当前位置:文档之家› 1991_Robert Venturi罗伯特文丘里

1991_Robert Venturi罗伯特文丘里

1991_Robert Venturi罗伯特文丘里
1991_Robert Venturi罗伯特文丘里

Robert Venturi

1991 Laureate

Essay

Looking at Architecture with New Eyes

By Vittorio Lampugnani

Director of the German Architecture Museum

Frankfurt, Germany

In 1954, a twenty-nine year old architect from Philadelphia went to Rome on a scholarship from the American Academy. In the course of the next two years he traveled through Italy and in the cradle

of the classical Renaissance it was Mannerist and Baroque architecture that made the deepest impression on him. Immediately after this he worked in the offices of Eero Saarinen and Louis I. Kahn.

In 1966 he published a book in which he worked his thoughts into a theory of architecture which

was soon to become extremely influential. The book was called Complexity and Contradiction in Architecture, the young architect was Robert Venturi.

This heretic, romantic creed, which was a head-on attack on the whole of twentieth century Modernism, found its most enthusiastic followers in the United States of America. The anti-rationalist, anti-Classical and anti-European attitude it expressed struck a chord in the land of the freely-composed cabins and barns of the early pioneers, the Shingle Style influenced by the Pittoresque and above all in a country permeated by the influence of Frank Lloyd Wright’s life-long polemic and his “organic architecture” which was intended to provide an alternative to the Beaux Arts school and later to dogmatic functionalism. But in a Europe which was tired of the clichéd, heavy-handed, anti-urban remake of the Modern Movement of the twenties, the liberating bon mots of this obviously highly cultivated rebel were also given an enthusiastic reception. When, a short time later, the international Post-Modernist Movement was proclaimed, which after the dogmatism of the Bauhaus doctrine and its successors was to propagate a new unorthodox laissez-faire attitude, Venturi was almost unanimously declared its heir apparent and main protagonist.

His impudent aphorisms (the bowlderizing of Mies van der Rohe’s famous saying “less is more” into “less is a bore,” the provocative assertion that “Main Street is almost all right”) were immediately taken up by the advocates of the “new niceness,” but they found his articles and books on the whole indigestible. The same fate befell his buildings. For Venturi was not only an architectural theoretician, he was also a designing architect. He had already designed a number of buildings: between 1960 and 1963, Guild House, the older people’s home in Philadelphia (where Venturi would later build his own house); 1961–64 the Vanna Venturi House in Chestnut Hill, Pennsylvania; 1967 the National Football Foundation Hall of Fame for New Brunswick, New Jersey (never built); 1968–1973 the Humanities Building of the State University of New Y ork in Purchase; and from 1970 to 1974 the Dixwell Fire Station in New Haven, Connecticut. All the buildings which he designed with his wife Denise Scott-Brown, who represented the social and political commitment in the group around Venturi, became widely-publicized, widely-discussed milestones in the history of Post-Modernist architecture—and yet they seemed strangely unwieldy and somehow out of place there.

Indeed the brand of Post-Modernism through which Venturi tried to improve the well-being of people and their environment and to reinvigorate a Modernist tradition which was now de passé and sclerotic had little in common with the trend which almost everywhere won cheap applause simply by currying favor with populist taste. Some of the proponents of the latter used the favorite images of the contemporary consumer society quite literally, others filtered them through the amusing interpretation which Pop-Art had already provided; some used direct but completely arbitrary historical references, others felt obliged to be ironic in their treatment of historical forms, silently implying that the connection to the original could not be anything but fictitious, some fulfilled the expectations of the user and above all of the client in a very direct way whereas others went along with the client’s wishes simply in order to question them cryptically, make good hearted fun of them and gently change them.

The more Venturi’s work developed the more evident this discrepancy became. In 1972, at the latest, it must have been crystal clear to anyone who had closely followed the work of the thought-provoking

Looking at Architecture with New Eyes(continued)

2enfant terrible. For it was in that year that two works were created in the Philadelphia studio which were as emblematic as they were provocative. One was the design for Franklin Court and the other the book, Learning from Las Vegas co-authored with Denise Scott-Brown and Steven Izenour. For

the first work he took the site where the good citizens of Philadelphia had asked for a dignified

and prestigious memorial to their illustrious son and traced on it in a mildly mocking spirit the banal outline of Benjamin Franklin’s demolished house, whilst banishing the actual memorial below the ground. The second turned polemically against the negation of what was misguidedly considered to be the ugliness of North American everyday life and present it instead as an artistic stimulus, even an iconographic model which one could perfectly well learn from.

Both manifestos (which is what they in fact are) shocked not only the North American middle class, whose aesthetic needs Venturi pretended to champion, but also the majority of international architectural critics. For the Modernist they were too impure, for the Post-Modernists, too prosaic. This is exactly what Venturi wanted. Had he not confessed programmatically six years earlier “…an architecture of complexity and contradiction … must rather be a realization of difficult uniformity by integration than easy uniformity by elimination?” Now he head reached this stage himself: he integrated all manner of things into his architecture and architectural theory and thus eluded any attempt to put him into a category. Consequently, each of his subsequent works had a new surprise in store: the extension to the Allen Memorial Art Museum in Oberlin College, Ohio (1973-1976), the Faculty Club of the Pennsylvania State University (1974), the Basco Showroom on the edge of Philadelphia (1978), the Molecular Biology Building at Princeton University, New Jersey (1983-1985), and the Art Museum in Seattle, Washington (1988-1991). Each building was different, each was adapted to its surroundings like a chameleon, interpreted it and its function in an unexpected and each fascinating way and yet each building was unmistakably a “real Venturi.”

The totality of peak of contemporary architectural knowledge was put into practice by Venturi and Scott-Brown in the Sainsbury Wing of the National Gallery in London. The comparatively small, low-profile extension adopts the proportions, the facade articulation and the material (wonderful, generously laid Portland stone) of the neo-Classical main building dating from 1837 and the pilaster rhythm of its subtly curved front creates a kind of precisely worked paravant: the play of imitation and interpretation, reality and mask, has been taken to the limit of virtuosity. Inside the building a massive entrance staircase with a spectacular view of Trafalgar Square and a spaciously designed sequence of rooms, accommodating service of the museum such as entrance foyer, book shop, restaurant and auditorium, work together to form a completely new type of museum building, whose functional and architectural quintessence nevertheless remains the exhibition rooms for the collections on the first floor. Sixteen rooms lit by clerestories (here the Sir John Soane Museum, which was originally his own house, was clearly the inspiration) are arranged in three suites and are also connected to each other by cross corridors. These rooms are designed specially to ensure that the particular pictures they exhibit are shown in a spectacular setting to their best advantage. The impression made by masterpieces such as Piero delle Francesca’s Baptism of Christ, placed in carefully worked out axial positions on pale gray plaster walls with surrounds and skirtings of pietra serena, and lit by a wonderful, indirect natural light, is simply overwhelming. Rarely can the same be said of paintings of equal quality which hang in galleries designed by famous and talented colleagues of Venturi. The whole museum genre, which has become the experimental field (cynics say playground) favored by progressive, contemporary architects, has also become the place where their failings are shown up. Those buildings whose function has misguidedly been made to play a subordinate role often bear the clear marks of the brute force with which either a particular form or a particular ideology has been imposed on them.

