 函数与反三角函数图像

三角函数公式和图象总结 1.与角α终边相同的角,连同角α在内,都可以表示为S={β|β=α+k ×360,k ∈Z} 2.弧长公式:α?=r l 扇形面积公式lR S 21 = 其中l 是扇形弧长,R 是圆的半径。 3.三角函数定义: sin ,cos ,tan y x y r r x ααα===,其中P (,)x y 是α终边上一点,||r OP = 4.同角三角函数的两个基本关系式 22 sin sin cos 1 tan cos ααααα +== sin sin αsin β tan tan α

sin cos), a x b x x? +=+其中tan b a ?=,?所在的象限与点(,) a b所在的象限一 致。

12.①sin()(0)y A x b A ω?=++>、cos()(0)y A x b A ω?=++>的最小正周期为 || ω,最大值为A+b ,最小值为-A+b. ②tan()(0)y A x b A ω?=++>的最小正周期为|| π ω 13.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 14.余弦定理:2 2 2 2cos a b c bc A =+- bc a c b A 2cos 2 22-+= 15.S ⊿= 21a a h ?=21ab C sin =21bc A sin =2 1ac B sin =R abc 4=2R 2 A sin B sin C sin =))()((c p b p a p p ---(其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 反三角函数图像与反三角函数特征 反正弦曲线 反余弦曲线 拐点(同曲线对称中心):,该点切线斜率为1 拐点

感悟幸福(作文)(20篇)

感悟幸福(作文)(20篇) 篇一篇的乐章组成的,喜、怒、哀、乐。每一个人都自我丰富多彩的生活,我也自我的生活。我原本以为,吃可口的牛排,打电脑游戏,和朋友开心玩乐就是幸福。可是,我错了,幸福并不仅仅如此。 记得一次,我放学回到家里放下书包就拿起一包饼干来吃。吃着吃着,突然我觉得牙齿痛了起来,并且越来越痛,痛得我连饼干也咬不动了。我放下饼干,连忙去拿了一面镜子来看。原先这又是那一颗虫牙在“作怪”。“哎哟哟,哎哟哟,痛死我了”我不停地说着。渐渐地,那牙疼得越来越厉害,疼得我坐立不安,直打滚。之后在妈妈的陪伴下去了医院,治好了那颗虫牙。跨出医院大门时,我觉得心境出奇的好,天空格外的蓝,路边的樟树异常的绿,看什么都顺眼,才猛然一悟,幸福是简单而平凡的,身体健康就是一种幸福! 这学期我发现我的英语退步了,我决定要把这门功课学好,于是,我每一天回家做完作业后,都抽出半小时时间复习英语,在课上也听得异常认真,一遇到不懂的题目主动请教教师。经过一段时间的努力,最终,在上次考试的时候,我考了97分。妈妈表扬了我,我心里美滋滋的。我明白了经过自我的努力享受到成功的喜悦,这也是一种幸福。

每个人都无一例外的渴望幸福。不一样的人不一样的感受,其实,幸福就是那种能在平凡中寻找欢乐、能在困境中找到自信的一种心境。同学们,幸福其实很简单,就在我们的身边,触手可及。用心去认真地品味吧,它一向未曾离开我们身边! 感悟幸福(作文) 第8篇: 幸福无时没,幸福无处不在。儿时,你的幸福就是当你跌倒失声痛苦时,母亲抱起你,拍打着你背时的那句“别哭。”;成年时,你的幸福就是在你结婚时你身旁的那位拉起你的手问你的那句“你愿意吗”;老年时,你的幸福就是在椅子背后孙子的那句“奶奶我帮你敲背!”。家庭中,幸福是一家子的和乐融融;学校里,幸福是同学间的互相竞争;赛场上,幸福是队友间的默契配合。 然而,幸福不全然是唾手可得的,想不付出任何代价而得到幸福,那是神话。张志新说;“苦换来的是知识真理,坚持真理,就应自觉的欣然理解痛苦,那时,也仅那时,痛苦才将化为幸福。”仅心身遭受过痛苦的洗涤,幸福才会来到,痛得越深,苦得越彻,幸福得就越甜。鲁迅说:“穿掘到灵魂的深处,使人受了精神的苦刑而得到的创伤,又即从这得伤和养伤的愈合中,得到苦的涤除,而上了苏生的路。”从而得到了幸福的真谛。拉罗什夫科说过:“幸福后面是灾祸,灾祸后面是幸福。”你想成为幸福的人吗愿你首先吃得

相关主题
文本预览
相关文档 最新文档