当前位置:文档之家› 高考分类题库考点8 函数与方程、函数模型及其应用

高考分类题库考点8 函数与方程、函数模型及其应用

高考分类题库考点8 函数与方程、函数模型及其应用
高考分类题库考点8 函数与方程、函数模型及其应用

点8 函数与方程、函数模型及其应用

一、选择题

1.(2015·安徽高考文科·T4)下列函数中,既是偶函数又存在零点的是( ) A.y=lnx B.y=x 2+1 C.y=sinx D.y=cosx

【解题指南】根据偶函数的定义域关于原点对称,偶函数的图像关于y 轴对称及函数零点的的定义进行判断。 【解析】选D 。

2. (2015·安徽高考理科·T2)下列函数中,既是偶函数又存在零点的是

A 、y cos x =

B 、y sin x =

C 、y n l x =

D 、

2

1y x =+ 【解题指南】根据偶函数的定义域关于原点对称,偶函数的图像关于y 轴对称及函数零点的的定义进行判断。 【解析】选A 。

3. (2015·北京高考文科·T8)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况:

注:“累计里程”是指汽车从出厂开始累计的路程.

在这段时间内,该车每100千米平均耗油量为( )

A.6升

B.8升

C.10升

D.12升

【解题指南】平均耗油量=加油量

里程

?100

【解析】选A.

4812

1006 356003500

-

?

=

-

4.(2015·天津高考理科·T8)已知函数()

()2

2,2,

2,2,

x x

f x

x x

?-≤

?

=?

->

??

函数g(x)=b-f(2-x),其中b∈R,若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是( )

A.(,+∞)

B.(-∞,)

C.(0,)

D.(,2)

【解析】选D.由()

()2

2,2,

2,2,

x x

f x

x x

?-≤

?

=?

->

??

2

22,0

(2)

,0

x x

f x

x x

--≥

??

-=?

<

??

所以

2

2

2,0

()(2)42,02

22(2),2

x x x

y f x f x x x x

x x x

?-+<

?

=+-=---≤≤

?

?

--+->

?

2

2

2,0

()(2)2,02

58,2

x x x

y f x f x x

x x x

?-+<

?

=+-=≤≤

?

?-+>

?

y=f(x)-g(x)=f(x)+f(2-x)-b,

所以y=f(x)-g(x)恰有4个零点等价于方程f(x)+f(2-x)-b=0有4个不同的解,即函数y=b与函数h(x)=f(x)+f(2-x)的图象有4个公共点,由图象可知

5.(2015·天津高考文科·T8)已知函数22||,2

()(2),2

x x f x x x 函数g(x)=3-f(2-x),则函数

y=f(x)-g(x)的零点的个数为 ( ) A.2 B.3 C.4

D.5

【解析】选A.当x<0时,f(2-x)=x 2,此时函数f(x)-g(x)=-1-|x|+x 2的小于零的零点为x=-

;

当0≤x ≤2时,f(2-x)=2-|2-x|=x,函数f(x)-g(x)=2-|x|+x-3=-1无零点;当x>2时,f(2-x)=2-|2-x|=4-x,函数f(x)-g(x)=(x-2)2+4-x-3=x 2-5x+5大于2的零点有一个.因此函数y=f(x)-g(x)共有零点2个.

6.(2015·四川高考文科·T8)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:°C )满足函数关系kx b

y e

+=( e=2.718???为自然对数的底数,k ,b 为常数)。若该食品在°0C 的保鲜时间是192小时,

在23°C 的保鲜时间是48小时,则该食品在33°C 的保鲜时间是( )

(A)16小时 (B)20小时 (C)24小时 (D)21小时 【解题指南】把题设中两组时间与温度的值代入函数解析式,利用方程思想解题。

【解析】选C 由题意,2219248b

k b

e

e

+?=??

=??解得11192

12

b k

e e ?=?

?=??,

当33x =时,3311331

()()192242

k b

k b y e

e e +===?=

7.(2015·山东高考理科·T10)设函数()f x =31,1,

2, 1.x x x x -

范围是( )

A. 2,13??????

B. []0,1

C. 2,3??

+∞????