Venturi’s oeuvre passes this test with flying colors. “Uniformity by Integration” has proved its worth.

It makes it possible to do justice to the imminent complexity of architecture without breaking its radicality. The fact that practical needs and higher value have been so well combined in the Sainsbury

Looking at Architecture with New Eyes(continued)

3Wing has nothing to do with an act of force but with the underlying concept. This concept allows Baldassare Peruzzi’s Palazzo Massimo alle Colonne to be integrated just as naturally as Le Corbusier’s promenade architecturale, and the dignified opus rusticum, into which the names of great artists of the past have been cut, can be left untouched and placed unobtrusively next to the Micro Gallery with its “visual encyclopedia” which can be called up on computer screens. The fact that the result of a contradictory collage like this is not a pastiche but an original, self-contained creation is due to the intellectual caliber and design skills of its authors.

But this does not make it light fare. For his masterpieces Venturi used without exception familiar ingredients but combined in a way which is constantly surprising. This not only produced astonishing end results but also re-interpreted the individual ingredients. T erms such as Classicism and Romanticism, drama and prose, the festive and the mundane are stripped of the comfortable but sloppy clichés surrounding them and returned to their original intellectual essence, ennobled by a new, unrelenting stringency. Does this make Venturi a Post-Modernist architect? Or is he not a modern architect in the new sense of the word demanded by the new circumstances of our times? But these categories themselves have also fallen victim to Venturi’s intellectual purges and in the light of his actual buildings the question becomes futile and redundant. The fact that this happens is what singles Venturi out as a truly great architect: because he refuses to be labeled, because he questions the very principle

of labeling, because he forces us, as his mentor Louis Kahn did before him, to completely re-thing traditional categories of architecture or even those which we have created ourselves. And above all because he teaches us to look at architecture, all architecture—not just his own—with new eyes which may have lost their star dust but are certainly better focused.

? The Hyatt Foundation

For more information, please contact:

Martha Thorne, Executive Director

The Pritzker Architecture Prize

71 South Wacker Drive

Suite 4700

Chicago, Illinois 60606

email: marthathorne@https://www.doczj.com/doc/005484371.html,

文丘里流量计实验实验报告

文丘里流量计实验实验报告 实验日期:2011.12.22 一、实验目的: 1、学会使用测压管与U 型压差计的测量原理; 2、掌握文丘里流量计测量流量的方法和原理; 3、掌握文丘里流量计测定流量系数的方法。 二、实验原理: 流体流径文丘里管时,根据连续性方程和伯努利方程 Q vA =(常数) H g v p z =++22 γ(常数) 得不计阻力作用时的文丘里管过水能力关系式(1、2断面) h K p z p z g d d d Q ?=?????????? ??+-???? ? ?+???? ??-=γγπ221141222214 1 由于阻力的存在,实际通过的流量Q '恒小于Q 。引入一无量纲系数Q Q '=μ(μ称为流量系数),对计算所得的流量值进行修正。 h K Q Q ?=='μμ h K Q ?' =μ 在实验中,测得流量Q '和测压管水头差h ?,即可求得流量系数μ,μ一般在0.92~0.99之间。 上式中 K —仪器常数 g d d d K 214 141222???? ??-=π h ?—两断面测压管水头差 ??? ? ??+-???? ??+=?γγ2211p z p z h h ?用气—水多管压差计或电测仪测得,气—水多管压差计测量原理如下图所示。

1h ? 2h ? H 3 1H 2H 1z 2z 气—水多管压差计原理图 根据流体静力学方程 γγ22231311 p H h H h H H p = +?-+?--- 得 221121H h h H p p -?+?++=γγ 则 )()(222211212211γγγγp z H h h H p z p z p z +--?+?+++=??? ? ??+-???? ?? + 212211)()(h h H z H z ?+?++-+= 由图可知 )()(4321h h h h h -+-=? 式中,1h 、2h 、3h 、4h 分别为各测压管的液面读数。 三、实验数据记录及整理计算(附表) 文丘里流量计实验装置台号:2 d1=1.4cm d2=0.7cm 水温t=13.1℃ v=0.01226cm 2/s 水箱液面标尺值▽0=38cm 管轴线高程标尺值▽=35.7cm 实验数据记录表见附表 四、成果分析及小结: 经计算 K=17.60cm 2.5/s u=1.064 由实验计算结果看各组数据的相差较大,可以判断实验的精密度不高,实验 与理论值有偏差。误差来源主要有实验测量值的不准确,人为造成的主管因素较大。 五、问题讨论: 为什么计算流量Q 理论与实际流量Q 实际不相等? 答:因为实际流体在流动过程中受到阻力作用、有能量损失(或水头损失),而计算流量是假设流体没有阻力时计算得到的,所以计算流量恒大于实际流量。

文丘里洗涤器工作原理

简介 文丘里洗涤器又称文丘里管除尘器。由文丘里管凝聚器和除雾器组成。除尘过程可分为雾化、凝聚和除雾等三个阶段,前二阶段在文丘里管内进行,后一阶段在除雾器内完成。文氏管是一种投资省、效率高的湿法净化设备。根据文氏管喉管供液方式的不同,可分为外喷文氏管和内喷文氏管。第一级文氏管的收缩管材质通常采用铸铁,喉管为铸铁或钢内衬石墨,扩张管为硬铅,也可以用硬PVC或钢内衬橡胶。第二级文氏管材质通常全部采用硬PVC。 工作原理 文丘里管包括收缩段、喉管和扩散段。含尘气体进入收缩段后,流速增大,进入喉管是达到最大值。洗涤液从收缩段或喉管加入,气液两相间相对流速很大,液滴在高速气流下雾化 文丘里洗涤器 ,气体湿度达到饱和,尘粒被水湿润。尘粒与液滴或尘粒之间发生激烈碰撞和凝聚。在扩散段,气液速度减小,压力回升,以尘粒为凝结核的凝聚作用加快,凝聚成直径较大的含尘液滴,进而在除雾器内被捕集。文丘里管构造有多种型式。按断面形状分为圆形和方形两种;按喉管直径的可调节性分为可调的和固定的两类;按液体雾化方式可分为预雾化型和非雾化型;按供水方式可分为径向内喷、径向外喷、轴向喷水和溢流供水等四类。适用于去除粒径0.1-100μm的尘粒,除尘效率为80-99%,压力损失范围为1.0-9.0kPa,液气比取值范围为0.3-1.5L/m3。对高温气体的降温效果良好,广泛用于高温烟气的除尘、降温,也能用作气体吸收器。 工艺参数 文氏管的主要工艺参数是炉气在喉管中的流速、液气比和压力降。其中最关键的参数是喉管气速,只要压力降允许,喉管气速以大于等于60m/s为宜。对于以捕集粒径较粗的尘为主 文丘里洗涤器 要目的的文氏管,宜采用较低的气速和压力降;对于捕集粒径较小的酸雾和As2O3为主要目的,则宜采用较高的气速和较高的压力降。

文丘里洗涤器原理和作用

新型文丘里洗涤器 文丘里洗涤器的应用十分广泛———除尘、除沫、气体净化。传统的文丘里洗涤器由收缩管、喉管、扩散管组成。高压液体通过喷嘴形成大液滴喷入气流中,在喉管处较高的气速和剪切力的作用下雾化成细小的液滴,与气体中的尘粒接触使其分离。但是,最近国外设计的新型文丘里洗涤器却采用了与传统文丘里洗涤器大相径庭的结构形式。 新型文丘里洗涤器采用管缝隙作为气—液接 触区,其最大特点是,液体的雾化不是由高速气流产生的,而是由液体喷嘴形成的,喉部只是提供气—液间的密切接触。因此高除尘(雾)效率不是以高气体压降为代价的。最初的管—隙式文丘里洗 〓$/〓硫酸工业%00;年第$期 涤器见图!。 图!最初的管—隙式文丘里洗涤器 在一根垂直管内,上部装有两个高压液体喷 嘴,中部由两根水平细管构成一道狭窄的缝隙,水平细管下面装有一个柱形调节器,与之形成两道缝隙。洗涤液通过高压喷嘴雾化,在狭缝处与气体相接触,操作时,由一个传动装置上下移动调节器以改变缝隙宽度即喉部截面积大小,以在气体流量波动的情况下达到稳定的分离效果。设备的下游采 用离心式除沫器(旋风分离器)除去气流中夹带的雾沫。在管—隙式文丘里洗涤器的基础上又开发了复式喷嘴"#$%&'"%()*%&文丘里洗涤器,其结 构见图+。

图+"#$%&'"%()*%&文丘里洗涤器 "#$%&'"%()*%&文丘里洗涤器采用若干个 平行缝隙作为喉部,运行时无需调节缝隙宽度,从而进一步简化了结构。更重要的是,这种洗涤器采用了近年来国外开发的脉冲复式喷嘴,运行时以单式(只用洗涤液)和复式(同时采用压缩空气和洗涤液)的方式交互雾化。它在喷嘴的喷头中装有两个共振盒,自动产生共振。这种雾化技术的最大优点是,加速和减速交替出现,以诱发更剧烈地湍动,从而极大地提高分离效率。此外,脉冲可阻止尘粒在喉部沉降。缝隙和喷嘴的数量取决于流量的大小。由于在管缝隙处几乎没有气—液间的能量交换,所以这种洗涤器可以达到极高的分离效率,而气体压降却趋于零。 德国拜耳公司技术部曾于!,,,-./0中试装 置上测定了"#$%&'"%()*%&文丘里洗涤器的分 离效果。结果表明,对于,1!2!,!-直径的尘粒, 分离效率达到3+42!,,4,并且能耗低于其它文 丘里洗涤器。 与此同时,还进行了用氢氧化钠溶液吸收二氧 化硫的试验。试验气体流量为!,,,-./0、!(56 +) 分别为!,,和7,,-8/-.,采用9*值为!!17的氢 氧化钠溶液进行吸收。结果表明,复式喷嘴文丘里洗涤器的二氧化硫吸收率明显高于压力喷嘴文丘 里洗涤器,而两者压降相当,见图.。此外,零压降时复式喷嘴文丘里洗涤器所需的传质单元数为压 力喷嘴文丘里洗涤器的一半。 图.56 +吸收试验结果 !、.压力喷嘴,进气!(56 +)分别为7,,、!,,-8/-. +、:复式喷嘴,进气!(56 +)分别为7,,、!,,-8/-. 综上所述,复式喷嘴"#$&%'"%()*%&文丘 里洗涤器具有结构简单,分离效率高、能耗低、 可同时除尘和分离气体、操作弹性大、可靠性高、结构紧凑等优点,非常适合于现有装置的改造。(瑾)

文丘里流量计等的工作原理

文丘里流量计等的基本原理 文丘里流量计等的基本原理 充满文丘里流量计管道的流体,当它流经文丘里流量计管道内的节流件时,流速将在文丘里流量计节流件处形成局部收缩,因而流速增加,静压力降低,于是在文丘里流量计节流件前后便产生了压差。流体流量愈大,产生的压差愈大,这样可依据压差来衡量流量的大小。这种测量方法是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础的。压差的大小不仅与流量还与其他许多因素有关,例如当文丘里流量计节流装置形式或文丘里流量计管道内流体的物理性质(密度、粘度)不同时,在同样大小的流量下产生的压差也是不同的。 文丘里流量计等的流量方程 式中 qm--质量流量,kg/s; qv--体积流量,m3/s; C--流出系数; ε--可膨胀性系数; β--直径比,β=d/D; d--工作条件下文丘里流量计节流件的孔径,m; D--工作条件下上游文丘里流量计管道内径,m; △P--差压,Pa; ρ --上游流体密度,kg/m3。 l 由上式可见,流量为C、ε、d、ρ、△P、β(D)6个参数的函数,此6个参数可分为实测量[d,ρ,△P,β(D)]和统计量(C、ε)两类。 (1)实测量 1)d、D 式(4.1)中d与流量为平方关系,其精确度对流量总精度影响较大,误差值一般应控制在±0.05%左右,还应计及工作温度对材料热膨胀的影响。标准规定管道内径D必须实测,需在上游管段的几个截面上进行多次测量求其平均值,误差不应大于±0.3%。除对数值测量精度要求较高外,还应考虑内径偏差会对节流件上游通道造成不正常节流现象所带来的严重影响。因此,当不是成套供应节流装置时,在现场配管应充分注意这个问题。 2)ρρ在流量方程中与△P是处于同等位置,亦就是说,当追求差压变送器高精度等级时,绝不要忘记ρ的测量精度亦应与之相匹配。否则△P的提高将会被ρ的降低所抵消。 3)△P 差压△P的精确测量不应只限于选用一台高精度差压变送器。实际上差压变送器能否接受到真实的差压值还决定于一系列因素,其中正确的取压孔及引压管线的制造、安装及使用是保证获得真实差压值的关键,这些影响因素很多是难以定量或定性确定的,只有加强制造及安装的规范化工作才能达到目的。 (2)统计量 1)C 统计量C是无法实测的量(指按标准设计制造安装,不经校准使用),在现场使用时最复杂的情况出现在实际的C值与标准确定的C值不相符合。它们的偏离是由设计、制造、安装及使用一系列因素造成的。应该明确,上述各环节全部严格遵循标准的规定,其实际值才会与标准确定的值相符合,现场是难以完全满足这种要求的。 应该指出,与标准条件的偏离,有的可定量估算(可进行修正),有的只能定性估计(不确定度的幅值与方向)。但是在现实中,有时不仅是一个条件偏离,这就带来非常复杂的情况,因为一般资料中只介绍某一条件偏离引起的误差。如果