D. [)1,+∞

【解题指南】首先画出分段函数f(x)的图象,再令f(a)=t,分情况讨论f(t)=2t

. 【解析】选C.函数f(x)的图象如图所示,

因为对于x ∈R,总有指数函数y=2x >0,所以f(f(a))=2f(a)成立时,令f(a)=t,只需考虑

1

13

t << 及1t ≥即分三类:

1

3113

a <-<和1312a ≤-<及22a ≥(()1f a ≥)考虑. 当13113a <-<即42

93

a <<时,选项A 、B 都排除,只有()1f a ≥时满足题意. 当1a ≥时,()22a f a =≥,此时()(())2f a f f a =; 当1a <时,()31f a a =-,若()311f a a =-≥,则2

3

a ≥

时()(())2f a f f a =. 故a 的取值范围是2,3??

+∞????

.

8.(2015·山东高考文科·T10)设函数()f x =3,1,2, 1.x x b x x -

(())46f f =,则b =

A. 1

B.

78 C. 34 D. 1

2

【解题指南】可以对分段函数f(x)分情况讨论,或将选项代入验证.

【解析】选D. 当55()162f b =-≥,即32b ≤时, 5

255(())()2462b f f f b -=-==,解5

2

2

b -=得12b =

;当55()162f b =-<,即32b >时,555(())()3()4622f f f b b b =-=--=,解得73

82

b =<,舍去.故1

2

b =.

【注】本题也可以将1b =、78、34、1

2

逐一代入验算.

9. (2015·陕西高考文科·T4)设f(x)=则f(f(-2))= ( )

A.-1

B.

C.

D.

【解题指南】直接利用分段函数,由里及外逐步求解即可. 【解析】选C.f(x)=,则f(f(-2))=f(2-2

)=f()=1-

=1-=.

二、填空题

10. (2015·湖北高考理科·T12)函数f(x)=4cos

2

2x cos(2

π

-x)-2sinx-|ln(x+1)|的零点个数为 . 【解题指南】利用函数与方程的关系,将零点问题转化为两个函数图象的交点的问题.

【解析】函数f(x)=4cos

2

2

x

cos(2π-x)-2sinx-|ln(x+1)|的零点个数等价于方程

4cos

2

2x cos(2π-x)-2sinx-|ln(x+1)|=0的根的个数,即函数g(x)=4cos 22

x cos(2π-x)-2sinx=sin2x 与

h(x)=|ln(x+1)|的图象交点个数.分别画出其函数图象的草图如图所示,由图可知,函数g(x)与h(x)的图象有2个交点.

答案: 2

11. (2015·湖北高考文科·T13)函数f(x)=2sinxsin(x+

2

π)-x 2

的零点个数为 . 【解题指南】利用函数与方程的关系,将零点个数问题转化为两个函数图象的交点的问题. 【解析】函数f(x)=2sinxsin(x+2π)-x 2的零点个数等价于方程2sinxsin(x+2

π)-x 2=0的根的个数,即函数g(x)=2sinxsin(x+

2

π)=2sinxcosx=sin2x 与h(x)=x 2的图象交点个数.分别画出其函数图象如图所示,由图

可知,函数g(x)与h(x)的图象有2个交点.

答案: 2

12. (2015·北京高考理科·T14)设函数2,1

()4()(2),1

x a x f x x a x a x ?-<=?--≥?,①若a=1,则f(x)的最小值

为 ;②若f(x)恰有2个零点,则实数a 的取值范围是 . 【解题指南】对于①问,可以作出图象求最小值.对于②问讨论a 找零点个数.

【解析】

①21,1()4(1)(2),1

x x f x x x x ?-<=?--≥?,由图象可知当x=3

2时,取最小值-1.

②若a>0,当x<1,f(x)=2x

-a 恰有一个零点log 2a 时,有2

121

a a a

解得112a ≤<;

当1,()2x

x f x a <=- 无零点时,2

12a a a ≥??≤

,解得2a ≥ 。

若0a ≤ 时,当1x < 时,()f x 无零点;当1x ≥ 时,由题意知应恰有两个零点,所以1

21

a a ≥??≥? ,

无解。 综上,

1

12

a ≤<或2a ≥。 答案:①-1 ②

1

12

a ≤<或2a ≥。 13. (2015·四川高考理科·T13)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系

b kx e y +=(e=2.718…为自然对数的底数,k,b 为常数).若该食品在0℃的保鲜时间是192小时,在

22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是 小时. 【解题指南】把题设中两组时间与温度的值代入函数解析式,利用方程思想解题.

【解析】由题意得,4819222?????==+b

k b

e e 解得??

?