水力学实验报告思考题答案(想你所要)..

实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 成果分析及讨论 1.测压管水头线和总水头线的变化趋势有何不同?为什么? 测压管水头线(P-P)沿程可升可降,线坡J P可正可负。而总水头线(E-E)沿程只降不升,线坡J 恒为正,即J>0。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测压管水头线降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P<0。而据能量方程E1=E2+h w1-2, h w1-2为损失能量,是不可逆的,即恒有h w1-2>0,故E2恒小于E1,(E-E)线不可能回升。(E-E) 线下降的坡度越大,即J越大,表明单位流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。 2.流量增加,测压管水头线有何变化?为什么? 有如下二个变化: (1)流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头 ,任一断面起始时的总水头E及管道过流断面面积A为定值时,Q增大, 就增大,则必减小。而且随流量的增加阻力损失亦增大,管道任一过水断面上的总水头E相应减 小,故的减小更加显著。 (2)测压管水头线(P-P)的起落变化更为显著。 因为对于两个不同直径的相应过水断面有 式中为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)线的起落变化就更为显著。 3.测点2、3和测点10、11的测压管读数分别说明了什么问题? 测点2、3位于均匀流断面(图2.2),测点高差0.7cm,H P=均为37.1cm(偶有毛细影响相差0.1mm), 表明均匀流同断面上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。 4.试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。 下述几点措施有利于避免喉管(测点7)处真空的形成: (1)减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。

流体力学实验 文丘里实验报告单

文丘里流量计实验 一、实验目的和要求 1.通过测定流量系数,掌握文丘里流量计量测管道流量的技能; 2.掌握气一水多管压差计量测压差的技能; 3.通过实验与量纲分析,了解应用量纲分析与实验结台研究水力学问题的途径,进而掌握文丘里流量计水力特征。 二、实验原理 根据能量方程式和连续性方程式,可得不计阻力作用时的文丘里管过水能力关系式 h K p Z p Z g d d d q V ?=+-+-= )]/()/[(21 )( 422114 2 12 1 γγπ ‘ (6-9) 1)/(/ 24 4 212 1 -= d d g d K π )()(2 21 1γ γ p Z p Z h + -+ =? 式中:h ?为两断面测压管水头差,m 。 由于阻力的存在,实际通过的流量V q 恒小于' V q 。今引入一无量纲系数’ V V q q =μ (μ称为流量系数),对计算所得的流量值进行修正。 即 h K q q V V ?=' =μμ (6-10) 另外由水静力学基本方程可得气—水多管压差计的h ?为 4321h h h h h -+-=? 三、实验装置 本实验的装置如图6-10 所示。 在文丘里流量计的两个测量断面上,分别有4个测压孔与相应的均压环连通,经均压环均压后的断面压强由气-水多管压差计9测量(亦可用电测仪量测)。

1.自循环供水器; 2.实验台 3.可控硅无级调速器 4.恒压水箱 5.有色水水管 6.稳水孔板 7.文丘里实验管段 8.测压计气阀 9.测压计10.滑尺11.多管压差计12.实验流量调节阀 图6—10文丘里流量计实验装置图 四、实验方法与步骤 1.测记各有关常数。 2.开电源开关,全关阀12,检核测管液面读数 4321h h h h -+-是否为0,不为0时,需查出原因并予以排除。 3.全开调节阀12检查各测管液面是否都处在滑尺读数范围内?否则,按下列步骤调节:拧开气阀8,将清水注入测管2、3,待2432≈=h h cm ,打开电源开关充水,待连通管无气泡,渐关阀12,并调开关3至5.2821≈=h h cm ,即速拧紧气阀8。 4.全开调节阀门,待水流稳定后,读取各潮压管的液面读数1h 、2h 、3h 、4h ,并用秒表、量筒测定流量。 5.逐次关小调节阀,改变流量7~9次,重复步骤4,注意调节阀门应缓慢。 6.把测量值记录在实验表格内,并进行有关计算。 7.如测管内液面波动时,应取时均值。 8.实验结束,需按步骤2校核压差计是否回零。 五、实验结果处理及分析 1.记录计算有关常数。 实验装置台号No____ =1d m , =2d m , 水温=t ℃, =ν m 2/s , 水箱液面标尺值=?0 cm , 管轴线高程标尺值=? cm 。 2 整理记录计算表6-9 6-10

流体力学实验文丘里实验报告单

文丘里流量计实验 一、实验目的与要求 1.了解文丘里流量计的构造与原理,掌握用文丘里流量计量测管道流量的方法与应用 气一水压差计测压差的技术。掌握测定文丘里流量计的流量系数μ的方法。 2.通过测量与计算,掌握用方格纸绘制Q-Δh 与Re-μ曲线(分别取Δh 、μ为纵坐标 的方法) 3.比较体积法与文丘里流量计测流量的精度。 二、实验原理 根据能量方程式与连续性方程式,可得不计阻力作用时的文丘里流量计理论流量计算式: h K p Z p Z g d d d Q ?=+-+-= )]/()/[(21)(4'221142 12 1γγπ 1)/(/24 42121-= d d g d K π )()(2 21 1γ γp Z p Z h + -+ =? 式中:h ?为两断面测压管水头差,m 。d ?、d ?为喉部收缩前后管道的内径。 由于阻力的存在,实际通过的流量Q 恒小于'Q 。今引入流量系数’ Q =μ (μ称为流量系数),对计算所得的流量值进行修正。 即: h K Q Q ?=' =μμ 另外由水静力学基本方程可得气—水多管压差计的h ?为 4321h h h h h -+-=? 三、实验装置 本实验的装置如图所示。 在文丘里流量计的两个测量断面上,分别有4个测压孔与相应的均压环连通,经均压环均压后的断面压强由气-水多管压差计9测量(亦可用电测仪量测)。

1、自循环供水器; 2、实验台 3、可控硅无级调速器 4、恒压水箱 5、有色水水管 6、稳水孔板 7、文丘里实验管段8、测压计气阀9、测压计10、滑尺11、多管压差计12、实验流量调节阀 文丘里流量计实验装置图 四、实验步骤 1、打开无极调速器向恒压水箱中注水至满,全关流量调节阀12,检核测管液面读数 4321h h h h -+-就是否为0,不为0时,需查出原因并予以排除。 2、全开调节阀12检查各测管液面就是否都处在滑尺读数范围内。否则,按下列步骤调节:拧开气阀8,将清水注入测管2、3,待2432≈=h h cm,打开电源开关充水,待连通管无气泡,渐关阀12,并调开关3至5.2821≈=h h cm,即速拧紧气阀8。 3、全开调节阀门,待水流稳定后,读取各潮压管的液面读数1h 、2h 、3h 、4h ,并用秒表、量筒测定流量。 4、逐次关小调节阀,改变流量7~9次,重复步骤(4),注意调节阀门应缓慢。 5、把测量值记录在实验表格内,并进行有关计算。 6、如测管内液面波动时,应取时均值。 7、实验结束,需按步骤2校核压差计就是否回零。 五、实验结果处理及分析 1、记录计算有关常数。 =1d m, =2d m, 水温=t ℃, =ν m 2/s, 水箱液面标尺值=?0 cm, 管轴线高程标尺值=? cm 。 2、实验数据记录 记录表

文丘里流量计实验

文丘里流量计实验(新) 一、实验目的和要求、 1、掌握文丘里流量计的原理。 2、学习用比压计测压差和用体积法测流量的实验技能。 3、利用量测到的收缩前后两断面1-1和2-2的测管水头差h ?,根据理论公式计算管道 流量,并与实测流量进行比较,从而对理论流量进行修正,得到流量计的流量系数 μ,即对文丘里流量计作出率定。 一、实验装置 1. 仪器装置简图 12 4567 321 8 9101112 1234 图一 文丘里流量计实验装置图 1. 自循环供水器 2. 实验台 3. 可控硅无级调速器 4. 恒压水箱 5. 溢流板 6. 稳水孔板 7. 文丘里实验管段 8. 测压计气阀 9. 测压计 10. 滑尺 11. 多管压差计 12. 实验流量调节阀

[说明] 1. 在文丘里流量计7的两个测量断面上, 分别有4个测压孔与相应的均压环连通, 经均压环均压后的断面压强,由气—水多管压差计9测量, 也可用电测仪测量。 2. 功能 (1) 训练使用文丘里管测量管道流量和采用气—水多管压差计测量压差的技术; (2) 率定流量计的流量系数μ, 供分析μ与雷诺数Re的相关性; (3) 可供实验分析文氏流量计的局部真空度, 以分析研究文氏空化管产生的水力条件与构造条件及其他多项定性、定量实验。 3. 技术特性 (1) 由可控硅无级调速器控制供水流量的自循环台式装置实验仪; (2) 恒压供水箱、文丘里管及实验管道采用丘明有机玻璃精制而成。文丘里管测压断面上设有多个测压点和均压环; (3) 配有由有机玻璃测压管精制而成的气 水多管压差计, 扩充了测压计实验内容; (4) 为扩充现代量测技术, 配有压差电测仪, 测量精度为0.01; (5) 供电电源: 220V、50HZ; 耗电功率:100W; (6) 流量: 供水流量0~300ml/s, 实验管道过流量0~200ml/s; (7) 实验仪专用实验台: 长×宽=150cm×55cm 。 二、安装使用说明: 1. 安装仪器拆箱以后, 按图检查各个部件是否完好, 并按装置图所示安装实验仪, 各测点与测压计各测管一一对应,并用连通管联接, 调速器及电源插座可固定在实验台侧壁或图示位置, 调速器及电源插座位置必须高于供水器顶; 2. 通电试验加水前先接上220V交流市电, 顺时针方向打开调速器旋钮, 若水泵启动自如, 调速灵活, 即为正常。请注意, 调速器旋钮逆时针转至关机前的临界位置, 水泵转速最快, 即出水流量最大; 3. 加水 (1) 供水器内加水加水前,需先把供水器及水箱等擦干净, 水质要求为洁净软水, 经过滤净化更佳,若水的硬度过大, 最好采用蒸馏水。加水量以使水位刚接近自循环供水器与回水管接口为宜,并检查供水器是否漏水。 (2) 多管压差计内加水做实验之前需对多管压差计内加水, 先打开气阀8, 在测管2、3内注水至h2=h3 ≈ 24.5cm, 并检查测压计管1与管2、管3与管4之间是否连通, 再检查管2、3之间底部,若有气泡, 也需排除。 4. 排气开启水泵供水, 待水箱溢流后, 来回开关实验流量调节阀数次, 待

射流器工作原理

射流器工作原理 Last updated on the afternoon of January 3, 2021

射流器(文丘里混合器\水射器\气水、液混合器)文丘里混合器,又称为喷射式混合器,是一种本身没有运动部件,它是由喷嘴、吸入室、扩压管三部分组成。具有一定压力的工作流体通过喷嘴高速喷出,使压力能转化速度能,在喷嘴出口区域形成真空,从而将被抽介质吸引出来,二股介质在扩压管内进行混合及能量交换,并使速度能还原成压力能,最后以高于大气压力而排出。文丘里混合器是一种集吸气和混合反应于一体的设备。独特的混合气室设计,强劲的水流与空气或液体混合喷射,使搅拌均匀、完全,产生的气泡多而细腻,促使气体溶解效率提高。常见于液~气相混合,液~液相混合,还可以用于气~气相混合以及气~液相混合。射流器结构简单、工作可靠、噪音低、无污染、使用寿命长、极少维修、管理使用方便、便于综合利用。尤其适用于作为传质和化学混合反应设备或抽吸气体。文丘里混合器俗称射流器、水射器等。制造材料有金属,塑料等。一般通量较大需定制。 采用模具压铸的文丘里混合器有以下三种材料: 1、氟塑料(PVDF)材料 黑色,耐强氧化、耐强酸碱腐蚀、耐臭氧;寿命长,广泛用于臭氧水混合、污水处理、加药领域。规格较为齐全,规格参数详见下表。 2、聚丙烯(PP)材料