??=

=21192

11k b e e 当x =33时,y =e

33k+b

=(e 11k )3e b

=??

? ??213

×

192=24.

x

y

答案:24

14. (2015·江苏高考·T13)已知函数f(x)=|lnx|,g(x)=20,01,

|4|2,1,x x x <≤??-->?则方程

|f(x)+g(x)|=1实数根的个数为 .

【解题指南】求|f(x)+g(x)|=1实数根的个数即为求y=f(x)与y=1-g(x)图象交点的个数和y=f(x)与y=-1-g(x)图象交点的个数之和.将g(x)去掉绝对值,分析y=1-g(x)与y=-1-g(x)的解析式即可.

【解析】因为g(x)=2

20,01,

2,12,6,2,x x x x x <≤??-<

所以1-g(x)=2

21,01,1,12,7,2,x x x x x <≤??-<

-1-g(x)=2

21,01,3,12,5, 2.x x x x x -<≤??-<

又因为|f(x)+g(x)|=1实数根的个数即为y=f(x)与y=1-g(x)的图象交点的个数和y=f(x)与y=-1-g(x)的图象交点的个数之和,而y=f(x)与y=1-g(x)的图象有两个交点,y=f(x)与y=-1-g(x)的图象也有两个交点,所以|f(x)+g(x)|=1实数根的个数为4. 答案:4

关闭Word 文档返回原板块

三种函数增长比较

§6 三种函数增长比较 一、教学目标: 1. 知识与技能 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性. 2. 过程与方法 能够借助信息技术, 利用函数图象及数据表格, 对几种常见增长类型的函数的增长状况进行比较, 初步体会它们的增长差异性; 收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等), 了解函数模型的广泛应用. 3. 情感、态度、价值观 体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用. 二、 教学重点、难点: 1. 教学重点 将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义. 2.教学难点 选择合适的数学模型分析解决实际问题. 三、 学法与教学用具: 1. 学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索. 2.教学用具:多媒体. 四、教学设想: (一)引入实例,创设情景. 教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导. (二)互动交流,探求新知. 1. 观察数据,体会模型. 教师引导学生观察例1表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流. 2. 作出图象,描述特点. 教师引导学生借助计算器作出三个方案的函数图象,分析三种方案的不同变化趋势,并进行描述,为方案选择提供依据. (三)实例运用,巩固提高. 1. 教师引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益. 学生通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本例的完整解答,然后全班进行交流. 2. 教师引导学生分析例2中三种函数的不同增长情况对于奖励模型的影响,使学生明确问题的实质就是比较三个函数的增长情况,进一步体会三种基本函数模型在实际中广泛应用,体会它们的增长差异. 3.教师引导学生分析得出:要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择,学会对数据的特点与作用进行分析、判断。 4.教师引导学生利用解析式,结合图象,对例2的三个模型的增长情况进行分析比较,写出完整的解答过程. 进一步认识三个函数模型的增长差异,并掌握解答的规范要求. 5.教师引导学生通过以上具体函数进行比较分析,探究幂函数n y x =(n >0)、指数函数n y a =(a >1)、对数函数log a y x =(a >1)在区间(0,+∞)上的增长差异,并

近五年高考数学函数及其图像真题及其答案

1. 已知函数()f x =3231ax x -+, 若()f x 存在唯一的零点0x , 且0x >0, 则a 的取值范围为 A .(2, +∞) B .(-∞, -2) C .(1, +∞) D .(-∞, -1) 2. 如图, 圆O 的半径为1, A 是圆上的定点, P 是圆上的动点, 角x 的始边为射线OA , 终边为射线OP , 过点P 作直线OA 的垂线, 垂足为M , 将点M 到直线OP 的距离表示为x 的函数()f x , 则y =()f x 在[0,π]上的图像大致为 3. 设函数()f x , ()g x 的定义域都为R, 且()f x 是奇函数, ()g x 是偶函数, 则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4. 函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称, 则()y f x =的反函数是 A .()y g x = B .()y g x =- C .()y g x =- D .()y g x =-- 5. 已知函数f (x )=????? -x 2+2x x ≤0ln(x +1) x >0 , 若|f (x )|≥ax , 则a 的取值范围是 A .(-∞, 0] B .(-∞, 1] C .[-2, 1] D .[-2, 0] 6. 已知函数3 2 ()f x x ax bx c =+++, 下列结论中错误的是