乳白色,PP材料常用在一般耐酸碱条件下。进出口径有以下规格有:1寸(DN25),可配软管接口。 3、透明有机玻璃材料 无色透明,透明的有机玻璃则通常应用于可直观了解射流效果的场合,如实验室。进出口径有以下规格有:6分(DN20),1寸(DN25)无软管接口。

文丘里管实验-陈娟

、实验目的 1、在文丘里管收缩段和扩张段,观察压力水头、速度水头沿程的变化规律,加深对伯 努利方程的理解。 2、 了解文丘里流量计的工作原理。 3、 掌握文丘里管流量系数的测定方法。 、实验原理 1、理想流体伯努利方程的验证 文丘里管是在管路中安装一段断面急速变小, 而后又逐渐恢复原来断面的异径管, 如图 3所示。 在收缩段,由于流体流动断面减小, 因而流速增加,测压管水头连续下降, 喉管处断面 最小,流速最大, 测压管水头因而最低;相反,在渐扩管中流体流动截面逐渐扩大,流速 减小,测压管水头也不断得到恢复。 这些现象都是由于流体流径文丘里管时, 遵守连续性方 程 vA 二Q (常数) 2 —H (常数) 文丘里管实验 理想 总水 头线 J J L 2 V i 1 J 2 V ii 2g r 2g = i — 1 = H 2 V 4 2g - — — 三 h i E - h 4 — h i . —— 1 L — — - - --- -- --- 喉管 和伯努利方程 图3理想流体伯努利方程示意图

2g 以上两个方程表明,无论流体流动过程中断面几何参数如何变化,所有断面上的总水头

H 和流量都保持不变,也就是说流体流动一直遵守着能量守恒和物质守恒这两个基本定 律。 上述现象和规律将在实验中通过 将公式(2)作如下变换,并以下标 管。公式(2)可以写成 11根测压管的液面变化加以验证。为了便于实验分析,现 i 表示测压管序号,例如 i =4表示第四根测压管即喉 h i 2 V | _ = h 2g 2 2g 、 2 两边同除以V 4 ,并移项得 V 2 2g 公式⑴可以写成 V i A i = V 4 A 4 = V j A 所以 V i 代入公式(3)得 V 4 V j V 4 公式⑶和公式(4)表明,测压管水头变化的相对值,完全决定于流动断面的几何比例, 从而进 一步揭示了断面流速与测压管水头之间的关系。我们根据公式 (4)画出测压管水头相 对变化的理论曲线和实际曲线 (分别为上式右项和左项),通过比较,两者应当是一致的(横 坐标为测压管序号,纵坐标分别为以上两项) 。 2、流量系数的测定 将公式(1)、⑵应用于1、4两断面,可以得到 前式代入后式得 2 曲 +h h 4 2g 2gm -h 4) 1_(M W1丿

真空发生装置即文丘里管的原理

真空发生装置即文丘里管的原理 文氏管是文丘里管的简称,文丘里效应的原理则是当风吹过阻挡物时,在阻挡物的背风面上方端口附近气压相对较低,从而产生吸附作用并导致空气的流动。文氏管的原理其实很简单,它就是把气流由粗变细,以加快气体流速,使气体在文氏管出口的后侧形成一个“真空”区。当这个真空区靠近工件时会对工件产生一定的吸附作用。如图所示 A-压缩空气入口B-喷嘴C-消音器 D-吸附腔入口 压缩空气从文丘里管的入口A进入,少部分通过截面很小的喷管B排出。随之截面逐渐减小,压缩空气的压强增大,流速也随之变大。`这时就在D吸附腔的进口内产生一个真空度,致使周围空气被吸入文氏管内,随着压缩空气一起流进扩散腔内增加气体的流速,之后通过消音装置减少气流震荡。 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便。真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域。真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体。在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作。 真空发生器的主要性能参数 ①空气消耗量:指从喷管流出的流量qv1。 ②吸入流量:指从吸口吸入的空气流量qv2。当吸入口向大气敞开时,其吸入流量最大,称为最大吸入流量qv2max. ③吸入口处压力:记为Pv.当吸入口被完全封闭(如吸盘吸着工件),即吸入流量为零时,吸入口内的压力最低,记作Pvmin.

文丘里管射流装置的结构及工作原理

文丘里管射流装置的结构及工作原理 作者:西南科技大学王海军 着现代工业的加速发展,在工农业生产的诸多领域对射流技术的需求日渐广泛。如金属切割、打磨、工件的表面清洗等,因此,提高射流装置的效率,降低其成本,具有重要意义。现有的液体加压射流喷射器装置,主要是以气压机与泵相结合的加压喷射器装置为主。进入2O世纪8O年代以来,各国多把注意力集中在如何形成一种特殊的脉冲射流发生器上,许多研究人员为此进行了大量的研究与实验,提出了各种类型的脉冲水射流发生装置,但对于改进射流喷头方面并没有太大的发展,尤其是结构的简化方面。传统设备在生产工艺上虽然可以满足实际需求,但是其结构复杂、体积相对较大,且不能满足一些特殊的要求,如强腐蚀性液体、磨液、易堵高粘稠性液体等对设备损坏较大,造成设备无法正常运行,折旧速度加快。笔者利用文丘里管结合气压机的射流装置,革新了喷射器部分。在本设计中真空度主要由“文丘里管(真空泵主要构件)”产生,而且可以达到要求;若采用两根“文丘里管”串连,则产生的真空度达原来的十几倍。射流的压力大小主要由速度决定,调节气流的相关参数即可以对射流进行调节。本设计将原有普通连续水射流喷射器结构与文丘里管结构相结合,利用喷管高压空气流从小孔吹出的方式而使液室产生真空引力引起气液在混合室混合。因此,可以由空气吹出速度的大小来调节真空度的大小。该装置减少了原有的加压喷射器需要泵提供液体注入动力,节约了能量、减小了体积。