A .0x R ?∈, 0()0f x = B .函数()y f x =的图象是中心对称图形 C .若0x 是()f x 的极小值点, 则()f x 在区间0(,)x -∞单调递减 D .若0x 是()f x 的极值点, 则0'()0f x = 7. 设3log 6a =, 5log 10b =, 7log 14c =, 则 A .c b a >> B .b c a >> C .a c b >> D .a b c >> 8. 若函数()2 11=,2f x x ax a x ?? ++ +∞ ??? 在是增函数,则的取值范围是 A .[]-1,0 B .[)+∞-,1 C .[]0,3 D .[)+∞,3 9. 函数()()21=log 10f x x x ??+> ??? 的反函数()1 =f x - A .()1021x x >- B .()1021 x x ≠- C .()21x x R -∈ D .()210x x -> 10. 已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为 A .()1,1- B .11,2? ? -- ??? C .()-1,0 D .1,12?? ??? 11. 已知函数()()x x x f -+= 1ln 1 , 则y=f (x )的图像大致为 A . B .

高考数学专题复习第二轮第 4讲 函数与方程的思想方法

第4讲函数与方程的思想方法 一、知识整合 函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y=f(x)的图像与x轴的交点的横坐标,函数y=f(x)也可以看作二元方程f(x)-y=0通过方程进行研究。 就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系. 3.(1) 函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y=f(x)的零点。 (2) 函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。 (3) 数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。 (4) 函数f(x)=n ( (n∈N*)与二项式定理是密切相关的,利用这个函数用 ax) b 赋值法和比较系数法可以解决很多二项式定理的问题。 (5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论。

几种不同类型的函数模型知 识点

几种不同类型的函数模型 一 函数模型及数学建模 函数模型是解决实际问题的重要数学模型,将实际问题中的变量关系用函数表现出来,然后对函数进行研究得出相关数学结论,并依此解决实际问题. 那么如何建立数学模型呢?可按以下步骤完成. (1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型; (3)求模:求解数学模型,得出数学结论; (4)还原:将数学结论还原为实际问题. 建模过程示意图: 二 几种常见的函数模型 1.一次函数模型:f(x)=kx+b(k、b为常数,k≠0); 2.反比例函数模型:f(x)=+b(k、b为常数,k≠0); 3.二次函数模型:f(x)=ax2+bx+c(a、b、c为常数,a≠0); 4.指数函数模型:f(x)=ab x+c(a、b、c为常数,a≠0,b>0, b≠1); 5.对数函数模型:f(x)=mlog a x+n(m、n、a为常数,a>0, a≠1); 6.幂函数模型:f(x)=ax n+b(a、b、n为常数,a≠0,n≠1);

7.分段函数模型:这个函数模型实则是以上两种或多种模型的综合,因此应用也十分广泛. 三 指、对、幂三种函数模型增长速度的比较 正确认识“直线上升”、“指数爆炸”、“对数增长”和幂函数的增长差异. 直线上升反映了一次函数(一次项系数大于零)的增长趋势,其增长速度均匀(恒为常数);在区间(0,+∞)上,尽管函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但它们的增长速度不在同一 个“档次”上. 随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢,因此总会存在一个x0,当x>x0时,就有log a x1),y=log a x(a>1)和 y=x n(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上;(2)随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,表现为指数爆炸;(3)随着x的增大,y=log a x(a>1)的增长速度会越来越慢;(4)随着x的增大, y=a x(a>1)的图象逐渐表现为与y轴平行一样,而y=log a x(a>1)的图象逐渐表现为与x轴平行一样;(5)当a>1,n>0时,总会存在一个x0,当x>x0时,有a x>x n>log a x;(6)当0x0时,有log a x<x n<a x 一次函数模型 例1 为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”和“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费y1(元)、y2(元)的关系分别如图(1)、图(2)所示.