图1 文丘里管射流实验装置结构示意图 压力表1、2、3分别测量文丘里管人口、喉、出口,B1、B2分别为调节阀,α、β分别为文丘里管的前后倾角。其中α=15° β=12°,管直径a=50 mm,文丘里管的喉部直径b=15.6 mm,全管的长度为400 mm。 2 分析与结果 2.1 原理 文丘里管射流装置的工作原理可以用伯努利方程和连续方程来表达: 伯努利方程: 连续方程: V· A=常数 (2) 式中,V-流体流速,m/s;g——重力加速度,n;ρ——流体压力,Pa;γ——流体比重,M/n3;z--流体势能,m;A——过流截面,m2。 文丘里管的流量特征可用下式表示:

文丘里管实验设计方案

文丘里管实验设计方案 一、 实验原理 1、在文丘里管收缩段和扩张段,观察压力水头、速度水头沿程的变化规律,加深对伯努利方程的理解。 2、了解文丘里流量计的工作原理。 3、掌握文丘里管流量系数的测定方法。 二、实验原理 1、理想流体伯努利方程的验证 文丘里管是在管路中安装一段断面急速变小,而后又逐渐恢复原来断面的异径管,如图3所示。 喉管 图3 理想流体伯努利方程示意图 在收缩段,由于流体流动断面减小,因而流速增加,测压管水头连续下降,喉管处断面最小,流速最大, 测压管水头因而最低;相反,在渐扩管中流体流动截面逐渐扩大,流速减小,测压管水头也不断得到恢复。这些现象都是由于流体流径文丘里管时,遵守连续性方程 Q vA =(常数) (1) 和伯努利方程 H h g v =+22 (常数) (2) 以上两个方程表明,无论流体流动过程中断面几何参数如何变化,所有断面上的总水头H 和流量都保持不变,也就是说流体流动一直遵守着能量守恒和物质守恒这两个基本定律。上述现象和规律将在实验中通过11根测压管的液面变化加以验证。为了便于实验分析,现

将公式(2)作如下变换,并以下标 i 表示测压管序号,例如 4=i 表示第四根测压管即喉管。公式(2)可以写成 g v h g v h i i 2222 11+=+ 两边同除以2 4v , 并移项得 2 4 2 212412v v v g v h h i i -=- (3) 公式(1)可以写成 i i A v A v A v ==4411 所以 21 24 1441d d A A v v == 22 4 44i i i d d A A v v == 代入公式(3)得 4 44142412??? ? ??-???? ??=-i i d d d d g v h h (4) 公式(3)和公式(4)表明,测压管水头变化的相对值,完全决定于流动断面的几何比例, 从而进一步揭示了断面流速与测压管水头之间的关系。我们根据公式(4)画出测压管水头相对变化的理论曲线和实际曲线(分别为上式右项和左项),通过比较,两者应当是一致的(横坐标为测压管序号,纵坐标分别为以上两项)。 2、流量系数的测定 将公式(1)、(2)应用于1、4两断面,可以得到 42 141v d d v ??? ? ??= 42 4 12122h g v h g v +=+ 前式代入后式得 4 144141)(2??? ? ??--= d d h h g v 流量为

文丘里效应的原理

文丘里效应的原理

文丘里效应的原理则是当风吹过阻挡物时,在阻挡物的背风面上方端口附近气压相对较低,从而产生吸附作用并导致空气的流动。 文丘里根据热空气比冷空气密度小,向上升腾产生气压差,从而促进气流产生自下而上的流动,这就是烟囱效应中启发而来。 文丘里管的简称,文丘里效应的原理则是当风吹过阻挡物时,在阻挡物的背风面上方端口附近气压相对较低,从而产生吸附作用并导致空气的流动。文氏管的原理其实很简单,它就是把气流由粗变细,以加快气体流速,使气体在文氏管出口的后侧形成一个“真空”区。它能用气流实现粉料的输送。 丘里管原理 2009-12-27 09:26:20| 分类:船舶| 标签:|字号大中小订阅 管是文丘里管的简称,文丘里效应的原理则是当风吹过阻挡物时,在阻挡物的背风面上方端口附近气压相对较低,从而产生吸附作用并导致空气的流动。文氏管的原理其实很简单,它就是把气流由粗变细,以加快气体流速,使气体

在文氏管出口的后侧形成一个“真空”区。当这个真空区靠近工件时会对工件产生一定的吸附作用。 A-压缩空气入口B-喷嘴C-消音器 D-吸附腔入口 压缩空气从文丘里管的入口A进入,少部分通过截面很小的喷管B排出。随之截面逐渐减小,压缩空气的压强增大,流速也随之变大。`这时就在D吸附腔的进口内产生一个真空度,致使周围空气被吸入文氏管内,随着压缩空气一起流进扩散腔内增加气体的流速,之后通过消音装置减少气流震荡。 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便。真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域。真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体。在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作。 真空发生器的主要性能参数 ①空气消耗量:指从喷管流出的流量qv1。 ②吸入流量:指从吸口吸入的空气流量qv2。当吸入口向大气敞开时,其吸入流量最大,称为最大吸入流量qv2max. ③吸入口处压力:记为Pv.当吸入口被完全封闭(如吸盘吸着工件),即吸入流量为零时,吸入口内的压力最低,记作Pvmin. ④吸着响应时间:吸着响应时间是表明真空发生器工作性能的一个重要参数,它是指从换向阀打开到系统回路中达到一个必要的真空度的时间。 影响真空发生器性能的主要因素。 真空发生器的性能与喷管的最小直径,收缩和扩散管的形状,通径及其相应位置和气源压力大小等诸多因素有关。图2为某真空发生器的吸入口处压力,吸入流量,空气消耗量与供给压力之间的关系曲线.图中表明,供给压力达到一定值时,吸入口处压力较低,这时吸入流量达到最大,当供给压力继续增加时,吸入口处压力增加,这时吸入流量减小。 ①最大吸入流量qv2max的特性分析:较为理想的真空发生器的qv2max 特性,要求在常用供给压力范围内(P01=0.4---0.5MPa),qv2max处于最大值,且随着P01的变化平缓。 ②吸入口处压力Pv的特性分析:较为理想的真空发生器的Pv特性,要求在常用供给压力范围内(P01=0.4---0.5MPa),Pv处于最小值,且随着Pv1的变化平缓。