高一数学函数模型及其应用练习题2

函数模型及其应用测试题 一、选择题 1.某工厂的产值月平均增长率为P,则年平均增长率是() A.11 +-D.12 (1)1 P P +- (1)P +B.12 (1)P +C.11 (1)1 答案:D 2.某人2000年7月1日存入一年期款a元(年利率为r,且到期自动转存),则到2007年7月1日本利全部取出可得() A.7 a r +元 (1) (1) a r +元B.6 C.7 (1)(1)(1) +++++++ …元 a a r a r a r (1) a a r ++元D.26 答案:A 3.如图1所示,阴影部分的面积S是h的函数(0) ≤≤,则该函数的图象可 h H 能是() 答案:C 4.甲、乙两个经营小商品的商店,为了促销某一商品(两店的零售价相同),分别采取了以下措施:甲店把价格中的零头去掉,乙店打八折,结果一天时间两店都卖出了100件,且两店的销售额相同,那么这种商品的价格不可能是()A.4.1元B.2.5元C.3.75元D.1.25元 答案:A 5.某厂工人收入由工资性收入和其他收入两部分构成.2003年该工厂工人收入3150元(其中工资性收入1800元,其他收入1350元).预计该地区自2004年开始的5年内,工人的工资性收入将以每年6%的年增长率.其他收入每年增加160元.据此分析,2008年该厂工人人均收入将介于() A.42004400 元 元B.44004600 C.46004800 元D.48005000 元 答案:B 二、填空题 6.兴修水利开渠,其横断面为等腰梯形,如图2,腰与水平线夹角为60 ,要求浸水周长(即断面与水接触的边界长)为定值l,同渠深h=,可使水渠量最大.

高考数学函数与方程的思想方法

高考数学函数与方程的 思想方法 Last revised by LE LE in 2021

第4讲 函数与方程的思想方法 一、知识整合 函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y =f(x)的图像与x 轴的交点的横坐标,函数y =f(x)也可以看作二元方程f(x)-y =0通过方程进行研究。 就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系. 3.(1) 函数和方程是密切相关的,对于函数y =f(x),当y =0时,就转化为方程f(x)=0,也可以把函数式y =f(x)看做二元方程y -f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y =f(x)的零点。 (2) 函数与不等式也可以相互转化,对于函数y =f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。 (3) 数列的通项或前n 项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。 (4) 函数f(x)=n b ax )( (n ∈N *)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题。 (5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元

高考函数习题及答案

高考函数习题 1.[2011·沈阳模拟] 集合A ={(x ,y )|y =a },集合B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个子集,则实数a 的取值范围是( ) A .(-∞,1) B .(-∞,1] C .(1,+∞) D.R 2.[2011·郑州模拟] 下列说法中,正确的是( ) ①任取x ∈R 都有3x >2x ;②当a >1时,任取x ∈R 都有a x >a -x ;③y =(3)-x 是增函数; ④y =2|x |的最小值为1;⑤在同一坐标系中,y =2x 与y =2-x 的图像对称于y 轴. A .①②④ B .④⑤ 】 C .②③④ D .①⑤ 3.[2011·郑州模拟] 函数y =xa x |x | (00, 2x ,x ≤0, 则f ? ?? ??f ? ????19=( ) A .4 C .-4 D .-1 4 6.[2011·郑州模拟] 设f (x )是定义在R 上以2为周期的偶函数,已知当x ∈(0,1)时, f (x )=lo g 1 2 (1-x ),则函数f (x )在(1,2)上( ) A .是增函数,且f (x )<0 B .是增函数,且f (x )>0 C .是减函数,且f (x )<0 D .是减函数,且f (x )>0 7.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47), b =f ? ?? ??log 123,c =f -,则a ,b ,c 的大小关系是( ) A .c

高考数学重点难点3函数与方程思想大全

重点难点36 函数方程思想 函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. ●重点难点磁场 1.(★★★★★)关于x的不等式2?32x–3x+a2–a–3>0,当0≤x≤1时恒成立,则实数a的取值范围为. 2.(★★★★★)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0) (1)若a=1,b=–2时,求f(x)的不动点; (2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围; (3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+ 对称,求b的最小值. ●案例探究 [例1]已知函数f(x)=logm (1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明; (2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由. 命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目. 知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根. 技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题. 解:(1)x<–3或x>3. ∵f(x)定义域为[α,β],∴α>3 设β≥x1>x2≥α,有 当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数. (2)若f(x)在[α,β]上的值域为[logmm(β–1),logmm(α–1)] ∵0<m<1, f(x)为减函数. ∴ 即 即α,β为方程mx2+(2m–1)x–3(m–1)=0的大于3的两个根 ∴∴0<m< 故当0<m<时,满足题意条件的m存在. [例2]已知函数f(x)=x2–(m+1)x+m(m∈R) (1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m≥5; (2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3; (3)在(2)的条件下,若函数f(sinα)的最大值是8,求m. 命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属

《三角函数》高考真题理科大题总结及答案

《三角函数》大题总结 1.【2015高考新课标2,理17】ABC ?中,D 是BC 上的点,AD 平分BAC ∠, ABD ?面积是ADC ?面积的2倍. (Ⅰ) 求 sin sin B C ∠∠; (Ⅱ)若1AD =,DC = BD 和AC 的长. 2.【2015江苏高考,15】在ABC ?中,已知 60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值. 3.【2015高考福建,理19】已知函数f()x 的图像是由函数()cos g x x =的图像经如下变换得到:先将()g x 图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移2 p 个单位长度. (Ⅰ)求函数f()x 的解析式,并求其图像的对称轴方程; (Ⅱ)已知关于x 的方程f()g()x x m +=在[0,2)p 内有两个不同的解,a b . (1)求实数m 的取值范围; (2)证明:22cos ) 1.5 m a b -=-( 4.【2015高考浙江,理16】在ABC ?中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4 A π =,22b a -=12 2c . (1)求tan C 的值; (2)若ABC ?的面积为7,求b 的值.

5.【2015高考山东,理16】设()2sin cos cos 4f x x x x π??=-+ ?? ? . (Ⅰ)求()f x 的单调区间; (Ⅱ)在锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ?? == ??? , 求ABC ?面积的最大值. 6.【2015高考天津,理15】已知函数()22sin sin 6f x x x π??=-- ?? ? ,R x ∈ (I)求()f x 最小正周期; (II)求()f x 在区间[,]34 p p -上的最大值和最小值. 7.【2015高考安徽,理16】在ABC ?中,3,6,4 A A B A C π ===点D 在BC 边上,AD BD =,求AD 的长. 8.【2015高考重庆,理18】 已知函数()2sin sin 2 f x x x x π ??=- ? ? ? (1)求()f x 的最小正周期和最大值; (2)讨论()f x 在2, 6 3ππ?? ???? 上的单调性.

苏教版必修1《8.2.1 几个函数模型的比较》练习卷

苏教版必修1《8.2.1 几个函数模型的比较》练习卷 一、选择题(本大题共7小题,共35.0分) 1.已知命题p:?x∈R,ln(2x+1)≥0,则() A. p是假命题,?p:?x0∈R,ln(2x+1)≥0 B. p是假命题,?p:?x0∈R,ln(2x+1)<0 C. p是真命题,?p:?x0∈R,ln(2x+1)<0 D. p是真命题,?p:?x0∈R,ln(2x+1)>0 2.函数y=1 x?ln(x+1) 的图象大致为() A. B. C. D. 3.某地区植被被破坏后,土地沙漠化越来越严重,据测,最近三年该地区的沙漠增加面积分别为0.2 万公顷,0.4万公顷和0.76万公顷,若沙漠增加面积y万公顷是关于年数x的函数关系,则此关系用下列哪个函数模拟比较好() A. y=x 5B. y=1 10 (x2+2x) C. y=1 10 ?2x D. y=0.2+log16x 4.在某个物理实验中,测量得变量x和变量y的几组数据,如下表: 则对x,y最适合的拟合函数是() A. y=2x B. y=x2?1 C. y=2x?2 D. y=log2x

5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度?(cm)与燃烧时间t(小时)的函 数关系用图象表示为图中的() A. B. C. D. 6.函数y=2x?x2的图象大致是() A. B. C. D. 7.某林区的森林蓄积量每年比上一年平均增长,要增长到原来的y倍,需经过x年,则函 数y=f(x)的图象大致为() A. B. C. D. 二、填空题(本大题共5小题,共25.0分) 8.函数f(x)=log2(x2?5x+4)的单调递减区间是______ . 9.函数y=x2与函数y=lnx在区间(1,+∞)上增长较快的一个是__________.

函数模型及其应用

2021年新高考数学总复习第二章《函数与基本初等函数》 函数模型及其应用 1.几类函数模型 函数模型函数解析式 一次函数模型f(x)=ax+b(a,b为常数,a≠0) 反比例函数模型f(x)= k x+b(k,b为常数且k≠0) 二次函数模型 f(x)=ax2+bx+c (a,b,c为常数,a≠0) 指数函数模型 f(x)=ba x+c (a,b,c为常数,b≠0,a>0且a≠1) 对数函数模型 f(x)=b log a x+c (a,b,c为常数,b≠0,a>0且a≠1) 幂函数模型f(x)=ax n+b (a,b为常数,a≠0) 2.三种函数模型的性质 函数 性质 y=a x(a>1) y=log a x(a>1) y=x n(n>0) 在(0,+∞)上 的增减性 单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳 图象的变化 随x的增大逐渐表 现为与y轴平行 随x的增大逐渐表 现为与x轴平行 随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x