文丘里效应的原理

文丘里效应的原理则是当风吹过阻挡物时,在阻挡物的背风面上方端口附近气压相对较低,从而产生吸附作用并导致空气的流动。 文丘里根据热空气比冷空气密度小,向上升腾产生气压差,从而促进气流产生自下而上的流动,这就是烟囱效应中启发而来。 文丘里管的简称,文丘里效应的原理则是当风吹过阻挡物时,在阻挡物的背风面上方端口附近气压相对较低,从而产生吸附作用并导致空气的流动。文氏管的原理其实很简单,它就是把气流由粗变细,以加快气体流速,使气体在文氏管出口的后侧形成一个“真空”区。它能用气流实现粉料的输送。 丘里管原理 2009-12-27 09:26:20| 分类:船舶| 标签:|字号大中小订阅 管是文丘里管的简称,文丘里效应的原理则是当风吹过阻挡物时,在阻挡物的背风面上方端口附近气压相对较低,从而产生吸附作用并导致空气的流动。文氏管的原理其实很简单,它就是把气流由粗变细,以加快气体流速,使气体在文氏管出口的后侧形成一个“真空”区。当这个真空区靠近工件时会对工件产生一定的吸附作用。

A-压缩空气入口B-喷嘴C-消音器 D-吸附腔入口 压缩空气从文丘里管的入口A进入,少部分通过截面很小的喷管B排出。 随之截面逐渐减小,压缩空气的压强增大,流速也随之变大。`这时就在D吸附腔的进口内产生一个真空度,致使周围空气被吸入文氏管内,随着压缩空气一起流进扩散腔内增加气体的流速,之后通过消音装置减少气流震荡。 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型 的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便。真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域。真空发生器的传统用途是吸盘配合,进行 各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体。在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作。 真空发生器的主要性能参数 ①空气消耗量:指从喷管流出的流量qv1。 ②吸入流量:指从吸口吸入的空气流量qv2。当吸入口向大气敞开时,其 吸入流量最大,称为最大吸入流量qv2max. ③吸入口处压力:记为Pv.当吸入口被完全封闭(如吸盘吸着工件),即吸入流量为零时,吸入口内的压力最低,记作Pvmin. ④吸着响应时间:吸着响应时间是表明真空发生器工作性能的一个重要 参数,它是指从换向阀打开到系统回路中达到一个必要的真空度的时间。 影响真空发生器性能的主要因素。 真空发生器的性能与喷管的最小直径,收缩和扩散管的形状,通径及其 相应位置和气源压力大小等诸多因素有关。图2为某真空发生器的吸入口处压力,吸入流量,空气消耗量与供给压力之间的关系曲线.图中表明,供给压力达到一 定值时,吸入口处压力较低,这时吸入流量达到最大,当供给压力继续增加时, 吸入口处压力增加,这时吸入流量减小。 ①最大吸入流量qv2max的特性分析:较为理想的真空发生器的qv2max 特性,要求在常用供给压力范围内(P01=0.4---0.5MPa),qv2max处于最大值,且 随着P01的变化平缓。 ②吸入口处压力Pv的特性分析:较为理想的真空发生器的Pv特性,要求在常用供给压力范围内(P01=0.4---0.5MPa),Pv处于最小值,且随着Pv1的变化平缓。 ③在吸入口吵完全封闭的条件下,对特定条件下吸入口处压力Pv与吸入 流量之间的关系如图3所示。为获得较为理想的吸入口处压务与吸入流量的匹配关系,可设计成多级真空发生器串联组合在一起。

罗伯特文丘里

罗伯特·文丘里 设计之路 文丘里早期的工作受到路易·艾瑟铎。康和艾罗·萨里南的影响,同时也受到米开朗基罗、帕拉第奥·勒。柯布西耶和阿尔瓦。阿尔托很大的影响。他说道:“在所有作品中,阿尔瓦。 阿尔托的作品对我的启示最大。它最具动感、最有联系性,是学习艺术和技术最丰富的来源”。 文丘里设计的建筑总是与社会、文化相关。他的创意灵感来源于所有的历史建筑和现有模式,因此他所设计的建筑既有个性,又与当地环境紧密相连。尽管他已经放弃了许多信仰,但他的作品还是被认为是后现代时期的一部分。 设计理念 罗伯特·文丘里的作品与著作与20世纪美国建筑设计的功能主义主流分庭抗礼,成为建筑界中非正统分子的机智而又明晰的代言人。他的著作《建筑的复杂性和矛盾性》(1966年)和《向拉斯维加斯学习》被认为是后现代主义建筑思潮的宣言。他反对密斯·凡·德罗的名言“少就是多”,认为“少就是光秃秃”。他认为现代主义建筑语言群众不懂,而群众喜欢的建筑往往形式平凡、活泼,装饰性强,又具有隐喻性。他认为赌城拉斯维加斯的面貌,包括狭窄的街道、霓虹灯、广告牌、快餐馆等商标式的造型,正好反映了群众的喜好,建筑师要同群众对话,就要向拉斯维加斯学习。于是过去认为是低级趣味和追求刺激的市井文化得以在学术舞台上立足。设计的时候,文丘里喜欢将简单而有美丽雕花的格式合并在一起,还经常在全面设计规划图中将讽刺和喜剧寓于其中,常以国际风格和流行艺术为指导,其作品还被当作设计平面的典范,这些模式常具有纪念性和装饰性。他以标记和符号为装饰,运用简单的几何图形,并将其融入他的设计中。他说道:“建筑学应该涉及到建筑的社会和历史之间的关联” 文丘里声明自己是“现代的”建筑师,他批评后现代派“只强调回收历史,是复旧”。 罗伯特·文丘里的代表作品有费城母亲之家、费城富兰克林故居、伦敦国家美术馆、俄亥俄州奥柏林大学的艾伦美术馆、新泽西州大西洋城马尔巴罗·布朗赫姆旅馆的改建等。 文丘里母亲住宅 为娘亲设计住宅至少有一好处,就是天然享有母子间的理解、宽谅、顺从。为娘亲设计住宅却又有不便之处,老人家的体己得之不易,做儿子的花起来终归不忍大肆挥洒,因此,“母亲住宅”建筑规模不大、结构也很简单,但是,功能周全,到位而充满温情地满足了家庭的实际活动需要。除了餐厅、起居合一的厅和厨房以外,有一间双人卧室(母)、一间单人卧室(子),二楼另有一间工作室(子),外带各处配备的极小卫生间。 小,便宜,功能简单,但从内到外都充满了矛盾性 其矛盾,在于内部功能空间的接合。庸凡的几个小房间,本来占不了太大的地面,顺

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论 实验一流体静力学实验 实验原理 在重力作用下不可压缩流体静力学基本方程 或(1.1) 式中: z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 据此可用仪器(不用另外尺)直接测得S0。 实验分析与讨论 1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B<0时,试根据记录数据,确定水箱内的真空区域。

,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小, 可认为cosθ=1.0。于是有(h、d单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压

相关主题
文本预览
相关文档 最新文档