题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( × ) (2)函数y =2x 的函数值比y =x 2的函数值大.( × ) (3)不存在x 0,使0x a 0,b ≠1)增长速度越来越快的形象比喻.( × ) 题组二 教材改编 2.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( ) A .收入最高值与收入最低值的比是3∶1 B .结余最高的月份是7月 C .1至2月份的收入的变化率与4至5月份的收入的变化率相同 D .前6个月的平均收入为40万元 答案 D 解析 由题图可知,收入最高值为90万元,收入最低值为30万元,其比是3∶1,故A 正确;由题图可知,7月份的结余最高,为80-20=60(万元),故B 正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C 正确;由题图可知,前6个月的平均收入为1 6 ×(40+60+30+30+50+60)=45(万元),故D 错误.

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

近五年高考数学函数及其图像真题及其答案

1. 已知函数()f x =32 31ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) 2. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 3. 设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4. 函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是 A .()y g x = B .()y g x =- C .()y g x =- D .()y g x =-- 5. 已知函数f (x )=????? -x 2+2x x ≤0ln(x +1) x >0 ,若|f (x )|≥ax ,则a 的取值范围是 A .(-∞,0] B .(-∞,1] C .[-2,1] D .[-2,0] 6. 已知函数3 2 ()f x x ax bx c =+++,下列结论中错误的是

A .0x R ?∈,0()0f x = B .函数()y f x =的图象是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减 D .若0x 是()f x 的极值点,则0'()0f x = 7. 设3log 6a =,5log 10b =,7log 14c =,则 A .c b a >> B .b c a >> C .a c b >>D .a b c >> 8. 若函数()2 11=,2f x x ax a x ?? ++ +∞ ??? 在是增函数,则的取值范围是 A .[]-1,0 B .[)+∞-,1 C .[]0,3 D .[)+∞,3 9. 函数()()21=log 10f x x x ??+> ? ?? 的反函数()1 =f x - A .()1021x x >- B .()1021 x x ≠-C .()21x x R -∈D .()210x x -> 10. 已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为 A .()1,1-B .11,2? ?-- ??? C .()-1,0 D .1,12?? ??? 11. 已知函数()()x x x f -+= 1ln 1 ,则y=f (x )的图像大致为 A . B .

高中数学函数与方程知识点总结 经典例题及解析 高考真题及答案

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有 1个零点?0)(=x f 有两个相等实根; 0?

高考中常用函数模型归纳及应用

高考中常用函数模型.... 归纳及应用 一. 常数函数y=a 判断函数奇偶性最常用的模型,a=0时,既是奇函数,又是偶函数,a ≠0时只是偶函数。关于方程解的个数问题时常用。 例1.已知x ∈(0, π],关于方程2sin(x+ 3 π )=a 有两个不同的实数解,则实数a 的取植范围是( )A .[-2,2] B.[ 3,2] C.( 3,2] D.( 3,2) 解析;令y=2sin(x+3π ), y=a 画出函数y=2sin(x+3 π ),y=a 图象如图所示,若方程有两个不同的解,则两个函数图象有两个不同的交点, 由图象知( 3,2),选D 二. 一次函数y=kx+b (k ≠0) 函数图象是一条直线,易画易分析性质变化。常用于数形结合解决问题,及利用“变元”或“换元”化归 为一次函数问题。有定义域限制时,要考虑区间的端点值。 例2.不等式2x 2 +1≤m(x-1)对一切│m │≤2恒成立,则x 的范围是( ) A .-2≤x ≤2 B. 4 31- ≤x ≤0 C.0≤x ≤ 4 71+ D. 4 71-≤x ≤ 4 1 3- 解析:不等式可化为m(x-1)- 2x 2+1≥0 设f(m)= m(x-1)- 2x 2 +1 若x=1, f(m)=-3<0 (舍) 则x ≠1则f(m)是关于m 的一次函数,要使不等式在│m │≤2条件下恒成立,只需? ? ?≥-≥0)2(0 )2(f f ,解之可得答案D 三. 二次函数y=ax 2 +bx+c (a ≠0) 二次函数是应用最广泛的的函数,是连接一元二次不等式和一元二次方程的纽带。很多问题都可以化归和转化成二次函数问题。比如有关三次函数的最值问题,因其导数是二次函数,最后的落脚点仍是二次函数问题。 例3.(1).若关于x 的方程x 2 +ax+a 2 -1=0有一个正根和一个负根,则a 的取值范围是( ) 解析:令f(x)= x 2 +ax+a 2 -1由题意得f(0)= a 2 -1 <0,即-1<a <1即可。 一元二次方程的根分布问题可借助二次函数图象解决,通常考虑二次函数的开口方向,判别式对称轴与根的位置关系,端点函数值四个方面。也可借助韦达定理。

函数与方程知识点总结经典例题及解析高考真题及答案

函数与方程 【考纲说明】 1、 了解函数的零点与方程根的联系,能判断一元二次方程根的存在性及根的个数。 2、 能够根据具体函数的图像,用二分法求出相应方程的近似解。 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

三角函数高考题及练习题(含标准答案)

三角函数高考题及练习题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

三角函数高考题及练习题(含答案) 1. 掌握正弦函数、余弦函数、正切函数的图象与性质;会用“五点法”作出正弦函数及余弦函数的图象;掌握函数y =Asin (ωx +φ)的图象及性质. 2. 高考试题中,三角函数题相对比较传统,位置靠前,通常是以简单题形式出现,因此在本讲复习中要注重三角知识的基础性,特别是要熟练掌握三角函数的定义、三角函数图象的识别及其简单的性质(周期、单调性、奇偶、最值、对称、图象平移及变换等). 3. 三角函数是每年高考的必考内容,多数为基础题,难度属中档偏易.这几年的高考加强了对三角函数定义、图象和性质的考查.在这一讲复习中要重视解三角函数题的一些特殊方法,如函数法、待定系数法、数形结合法等. 1. 函数y =2sin 2? ???x -π 4-1是最小正周期为________的________(填“奇”或“偶”) 函数. 答案:π 奇 解析:y =-cos ? ???2x -π 2=-sin2x. 2. 函数f(x)=lgx -sinx 的零点个数为________. 答案:3 解析:在(0,+∞)内作出函数y =lgx 、y =sinx 的图象,即可得到答案.

3. 函数y =2sin(3x +φ),? ???|φ|<π 2的一条对称轴为x =π12,则φ=________. 答案:π4 解析:由已知可得3×π12+φ=k π+π2,k ∈Z ,即φ=k π+π4,k ∈Z .因为|φ|<π 2 ,所 以φ=π4 . 4. 若f(x)=2sin ωx (0<ω<1)在区间? ???0,π 3上的最大值是2,则ω=________. 答案:34 解析:由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f(x)在? ???0,π 3上单调递增,且在这个区间 上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3,所以ωπ3=π4,解得ω=3 4 . 题型二 三角函数定义及应用问题 例1 设函数f(θ)=3sin θ+cos θ,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P(x ,y),且0≤θ≤π. (1) 若点P 的坐标是??? ?12,3 2,求f(θ)的值; (2) 若点P(x ,y)为平面区域???? ?x +y ≥1, x ≤1, y ≤1 上的一个动点,试确定角θ的取值范围,并求 函数f(θ)的最小值和最大值. 解:(1) 根据三角函数定义得sin θ= 32,cos θ=1 2 ,∴ f (θ)=2.(本题也可以根据定义及角的范围得角θ=π 3 ,从而求出 f(θ)=2). (2) 在直角坐标系中画出可行域知0≤θ≤π2,又f(θ)=3sin θ+cos θ=2sin ? ???θ+π 6, ∴ 当θ=0,f (θ)min =1;当θ=π 3 ,f (θ)max =2. (注: 注意条件,使用三角函数的定义, 一般情况下,研究三角函数的周期、最值、

(完整)(典型题高考数学二轮复习知识点总结函数与方程及函数的应用,推荐文档

函数与方程及函数的应用 1.函数的零点与方程的根 (1)函数的零点 对于函数f(x),我们把使f(x)=0 的实数x 叫做函数f(x)的零点. (2)函数的零点与方程根的关系 函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标. (3)零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b) <0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c 也就是方程f(x)=0 的根. 注意以下两点: ①满足条件的零点可能不唯一; ②不满足条件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解. 2.函数模型 解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答. 考点一函数的零点 例1 (1)(2013·重庆)若a

相关主题
文本预览
相关文档 最新文档